
Semantics - 2

Matthew J. Graham
CACR

Methods of Computational Science
Caltech, 2009 April 7

mat!ew graham



knowledge representation

Expressivity is the ability to describe certain aspects of the
world

Concept schemes can be arranged in terms of expressivity, with
more expressive ones capable of expressing a wider variety of
statements:

mat!ew graham



ontologies

An ontology is a formal specification of a conceptualization - it
is a data model that represents a set of concepts within a
domain and the relationships between those concepts.

Ontologies generally describe:
• Individuals: the basic or "ground level" objects
• Classes: sets, collections, or types of objects
• Attributes: properties, features, characteristics, or parameters
that objects can have and share
• Relations: ways that objects can be related to one another
• Events: the changing of attributes or relations

mat!ew graham



ontology structure
Ontologies typically have two distinct components:

Names for important concepts in the domain:

-- Elephant is a concept whose members are a kind of animal
-- Herbivore is a concept whose members are exactly those animals who

eat plants or parts of plants
-- Adult Elephant is a concept whose members are exactly those elephants

whose age is greater than 20 years

Background knowledge/constraints on the domain:

-- Adult Elephants weigh at least 2000kg
-- All Elephants are either African Elephants or Indian Elephants
-- No individual can be both a Herbivore and a Carnivore

mat!ew graham



rdf schema

W3C standard for describing RDF vocabularies: RDF Schema
is the RDF Vocabulary Description Language

A semantic extension to RDF that provides mechanisms for
describing classes of resources and the properties that will be
used with them

Gives special meaning to certain RDF properties and resources

Provides the means to describe application specific RDF
vocabularies

mat!ew graham



rdfs constructs

Describing classes:

-- rdfs:Class and rdfs:subClassOf

Describing properties:

-- rdfs:domain and rdfs:range

Others:

-- rdfs:subPropertyOf, rdfs:comment, rdfs:label, rdfs:seeAlso,
rdfs:isDefinedBy

mat!ew graham



rdfs example
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.example.org/biology#">
<rdfs:Class rdf:ID="organism">

<rdfs:comment>Class to describe a living organism</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource" />

</rdfs:Class>
<rdfs:Class rdf:ID="animal">

<rdfs:comment>Class to describe an animal</rdfs:comment>
<rdfs:subClassOf rdf:resource="#organism" />

</rdfs:Class>
<rdfs:Class rdf:ID="horse">

<rdfs:subClassOf rdf:resource="#animal"/>
<rdfs:comment>Class to describe a horse</rdfs:label>

</rdf:Description>
<rdf:Property rdf:ID="scientificName">

<rdfs:comment>The scientific name of an organism</rdfs:comment>
<rdfs:domain rdf:resource="#organism"/>
<rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal"/>

</rdf:Property> </rdf:RDF>

mat!ew graham



rdf example

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.example.org/biology#">

<horse rdf:ID="Seabiscuit">
<scientificName>Equus ferus caballus</scientificName>

</horse>
</rdf:RDF>

mat!ew graham



rdfs limitations

RDF and RDFS provide basic capabilities for describing vocabularies that
describe resources

Other capabilities are desirable, for example:

-- Cardinality constraints (e.g. exactly one)
-- Specifying that properties are transitive (e.g. if A is B and B is C then A is

C)
-- Specifying inverse properties
-- Specifying the 'local' range and/or cardinality for a property when used

with a given class
-- Describing new classes by combining existing classes (using intersections

and unions)
-- Negation (using 'not')

mat!ew graham



web ontology language (owl)

W3C standard for authoring ontologies

Based on RDF (OWL semantically extends RDFS)

Regarded as one of the fundamental technologies underpinning the
Semantic Web

OWL allows descriptions of:

-- relations between classes (e.g. disjointness)
-- cardinality (e.g. "exactly one")
-- characteristics of properties (e.g. symmetry)
-- enumerated classes

mat!ew graham



owl components

Data is interpreted as:

-- a set of individuals
-- a set of property assertions relating the individuals to each other
-- a set of axioms placing constraints on sets of individuals (classes) and the

types of relationships allowed between them

For example, the family ontology:

-- "hasMother" is only present between two individuals when "hasParent" is
also present

-- members of "HasTypeOBlood" are never related via "hasParent" to
members of "HasTypeABBlood"

-- If Ada "hasMother" Anne and Ada is "HasTypeOBlood" then Anne is not
"HasTypeABBlood"

mat!ew graham



types of owl

OWL Lite
-- Simplest type meant to support taxonomies with simple constraints, e.g. cardinality is 0

or 1
OWL-DL
-- Designed for maximum expressiveness with completeness, decidability and practical

reasoning algorithms
-- Corresponds to a description logic
-- Certain restrictions on how/where language constructs can be used in order to

guarantee decidability (e.g. transitive properties cannot have number restrictions)
OWL Full
-- No restrictions on how/where language constructs can be used
-- Compatible with RDFS
-- Not decidable and complete reasoning is probably insupportable
OWL Lite constructs as legal and valid as OWL-DL constructs and OWL-DL constructs are
legal and valid as OWL Full constructs

mat!ew graham



owl classes

OWL supports six main ways of describing classes:

Named class: Professor

Intersection class: Human Ù Female

Union class: JavaProgrammer Û CProgrammer

Complement class: ¬ Professor Ù Woman

Restriction class
-- Existential: ∃ hasColleague Lecturer
-- Universal: ∀ hasColleague Professor
-- Cardinality: hasParent = 2
-- Has Value: hasColleague – Matthew

Enumerated class: {George Matthew Ashish Ciro Roy}

mat!ew graham



owl properties

OWL has two main categories of properties:
-- Object properties: link individuals to individuals
-- Datatype properties: link individuals to datatype values

Object properties can have an inverse, e.g. worksFor and employs

Properties can have a specified domain and range

Certain property characteristics can be specified:
-- Functional: for a given individual, the property takes only value, e.g. husband
-- Inverse functional: the inverse of the property is functional (c.f. rdb keys)
-- Symmetric: if A links to B then it can be inferred that B links to A
-- Transitive: if A links to B and B links to C then it can be inferred that A links to C

mat!ew graham



owl example: sheep

<owl:Class rdf:about="http://www.example.org/biology#sheep">
<rdfs:label>sheep</rdfs:label>
<rdfs:subClassOf>

<owl:Class rdf:about="http://www.example.org/biology#animal"/>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.example.org/biology#eats"/>

<owl:allValuesFrom>
<owl:Class rdf:about="http://www.example.org/biology#grass"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

mat!ew graham



owl example: grass and plants

<owl:Class rdf:about="http://www.example.org/biology#grass">
<rdfs:label>grass</rdfs:label>
<rdfs:subClassOf>

<owl:Class rdf:about="http://www.example.org/biology#plant"/>
</rdfs:subClassOf>

</owl:Class>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://www.example.org/biology#plant"/>
<owl:Restriction>

<owl:onProperty rdf:resource="http://www.example.org/biology#part of"/>
<owl:someValuesFrom>

<owl:Class rdf:about="http://www.example.org/biology#plant"/>
</owl:someValuesFrom>

</owl:Restriction>

mat!ew graham



</owl:unionOf>
<owl:disjointWith>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.example.org/biology#part of"/>
<owl:someValuesFrom>

<owl:Class rdf:about="http://www.example.org/biology#animal"/>
</owl:someValuesFrom>

</owl:Restriction>
<owl:Class rdf:about="http://www.example.org/biology#animal"/>

</owl:unionOf>
</owl:Class>

</owl:disjointWith>
</owl:Class>

mat!ew graham



owl example: vegetarian

<owl:Class rdf:about="http://www.example.org/biology#vegetarian">
<rdfs:label>vegetarian</rdfs:label>
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://www.example.org/biology#animal"/>
<owl:Restriction>

<owl:onProperty rdf:resource="http://www.example.org/biology#eats"/>
<owl:allValuesFrom>

<owl:Class>
<owl:complementOf>

<owl:Restriction>
<owl:onProperty rdf:resource="http://www.example.org/biology#part of"/>
<owl:someValuesFrom>

<owl:Class rdf:about="http://www.example.org/biology#animal"/>
</owl:someValuesFrom>

mat!ew graham



</owl:Restriction>
</owl:complementOf>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="http://www.example.org/biology#eats"/>
<owl:allValuesFrom>

<owl:Class>
<owl:complementOf>

<owl:Class rdf:about="http://www.example.org/biology#animal"/>
</owl:complementOf>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

mat!ew graham



inference and reasoning

Computers provide reasoning services over a knowledge domain where the
domain and the knowledge have been formally and rigorously specified
and reasoning algorithms have been implemented in a way which that
computer can apply.

Reasoning with OWL-DL: can infer information that is not explicitly
represented in an ontology

-- subsumption testing
-- equivalent testing
-- consistency testing
-- instantiation testing

mat!ew graham



inference example

Sheep only eat grass

Grass is a plant

Plants and parts of plants are disjoint from animals and parts of
animals

Vegetarians only eat things which are not animals or parts of
animals

=> sheep are vegetarians!

mat!ew graham



software

Protege (protege.stanford.edu)

Jena (jena.sourceforge.net)

mat!ew graham


	knowledge representation
	ontologies
	ontology structure
	RDF Schema
	RDFS constructs
	RDFS example
	RDF example
	RDFS limitations
	web ontology language (owl)
	OWL components
	types of OWL
	owl classes
	owl properties
	owl example: sheep
	owl example: grass and plants
	owl example: vegetarian
	inference and reasoning
	inference example
	software

