Data Mining and Exploration
(a quick and very superficial intro)

S. G. Djorgovski
AyB1199; Feb: 2009

A Quick Overview Today

A general intro to data mining
— What is it, and what for?
Clustering and classification
— An example from astronomy: star-galaxy separation

Exploratory statistics

— An example from multivariate statistics: Principal Component
Analysis (PCA) and multivariate correlations

Second part of the lecture:
Some examples and demos, by Ciro Donalek

Note: This is just a very modest start!
We posted some web links for you to explore, and go from there.

What is Data Mining (DM)?
(or: KDD = Knowledge Discovery in Databases)

* Many different things, but generally what the name KDD says
— It includes data discovery, cleaning, and preparation
— Visualization is a key component (and can be very problematic)

— It often involves a search for patterns, correlations, etc.; and
automated and objective classification

— It includes data modeling and testing of the models

+ It depends a lot on the type of data, the study domain (science,
commerce, ...), the nature of the problem, etc., etc.

* Generally, DM algorithms are computational embodiments of
statistics

Thisis a Huge, HUGE, field! Lots of literature, lectures,

software... And yet, lots of unsolved applied CS research problems

So what is Data Mining (DM)?

The job of science is Knowledge Discovery; data are incidental
to this process, representing the empirical foundations, but not
the understanding per se

— A lot of this process is pattern recognition (including discovery of
correlations, clustering/classification), discovery of outliers or
anomalies, etc.

DM is Knowledge Discovery in Databases (KDD)

DM is defined as “an information extraction activity whose
goal is to discover hidden facts contained in (large) databases”
Machine Learning (ML) is the field of Computer Science
research that focuses on algorithms that learn from data

DM is the application of ML algorithms to large databases

— And these algorithms are generally computational representations of
some statistical methods




A Schematic View of KDD
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Data Mining Methods and Some Examples

Clustering

Classification

Associations

Neural Nets

Decision Trees

Pattern Recognition

Correlation/Trend Analysis

Principal Component Analysis

Independent Component
LGEIVAS

Regression Analysis

Outlier/Glitch Identification

Visualization

Autonomous Agents

Self-Organizing Maps (SOM)

Link (Affinity Analysis)

Classify new data items using

the known classes & groups
Find unusual co-occurring associations
of attribute values among DB items

Predict a numeric attribute value

Group together similar items and
separate dissimilar items in DB

Organize information in the
database based on relationships
among key data descriptors

Identify linkages between data items
based on features shared in common

Some Data Mining Techniques
Graphically Represented

Neural Network

Clustering Self-Organizing Map (SOM)
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Outlier (Anomaly) Detection

Data Mapping and a Search for Outliors

Link Analysis
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Here we show selected Kirk Borne’s slides
from the NVO Summer School 2008,

http://nvo-twiki.stsci.edu/twiki/bin/view/
Main/NVOSS2008Sched




Clustering and Classification

* Answering the questions like:

— How many statistically distinct kinds of things are there in my
data, and which data object belongs to which class?

— Are there anomalies/outliers? (e.g., extremely rare classes)

— I know the classes present in the data, but would like to classify
efficiently all of my data objects

* Clustering can be:

1. Supervised: a known set of data objects (“ground truth”) can
be used to train and test a classifier
— Examples: Artificial Neural Nets (ANN), Decision Trees (DT)

2. Unsupervised: the class membership (and the number of
classes) is not known a priori; the program should find them

— Examples: Kohonen Nets (SOM), Expectation Maximization
(EM), various Bayesian methods...

Classification ~ Mixture Modeling

* A lot of DM involves automated
classification or mixture
modeling
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— How many kinds of data objects
are there in my data set?

— Which object belongs to which
class with what probability?

¢ Different classes often follow
different correlations

— Or, correlations may define the
classes which follow them

* Classes/clusters are defined by
their probability density S
distributions in a parameter space

There are many good tools out there, but you
need to choose the right ones for your needs
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GMDH, Multilinear Interp, MARS
(from Moore 2002)

Exploration of observable parameter spaces
and searches for rare or new types of objects

A Generic Machine-Assisted Discovery Problem: . : .
Data Mapping and a Search for Outliers ) A smlple, real-life example.
o L

p3 . dots = stars
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Now consider ~ 10° data vectors

p2 in~ 10%- 103 dimensions ...




Gaussian Mixture Modeling

» Data points are distributed in some N-dimensional parameter
space,

X, j=1,..N

* There are k clusters, w; ,
i=1, ..., k, where the
number of clusters, %,
may be either given by
the scientist, or derived
from the data themselves

* Each cluster can be

Original

An Example

(from Moore et al.)

modeled as an /V-variate
Gaussian with mean w, and covariance matrix S,

* Each data point has an association probability of belonging to
each of the clusters, P;

GMM result

Model density distribution =

Auton’s Graphics

A Popular Technique:
K-Means

Start with k random cluster centers

* Assume a data model (e.g., Gaussian)
— In principle, it can be some other
type of a distribution

Iterate until it converges

— There are many techniques;
Expectation Maximization (EM)
is very popular; multi-resolution
kd-trees are great (Moore, Nichol,
Connolly, et al.)
Repeat for a different k if needed
* Determine the optimal k :
— Monte-Carlo Cross-Validation
— Akaike Information Criterion (AIC)
— Bayesian Information Criterion (BIC)

In modern data sets: Dy, >>1,D¢>>1

Data Complexity = Multidimensionality = Discoveries

But the bad news is ...
The computational cost of clustering analysis:

K-means: KxNxIxD
Expectation Maximization: K x N x I x D?
Monte Carlo Cross-Validation: M x K 2 x N x [ x D?

N = no. of data vectors, D = no. of data dimensions
K = no. of clusters chosen, K__ = max no. of clusters tried

max

I = no. of iterations, M = no. of Monte Carlo trials/partitions

|:> Terascale (Petascale?) computing and/or better algorithms

Some dimensionality reduction methods do exist (e.g., PCA, class
prototypes, hierarchical methods, etc.), but more work is needed




Some Practical and Theoretical
Problems in Clustering Analysis

Data heterogeneity, biases, selection effects ...
Non-Gaussianity of clusters (data models)

Outlier population, or
a non-Gaussian tail?

Missing data, upper and lower limits
Non-Gaussian (or non-Poissonian) noise
Non-trivial topology of clustering

Useful vs. “useless” parameters ... \

Some Simple Examples of Challenges for
Clustering Analysis from “Standard”
Astronomical Galaxy Clustering Analysis

Clustering on a clustered background

28 & " . e
©08 g .

® ' s # ‘g ﬂu@_'.\ .#‘:’.”"ﬁ
f '! ‘g o P

Clustering with a nontrivial topology

i’o” @ e 6 Té;:'% i
. ® ‘OQ " . s e W
:dé) w{?'é@.io ."w' " ”;:-5

3 & "t’ a;& i ES

DPOSS Clusters (Gal et al.) LSS Numerical Simulation (VIRGO)

Useful vs. “Useless” Parameters:

Clusters (classes) and correlations may exist/separate
in some parameter subspaces, but not in others
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A Relatively Simple Classification Problem:
Star-Galaxy Separation

* Important, since for most astronomical studies you want either
stars (~ quasars), or galaxies; the depth to which a reliable
classification can be done is the effective limiting depth of your
catalog - not the detection depth

— There is generally more to measure for a non-PSF object
* You’d like to have an automated and objective process, with
some estimate of the accuracy as a f'(mag)
— Generally classification fails at the faint end
* Most methods use some measures of light concentration vs.
magnitude (perhaps more than one), and/or some measure of the
PSF fit quality (e.g., %)
» For more advanced approaches, use some machine learning
method, e.g., neural nets or decision trees




Typical Parameter Space for S/G Classif.
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A set of such parameters can be fed into an automated classifier
(ANN, DT, ...) which can be trained with a “ground truth” sample

More S/G Classification Parameter Spaces:
Normalized By The Stellar Locus
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Then a set of such parameters can be fed into an automated classifier
(ANN, DT, ...) which can be trained with a “ground truth” sample

Automated Star-Galaxy Classification:
Artificial Neural Nets (ANN)

Input First Second Third (output)
Vector Layer Layer Layer
Output:
Input:

. Star, p(s
various P(s)
image
shape Galaxy, p(g)
parameters.

Other, p(0)

FI1G. 6. Schematic illustration of a network with an input vector of length
five, four nodes in the first layer, two nodes in the second layer, and three
in the output layer. As a shorthand, such a network can be written as

(5:4,2,3). (Odewahn et al. 1992)

Automated Star-Galaxy Classification:
Decision Trees (DTs)

log(Area) <= A,

false

(mag < m) and (ir] <1i)

star

Fig. 2. A portion of a much larger actual decision tree generated by the
O-Btree algorithm for performing star/galaxy classification. The interval ap-
pearing above each node indicates the range in value of the attribute speci-
fied in the node above that an object must meet for it to pass along that
branch. The dark branches lead to actual classifications. The number in

h within each leaf indicates the number of training examples clas-
sified correctly at that node.

star galaxy

FiG. 1. In this sample decision tree, one starts at the top node(root), follow-
ing the appropriate path to a final leaf (class) based upon the truth of the

assertion at each node. ( Weir et al. 1995 )




Automated Star-Galaxy Classification:
Unsupervised Classifiers

No training data set - the program decides on the number of classes
present in the data, and partitions the data set accordingly.

An example:

. - - - Star
AutoClass
(Cheeseman et al.)

B .

- . - . Star+fuzz Uses ayesian
approach in
machine learning
(ML).

' . ‘ Gall (E?)

- This application

) from DPOSS
Gal2 (Sp?) (Weir et al. 1995)

Star-Galaxy Classification:
The Next Generation

Multiple imaging data sets

Dataset
dependent
Individually constraints
derived
classifications l
GG N
Optimal
Classification

Optimally combined imagery

Classification / T
(€

Context

dependent
constraints

One key B T :
external ' : . o
constraint : :
is the Tty , .
“seeing” s
quality for

multiple 7 ’
imaging i : : .
passes S ¢ o

(quantifiable : . ; .
e.g., as the . OO 4
PSF FWHM)

Mediocre seeing

How to Incorporate the External or A
Priori (Contextual) Knowledge?

+ Examples: seeing and transparency for a given night;

direction on the sky, in Galactic coordinates; continuity in the
star/galaxy fraction along the scan; etc.

+ Still an open problem in the machine learning
* In principle, it should lead to an improved classification
* The problem occurs both in a “single pass” classification, and

in combining of multiple passes

* In machine learning approaches, must somehow convert the

external or a priori knowledge into classifier inputs - but the
nature of this information is qualitatively different from the
usual input (individual measurement vectors)




Two Approaches Using ANN:

1. Include the external Image ,
Parameters {4’
knowledge among the By P} ) ot s
s eeu P
input parameters NN | _
pHtP External i(r?(tjtzl!?)nty
; parameters: —
Object dependent coordinates, { —
seeing, etc.
Dataset dependent
2. A two-step classification:
Image . Output S,
Parameters {—* NN 1
{op s Po}
NN2 — Output S,
External { —
parameters L —|

Classification Bias and Accuracy

Good seeing

P(S) E
7 '
Stars
Bad seeing\ /
1
Galaxies / ! Stellarity
— +— index S
0 (pure galaxy) Classification | (pure star)
boundary

Assuming a classification boundary divider (stars/galaxies) derived from
good quality data, and applying it to poorer quality data, would lead to a
purer, but biased sample, as some stars will be misclassified as galaxies.

Shifting the boundary (e.g., on the basis of external knowledge) would
diminish the bias, but also degrade the purity.

Combining Multiple Classifications

Metaclassifier, or a committee of machines with a chairman?

ot —

NN
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Measured
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attributes and
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(independent)
passes
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NN
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Note: individual classifiers ¥
may be optimized or trained

differently

Final
output
joint
classif.
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Design?

Weighting algorithm?
Training data set?
Validation data set?

The (Proper) Uses of Statistics

* Hypothesis testing

Model fitting

* Data exploration:
— Multivariate analysis (MVA) and correlation search
— Clustering analysis and classification
— Image processing and deconvolutions

* Data Mining (or KDD):
— Computational/algorithmic implementations of statistical tools

NB: Statistical Significance # Scientific Relevance!

BAD uses of statistics:
— As a substitute for data (quantity or quality)
— To justify something a posteriori




Multivariate Analysis (MVA) Correlation Searches in Attribute Space

Multivariate Correlation Search: Data dimension Dy, =2 Dp =2 If Ds <Dy,
Statistical dim. Dg =2 D=1 correlations
* Are there significant, nontrivial correlations present in the data? X -~ are present
* Simple monovariate correlations are rare: multivariate data sets ;
can contain more complex correlations 3 Correlations are clusters
* What is the statistical dimensionality of the data? g with dimensionality
X. X reduction
] k
A real-life example: 28 2 L L B
L I —
Clusters vs. Correlations: . Fundamental Plane™ of gl Tk
elliptical galaxies, a set of 6" s
“Physics” = Correlations bivariate scaling relationsin = & [ cw g4
Correlations = reduction of a parameter space of ~ 10 o SR .
the statistical dimensions, containing E e 1 g2~ -
dimensionality valuable insights into their 16 L L g Ll I
physics and evolution A IES L RERR WU WL,
Principal Component Analysis Correlation Vector Diagrams:

Projections of the data and observable axes onto

Solving the eigen-problem of the data
the planes defined by the eigenvectors

hyperellipsoid in the parameter space of measured
attributes

g,

D3 — ob bl P Ei=aypi+tapp,+...

E, p ;= observables pi=b,E,+b,E,+...

(i=1,...Dyy)

E data

3 §, = eigenvectors, or N P

principal axes of the

data hyperellipsoid €,
E, e ; = eigenvalues, or
amplitudes of §;

(j=1,..Dy,)
p> o

cos 0,, = correlation coef. of p,and p,

P




An Example, Using VOStat

Here is a data file, with 6 observed and 5 derived quantities (columns)
for a few hundred elliptical galaxies (rows, data vectors):

# Ellipticals from the Djorgovski et al. survey

Pairwise Plots for Independent Observables

18 20 22 24 26
I S

logRe

¢ @, o
# T
logRe M_e mu_e sigma Mg2 M/L  logM rhoM rho_L f_eff ell GalID 8
# )
3.863 -22.35 19.70 2.479 0.336 8.98 11.36 -0.847 -1.546 -0.205 .06 1016 o0 300 R
3.442 -20.64 19.01 2.310 0.316 8.78 10.61 -0.344 -0.970 0.806 .29 1052 gw
3.943 -22.46 19.78 2.468 0.325 8.90 11.42 -1.030 -1.742 -0.354 .23 1060 o 8
3.282 -19.65 19.38 2.299 0.246 9.07 10.42 -0.045 -0.883 1.137 .17 1172 . .
3.569 -20.53 19.53 2.315 0.297 8.93 10.68 -0.467 -1.214 0.667 .24 1199 13 wgnc
3.457 -20.55 19.29 2.322 0.297 8.90 10.64 -0.349 -1.050 0.764 .22 1199 Yl e %
3.463 -20.75 18.55 2.412 0.305 8.78 10.83 -0.181 -0.988 0.662 .54 1209 R R 3
3.066 -18.60 19.16 2.207 0.301 9.01 10.02 ©0.204 -0.655 1.661 .29 1339 - S -
3.132 -18.66 19.36 2.158 0.282 8.93 9.99 -0.027 -0.831 1.578 .34 1351 ° %Q,w‘% N
3.141 -18.99 19.43 2.273 0.310 9.18 10.23 0.185 -0.726 1.445 .09 1374 o a%s ® Mg2
3.477 -19.41 20.78 2.125 0.257 9.08 10.27 -0.784 -1.565 0.921 .01 1379 a o o a a
3.526 -21.02 19.22 2.39% 0.313 8.95 10.86 -0.339 -1.069 ©.552 .18 1395 a i N ° ° by
3.257 -20.29 18.71 2.491 0.334 9.21 10.78 ©.389 -0.552 0.995 .09 1399 3 PR i 0 s N @ oll
3.265 -20.06 18.57 2.213 0.279 8.59 10.23 -0.184 -0.670 1.257 .37 1403 e 8° g™ o e MU || oo
3.180 -20.16 18.42 2.353 0.317 8.89 10.43 0.266 -0.376 1.287 .12 1404 el = . - L R
3.552 -20.97 19.42 2.438 0.327 9.09 10.97 -0.307 -1.167 ©0.458 .16 1407 aean ae de e o o oo
Ll L o , 1 1
Their Correlation Matrix: Now Let’s Do the l?r1nc1pal Component
Analysis (PCA):
locgRe Me mue sigma Mg2 ell
Principal Component Analysis(m) for logRe M_e mu_e sigma Mg2 :
locgRe 1.00 -0.90 0.73 0.53 0.41 0.03
Importance of components:
Me -0.90 1.00 -0.38 -0.74 -0.54 0.03
PCl PC2 PC3 PC4 PCS
mue 0.73 -0.38 1.00 -0.01 ©0.04 -0.13
Standard deviaticn 1.4 0.8 0.090 4e-02 2e-02
sigma 0.53 -0.74 -0.01 1.00 0.79 -0.01
Proportion of Variance 0.8 0.2 0.003 6e-04 2e-04
Mg2 0.41 -0.54 0.04 0.79 1.00 0.00
Cumulative Proportion 0.8 1.0 0.999 le-00 le+00
ell 0.03 0.03 -0.13 -0.01 ©0.00 1.00

You can learn a lot just from the inspection of this matrix,
and comparison with the pairwise (bivariate) plots ...

5 independent observables, but only 2 significant dimensions:
the first 2 components account for all of the sample variance!
The data sit on a plane in a 5-dim. parameter space: this is the
Fundamental Plane of elliptical galaxies. Any one variable can
be expressed as a combination of any 2 others, within errors.




PCA Results in More Detail
(This from a slightly different data set ...)

Eigenvalues As Percentages Cumul. Percentages
3.1359 62.7189 62.7189
1.3574 27.1482 89.8671
0.3883 7.7670 97.6341
0.1110 2.2199 99.8540
0.0073 0.1460 100.0000

Eigenvectors and projections of parameter axes:
VBLE. EV-1 EV-2 EV-3 EV-4 EV-5

logRe -0.5119 0.3443 0.1649 0.1563 0.7535
M_e 0.5291 -0.0310 -0.5158 -0.3689 0.5630
<mu>e -0.2764 0.6991 -0.4679 -0.3181 -0.3388
sigma -0.4614 -0.4399 0.1187 -0.7610 0.0194
Mg2 -0.4108 -0.4453 -0.6883 ©0.3989 -0.0077

Now Project the Observable Axes Onto the Plane
Defined by the Principal Eigenvectors:
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Compare with the
correlation matrix:
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Another Approach: Correlated Residuals
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L+~ best-fit line
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correlation correlation
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X
X

. ... but the residuals
poor correlation!

Y AZ correlate with the
3rd variable!

= The data are
on a plane in

the XYZ space
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Bivariate Correlations in Practice

Once the dimensionality has been established from PCA, one can
either derive the optimal bivariate combinations of variables from
the PCA coefficients, or optimize the mixing ratios for any two
variables vs. a third one (for a 2-dimensional manifold; the
generalization to higher dimensional manifolds is obvious).
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Some Data Mining Software & Projects

General data mining software packages:

*  Weka (Java): http://www.cs.waikato.ac.nz/ml/weka/

*  WekadWS (Grid-enabled): http:/grid.deis.unical.it/wekadws/

*  RapidMiner: http://www.rapidminer.com/
Astronomy-specific software and/or user clients:

*  VO-Neural: http://voneural.na.infn.it/

*  AstroWeka: http://astroweka.sourceforge.net/

*  OpenSkyQuery: http://www.openskyquery.net/

* ALADIN: http://aladin.u-strasbg.fr/

*  MIRAGE: http://cm.bell-labs.com/who/tkh/mirage/

*  AstroBox: http:/services.china-vo.org/
Astronomical and/or Scientific Data Mining Projects:

e GRIST: http://grist.caltech.edu/

*  ClassX: http://heasarc.gsfc.nasa.gov/classx/

* LCDM: http://dposs.ncsa.uiuc.edu/

¢ F-MASS: http://www.itsc.uah.edu/f-mass/

*  NCDM: http://www.ncdm.uic.edu/

Examples of Data Mining Packages: Weka
http://www.cs.waikato.ac.nz/ml/weka/

A collection of open
source machine learning [ =

{ Choose ) J48 -C0.25 -M 2

preprocess [iClassify | Cluster | Associate | Select attributes | Visualize

algorithms for data
mining tasks

Algorithms can either be
applied directly to a
dataset or called from
your own Java code

%) (v:peraiwidth (Num) %)

Select Instance 18]

Comes with its own GUI

(=)

Contains tools for data
pre-processing,
classification, regression,
clustering, association
rules, and visualization

Examples of Data Mining Packages: Mirage
http://cm.bell-labs.com/who/tkh/mirage/

Java Package for

exploratory data == w7e

analysis (EDA), fe - oy e e L83 olpy "
correlation mining, iR ‘:
and interactive
pattern discovery.
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Here are some useful books:

P.-N. Tan, M. Steinbach, & V. Kumar, Introduction to Data
Mining, Addison-Wesley, 2005. ISBN: 9780321321367

M. Dunham, Data Mining: Introductory and Advanced Topics,
Prentice-Hall, 2002. ISBN: 9780130888921

R. J. Roiger & M. W. Geatz, Data Mining: A Tutorial-Based
Primer, Addison-Wesley, 2002. ISBN: 9780201741285

Lots of good links to follow from the class webpage!




