Clustering

Matthew J. Graham
CACR

Methods of Computational Science Caltech, 2009 February 19

what, why and how

| identify groups of 'like' objects:
-- to define samples with common features
-- to identify outliers
-- to partition parameter space
| associate object similarity with:
-- proximity in parameter space
-- how objects are/can be described

types of clustering

hierarchical
-- agglomerative (bottom-up)
-- divisive (top-down)
| partitional
density-based
| biclustering

distance measures

Euclidean:

$D_{e}(p, q)=\sqrt{\sum_{i=1}^{n}\left(p_{i}-q_{i}\right)^{2}}$
Manhattan or taxicab:

$$
D_{t}(p, q)=\sum_{i=1}^{n}\left|p_{i}-q_{i}\right|
$$

Mahalanobis (correlations, scale-invariant):

$$
D_{m}(p, q)=\sqrt{(p-q)^{T} S^{-1}(p-q)}
$$

Cosine:

$$
D_{c}(p, q)=1-\frac{p \cdot q}{|p \| q|}
$$

how many clusters

| Rule of thumb: $k \sim(n / 2)^{\frac{1}{2}}$
| Percentage of variance explained as function of number of clusters - elbow criterion

Cluster validity, e.g. Davies-Bouldin index
Akaike information criterion (AIC)
| Bayesian information criterion (BIC)

k-means

\| Choose number of clusters k
Randomly generate k clusters and determine cluster centers
| Assign each point to the nearest cluster center
| Recompute new cluster centers
| Repeat until convergence criterion is met

friends-of-friends

| Link all pairs of points separated by less than some specified distance
| Each distinct subset of connected points is a group
At some critical distance, groups percolate: any side of the set of points can be reached from any point (perfect connectivity)

Danger of bridging or snaking

friends-of-friends example

Up- or down-regulated genes in the mouse genome

\qquad
single: $\min \{d(x, y): x \in A, y \in B\}$
-- Results easily in snake-like clusters even if they don't exist
complete: $\max \{d(x, y): x \in A, y \in B\}$
-- Eliminates the snake formation but sometimes produces puzzling configurations between tight and loosely formed clusters.
| average: $\frac{1}{|A| \cdot|B|} \Sigma_{x \in A} \Sigma_{y \in B} d(x, y)$
-- Joins clusters with smallest average distances
-- Not as outlier sensitive
-- Tends to form clusters with small within-cluster variation
-- Biased to form clusters with approximately the same variance

linkage example

Distribution of archaeological Bronze Age pottery finds

minimal spanning tree

Consider a set of straight line segments (edges) joining pairs of points such that:
-- no closed loops occur
-- each point is visited by at least one line
-- there is a sequence of edges between any pair of points (connected)
-- the sum of the edge lengths is minimised
If no edge-lengths are equal then the MST is unique

minimal spanning tree example

Canonical variate means of skull measurements of white-toothed shrews

| Consider S as a set of points in a space
For (almost) any point x in the space, there is one point of S closest to x
| The set of all points closer to a point c of S than to any other point of S is the interior of a convex polytope (Voronoi cell) for c
| The set of such polytopes tessellates the whole space and is the Voronoi tessellation for set S
matthew graham

voronoi example

Galaxies

| A kd-tree is a binary tree constructed on a set of points in k-dimensional space with leaf nodes and non-leaf nodes
| Every non-leaf node generates a splitting hyperplane that divides the space into two subspaces
| Points left of the hyperplane represent left subtree of that node and points to the right the right subtree
| Hyperplanes are always perpendicular to one of k-dimension axes and are cycled through with successive non-leaf nodes
matthew graham

kd tree example

Consider (2,3), (5,4), (9,6), (4,7), (8,1) and (7,2):

