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The Central Role of Probabilistic Inference in
Modern Science and Engineering

• There is an increasingly central role played by probability, and
associated numerical methods for probabilistic reasoning, in many
diverse problems of science in engineering.

• Several reasons for this - some aspects of the “world of interest” are
conveniently described by probabilistic models (i.e. financial markets as
random process, images, time series, etc.), deterministic systems might
have random or unknown initial conditions, parameters of the
dynamics, etc.

• General Problems we often face- 1) compare theory and experiment (in
the presence of measurement and/or computational error), 2)
uncertainty quantification

• Goal for this course - awareness of random or uncertain elements of
models or problems, idea of how to reformulate as probabilistic
inference, and numerically solve



Computationally Enabled Probabilistic Inference

• Probability needed when we are not after single solutions, but after the
ability to quantify states of knowledge - I.e. the representation,
quantification, and control of uncertainty.

• For almost all problems with a probabilistic component (either due to
the model, quantifying uncertainty, or both) we almost always wind up
looking at probabilities which are non-Gaussian, and for which we do
not have ``direct'' (i.e. in one step) sampling methods.

• Much more computationally intensive (as opposed to solving for single
solutions or estimates), and only enabled through advances in
computing (memory and speed)

• Why is this an interesting subject to discuss in the context of
``computationally enabled science''?

• It is directly due to advances in computing hardware (memory and
speed) that numerical methods to solve these problems are within
reach!



Example Inference Problems



WMAP Observations of the Cosmic Microwave
Background, 1/2 degree resolution

http://map.gsfc.nasa.gov

Cosmological models including
details such as composition, age,
star formation history, etc.

Predicted Power Spectrum

Measured Power Spectrum

Comparison of Theory and
Experiment in Cosmology I.



1 “frame” from a movie of
evolution of 4 different types
of Universe (Virgo Consortium)

Redshift surveys map out the
3D distribution of matter, with
distant “slices” seen as they
were in the PAST…

Comparison of Theory and
Experiment in Cosmology II.



Image Segmentation - Inference in Non-
stationary Spatial Random Fields

Courtesy, S.C. Zhu, UCLA

Mars Rover image -
•Modeled as a spatial random field
  with statistical properties that
  vary from region to region.
•Segmentation problem is an
  “inverse problem” - cluster the
  pixels together in regions with
  similar statistical properties (I.e.
  regions of uniform texture)



Smoothing, Filtering, and Prediction for
Nonlinear Systems given Noisy Measurements



Comparing Theory and Observation

• For almost all problems of interest encountered, there is a complicated
joint relationship among various degrees of freedom of a model and the
measured quantities

• It is not purely the volume of data that makes comparison between
theory difficult, but also the relation of the underlying theory to the
observations (the data model can be complex, and/or have a
complicated relation to the underlying parameters of interest to be
inferred)

• Because of tremendous advances in computation, these problems can
now be solved using the same basic strategy: “write down the
probability of everything”, condition on data, and marginalize
(numerically!) over everything else.

• In the past, this program was often computationally out of reach, but
not anymore!



Brief Review of Probability…
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p(x
1
,K,xk )

We have some K dimensional state space, and a
joint probability (measure if continuous variables):

We have the (1D) conditional densities (by definition):

  

! 

p(xi | x1,K,xi"1,xi+1,K,xk ) =
p(x1,K,xi"1,xi,xi+1,K,xk )

dy p(x1,K,xi"1,y,xi+1,K,xk )#

Joint density factors into conditional and marginal…

Similarly for the 2D, etc. conditional densities.



Gibbs Random Fields
Hammersley-Clifford Theorem:
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Where the “potentials” non-zero IFF a mutual conditional
probability dependence on the variables in the set 

Conditional probability structure important algorithmically
(I.e. sites which are conditionally independent can be adjusted
In parallel!)

Proven using the useful identity:
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p(x1,x2)

p(y1,y2)
=
p(x1 | x2)

p(y1 | x2)

p(x2 | y1)

p(y2 | y1)



Simulation and Inference
•Different conditional densities inherited from a common joint density
•Simulation conditions on the model, Inference conditions on the data!

Joint density of “everything”:

! 

p(d,x,") = p(d | x)p(x |")p(")

Data Underlying “truth” Model parameters
Simulation:  Sample data given the model

! 

p(d,x |") = p(d | x)p(x |")

Inference:  Sample model parameters given data

! 

p(",x | d) =
p(d | x)p(x |")p(")

d( # " , # x ) p(d | # x )p( # x | # " )p( # " )$



Example: Bayesian Inference of the Hubble
Constant
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Joint density: Can be used to simulate observations

Posterior: condition on data, and integrate over everything else

Assume Uniform Prior…

For ‘n’ observed galaxies,
each with different
measurement error



Comparison of Theory and Experiment in
Cosmology

1) Write down the “forward” probabilities needed for simulation

2) Solve for the Bayesian Posterior as a conditional probability

! 

p(",s,d) = p(d | s)p(s |")p(")

! 

p(" | d) = ds p(# ",s | d)



Smoothing, Filtering, and Prediction for Discrete
Time, Stochastic, Nonlinear Systems
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xn = F(xn"1,#) + un

yn =G(xn ) + vn

Dynamics: ‘x’ is the underlying state, ‘y’ are observations

Joint Density:  Simulate the observations…
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•The “forward” conditional densities are all Gaussian here,
  but the various conditional densities are non-Gaussian
  for nonlinear dynamics!
• Leads to computationally challenging problems of state
  estimation and system identification



Smoothing, Filtering, and Prediction for Discrete
Time, Stochastic, Nonlinear Systems
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Smoothing
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Filtering

Prediction

Problems: Given noisy state measurements, infer the past,
present, and future state history, and possibly the dynamics
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If dynamics are linear, then everything is Gaussian, I.e. Kalman filtering



Markov Chain Monte Carlo
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" (x) = dy T(x | y) " (y)#
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Goal - want to sample from some general probability
density.  In order to do so, run a Markov chain, such that:

Sufficient conditions for convergence:
1). Stationarity

2). Irreducible: for any (x,y), an ‘m’ large enough such that

! 

0 < T(x | ym ) T(yi | yi"1)
1:m

#



Metropolis-Hastings Algorithm

Construct transition matrix with any “proposal” matrix,
And find an “accept probability such that we satisfy
The condition of detailed balance:

! 

" (x)w(y | x)A(y | x) = A(x | y)w(x | y)" (y)

Algorithm:
1) Conditional on the past, propose new state
2) Accept with probability 0< A <= 1, otherwise keep past state
3) Continue

Accept probability is any function such that:
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A(y | x)

A(x | y)
=
" (y)w(x | y)

" (x)w(y | x)

Maximal Accept Probability:
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Proof of Stationarity for the Metropolis-Hastings
Algorithm

The condition of detailed balance:

! 

" (x)w(y | x)A(y | x) = A(x | y)w(x | y)" (y)

! 

p1(x) = 1" dy A(y | x)w(y | x)#[ ]$ (x) + dy A(x | y)w(x | y)# $ (y)

Reject probability from
State ‘x’

Accept transition TO
State ‘x’ from any other ‘y’

! 

p1(x) = 1" dy A(y | x)w(y | x)#[ ]$ (x) + $ (x) dy A(y | x)w(y | x)#( )

(by detailed balance)



Proof of Convergence

! 

dx" # (x) $ pn (x) = dx" dy T(x | y)" # (y) $ pn$1(y)( )

! 

" dy# dx T(x | y)# $ (y) % pn%1(y)

= dy# $ (y) % pn%1(y)

After repeated iterations, we always get closer in probability
to the target equilibrium measure (follows from stationarity)…



Symmetric Proposals

Symmetric Proposal:
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A(y | x) =min 1,
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w(y | x)"e
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We always accept higher probability moves, and
sometimes accept moves to lower probability
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A(y | x) =min 1,
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Example - Inference of Solution Given Noisy
Initial Guess (Lorenz Equations)

! 

˙ x = a(y " x)

˙ y = bx " y " xz

˙ z = xy " cz

! 

d
1:3

= x
1:3

+ n
1:3

Observe, with noise…



Lorenz Equation Example…



Gibbs Sampling
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K-dimensional state space state transition:
In sequential or random order, propose new state
from 1D conditionals:

IF we propose exactly from
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Ratio of new to old state Proposal ratio (new to old/old to new)



Gibbs Sampling Cosmological Parameters
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T(",s | # " , # s ) = p(" | s)p(s | d, # " )

Mean Field map given power spectrum guess

Random variation consistent with our uncertainty

Sum of the two maps is a sample from the conditional



Auxiliary Variable Methods

• Good overview of these methods in: R. M. Neal, “Probabilistic Inference Using Markov Chain Monte Carlo”,
   technical report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, Sept. 1993.

Embed state space into higher dimensional space:

! 

" (x)#" (y | x)" (x)

The marginal density is still what we want to sample -
so sample from the joint space, and “ignore” the new
variable ‘y’…

Propose according to:
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w(x,y) = w(x | y)w(y)
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• Can be useful for multi-modal measures (I.e. well approximated by a mixture of Gaussians)



Summary

• Probabilistic methods for model based reasoning, because
either model has stochastic elements, uncertainty
(measurement error), or both

• MCMC and other sampling methods allow us to quantify what
has been learned from either computation or measurement

• For high dimensional problems, and/or complicated (I.e.
nonlinear) models, probabilistic inference for these cases was
previously intractable, but now computationally within reach.

• The way in which simulations and measurement are used in
reaching conclusions will dramatically change - much more
detail of the measurement process and details of the theory can
be directly addressed with algorithms such as MCMC and its
variants…



Selected MCMC References for Additional
Reading

• Julian Besag, “Spatial Interaction and the Statistical Analysis of Lattice
Systems”, J. of the Royal Statistical Society B, 36,192-236, 1974.

• C. Andrieu, et al, “An Introduction to MCMC for Machine Learning”,
Machine Learning, 50,5-32, 2003.

• R. M. Neal, “Probabilistic Inference Using Markov Chain Monte Carlo”,
technical report CRG-TR-93-1, Department of Computer Science,
University of Toronto, Sept. 1993.

• L. Tierney, A. Mira, “Some Adaptive Monte Carlo Methods for Bayesian
Inference”, Statistics in Medicine, 18, 2507-2515, 1999.

• H. Haario et al, “An Adaptive Metropolis Algorithm”, Bernoulli, vol.7,
no.2,2001, 223-242

• MCMC preprint site, with links to software,
http://www.statslab.cam.ac.uk/~mcmc/
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