Nonparmeteric Bayes & Gaussian Processes

Baback Moghaddam

baback@jpl.nasa.gov Machine Learning Group

Outline

- Bayesian Inference
- Hierarchical Models
- Model Selection
- Parametric vs. Nonparametric
- Gaussian Processes
 - regression
 - classification
- Summary

Bayesian Inference

PosteriorLikelihood x Prior
$$p(\theta | D, M) = \frac{p(D | \theta, M) p(\theta | M)}{p(D | M)}$$
Evidence

The *evidence* for our model M is also called "Marginal Likelihood"

$$p(D \mid M) = \int p(D \mid \theta, M) \ p(\theta \mid M) \ d\theta$$

Bayesian Nutshell

Hierarchical Models

Hierarchical Models

Bayesian Hierarchy

• Level 1: infer parameters

•

$$p(\theta | D, \alpha, M) = \frac{p(D | \theta, M) \ p(\theta | \alpha, M)}{p(D | \alpha, M)}$$
Level 2: infer hyper-parameters
$$p(\alpha | D, M) = \frac{p(D | \alpha, M) \ p(\alpha | M)}{p(D | M)}$$
Level 3: infer models
$$p(M | D) \propto p(D | M) \ p(M)$$

Model Selection

by Zoubin Ghahramani

Bayesian Model Selection

by Zoubin Ghahramani

The law of *conservation of belief* states that models that explain many possible data sets must necessarily assign each of them a <u>low</u> probability.

Bayesian Occam's Razor

 M_1 : the too simple model is unlikely to generate this data M_3 : the too complex model is a little better but still unlikely M_2 : the just right model has the highest marginal likelihood

All the Bayesics

$$P(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta)P(\theta)}{P(\mathcal{D})}$$

$$\begin{array}{ll} P(\mathcal{D}|\theta) & \text{likelihood of } \theta \\ P(\theta) & \text{prior probability of } \theta \\ P(\theta|\mathcal{D}) & \text{posterior of } \theta \text{ given } \mathcal{D} \end{array}$$

Model Comparison:

$$P(m|\mathcal{D}) = \frac{P(\mathcal{D}|m)P(m)}{P(\mathcal{D})}$$
$$P(\mathcal{D}|m) = \int P(\mathcal{D}|\theta, m)P(\theta|m) d\theta$$

Prediction:

$$\begin{split} P(x|\mathcal{D},m) &= \int P(x|\theta,\mathcal{D},m)P(\theta|\mathcal{D},m)d\theta \\ P(x|\mathcal{D},m) &= \int P(x|\theta)P(\theta|\mathcal{D},m)d\theta \quad \text{(for many models)} \end{split}$$

by Zoubin Ghahramani

Approximation Methods

- for the evidence and posterior integrals
 - Laplace's method
 - Bayesian Information Criteria (BIC = MDL)
 - Akaike Information Criteria (AIC)
 - Variational Bayes (VB)
 - Expectation Propagation (EP)
 - Markov Chain Monte Carlo (MCMC)
 - Exact ("Perfect") Sampling
 - etc

Parametric vs. Nonparametric

• Parametric

- the total # of parameters is **fixed** (property of its distribution)
- so it doesn't depend (grow) with the # of data points collected
- for prediction, knowing $\boldsymbol{\theta}$ means you can throw away your data

$$p(d_{new} | D) \propto p(d_{new} | \theta) p(\theta | D)$$

• Nonparametric

- # of parameters can grow with the number of data
- so the model can "adapt" to the data's complexity
- but this typically means you can **not** throw away your data
- future predictions require access to the previous training set

$$p(d_{new} | D, \alpha)$$

Nonparametric Bayesian Models

- Gaussian Process
- Dirichlet Process
 - Chinese restaurant process
 - Polya urn model
 - Stick-breaking models
 - Pitman-Yor process
- Indian buffet process
- Polya trees
- Dirichlet diffusion trees
- Infinite Hidden Markov Models

Gaussian Process Regression

• for modeling, prediction, curve fitting

$$y = f(\mathbf{x}) + \varepsilon$$

- some (mis)conceptions:
 - not curve fitting! we want p(y/x)
 - not just regression with Gaussian noise
 - -input x can be: $\mathbb{R}, \mathbb{Z}, \mathbb{R}^n$, \mathbb{F} , \mathbb{F} , "ATGC"
 - -output y (hence f) is a scalar \mathbb{R}

Early GP History

- Thiele (1880)
- Kolmogorov (1941), Wiener (1949)
- Thompson (1956) : meteorology
- Matheron (1963) : *Kriging* in Geostatistics
- Whittle (1963) : geospatial prediction
- O'Hagan (1978) : general Bayesian regression
- Ripley (1981): Bayesian spatial models

Thorvald Nicolai Thiele

- Danish Astronomer, Actuarian, Statistician
- Born 1838, died 1910
- "General Theory of Observations" (1889)
- Find "best predictor" for time series x(t)
- Formulated a "Kalman Filter" for a GP
 - rediscovered by Kalman & Bucy (1960)

Recent GP History

- Bar-Shalom & Fortman (1988) : Kalman filters
- Poggio & Girosi (1989) : Generalized RBFs
- Wahba (1990) : ARMA models & splines
- Cressie (1993) : spatial statistics (2D/3D)
- Neal (1996) : MLP = GP
- Williams & Rasmussen (1997) : general ML
- Saunders (1998) : KRR (Kriging rediscovered)
- etc etc (just see NIPS, UAI, AISTATS, ICML ...)

Weight Space View

Parametric and finite-dimensional

• Regression with basis functions $\boldsymbol{\phi} = f(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^\top \mathbf{w}$

- e.g., cubic polynomials
$$\phi(x) = \begin{bmatrix} 1 & x & x^2 & x^3 \end{bmatrix}^T$$

$$w = [w_0 \ w_1 \ w_2 \ w_3]^T$$

- Gaussian prior on weights $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma_p)$
- let $K = \langle f f^T \rangle = Cov(f)$ $K = \Phi^T \Sigma_p \Phi$
- vector f is jointly Gaussian $\mathbf{f}|X \sim \mathcal{N}(\mathbf{0}, K)$

Random Process View

non-parametric and infinite-dimensional

imagine increasing the length of that f vector to infinity

$$K = \Phi^{\top} \Sigma_p \Phi \longrightarrow K_{ij} = k(x_i, x_j)$$

Informally speaking

- the infinite-dimensional vector f becomes a function f(x)
- its covariance matrix K becomes a kernel function $k(x_i, x_j)$
- in the limit f(x) becomes a stochastic *Gaussian Process*

 $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')) \begin{cases} \text{• mean function } m(\mathbf{x}) \\ \text{• kernel function } k(\mathbf{x}, \mathbf{x}') \end{cases}$

Our Beloved Gaussian

The Gaussian distribution is given by

$$p(\mathbf{x}|\mu, \Sigma) = \mathcal{N}(\mu, \Sigma) = (2\pi)^{-D/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right)$$

where μ is the mean vector and Σ the covariance matrix.

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Also : the product of Gaussians is Gaussian

e.g., Gaussian prior x Gaussian likelihood à Gaussian posterior

Marginalization

Recall:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}.$$

For Gaussians:

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} A & B \\ B^{\top} & C \end{bmatrix}\right) \implies p(\mathbf{x}) = \mathcal{N}(\mathbf{a}, A)$$

a = mean(x) b = mean(y) A = cov(x, x') B = cov(x, y)C = cov(y, y')

Conditional Gaussians

• Jointly Gaussian (sub)vectors x and y

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{b}\end{bmatrix}, \begin{bmatrix}A \to B_{\mathbf{1}}\\B^{\mathsf{T}} \to \mathbb{C}\end{bmatrix}\right)$$

• Conditional density of x given y

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{a} + BC^{-1}(\mathbf{y} - \mathbf{b}), \mathbf{A} - BC^{-1}B^{\top})$$

Schur complement of C

Definition of Gaussian Process

A *Gaussian process* is a generalization of a multivariate Gaussian distribution to infinitely many variables.

Informally: infinitely long vector \simeq function

Definition: *a Gaussian process is a collection of random variables, any finite number of which have (consistent) Gaussian distributions.*

A Gaussian distribution is fully specified by a mean vector, μ , and covariance matrix Σ :

 $\mathbf{f} = (f_1, \ldots, f_n)^\top \sim \mathcal{N}(\mu, \Sigma), \text{ indexes } i = 1, \ldots, n$

A Gaussian process is fully specified by a mean function m(x) and covariance function k(x, x'):

$$f(x) \sim GP(m(x), k(x, x'))$$

1D GP sample (RBF)

2D GP sample (RBF)

Covariances (Kernels)

Where does the covariance matrix K come from?

• Covariance matrix constructed from *covariance function*:

 $\mathbf{K}_{ii} = K(x_i, x_i)$

 Covariance function characterizes correlations between different points in the process:

 $K(x, x') = \mathcal{E}[f(x)f(x')]$ not a function of f

- Must produce positive semidefinite covariance matrices $\mathbf{v}^{\top}\mathbf{K}\mathbf{v} > 0$
- Ensures consistency

Squared Exponential (RBF) Kernel

$$K(x, x') = \sigma_0^2 \exp\left[-\frac{1}{2}\left(\frac{x-x'}{\lambda}\right)^2\right]$$

- Intuition: function variables close in input space are highly correlated, whilst those far away are uncorrelated
- λ, σ_0 hyperparameters. λ : lengthscale, σ_0 : amplitude
- Stationary: K(x, x') = K(x x') invariant to translations
- Very smooth sample functions infinitely differentiable

Nonstationary Covariances

- Linear covariance: $K(x, x') = \sigma_0^2 + xx'$
- Brownian motion (Wiener process): $K(x, x') = \min(x, x')$

• Periodic covariance:
$$K(x, x') = \exp\left(-\frac{2\sin^2\left(\frac{x-x'}{2}\right)}{\lambda^2}\right)$$

Neural network covariance

 $k(x, x') = \tanh(a x \cdot x' + b)$ not a valid kernel (psd)!

$$k_{\rm NN}(\mathbf{x}, \mathbf{x}') = \frac{2}{\pi} \sin^{-1} \left(\frac{2\tilde{\mathbf{x}}^{\top} \Sigma \tilde{\mathbf{x}}'}{\sqrt{(1 + 2\tilde{\mathbf{x}}^{\top} \Sigma \tilde{\mathbf{x}})(1 + 2\tilde{\mathbf{x}}'^{\top} \Sigma \tilde{\mathbf{x}}')}} \right)$$

Matern Class of Covariances

$$K(x,x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}|x-x'|}{\lambda}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}|x-x'|}{\lambda}\right)$$

where K_{ν} is a modified Bessel function.

- Stationary, isotropic
- $\nu \rightarrow \infty$: SE covariance
- Finite ν : much rougher sample functions
- $\nu=1/2$: $K(x,x')=\exp(-|x-x'|/\lambda),$ OU process, very rough sample functions

Matern Class of Covariances

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of ν , with $\ell = 1$. The sample functions on the right were obtained using a discretization of the x-axis of 2000 equally-spaced points.

Rational Quadratic Kernels

The *rational quadratic* (RQ) covariance function:

$$k_{\rm RQ}(r) = \left(1 + \frac{r^2}{2\alpha\ell^2}\right)^{-\alpha}$$

with α , $\ell > 0$ can be seen as a *scale mixture* (an infinite sum) of squared exponential (SE) covariance functions with different characteristic length-scales.

Using
$$\tau = \ell^{-2}$$
 and $p(\tau | \alpha, \beta) \propto \tau^{\alpha - 1} \exp(-\alpha \tau / \beta)$:

$$\begin{split} k_{\rm RQ}(r) &= \int p(\tau | \alpha, \beta) k_{\rm SE}(r | \tau) d\tau \\ &\propto \int \tau^{\alpha - 1} \exp\left(-\frac{\alpha \tau}{\beta}\right) \exp\left(-\frac{\tau r^2}{2}\right) d\tau \propto \left(1 + \frac{r^2}{2\alpha \ell^2}\right)^{-\alpha}, \end{split}$$

Rational Quadratic Kernels

Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from Gaussian processes with rational quadratic covariance functions, eq. (4.20), for different values of α with $\ell = 1$. The sample functions on the right were obtained using a discretization of the x-axis of 2000 equally-spaced points.

Building New Covariances

There are several ways to combine covariances:

- Sum: $K(x, x') = K_1(x, x') + K_2(x, x')$ addition of independent processes
- Product: $K(x, x') = K_1(x, x')K_2(x, x')$ product of independent processes
- Convolution: $K(x,x') = \int dz \, dz' \, h(x,z) K(z,z') h(x',z')$ blurring of process with kernel h

Matlab Demo 1

Sampling from a GP

Matlab:

```
% given GP(fmean,K)
L = chol(K)'; % K = L*L';
while 1
    f = L*randn(n,1) + fmean;
    plot(f)
    pause
end
```

Demo 1: Sampling from Prior

Prior Cov

Conditional Gaussians

• Jointly Gaussian (sub)vectors x and y

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N}\left(\begin{bmatrix}\mathbf{a}\\\mathbf{b}\end{bmatrix}, \begin{bmatrix}A & B\\B^{\mathsf{T}} & C\end{bmatrix}\right)$$

Conditional density of x given y

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{a} + BC^{-1}(\mathbf{y} - \mathbf{b}), A - BC^{-1}B^{\top})$$

mean covariance

GPR with Gaussian Noise

Data generated with Gaussian white noise around the function f

$$y = f + \epsilon$$
 $\mathcal{E}[\epsilon(x)\epsilon(x')] = \sigma^2 \delta(x - x')$

Equivalently, the noise model, or *likelihood* is:

$$p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{f}, \sigma^2 \mathbf{I})$$

Integrating over the function variables gives the *marginal likelihood*:

$$p(\mathbf{y}) = \int d\mathbf{f} \, p(\mathbf{y}|\mathbf{f}) p(\mathbf{f})$$
$$= \mathcal{N}(\mathbf{0}, \mathbf{K} + \sigma^2 \mathbf{I})$$

GPR Prediction

N training input and output pairs (\mathbf{X}, \mathbf{y}) , and T test inputs \mathbf{X}_T Consider joint training and test marginal likelihood:

$$p(\mathbf{y}, \mathbf{y}_T) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{N+T} + \sigma^2 \mathbf{I}), \quad \mathbf{K}_{N+T} = \begin{bmatrix} \mathbf{K}_N & \mathbf{K}_{NT} \\ \mathbf{K}_{TN} & \mathbf{K}_T \end{bmatrix},$$

Condition on training outputs: $p(\mathbf{y}_T | \mathbf{y}) = \mathcal{N}(\boldsymbol{\mu}_T, \boldsymbol{\Sigma}_T)$

$$\boldsymbol{\mu}_{T} = \mathbf{K}_{TN} [\mathbf{K}_{N} + \sigma^{2} \mathbf{I}]^{-1} \mathbf{y}$$
$$\boldsymbol{\Sigma}_{T} = \mathbf{K}_{T} - \mathbf{K}_{TN} [\mathbf{K}_{N} + \sigma^{2} \mathbf{I}]^{-1} \mathbf{K}_{NT} + \sigma^{2} \mathbf{I}$$

Gives correlated predictions. Defines a predictive Gaussian process

GPR Prediction

 Often only marginal variances (diag Σ_T) are required — sufficient to consider a single test input x_{*}:

$$\mu_* = \mathbf{K}_{*N} [\mathbf{K}_N + \sigma^2 \mathbf{I}]^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_* - \mathbf{K}_{*N} [\mathbf{K}_N + \sigma^2 \mathbf{I}]^{-1} \mathbf{K}_{N*} + \sigma^2$$

- Mean predictor is a linear predictor: $\mu_* = \mathbf{K}_{*N} \boldsymbol{\alpha}$ "parameter"
- Inversion of $\mathbf{K}_N + \sigma^2 \mathbf{I}$ costs $\mathcal{O}(N^3)$
- Prediction cost per test case is $\mathcal{O}(N)$ for the mean and $\mathcal{O}(N^2)$ for the variance

posterior mean +/- 2σ

posterior mean +/- 2σ

Matlab Demo 2

Posterior Sampling for GPR

```
% train set: (x,y)
L = chol(K)';
a = L' \setminus (L \setminus y); % a = inv(K)*y;
ML = -y' * a/2 - sum(log(diag(L))) + const;
% test set: xt (no noise)
ftmean = Kt*a;
V = L \setminus Kt;
Kt = K - V'*V; % Kt = K - Kt'inv(K)*Kt
Lt = chol(Kt)';
while 1
     ft = Lt*randn(m,1) + ftmean;
    plot(ft)
end
```

Demo 2: Sampling from Posterior

Prior Cov

All the Bayesics

$$P(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta)P(\theta)}{P(\mathcal{D})}$$

 $\begin{array}{ll} P(\mathcal{D}|\theta) & \text{likelihood of } \theta \\ P(\theta) & \text{prior probability of } \theta \\ P(\theta|\mathcal{D}) & \text{posterior of } \theta \text{ given } \mathcal{D} \end{array}$

Model Comparison:

$$P(m|\mathcal{D}) = \frac{P(\mathcal{D}|m)P(m)}{P(\mathcal{D})}$$
$$P(\mathcal{D}|m) = \int P(\mathcal{D}|\theta, m)P(\theta|m) d\theta$$

Prediction:

$$\begin{split} P(x|\mathcal{D},m) &= \int P(x|\theta,\mathcal{D},m)P(\theta|\mathcal{D},m)d\theta \\ P(x|\mathcal{D},m) &= \int P(x|\theta)P(\theta|\mathcal{D},m)d\theta \quad \text{ (for many models)} \end{split}$$

by Zoubin Ghahramani

GP Marginal Likelihood

Log marginal likelihood:

$$\log p(\mathbf{y}|\mathbf{x}, M_i) = -\frac{1}{2} \mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}| - \frac{n}{2} \log(2\pi)$$

is the combination of a data fit term and complexity penalty. Occam's Razor is automatic.

Learning in Gaussian process models involves finding

- the form of the covariance function, and
- any unknown (hyper-) parameters θ.

This can be done by optimizing the marginal likelihood:

$$\frac{\partial \log p(\mathbf{y}|\mathbf{x}, \theta, M_i)}{\partial \theta_j} = \frac{1}{2} \mathbf{y}^\top K^{-1} \frac{\partial K}{\partial \theta_j} K^{-1} \mathbf{y} - \frac{1}{2} \operatorname{trace}(K^{-1} \frac{\partial K}{\partial \theta_j})$$

ML for RBF : $\exp(-(x-x')^2/\lambda^2) + \sigma^2 \delta_{xx'}$

Sparse GPs

- Problem for large data sets: training GP $\mathcal{O}(N^3),$ prediction $\mathcal{O}(N^2)$ per test case
- Recent years many approximations developed reduce cost to $\mathcal{O}(NM^2)$ training and $\mathcal{O}(M^2)$ prediction per test case
- Based around a low rank (M) covariance approximation
- See Quiñonero Candela and Rasmussen [2005] for a review of regression approximations
- Classification more complicated, so simpler approximations such as IVM⁵ may be more suitable

⁵Lawrence et al., 2003

Graphical Model of GPs

Sparse GP

observed unknown

Full GPR (all the data)

Sparse GPR (subset of data)

Advantages of GPs

- uses probability theory (it's not a hack!)
- yields full predictive distributions
 - can be a building block : p(y|x)
 - posterior sampling
- automatic learning of kernel parameters
- principled (efficient) model selection
- ideal for limited training data
- have good generalization performance

The GP Bible (for ML folk)

all the chapters are available online!

Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. I. Williams

The GP book: Rasmussen and Williams, 2006 Basic GP (Matlab) code available: http://www.gaussianprocess.org/gpml/

Example: GPR Pseudocode

input: X (inputs), y (targets), k (covariance function), σ_n^2 (noise level), \mathbf{x}_* (test input) 2: $L := \text{cholesky}(K + \sigma_n^2 I)$ $\boldsymbol{\alpha} := L^\top \setminus (L \setminus \mathbf{y})$ 4: $\bar{f}_* := \mathbf{k}_*^\top \boldsymbol{\alpha}$ $\mathbf{v} := L \setminus \mathbf{k}_*$ 6: $\mathbb{V}[f_*] := k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^\top \mathbf{v}$ $\log p(\mathbf{y}|X) := -\frac{1}{2}\mathbf{y}^\top \boldsymbol{\alpha} - \sum_i \log L_{ii} - \frac{n}{2}\log 2\pi$ eq. (2.30) 8: return: \bar{f}_* (mean), $\mathbb{V}[f_*]$ (variance), $\log p(\mathbf{y}|X)$ (log marginal likelihood)