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Bayesian Inference
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The evidence for our

model M is also called 

“Marginal Likelihood’
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Hierarchical Models

θ

id
N

Likelihood

Prior

),|( MDp θ

),|( Mp αθ

Data

Parameter

α Hyperparameter



Hierarchical Models
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• Level 1:  infer parameters

• Level 2:  infer hyper-parameters

• Level 3:  infer models

Bayesian Hierarchy
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Model Selection

by Zoubin Ghahramani



Bayesian Model Selection

by Zoubin Ghahramani



Bayesian Occam’s Razor 
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for any model M

The law of conservation of belief states that models that explain many

possible data sets must necessarily assign each of them a low probability.
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M1 : the too simple model is unlikely to generate this data

M3 : the too complex model is a little better but still unlikely 

M2 : the just right model has the highest marginal likelihood         

observed data

p(D = d | M )

Bayesian Occam’s Razor 



All the Bayesics

by Zoubin Ghahramani



Approximation Methods

• for the evidence and posterior integrals

– Laplace’s method

– Bayesian Information Criteria (BIC = MDL)

– Akaike Information Criteria (AIC)

– Variational Bayes (VB)

– Expectation Propagation (EP)

– Markov Chain Monte Carlo (MCMC)

– Exact (“Perfect”) Sampling

– etc



Parametric vs. Nonparametric

• Parametric
– the total # of parameters is fixed (property of its distribution)

– so it doesn’t depend (grow) with the # of data points collected

– for prediction, knowing θ means you can throw away your data

• Nonparametric
– # of parameters can grow with the number of data

– so the model can “adapt” to the data’s complexity

– but this typically means you can not throw away your data

– future predictions require access to the previous training set  
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Nonparametric Bayesian Models

• Gaussian Process

• Dirichlet Process
– Chinese restaurant process

– Polya urn model

– Stick-breaking models

– Pitman-Yor process

• Indian buffet process

• Polya trees 

• Dirichlet diffusion trees

• Infinite Hidden Markov Models



• some (mis)conceptions:

– not curve fitting!   we want  p(y | x )
– not just regression with Gaussian noise

Gaussian Process Regression

• for modeling, prediction, curve fitting

– input  x can be :  , , n,          ,        , “ ATGC”

– output  y (hence f )  is a scalar 

y =  f (x)  +  ε



Early GP History

• Thiele (1880)

• Kolmogorov (1941), Wiener (1949)

• Thompson (1956) : meteorology

• Matheron (1963) : Kriging in Geostatistics

• Whittle (1963) : geospatial prediction

• O’Hagan (1978) : general Bayesian regression

• Ripley (1981): Bayesian spatial models



Thorvald Nicolai Thiele

• Danish Astronomer, Actuarian, Statistician

• Born 1838, died 1910

• “General Theory of Observations” (1889)

• Find “best predictor” for time series  x(t)

• Formulated a “Kalman Filter” for a GP

- rediscovered by Kalman & Bucy (1960)



Recent GP History

• Bar-Shalom & Fortman (1988) : Kalman filters

• Poggio & Girosi (1989) : Generalized RBFs

• Wahba (1990) : ARMA models & splines

• Cressie (1993) : spatial statistics (2D/3D)

• Neal (1996) : MLP = GP

• Williams & Rasmussen (1997) : general ML

• Saunders (1998) : KRR  (Kriging rediscovered)

• etc etc (just see NIPS, UAI, AISTATS, ICML …) 



Two Equivalent Views

GP models

Random Process 

nonlinear 

nonparametric

infinite-dim

Weight Space

linear 

parametric

finite-dim



Weight Space View

Parametric and finite-dimensional

• Regression with basis functions φ
Txxxx ]1[)( 32=φ
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- e.g., cubic polynomials

• Gaussian prior on weights

• let  K = < f f T >  =  Cov(f)

• vector f is jointly Gaussian



Random Process View

non-parametric and infinite-dimensional 

imagine increasing the length of that f vector to infinity
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Informally speaking

• the infinite-dimensional vector f becomes a function f(x)
• its covariance matrix K becomes a kernel function k(xi,xj)
• in the limit f(x)becomes a stochastic Gaussian Process

• mean function m(x)
• kernel function k(x, x’ )



Our Beloved Gaussian

1D 2D

by Carl Rasmussen



Gaussians beget Gaussians

1D 2D

Also : the product of Gaussians is Gaussian

e.g., Gaussian prior x  Gaussian likelihood  à Gaussian posterior

by Carl Rasmussen



Marginalization
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Conditional Gaussians

• Jointly Gaussian (sub)vectors x and  y

• Conditional density of  x given  y

Schur complement of C



Definition of Gaussian Process
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1D GP sample (RBF)



2D GP sample (RBF)



Covariances (Kernels)

not a function of  f

by Carl Rasmussen



Squared Exponential (RBF) Kernel

by Carl Rasmussen



)'tanh()',( bxxaxxk +⋅= not a valid kernel (psd)!

Nonstationary Covariances

by Carl Rasmussen



Matern Class of Covariances

by Carl Rasmussen



Matern Class of Covariances

by Carl Rasmussen



Rational Quadratic Kernels

by Carl Rasmussen



Rational Quadratic Kernels

by Carl Rasmussen



Building New Covariances

by Carl Rasmussen



Matlab Demo 1



Sampling from a GP

Matlab:

% gi ven GP( f mean, K)

L = chol ( K) ’ ;    % K = L* L’ ;  

whi l e 1
f  = L* r andn( n, 1)  + f mean;
pl ot ( f )
pause

end



Demo 1: Sampling from Prior
Prior Cov



Conditional Gaussians

• Jointly Gaussian (sub)vectors x and  y

• Conditional density of  x given  y

mean                covariance



GPR with Gaussian Noise

by Carl Rasmussen



GPR Prediction

by Carl Rasmussen



GPR Prediction

“parameter”

by Carl Rasmussen



posterior mean +/- 2σ



posterior mean +/- 2σ



Matlab Demo 2



Posterior Sampling for GPR
% t r ai n set :  ( x, y)  
L = chol ( K) ’ ;   
a = L’ \ ( L\ y) ;    % a = i nv( K) * y;
ML = - y’ * a/ 2 – sum( l og( di ag( L) ) )  + const ;

% t est  set :  xt ( no noi se)
f t mean = Kt * a;
V = L\ Kt ;  
Kt  = K – V’ * V;   % Kt  = K – Kt ’ i nv( K) * Kt
Lt  = chol ( Kt ) ’ ;
whi l e 1

f t  = Lt * r andn( m, 1)  + f t mean;  
pl ot ( f t )   

end



Demo 2: Sampling from Posterior
Prior Cov

Posterior Cov



All the Bayesics

by Zoubin Ghahramani



GP Marginal Likelihood

by Carl Rasmussen



ML for RBF : '
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Sparse GPs

by Carl Rasmussen



Graphical Model of GPs

observed

unknown by Carl Rasmussen



Sparse GP

observed

unknown



Full GPR (all the data)

y= Kα



y= Kssαs

Sparse GPR (subset of data)



Advantages of GPs

• uses probability theory  (it’s not a hack!)

• yields full predictive distributions

– can be a building block : p(y|x)

– posterior sampling

• automatic learning of kernel parameters

• principled (efficient) model selection

• ideal for limited training data

• have good generalization performance



all the chapters
are available online!

The GP Bible (for ML folk)



Example: GPR Pseudocode


