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Bayesian Inference

Likelihood x Prior

Posterior
281D.M) = PDIEM) pEIM)
’ p(DIM)
Evidence

The evidence for our
model M 1s also called p(DIM):jp(DIH,M) p(HIM)dH
“Marginal Likelihood’



Bayesian Nutshell
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Hierarchical Models

a Hyperparameter
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Hierarchical Models
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Bayesian Hierarchy

e Level 1: infer parameters

_ p(DI6,M) pfla,M)

81D,a,M
P ) oD la,M)

e Level 2: infer hyper-parameters /

(1D, M) = p(Dla,M)p(alIM)
p(D1M)

e | evel 3: infer models /

p(MID) U p(DIM) p(M)




Model Selection
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M,

M,

= -
all possible data sets d

for any model M Z pD=dIM) =1
all dID

The law of conservation of belief states that models that explain many
possible data sets must necessarily assign each of them a low probability.



Bayesian Occam’s Razor

p(D=d|M)

observed data

. the too simple model is unlikely to generate this data

M, : the too complex model is a little better but still unlikely

M, : the just right model has the highest marginal likelihood




All the Bayesics

PD) P(8) prior probability of #
| P(8|D) posterior of 8 given D

P(O|D) =

Model Comparison:

P(D|m)P(m)
P(D)

P(m|D) =

P(D|m)

fP(’D|H, m)P(8|m) dé

Prediction:
P(z|D,m) = fP{;ﬂH,’D, m ) P(8|D, m)dd

P(z|D,m) = fP{;ﬂ{?}P[HH?, m)df  (for many models)

by Zoubin Ghahramani



Approximation Methods

« for the evidence and posterior integrals

— Laplace’s method

— Bayesian Information Criteria (BIC = MDL)
— Akaike Information Criteria (AIC)

— Variational Bayes (VB)

— Expectation Propagation (EP)

— Markov Chain Monte Carlo (MCMC)

— Exact (“Perfect”) Sampling

— elc



Parametric vs. Nonparametric

e Parametric

— the total # of parameters is fixed (property of its distribution)

— so it doesn’t depend (grow) with the # of data points collected
— for prediction, knowing € means you can throw away your data

P(de, | D) U p(d,, 16)p(61D)

 Nonparametric

— # of parameters can grow with the number of data
— so0 the model can “adapt” to the data’s complexity
— but this typically means you can not throw away your data

— future predictions require access to the previous training set

p(d.,, ! D,a)



Parametric Nonparametric

p(d,1D) O p(d,16)p(8ID) p(d, | D,@)
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Nonparametric Bayesian Models

Gaussian Process

Dirichlet Process

— Chinese restaurant process
— Polya urn model
— Stick-breaking models

— Pitman-Yor process

Indian buffet process

Polya trees

Dirichlet diffusion trees

Infinite Hidden Markov Models



Gaussian Process Regression

« for modeling, prediction, curve fitting

y = f(X)

e some (mis)conceptions:
— not curve fitting! we want p(y| X)

— not just regression with Gaussian noise

—input x canbe: R, Z, R"3%,

, ATCEC

—output y (hence f) is a scalar R



Early GP History

Thiele (1880)

Kolmogorov (1941), Wiener (1949)

Thompson (1956) : meteorology

Matheron (1963) : Kriging in Geostatistics
Whittle (1963) : geospatial prediction

O’Hagan (1978) : general Bayesian regression

Ripley (1981): Bayesian spatial models



Thorvald Nicolal Thiele

 Danish Astronomer, Actuarian, Statistician

* Born 1838, died 1910

 “General Theory of Observations” (1889)

« Find “best predictor” for time series X(1) L P =F
* Formulated a “Kalman Filter” for a GP v Wla
- rediscovered by Kalman & Bucy (1960) |




Recent GP History

Bar-Shalom & Fortman (1988) : Kalman filters
Poggio & Girosi (1989) : Generalized RBFs
Wahba (1990) : ARMA models & splines
Cressie (1993) : spatial statistics (2D/3D)
Neal (1996) : MLP = GP

Williams & Rasmussen (1997) : general ML
Saunders (1998) : KRR (Kriging rediscovered)

etc etc



Two Equivalent Views

GP models

 GP models
l&/l

Weight Space Random Process
linear nonlinear
parametric D " nonparametric

finite-dim Infinite-dim




Weight Space View

Parametric and finite-dimensional
» Regression with basis functions @  f(x) = d(x) ' w

- e.g., cubic polynomials @ X) = [1 X x> X 1"

w=[w w w w]'
« Gaussian prior on weights w ~ N(0, X,)
elet K=< ff"> = Cov(f) K=3o'S,®

e vector fis jointly Gaussian  f|X ~ N/(0, K)



Random Process View

non-parametric and infinite-dimensional

imagine increasing the length of that f vector to infinity

K = fI;TEpr} , K. = k()(i,)(j)

J

Informally speaking

« the infinite-dimensional vector f becomes a function f(X)
« its covariance matrix K becomes a kernel function k()(I ,XJ)

* in the limit f(X) becomes a stochastic Gaussian Process

f{}ij ~ GP ('H’J-{}ij. fr(}{. }i!}) {- mean function M(X)

« kernel function K(x, X’ )




Our Beloved Gaussian

1D 2D

_—

The Gaussian distribution is given by

pxjn, L) = N(p, L) = ITZTF:l_D’;l

Z|_1f’;‘1 exp ( — %[}{ — l.L]TZ—l (X — u:])

where 1 is the mean vector and L the covariance matrix.

by Carl Rasmussen



Gaussians beget Gaussians

—joint Gaussian

= — oint Gaussian
— conditional

—marginal

Both the conditionals and the marginals of a joint Gaussian are again Gaussian.

Also : the product of Gaussians is Gaussian

e.g., Gaussian prior x Gaussian likelihood Gaussian posterior

by Carl Rasmussen



Marginalization

Recall:
plx) = [p[}{. y)dy.

For Gaussians:

pix,y] = N({{” {;T E}) — p(x] = Nla, A]

a = mean(X)

b =mean(y)

A=cov(x,x")

— oint Gaussian
—marginal

T C =cov(y,y")

_———_'___--FF H_H-\-\_ —

B =cov(x,y)

by Carl Rasmussen



Conditional Gaussians

* Jointly Gaussian (sub)vectors x and y
, | a A—B
pIX.y) = N([ b } {Bt—@lb

» Conditional density of X given y

p(xly) = N(a+BC '(y—b),|A—BC'B'|

Schur complement of C




Definition of Gaussian Process

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.

Informally: infinitely long vector ~ function

Definition: a Gaussian process is a collection of random variables, any
finite number of which bave (consistent) Gaussian distributions. ]

A Gaussian distribution is fully specified by a mean vector, w, and covariance
matrix X:
f = (f..... fu) 7~ N(w, £), indexesi=1,..., 1"

A Gaussian process is fully specified by a mean function »2(x) and covariance
function k(x, x'):

f(xX) ~ GP(M(X),K(X,X"))

by Carl Rasmussen



1D GP sample (RBF)




2D GP sample (RBF)
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Where does the covariance matrix K come from?

Covariances (Kernels)

Covariance matrix constructed from covariance function:

KU = I’ir(ifz ifji. )

Covariance function characterizes correlations between different

points in the process:

K(x, 2

ELf () f(2")]

not a function of f

Must produce positive semidefinite covariance matrices v' Kv > 0

Ensures consistency

by Carl Rasmussen



Squared Exponential (RBF) Kernel

. 1 [ — 2 2
K(x.2') = op2exp | —=
(1_1) ag | { 2( \ ) }

e [ntuition: function variables close in input space are highly
correlated, whilst those far away are uncorrelated

e \, 0y — hyperparameters. A: lengthscale, o4: amplitude
e Stationary: K(x,2") = K(x — 2’) — invariant to translations
e Very smooth sample functions — infinitely differentiable

by Carl Rasmussen



Nonstationary Covariances

Linear covariance: K(x,2') = 0(2] + xa

Brownian motion (Wiener process): K (z,2’) = min(z, 2’)

Q%illg(i‘_l )
Periodic covariance: K(x,2') = e}{p(— 2 )

Neural network covariance

!

)12

K(X,X') = tanh(ax[X'+b) nota valid kernel (psd)!

2
Ann(x,Xx') = —sin”

A

(7

2% T/ )
1+ 22X 2x)(1 + 2%/ T ©X)

by Carl Rasmussen



Matern Class of Covariances

. , 2L (2w — 2|\ [ 2w|r — 2
K(x,z')= () h\ K, h

where I, is a modified Bessel function.

e Stationary, isotropic
e v — oo: SE covariance
e Finite v: much rougher sample functions

o v =1/2: K(x,2") = exp(—|z — 2'|/\), OU process, very rough
sample functions

by Carl Rasmussen
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Matern Class of Covariances

input distance, r
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input, x
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of
v, with £ = 1. The sample functions on the right were obtained using a discretization

of the x-axis of 2000 equally-spaced points.

by Carl Rasmussen



Rational Quadratic Kernels

The rational quadratic (RQ) covariance function:

brqlr) = (14-) "
0= (14500
R T a2

with o, { > 0 can be seen as a scale mixture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales.

Using T = {2 and p(t|e, P) o v Lexp(—at/p):

krqlr) = | pltle, Bksg(r]T)dT
[ XT 7 rro\
x|t lex (— —) ex (— —)dT X (1 . ) .
u P\T B/ P\™ 3 Tl

by Carl Rasmussen



Rational Quadratic Kernels

— — =112 |

covariance

0 1 2 3 -5 0 5
input distance input, X

(a) (b)

Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with rational quadratic covariance functions, eq. (4.20), for differ-
ent values of a with £ = 1. The sample functions on the right were obtained using a
discretization of the x-axis of 2000 equally-spaced points.

by Carl Rasmussen



Building New Covariances

There are several ways to combine covariances:

e Sum: K(z.2") = Ky(x,2") + Ko(ax, 2')
addition of independent processes

e Product: K(x,2") = Ky(z.2")Ko(x, 2')
product of independent processes

e Convolution: K(x,2") = [ dzdz" h(z, 2)K(z, z")h(2', 2)

blurring of process with kernel A

by Carl Rasmussen



Matlab Demo 1



Sampling from a GP

Matlab:

% gl ven GP(f nean, K)

L = chol (K)’;

while 1
f = L*randn(n, 1) + fnean;
pl ot ()
pause

end



Demo 1: Sampling from Prior
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Conditional Gaussians

* Jointly Gaussian (sub)vectors x and y

pix.y) = ”({H [BAT E‘h

» Conditional density of X given y

p(xly) = N(a+BC '(y—b), A—BC!B")

— AN J
YT e

mean covariance




GPR with Gaussian Noise

Data generated with Gaussian white noise around the function f
y=f+e  Ele(x)e(a)] = o?0(x — )
Equivalently, the noise model, or likelihood is:
p(ylf) = N (£.07T)
Integrating over the function variables gives the marginal likelihood:
py) = [ Aty ien(e)

= N(0,K + 1)

by Carl Rasmussen



GPR Prediction

N training input and output pairs (X,y), and 1" test inputs X
Consider joint training and test marginal likelihood:

p(y.yr) =N(0,Kyyr + UQI) . Kyyr = [ i NT] |

Condition on training outputs: p(yr|y) = N(pr, 1)
pr = Kon[Ky + 0’7y
ET = KT — KTﬁr [Kﬁr + (TQI]_IK‘MT + C"EI

Gives correlated predictions. Defines a predictive Gaussian process

by Carl Rasmussen



GPR Prediction

Often only marginal variances (diag 3i7) are required — sufficient
to consider a single test input X,:

sy = K*ﬁr[K‘s\r -+ (TQI]_ly
(Ti — I{* — K*ﬂr[Kﬂr -+ (TEI]_]_K‘,?\_.’* -+ (72 .

Mean predictor is a linear predictor: p, = Kyya| “parameter”

Inversion of Ky + o°I costs @(NS)

nNT
R Y

Prediction cost per test case is O(N) for the mean and O(N?) for
the variance

by Carl Rasmussen
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Matlab Demo 2



Posterior Sampling for GPR

%train set: (X,Y)

L chol (K)’;

a L'\ (L\y); %a = 1nv(K)*y;

M. = -y"*a/2 — sunm(l og(diag(L))) + const;

%test set: xt (no noise)
ftmean = Kt *a;

V = L\ Kt;

Kt = K- V*V,

Lt = chol (Kt)’;

while 1
ft = Lt*randn(m 1) + ftnean;
plot(ft)

end
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All the Bayesics

P(D) P(#) prior probability of &
| P(8|D) posterior of § given D

P(8|D) =

Model Comparison:

P(D|m)P(m)

P(m|D) =

P(D)
P(Dlm) = fP[’D|E,m.]P{9|m.} df
Prediction:
P(z|D,m) = fP{;t?|9,f.}, m)P(8|D, m)dd
P(z|D,m) = fP{;ﬂQ}P(EHI}, m)d#  (for many models)

by Zoubin Ghahramani



GP Marginal Likelihood

Log marginal likelihood:

1 ] i 1 x
logp(ylx, Mi) = —5y' K™y — 5 log|K| — 5 log(2m)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.

Learning in Gaussian process models involves finding

* the form of the covariance function, and

e any unknown (hyper-) parameters 6.

This can be done by optimizing the marginal likelihood:

dlog p(vlx, 8, M;) 1

[ —1 7" o — = tpa —1="
00 = -y K 20, K ly 2t1dLe[K 50,

)

by Carl Rasmussen



ML for RBF : exp(=(x=X)*/\%) + ¢°J,,

10° e

noise standard deviation

10° 10’
characteristic lengthscale

2t A of +

)+
+
+

-5 0 5
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Sparse GPs

Problem for large data sets: training GP O(N*), prediction O(N?)
per test case

Recent years — many approximations developed — reduce cost to
O(N M?) training and O(A?) prediction per test case

Based around a low rank (A1) covariance approximation

See Quinonero Candela and Rasmussen [2005] for a review of
regression approximations

Classification more complicated, so simpler approximations such
as [VM® may be more suitable

®Lawrence et al., 2003
by Carl Rasmussen



Graphical Model of GPs
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Full GPR
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Advantages of GPs

uses probability theory

yields full predictive distributions
— can be a building block : p(y|x)

— posterior sampling

automatic learning of kernel parameters
principled (efficient) model selection
ideal for limited training data

have good generalization performance



The GP Bible (for ML folk)

all the chapters
are available online!

The GP book: Rasmussen and Williams, 2006

Basic GP (Matlab) code available:
http://www.gaussianprocess.org/gpml/



Example: GPR Pseudocode

input: X (inputs), y (targets), & (covariance function), o

2: L := cholesky(K + 021)
c:=L'\(L\y)

2 (noise level),

X, (test input)

= } predictive mean eq. (2.25)

1: f. =k«
V= L\\k*

6: V[f.] = k(x..x.) = vV
log p(y|X) := =3y "o — 37, log Lii — 5 log 27

8: return: f, (mean), V[f,] (variance), log p(y

} predictive variance eq. (2.26)

eq. (2.30)

X)) (log marginal likelihood)




