
Mark Stalzer stalzer@caltech.edu 1

Notes on Executing Programs:
What’s Under the Hood

 Evolution of a dot product
 Parse trees and interpretation
 Computer architecture
 Compilation
 Performance
 Java and incremental compilation

 Memory management is important too…
 Memory resources
 Heap issues

 Parallelism

Mark Stalzer stalzer@caltech.edu 2

Parsing a Dot Product &
Interpretation

Math: s = x.y

Code: {s = 0; for (i = 0; i < n; i++) s += x[i]*y[i];}

Parse Tree: Block

for

0s

Set

0i

Set

ni

Test<

…s

SetInc

i

Interpreter traverses the tree to execute
Ref: en.wikipedia.org/wiki/Programming_language_theory

Language
Theory

Mark Stalzer stalzer@caltech.edu 3

If your program runs fine interpreted on a single core:
Great, you’re done!

But what about supporting:
 Analysis of 10^15 byte data sets,
 Realistic interactive visualization,
 Many large multi-level multi-physics simulations?

Mark Stalzer stalzer@caltech.edu 4

Computer Architecture:
Cell Broadband Engine

Refs: 1. Lectures by Ed Upchurch and Thomas Sterling
2. Cell Broadband Engine Architecture and its first implementation
www.ibm.com/developerworks/power/library/pa-cellperf/

Peter
Hofstee

Memories&
Data Flows

Parallelism

Mark Stalzer stalzer@caltech.edu 5

Compilation

Original Code: {s = 0; for (i = 0; i < n; i++) s += x[i]*y[i];}

Transformed Code: {s = 0; l = x + n; while(x < l) s += *x++ * *y++;}

Assembler Code: ; x in r0, y in r1, n in r2, destroys r0-2
; result s in ac0
dotd:
 clrd ac0 ; s = 0
 tst r2 ; machine code: 005702 (octal)
 beq L1
 ash #3, r2 ; r2<<3, doubles are 8 bytes
 add r0, r2 ; l = x + i
L2: ; start of inner loop
 ldd (r0)+, ac1
 muld (r1)+, ac1; PDP11/70 4680ns (13 cycles)
 addd ac1, ac0 ; 980ns (~3 cycles)
 cmp r0, r2
 blo L2 ; repeat if r0 < r2
L1: ; continue…

C Syntax

Optimizing
Compilers

What the
machine sees

“-O4: Performs aggressive optimizations and correctness not guaranteed”

Mark Stalzer stalzer@caltech.edu 6

Performance:
Cycles per Inner Loop

 PDP11/70: ~20
 Modern procs.: 1-2

 Pipeline
 Multiple functional units

 Interpretation: 3-10x
 generic compilers

 Supercomputers: 1/P
 Linpack benchmark
 Top500.org

Ref: For numerical libraries,
see Linda Petzold’s lecture

Double
Exponential?

Why do many codes
not scale?

Mark Stalzer stalzer@caltech.edu 7

Java and Virtual Machines

 Machine independent machine language (bytecodes)
 Source to .class, transporttransport & execute .class (securely)
 HotSpot Java Virtual Machine (Java SE, Mac OS X, …)
 Incremental compilation

 Can do some optimizations better than static compilers
(inline virtual functions)

 With multi-core, the interpreter-compiler distinction may go
away. If cores are “free”, why not use a few cores to
optimize the execution of others? Introspective execution.

 Works for other languages, e.g. Python to .class
 (Proviso: explicit eval)

 Ref: The Java HotSpot Perf. Engine Architecture
 java.sun.com/products/hotspot/whitepaper.html

Research

Mark Stalzer stalzer@caltech.edu 8

Memory Resources

 Register
 Zero cycle latency

 But only 32-256, allocated by compiler

 Stack
 Main memory, can have long latency*

 Large, automatic FIFO allocation

 Heap
 Main memory, long latency*

 Large, random allocation, manual or automatic management

 Expensive (“Cons-less” programming)

 *Cache: 1 cycle if local (e.g. recent stack frames)

“Was” NP
Hard Memory

latency
research

{
 double s;
 …
 x = new double[n];
 …
}

Mark Stalzer stalzer@caltech.edu 9

Heap Issues

 ~50% of bugs in basically running codes are due to
memory allocation/deallocation
 Leaks & multiple de-allocations (C++)

 FORTRAN 4 solution

 Tools like Purify

 Strong argument for auto allocation schemes (Lisp, Java)

 Garbage collection
 Mark and sweep (cyclic structures)

 Execution pauses, background scavenger thread

 Fragmentation

 See HotSpot reference

{
 …
 x = new double[n];
 z = x;
 …
}

Mark Stalzer stalzer@caltech.edu 10

Parallelism:
Many Core

Be prepared for P~100 on laptops in a few years
Two orders of magnitude can be qualitatively different
Ref: Ct: C for Thoughput Computing
techresearch.intel.com/articles/Tera-Scale/1514.htm

NVIDIA Tesla
128 SIMD cores

Intel Larrabee 2
Many IA32+ cores

Mark Stalzer stalzer@caltech.edu 11

Takeaways

 Programs as transforms
 Execution
 Development

 Remember memory: 50% of latent bugs
 Think very parallel, even for laptops
 Optimize time to solution for given resources: cpu,

memory, disk, network, software tools, and people

Notes on Executing
Programs: What’s

Under the Hood
Ay/Bi 199 Winter 2009

January 13, 2009

