
Python for Scientific Applications

An overview of modern software design for scientific
applications

Michael Aivazis

Ay/Bi 199
January 2009

2

Programming paradigms

   A very active area of research

   dozens of languages and runtime environments over the last 40 years

   The survivors:

   Procedural programming

   Structured programming

   Functional programming

   Object oriented programming

   Current areas of reasearch

   Component oriented programming

   Aspect programming

   Language constructs

   reflect an approach to computing

   shape what is easily expressible

3

Sources of complexity

   Project size:

   asset complexity: number of lines of code, files, entry points

   dependencies: number of modules, third-party libraries

   runtime complexity: number of objects types and instances

   Problem size:

   number of processors needed, amount of memory, cpu time

   Project longevity:

   life cycle, duty cycle

   cost/benefit of reuse

   managing change: people, hardware, technologies

   User interfaces

   Locality of needed resources

   Turning craft into: science, engineering, … art

4

Managing complexity

   Understand the “client”

   be explicit about requirements, limitations (scope)

   broaden your notion of user interface

   Code architecture

   given a problem

   all languages are equal

   some are more equal than others

   flexible programming and runtime environments

   design for change; but keep it real

   Sensible software engineering practices

   document the design, not just the implementation

   source control, issue tracking, documentation

   build, release and deployment strategies

5

A quick introduction to Python

   Resources

   Interacting with the Python interpreter

   Interactive sessions

   Overview of the Python language

   The focus of this session

   Building Python extensions in C/C++

   in the appendix

6

Resources

   Main site:

   www.python.org

   Download binaries, sources, documentation

   Contributed packages

   Books:

   “Programming Python” by Mark Lutz

   “Learning Python” by Mark Lutz

   Lots of others on more specific topics

7

Overview of the Python Language

   Built-in objects and their operators

   Numbers, strings, lists, dictionaries,

tuples

   Files

   Object properties

   Statements

   Assignment, expressions, print, if,

while

   break, continue, pass, loop else

   for

   Functions

   Scope rules

   Argument passing

   Callable objects

   Modules and Packages

   Name qualification

   import

   Scope objects

   Classes

   Declarations and definitions

   Inheritance

   Overloading operators

   Exceptions

   Raising and catching

   Exception hierarchies

8

Built-in objects

   Preview

Type Sample
Numbers 1234, 3.1415, 999L, 3+4j

Strings ‘help’, “hello”, “It’s mine”

Lists [‘this’, [‘and’, 0], 2]

Dictionaries {‘first’: ‘Jim’, ‘last’: ‘Brown’}

Tuples (1, “this”, ‘other’)

Files open(‘sample.txt’, ‘r’)

9

Operators and precedence

Operators Description
or, lambda Logical ‘or’, anonymous function

and Logical ‘and’

<, <=, >, >=, ==, <>, !=
is, is not, in, not in

Comparisons, sequence membership

x | y Bit-wise ‘or’

x ^ y Bit-wise ‘exclusive or’

x & y Bit-wise ‘and’

x << y, x >> y Shift left and right

+, - Addition, subtraction

*, /, % Multiplication/repetition, division, remainder/format

-x, +x, ~x Unary minus, plus, and compliment

x[i], x[I:j], x.y, x(…) Indexing, slicing, qualification, function call

(…), […], {…}, `…` Tuple, list, dictionary, conversion to string

10

Numbers

   Expressions

   The usual operators

   Bit-wise operators (same as C)

   Change precedence and association using parentheses

   In expressions with mixed types, Python coverts upwards

   Numeric constants

Constant Meaning
1234, -1234 integers (C long)

9999L arbitrary precision integers

3.1415, 6.023e-23 floats (C doubles)

0177, 0xdeadbeef octal and hex constants

j, 1.0 – 3.14j complex numbers

11

Strings

   Immutable ordered sequences of characters

   no char type: ‘a’ is an one-character string

   Constants, operators, utility modules

   Common operations

Operation Meaning
s = ‘’ empty string

s = “It’s mine” double quotes

s = “”” … “”” triple quote blocks

s1 + s2, s1 * 4 concatenate, repeat

s[i], s[i:j], len(s) index, slice, length

for x in s, ‘m’ in s iteration, membership

12

Lists

   Mutable ordered sequences of object references

   variable length, heterogeneous, arbitrarily nestable

   Common list operations

Operation Meaning
L = [] empty list

L = [1, 2, 3, 4] Four items, indexes: 0..3

[‘one’, [‘two’, ‘three’], ‘four’] nested lists

L[j], L[j:k], len(L) index, slice, length

L1 + L2, L*3 concatenate, repeat

L.sort(), L.append(4) object methods

del L[k], L[j:k] = [] shrink

L[j:k] = [1, 2, 3] slice assignment

range(4), xrange(0,5) create integer lists

for x in L, 1 in L iteration, membership

13

Dictionaries

   Mutable unordered binary associations (maps)

   accessible by key

   Common operations

Operation Meaning
d = {} empty dictionary
d1 = {‘last’: ‘Brown’, ‘height’: 1.85} Two items
d2 = {‘person’ : {‘last’: ‘Brown’, ‘height’: 1.85},
‘state’: ‘dead’}

nested dictionaries

d1[‘last’], d2[‘person’][‘last’] indexing
d.has_key(‘last’) method
len(d) number of entries
del d[key], d[key] = value remove, add/change

14

Tuples

   Immutable ordered sequences of object references

   Common operations:

Operation Meaning
t = () empty tuple

t = (1,) tuple with one item

t = (1, 2, 3, 4) tuple with four items

t = (1, 2, (3, 4), 5) nested tuples

t1 + t2, t * 4 concatenate, repeat

t[i], t[i:j], len(t) index, slice, length

for x in t, i in t iteration, membership

15

Files

   A Python object wrapped around the C stdio system

   an extension type, written in C

   Common operations

Operation Meaning
out = open(“hello.txt”, “w”) create output file

in = open(“hello.txt”, “r”) create input file

in.read(), in.read(1) read file, read byte

in.readline(), in.readlines() read a line, fill a list of strings

out.write(s), out.writelines(L) write a string, write a list of strings

out.close() flush and close file explicitly

16

Built-in objects - summary

   Everything is an object – PyObject

   Assignments create new references to existing objects

   Containers can hold any kind of object

   Changing a mutable object affects all references

   Objects belong to categories with common operations

Object Type Category Mutable?
Numbers Numeric No

Strings Sequence No

Lists Sequence Yes

Dictionaries Mapping Yes

Tuples Sequence No

Files Extension Yes

17

String coercions and the format operator

   All objects can potentially be represented as strings

   Coersion can be triggered explicitly

   using the `` operator

   using the repr() built-in function

   using the str() built-in function

   The string format operator ‘%’

   the python equivalent of sprintf

   binary operator:

   LHS is a string that may include format specifications

   RHS is a tuple of the arguments that replace the format specifications

   accepts the same format specifications as printf

   Example:

filename = “%s-%05d.dat” % (hostname, pid)

18

Truth and equality

   The following values are considered “false”

   The special object None

   The number 0

   Any empty container: “”, [], {}, ()

   All other values are “true”

   Operators

   Identity: is

   Membership: in

   The usual relational operators – borrowed from C

   Object comparisons

   Strings are compared lexicographically

   Nested data structures are checked recursively

   Lists and tuples are compared depth first, left to right

   Dictionaries are compared as sorted (key, value) tuples

   User defined types can specify comparison functions using overloaded operators

19

Python type hierarchy

Containers Numbers

Sequences Mappings

Mutable Immutable

Tuple

List String

Dictionary

Integers

Tuple

Float

String Complex

Callable

Class

Function

Method

Other

Instance

Module

File

None

Internals

Code

Type

Frame

Traceback

Bound

Unbound

20

Python syntax

   Comments: from a ‘#’ to the end of the line

   Indentation denotes scope

   avoid using tabs

   Statements end at the end of line, or at ‘;’

   open delimiter pairs imply continuation

   explicit continuation with ‘\’ but considered obsolete

   Variable names

   underscore or letter, followed by any number of letters, digits and

underscores

   case sensitive

   Guido wanted to take this away, but wisdom prevailed…

21

Reserved words

access and break class

continue def del elif

else except exec finally

for from global if

import in is lambda

not or pass print

raise return try while

22

Printing expressions

   The statement print

   converts objects to string

   and writes the string to the stdout stream

   Adds a line-feed

   to suppress, add a trailing comma

print <expression>
print <expression>,

•  The obligatory “Hello world” program:

print “Hello world”

23

Assignments

   Explicitly, using =

<name> = <expression>

•  Implicitly, using import, def, class

import <module>
from <module> import <name>
from <module> import <name> as <alias>

def <name>(<parameter list>):

class <name>(<ancestor list>):

24

Selections

   Using if

•  No switch statement
•  use if
•  or lists and dictionaries

if <expression>:
 <statements>
elif <expression>:
 <statements>
else:
 <statements>

25

Explicit loops

   while

•  for

while <expression>:
 <statements>
else:
 <statements>

for <name> in <container>:
 <statements>
else:
 <statements>

•  The else part is optional
•  it is executed when exiting the loop normally

•  Other relevant statements: break, continue, pass

26

Function basics

   General form:

def <name>(<parameter list>):
 <statements>
 return <expression>

•  Creates a function object and assigns it to the given name
•  return sends an object to the caller (optional)
•  arguments passed “by assignment”
•  no declarations of arguments, return types and local variables

•  Example:

def isServer(processor_id):
 if processor_id is 0: return 1
 return 0

27

Function scoping rules

   Enclosing module acts as the global scope

   Each call to a function creates a new local scope

   All assignments in the function body are local

   unless declared global

   All other names used should be global or built-in

   references search three name scopes: local, global, built-in

root_id = 12

def isServer(processor_id):
 if processor_id is root_id: return 1
 return 0

def setServer(processor_id):
 global root_id
 root_id = processor_id
 return

28

Function arguments

   Passing rules:

   Arguments are passed by creating a local reference to an existing object

   Re-assigning the local variable does not affect the caller

   Modifying a mutable object through the local reference impacts caller

   Argument matching modes:

   by position

   by keyword

   using varargs:

   *: places non-keyword arguments in a tuple

   **: places keyword arguments in a dictionary

   using default values supplied in the function declaration

   Ordering rules:

   declaration: normal, *arguments, **arguments

   caller: non-keyword arguments first, then keyword

29

Matching algorithm

   Assign non-keyword arguments by position

   Assign keyword arguments by matching names

   Assign left over non-keyword arguments to *name tuple

   Assign extra keyword arguments to **name dictionary

   Unassigned arguments in declaration get their default values

30

Functions as objects

   Function objects can be assigned, passed as arguments, etc.

import string

def convert(string, conversion=string.lower):
 return conversion(string)

greeting = “ Hello world! ”
operation = string.strip
convert(greeting, operation)

•  Nameless function objects can be created using lambda

greeting = “ Hello world! ”
operation = lambda x: x[1:-1]
operation(greeting)

31

Namespaces

   Modules are created by

   statically linking code with the interpreter executable

   interpreting Python files

   source -> byte compiled on first import

   dynamically loading shared objects during interpretation

   extensibility

   Packages are directories with modules

   That contain a special file __init__.py

   Whose attributes affect how import works

   The directory name becomes the package name

   The search path for modules is controlled

   At interpreter compile time

   By the interpreter’s current working directory

   By reading user defined settings

   e.g. $PYTHONPATH or the win32 registry

   By modifying sys.path

32

Access to namespaces

   Modules are namespaces

   They introduce a scope

   Statements run on first import

   All top level assignments create module attributes

   Packages are namespaces

   They introduce a scope

   Their attributes are set by interpreting the special file __init__.py on first import

   Names are accessed with the import implicit assignment statement

import <namespace>
from <namespace> import <name>
from <namespace> import *
from <namespace> import <name> as <alias>

•  Name qualifications allow fine tuning of the list of imported symbols

from pyre.support.debug import DebugCenter

33

Namespaces as objects

   Modules and packages are objects:

def load(material):
 exec “from pyre.materials import %s as model” % material
 return model

materialModel = load(“perfectGas”)

material = materialModel.newMaterial(options)

•  Dynamic programming!

34

Classes

   Classes are object factories:

   Construct new objects with state and behavior

   Using a class name as a function creates calls the constructor

   Each instance inherits all class attributes

   Assignments in class statements create class attributes

   Assignments to self create per-instance attributes

class Body:

 _type = “Generic body”

 def type(self): return self._type

 def __init__(self):
 self._rep = None
 return

35

Inheritance

   Specialization through inheritance

   Superclasses must be listed during the class declaration

   Classes inherit attributes from their ancestors

   Instances inherit attributes from all accessible classes

class Cylinder(Body):

 _type = “Cylinder”

 # def type(self): return self._type
 def radius(self): return self._radius
 def height(self): return self._height

 def __init__(self, radius, height):
 Body.__init__(self)
 self._radius = radius
 self._height = height
 return

36

Methods

   The class statement creates and assigns a class object

   Calling class objects as functions creates instances

   Class methods provide behavior for the instance objects

   Methods are nested functions with at least one parameter

   That receives the instance reference

   Named self by convention

   Methods are public and virtual

   Syntax:

Calling methods
through instances object.method(arguments…)

Calling methods
through classes Class.method(object, arguments…)

37

Class glossary

   Class

   A blueprint for the construction of new types of objects

   Instance of a class

   An object created from a class constructor

   Member

   An attribute of an instance that is bound to an object

   Method

   An attribute of a class instance that is bound to a function object

   Self

   The conventional name given to the implied instance object in methods

38

Overloading operators in classes

   Don’t

   Classes can intercept normal Python operations

   All Python expressions can be overloaded

   Special method names.

   Examples:

Method Overloads
__init__ Construction: x = X()

__del__ Destruction

__repr__ Representation: `x`, repr(x)

__str__ String coercion: str(x)

__len__ Size, truth tests: len(x)

__cmp__ Comparisons: x < object

__call__ Function calls: x()

Method Overloads
__getattr__ Qualification: x.undefined

__getitem__ Indexing: x[5]

__setitem__ Indexing: x[5] = 0

__add__ Addition: x + other

__radd__ Addition: other + x

__and__ Logic: x and object

__or__ Logic: x or object

39

Namespace rules

   The complete story

   Unqualified names are looked up in the three default lexical namespaces

   Qualified names conduct a search in the indicate namespace

   Scopes initialize object namespaces: packages, modules, classes, instances

   Unqualified names, e.g. name,

   Are global on read

   Are local on write, unless declared global

   Qualified names, e.g. object.name,

   Are looked up in the indicated namespace

   Module and package

   Instance, class and ancestors (depth first, left to right)

   References and assignments modify the qualified attributes

   Namespace dictionaries:

   __dict__

   Name qualification is identical to dictionary lookup!

40

Classes as objects

   Classes are objects

   Examples:

def load(material):
 exec “from %s import %s as factory” % (material, material)
 return factory

materialModel = load(“perfectGas”)(options)

def newSolver():
 from Adlib import Adlib
 return Adlib

solver = newSolver()

41

Methods as objects

   Unbound method objects

•  Bound method objects

method = Object.method
object = Object()

method(object, arguments)

object = Object()
method = object.method

method(arguments)

42

Exceptions

   A high level control flow device

   non-local

   Exceptions are used to signal

   critical errors

   but also recoverable runtime failures

   Exceptions are raised by the interpreter

   there is an extensive exception class hierarchy

   The statement raise triggers an exception

   The statement try sets up a net for catching them

   Should be treated as seriously as any other part of the application

   exception class hierarchies

43

Raising exceptions

   Exceptions are triggered by raise

raise <string>
raise <string>, <data>
raise <class>, <instance>
raise <class instance>

•  The last two are identical
–  the preferred way to raise exceptions

•  Exceptions used to be strings
–  obsolete
–  because it is a bad practice

44

Catching exceptions

   Basic forms:
try:
 <statements>
except <class>:
 <statements>
except <class>, <data>
 <statements>
else:
 <statements>

try:
 <statements>
finally:
 <statements>

45

Object oriented programming

   No mathematically precise/sharp definition

   Application designs expressed as “objects” and their collaborations

   Characteristics:

   class: a user defined type that captures the essence of a part of the model

   object: an instance of a class

   method: an ability (function) of an object

   attribute: a piece of storage (field) assigned to an object

   Mechanisms

   message passing: calling a method

   inheritance: a mechanism for expressing relationships between classes

   polymorphism: derived class specific implementation of an ancestor’s method

   Design goals

   encapsulation: hide the implementation details; focus on the interface

   abstraction: model systems by focusing on the relevant irreducible concepts

46

Case study: CSG

   Goal: design a set of classes to encapsulate the construction of solids
using

   Solid primitives:

   Block, Sphere, Cylinder, Cone, Pyramid, Prism, Torus

   Basic operations:

   Unions, intersections, differences

   Rotations, reflections, translations, dilations

   Reversals

   Scope: delegate actual body construction to a CSG package

   Only record the solid primitives and operations required in the construction

   Read and write solids to (XML) files

   Extension module: interface with an actual CSG package

   ACIS, a C++ class library

   Carry out the construction, surface meshing for viewing, etc.

47

Examples

48

Motivation

   Object oriented skills

   Class hierarchy design

   Introduction to UML

   Introduction to Design Patterns

   Python skills

   Class hierarchy implementation

   Package design

   Interaction with a C++ class library

   Design and implementation of an extension module

   Raising the bar

   Reading and writing XML files

   Graphical browser

   Visualization

49

Implementation

   Use Python to express the solution

   To take advantage of:

   Rapid development

   Short development cycle, expressiveness, loose typing

   Access to large set of library packages

   E.g. GUI toolkits, regular expressions

   But carefully:

   Proper project structure

   Should not abuse the lack of strong typing

   Proper error handling

   Might have to migrate parts to C++

50

UML class diagrams

Class

class name

attributes

operations

access name : type = initial value

+ public
= protected
- private

method (argument list) : return type

name : type = initial value

Base italics when abstract

51

Solid primitives

Body

Block

+ __init__()
+ diagonal

Sphere

+ __init__()
+ radius

Cylinder

+ __init__()

+ radius
+ height

Cone

+ __init__()

+ top
+ bottom
+ height

Torus

+ __init__()

+ major
+ minor

Pyramid Prism

+ __init__()

   Here is a possible class hierarchy

52

Operations

Intersection Union Difference

Reflection
+ vector

Translation
+ vector

Dilation
+ scale

Rotation
+ angle
+ vector

Reversal

+ op1
+ op2

+ op1
+ op2

+ op1
+ op2

   What is the best way to represent these?

53

Design patterns

“A design pattern is a description of a set communicating classes and objects that
are customized to solve a general design problem in a particular context”

   Introduction:

   “Design Patterns: Elements of Reusable Object-Oriented Software”

   by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

   Addison-Wesley, 1995, QA76.64.D47

   Patterns have four parts:

   name

   increases the design vocabulary

   problem

   a description of the problem and its context

   solution

   consists of classes and their specific collaborations

   consequences

   design and implementation trade-offs

54

Composite

   Intent:

   “Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects
uniformly”

Composite Leaf

Component
aComposite

aLeaf aComposite aLeaf aLeaf

aLeaf aLeaf aLeaf

55

Suggested solution

Composite Primitive

Body

Transformed

   A hierarchy of abstract base classes:

Binary
implementation?

56

The class hierarchy

Pimitive

Block Sphere

Cylinder Cone

Torus

Pyramid Prism

Body

Composite

Binary

Union Difference

Intersection

Transformed

Rotate Translate

Reflect Dilate

Reverse

57

Putting it all together

Difference

Union

Cylinder

Dilate

body = Cylinder(radius, height)
cone = Cone(radius/2, radius, height)
cap = Translate(cone, (0, 0, height/2))

innerWall = Union(body, cap)
outerWall = Dilate(innerWall, scale=1.1)

shell = Difference(outerWall, innerWall)

Cone

Translate

58

Checkpoint – assessing the design

   Encapsulation

   Completeness

   We appear to have captured the entire set of primitive objects

   the hierarchy is not very likely to change

   Capabilities

   Not much more than “byte classification and storage”

   solved the data-centric part of the problem only

   What can we do with our Composite?

59

Adding operations

   Examples

   Realizing bodies by using solid modeling engines

   Cloning

   Writing bodies to files

   using a variety of output formats

   Others?

   Operations on body hierarchies require tree traversals that

   are polymorphic on the type of node being traversed

   can maintain traversal state relevant for the type of operation

60

Implementation strategies

   Add (virtual) functions for each operation

   requires extensive updates for each new operation

   Use run-time type information

   Double dispatch

61

Visitor

   Intent

   “Represent the operations to be performed on the elements of an object

structure. Visitor lets you defines a new operation without changing the
classes of the elements on which it operates”

Composite Leaf

Component

OpA OpB

Visitor

62

   Augment Composite by giving each class a type identification method.
For example, Cylinder gets:

   Visitor descendants implement the type handler:

   Best when the Composite hierarchy is stable

Visitor implementation

def identify(self, visitor):
 return visitor.onCylinder(self)

def onCylinder(self, cylinder):
 # do cylinder specific things

 return

63

Building a distributed component framework

   Putting OO to work!

   What is a distributed component framework?

   what is a component?

   what is a framework?

   why be distributed?

   Why bother building a framework?

   is it the solution to any relevant problem?

   is it the right solution?

   High level description of the specific solution provided by
pyre

64

Pyre overview

   Projects

   Caltech ASC Center (DOE)

   Computational Infrastructure in Geodynamics (NSF):

   DANSE (NSF)

   Portability:

   languages: C, C++, F77, F90

   compilers: all native compilers on supported platforms, gcc, Absoft, PGI

   platforms: all common Unix variants, OSX, Windows

   Statistics:

   1200 classes, 75,000 lines of Python, 30,000 lines of C++

   Largest run: nirvana at LANL, 1764 processors for 24 hrs, generated 1.5 Tb

65

User stereotypes

   End-user

   occasional user of prepackaged and specialized analysis tools

   Application author

   author of prepackaged specialized tools

   Expert user

   prospective author/reviewer of PRL paper

   Domain expert

   author of analysis, modeling or simulation software

   Software integrator

   responsible for extending software with new technology

   Framework maintainer

   responsible for maintaining and extending the infrastructure

66

Distributed services

Workstation Front end Compute nodes

launcher

journal

monitor
solid

fluid

67

Pyre: the integration architecture

   Pyre is a software architecture:

   a specification of the organization of the software

system

   a description of the crucial structural elements and

their interfaces

   a specification for the possible collaborations of

these elements

   a strategy for the composition of structural and

behavioral elements

   Pyre is multi-layered

   flexibility

   complexity management

   robustness under evolutionary pressures

   Pyre is a component framework

application-general

application-specific

framework

computational engines

68

Component architecture

component

bindings

library

extension

component

bindings

custom code

core

facility

framework

facility

facility facility

component

bindings

custom code

service

requirement

implementation

package

   The integration framework is a set of
co-operating abstract services

FORTRAN/C/C++

python

69

Example application

NeXusReader Selector

Bckgrnd

Selector

Selector

Energy NeXusWriter times

instrument info

raw counts

filename

time interval

energy bins filename

70

Encapsulating critical technologies

   Extensibility

   new algorithms and analysis engines

   technologies and infrastructure

   High-end computations

   visualization

   easy access to large data sets

   single runs, backgrounds, archived data

   metadata

   distributed computing

   parallel computing

   Flexibility:

   interactivity: web, GUI, scripts

   must be able to do almost everything on a laptop

71

Component

Component schematic

input ports output ports

properties

component core name

control

72

Component anatomy

   Core: encapsulation of computational engines

   middleware that manages the interaction

between the framework and codes written in low
level languages

   Harness: an intermediary between a
component’s core and the external world

   framework services:

   control

   port deployment

   core services:

   deployment

   launching

   teardown

73

Component core

   Three tier encapsulation of access to computational
engines

   engine

   bindings

   facility implementation by extending abstract

framework services

   Cores enable the lowest integration level available

   suitable for integrating large codes that interact with

one another by exchanging complex data structures

   UI: text editor

facility

bindings

custom code

core

74

Computational engines

   Normal engine life cycle:

   deployment

   staging, instantiation, static initialization, dynamic initialization, resource allocation

   launching

   input delivery, execution control, hauling of output

   teardown

   resource de-allocation, archiving, execution statistics

   Exceptional events

   core dumps, resource allocation failures

   diagnostics: errors, warnings, informational messages

   monitoring: debugging information, self consistency checks

   Distributed computing

   Parallel processing

75

Component harness

   The harness

   collects and delivers user configurable parameters

   interacts with the data transport mechanisms

   guides the core through the various stages of its lifecycle

   provides monitoring services

   Parallelism and distributed computing are achieved by
specialized harness implementations

   The harness enables the second level of integration

   adding constraints makes code interaction more

predictable

   provides complete support for an application generic

interface

76

Data transport

data pipe

input port output port

77

Ports and pipes

   Ports further enable the physical decoupling of components by
encapsulating data exchange

   Runtime connectivity implies a two stage negotiation process

   when the connection is first established, the io ports exchange abstract

descriptions of their requirements

   appropriate encoding and decoding takes place during data flow

   Pipes are data transport mechanisms chosen for efficiency

   intra-process or inter-process

   components need not be aware of the location of their neighbors

   Standardized data types obviate the need for a complicated runtime
typing system

   meta-data in a format that is easy to parse (XML)

   tables

   histograms

78

Component implementation strategy

   Write engine

   custom code, third party libraries

   modularize by providing explicit support for life cycle management

   implement handling of exceptional events

   Construct python bindings

   select entry points to expose

   Integrate into framework

   construct object oriented veneer

   extend and leverage framework services

   Cast as a component

   provide object that implements component interface

   describe user configurable parameters

   provide meta data that specify the IO port characteristics

   code custom conversions from standard data streams into lower level data structures

   All steps are well localized!

79

Writing python bindings

   Given a “low level” routine, such as

   and a wrapper

double stableTimeStep(const char *);

char py_stableTimestep__name__[] = "stableTimestep";
PyObject * py_stableTimestep(PyObject *, PyObject * args)
{
 double dt = stableTimeStep("deformation");

 return Py_BuildValue(“d”, dt);
}

dt = danse.stableTimestep()

•  one can place the result of the routine in a python variable

•  The general case is not much more complicated than this

80

Support for distributed computing

   We are in the process of migrating the existing support for distributed
processing into gsl, a new package that completely encapsulates the
middleware

   Provide both user space and grid-enabled solution

   User space:

   ssh, scp

   pyre service factories and component management

   Web services

   pyGridWare from Keith Jackson’s group

   Advanced features

   dynamic discovery for optimized deployment

   reservation system for computational resources

81

Support for concurrent applications

   Python as the driver for concurrent applications that

   are embarrassingly parallel

   have custom communication strategies

   sockets, ICE, shared memory

   Excellent support for MPI

   mpipython.exe: MPI enabled interpreter (needed only on some platforms)

   mpi: package with python bindings for MPI

   support for staging and launching

   communicator and processor group manipulation

   support for exchanging python objects among processors

   mpi.Application: support for launching and staging MPI applications

   descendant of pyre.application.Application

   auto-detection of parallelism

   fully configurable at runtime

   used as a base class for user defined application classes

82

Wrap up

   Contact info

   aivazis@caltech.edu

   There is a lot of material on the web but it is disorganized

   currently at http://www.cacr.caltech.edu/projects/pyre

   soon to be at http://pyre.caltech.edu

83

Appendix: Writing a python extension module

   The Python documentation

   A library and headers

   A notion of how the Python scripts should look like

   The bindings

   the module entry point

   the method table

   the wrappers

   error handling

84

CSG – a simple solid modeler API

   Solid primitive constructors:

  Boolean operations:

  Transformations:

csg_body * csg_sphere(double radius);
csg_body * csg_cylinder(double radius, double height);
csg_body * csg_cone(double top, double bottom, double height);
csg_body * csg_block(double dx, double dy, double dz);

csg_body * csg_unite(csg_body *, csg_body *);
csg_body * csg_subtract(csg_body *, csg_body *);
csg_body * csg_intersect(csg_body *, csg_body *);

csg_body * csg_translate(csg_body *, double * displacement);
csg_body * csg_rotate(csg_body *, double angle, double * axis);

  Destructor:
void csg_destroy(csg_body *);

85

Python access to CSG

   We want to write scripts like:

import csg

sphere = csg.sphere(10)
cone = csg.cone(0, 7, 10)

cone = csg.translate(cone, (0,0,7))
jack = csg.unite(sphere, cone)

86

Anatomy of an extension module

   On import csg, the interpreter

   looks for a module named csg in the “standard places”

   runs the module initializer that is responsible for

   creating a module instance

   populating the module method table

   adding any other module-level attributes, if necessary

   The method table establishes the association between Python names
and function entry points

   When the name is used, the interpreter

   packs the arguments in a tuple

   calls the binding

   handles the return value

87

The module file

// -- csgmodule.cc

#include <Python.h>

#include “solids.h”
#include “operations.h”
#include “transformations.h”
#include “exceptions.h”

static PyMethodDef csg_methods[] = {
 // see slide “The method table”
};

extern “C” void initcsg() {
 // see slide “The module entry point”
}

// End of file

88

The method table

static PyMethodDef csg_methods[] = {
// sanity
 {“hello”, hello, METH_VARAGS, hello_doc},
// solids
 {“sphere”, new_sphere, METH_VARARGS, sphere__doc},
 {“cylinder”, new_cylinder, METH_VARARGS, cylinder__doc},
 {“cone”, new_cone, METH_VARARGS, cone__doc},
 {“block”, new_block, METH_VARARGS, block__doc},
// boolean operations
 {“unite”, unite, METH_VARARGS, unite__doc},
 {“subtract”, subtract, METH_VARARGS, subtract__doc},
 {“intersect”, intersect, METH_VARARGS, intersect__doc},
//transformations
 {“rotate”, rotate, METH_VARARGS, rotate__doc},
 {“translate”, translate, METH_VARARGS, translate__doc},
// sentinel
 {0, 0}
};

89

The module entry point

// The module initialization routine
extern "C" void initcsg()
{
 Py_InitModule(“csg", csg_methods);

 if (PyErr_Occurred()) {
 Py_FatalError("Can't initialize module csg");
 return;
 }

 return;
}

   Minimal initialization

90

Sanity check

   Simple version

#include <iostream>

static PyObject * hello(PyObject *, PyObject *)
{
 std::cout << “Hello from csgmodule” << std::endl;

 Py_INCREF(Py_None); // the return value is None
 return Py_None;
};

  check
>>> from csg import hello
>>> hello()
Hello from csgmodule
>>>

91

Reference counts

   Python objects are not owned

   Instead, code elements have ownership of references

   Implemented using reference counts

   Manipulated using Py_INCREF and Py_DECREF

   no NULL checking, for speed

   use the Py_XINCREF and Py_XDECREF variants when in doubt

   The garbage collector currently relies on refcount

   when it reaches 0, the object’s finalizer is called, if it exists

   simple, fast, no “delay” effect

   easy to defeat, e.g. circular references

   Python 2.0 has a new garbage collector, but it is not yet the default

92

Why Py_INCREF(Py_None)?

   Consistency, consistency, consistency

   Simplified mental model:

   the return value of our function is stored in a temporary variable

   the only way to access this value is to borrow references from the temporary

variable

   when the temporary is no longer usable, it will decrement the reference

count

   at the end of the statement

   if an exception is thrown

   …

   We are creating an object to represent the return value of the function
for our caller

93

Another sanity check

   Get an argument from the interpreter
#include <iostream>
static PyObject * hello(PyObject *, PyObject * args)
{
 char * person;
 if (!PyArg_ParseTuple(args, "s", &person)) {
 return 0;
 }

 std::cout << “csg: hello ” << person << “!” << std::endl;

 Py_INCREF(Py_None); // the return value is None
 return Py_None;
}

>>> from csg import hello
>>> hello(“Michael”)
csg: hello Michael!

  check

94

The convenience functions

   PyArg_ParseTuple

   takes a format string and the addresses of variables

   attempts to decode the args tuple according to the format

   deposits the values in the variables

   returns 0 on success, non-zero on failure

   Py_BuildValue

   takes a format string and a value

   builds the PyObject equivalent

   Common codes: “s”, “i”, “l”, “d”

   Format codes and the syntax of the format string are described in the

documentation

95

The bindings for the solid primitives

// -- solids.cc

#include <Python.h>

#include “solids.h”
#include “exceptions.h”

char sphere__doc[] = “Create a sphere of a given radius”;

PyObject * new_sphere(PyObject *, PyObject * args)
{
 // see next slide
}

// The bindings for the other solid constructors

// End of file

96

The binding for csg_sphere
PyObject * new_sphere(PyObject *, PyObject * args)
{
 double radius;
 if (!PyArg_ParseTuple(args, “d", &radius)) {
 return 0;
 }
 if (radius < 0.0) {
 // Throw an exception
 return 0;
 }

 csg_body * body = csg_sphere(radius);
 if (!body) {
 // Throw an exception
 return 0;
 }

 return PyCObject_FromVoidPtr(body, csg_destroy);
}

97

Better error handling

   Improvements by:

   creating our own exception objects

   install them in the module namespace

   raise them when appropriate

   Exceptions should be visible by all parts of the module

   they are intrinsically “global” objects for our module

   In C they are global variables

   in C++ they can be attributes of a Singleton

98

Module exceptions

// The module initialization routine
extern "C" void initcsg()
{
 PyObject * m = Py_InitModule(“csg", csg_methods);
 PyObject * d = PyModule_GetDict(m);
 if (PyErr_Occurred()) {
 Py_FatalError("Can't initialize module csg");
 return;
 }

 TransformationException =
 PyErr_NewException(“csg.TransformationException",0,0);
 PyDict_SetItemString(d, te_doc, TransformationException);

 return;
}

99

Unpacking the arguments by hand

   You can get to the arguments directly

   args is a PyTuple

PyObject * PyTuple_GetItem(<tuple>, <position>)

   For non-trivial argument lists, use the Python API to:

   count the number of arguments passed

   iterate over the arguments

   check that each argument is of the expected type

   Use the Python conversion functions

   avoid casts (implicit or explicit)

   Throw appropriate exceptions for bad arguments

100

The binding for csg_translate - I

PyObject * translate(PyObject *, PyObject * args)
{
 // Extract the body from position 0 in the argument tuple
 void * cobj = PyCObject_AsVoidPointer(PyTuple_GetItem(args, 0));
 csg_body *body = (csg_body *)cobj;
 if (!body) {
 // Throw an exception
 return 0;
 }

 PyObject *displacement = PyTuple_GetItem(args, 1);
 if (!PyTuple_Check(displacement)) {
 // Throw an exception
 return 0;
 }

// continued on the next slide

101

The binding for csg_translate - II

 // …
 // continued from the previous slide

 double v[3];
 v[0] = PyFloat_AsDouble(PyTuple_GetItem(displacement, 0));
 v[1] = PyFloat_AsDouble(PyTuple_GetItem(displacement, 1));
 v[2] = PyFloat_AsDouble(PyTuple_GetItem(displacement, 2));

 csg_body * result = csg_translate(body, v);
 if (!result) {
 // Throw an exception
 PyErr_SetString(TransformationException,“translate: ");
 return 0;
 }

 return PyCObject_FromVoidPtr(result, csg_destroy);
}

102

Creating a new type

   Not as well documented

   perhaps not common?

   The main ingredients:

   The object record

   a PyObject-compatible data structure to hold your object

   The type record that describes the basic capabilities of the type

   e.g., name, size, destructor, print function

   A method table with the association between names and function entry

points

   A member table with the association between names and (types, offsets)

   A few required overloads of the basic interface

   A resting place for the constructor

   Definitions and examples in the Python source

103

The object record

   Inherit from PyObject
// -- SolidBody.h

typedef struct {
 PyObject_HEAD
 csg_body * _brep;
} SolidBody;

// End of file

  PyObject and PyObject_HEAD live in Include/object.h
#define PyObject_HEAD \

 int ob_refcnt; \
 struct _typeobject *ob_type;

typedef struct {
 PyObject_HEAD
} PyObject;

104

The type record

   The type record also inherits from PyObject

PyTypeObject SolidBodyType = {
 PyObject_HEAD_INIT(&PyType_Type)
 0,
 “SolidBody",
 sizeof(SolidBody),
 0,

 destroy, // destructor
 0, _ // print
 getAttr, 0, // getattr, setattr
 0, 0, // cmp, repr
 0, 0, 0, // Object model protocols
 0, 0, 0, // hash, call, str
 0, 0, // getattro, setattro

 // others …
};

105

The constructor

PyObject * new_sphere(PyObject *, PyObject * args)
{ // see slide “The binding for csg_sphere”
 double radius;
 if (!PyArg_ParseTuple(args, “d", &radius)) {
 return 0;
 }

 csg_body * body = csg_sphere(radius);
 if (!body) {
 // Throw an exception
 return 0;
 }

 SolidBody * pybody = PyObject_New(SolidBody, &SolidBoyType);
 pybody->_brep = body;

 return (PyObject *)pybody;
}

106

The destructor

void destroy(PyObject * arg)
{
 SolidBody * pybody = (SolidBody *) arg;
 csg_destroy(pybody->_brep);

 free(pybody);

 return;
}

   Called when the reference count reaches zero

   Two tasks:

   destroy the csg object

   deallocate the memory allocated by PyObject_New

   Casts galore …

107

The type method table

static PyMethodDef file_methods[] = {
 {"readline", (PyCFunction)file_readline, 1},
 {"read", (PyCFunction)file_read, 1},
 {"write", (PyCFunction)file_write, 0},
 {"fileno", (PyCFunction)file_fileno, 0},
 {"seek", (PyCFunction)file_seek, 1},
 {"tell", (PyCFunction)file_tell, 0},
 {"readinto", (PyCFunction)file_readinto, 0},
 {"readlines", (PyCFunction)file_readlines, 1},
 {"writelines", (PyCFunction)file_writelines, 0},
 {"flush", (PyCFunction)file_flush, 0},
 {"close", (PyCFunction)file_close, 0},
 {"isatty", (PyCFunction)file_isatty, 0},
 {NULL, NULL} /* sentinel */

};

   From Objects/fileobject.c

108

The type member table

#define OFF(x) offsetof(PyFileObject, x)

static struct memberlist file_memberlist[] = {
 {"softspace", T_INT, OFF(f_softspace)},
 {"mode", T_OBJECT, OFF(f_mode), RO},
 {"name", T_OBJECT, OFF(f_name), RO},
 {"closed“, T_INT, 0, RO},
 {NULL} /* Sentinel */

};

   From Objects/fileobject.c

109

Overloading __getattr__

   From Objects/fileobject.c
static PyObject *
file_getattr(PyFileObject *f, char *name)
{
 PyObject *res;

 res = Py_FindMethod(file_methods, (PyObject *)f, name);
 if (res != NULL) {
 return res;
 }
 PyErr_Clear();
 if (strcmp(name, "closed") == 0) {
 return PyInt_FromLong((long)(f->f_fp == 0));
 }

 return PyMember_Get((char *)f, file_memberlist, name);
}

110

Finishing touches: an OO veneer

   Why not create real Python classes

   Sphere, Cylinder, Cone,…

   cache the constructor arguments

   build the csg representation only when needed

   What about the operations and transformations

   Patterns: Composite, Visitor, …

   all in Python

   cheap and fast

   Is there added value?

   encapsulation of the csg engine

   portability

111

Writing extensions in C++

   A very active topic

   join the Python C++-SIG

   Options:

   Automatic tools

   not without a C++ parser on-board - 

   Use Paul Dubois’ CXX

   open source

   he is looking for someone to pick it up

   Do it by hand (like I do)

   Adapter/Bridge that inherits from PyObject and dispatches

   suitable for few objects with stable public interfaces

112

Embedding

   Not as well documented

   but the Python executable is an example!

   The application entry point is under your control

   You have to initialize the interpreter

   Look at the “Very High Level” section of the manual for options

   Advantages:

   complete control over available modules

   secure

   Python version is frozen

   Disadvantages

   You have to do everything yourself

   Python version is frozen

113

Resources

   The Python documentation

   The web at www.python.org

   The Python mailing lists

   The Python source code

114

Application strategies

   If you need a scripting language

   think of your users’ spouses

   please don’t invent a new one

   What can Python do for your application?

   How much Python can you afford NOT to have?

   How do you make performance an non-issue?

   …

