Parallel Processing

Ed Upchurch
April 2011

Traditionally, software has been written for
serial computation:

* Run on a single computer having a
single Central Processing Unit (CPU);

* Problem is broken into a discrete
series of instructions.

* Instructions are executed one after
another.

* Only one instruction may execute at
any moment in time.

instructions

N 3 2 t1

Parallel computing is the simultaneous use of multiple compute resources
to solve a computational problem:

* Run using multiple CPUs
* Problem is broken into discrete parts that can be solved concurrently
* Each part is further broken down to a series of instructions

* Instructions from each part execute simultaneously on different CPUs

problem instructions

~ W7 T |-
-1l 1 I
-1l 1 I~
~ Wi | |-

Motivation

Two Types of Goals

* Get a very large number (millions) of machines
to work together to solve really really big
problems — big data, lots of transactions, lots of
computations (SETI at home) (High Capacity)

* Get a very large number (millions) of machines
to work together to solve really big problems
fast: real time needs, event threats, fusion
experiments (High Capability)

Definingthe 3 C’s ...

» Main Classes of computing :

— High capacity parallel computing : A strategy for
employing distributed computing resources to achieve high
throughput processing among decoupled tasks. Aggregate
performance of the total system is high if sufficient tasks are
available to be carried out concurrently on all separate
processing elements. No single task is accelerated.

— High capability parallel computing : A strategy for
employing tightly couple structures of computing resources
to achieve reduced execution time of a given application
through partitioning in to concurrently executable tasks.

— Cooperative computing : A strategy for employing
moderately coupled ensemble of computing resources to
increase size of the data set of a user application while
limiting its execution time.

Definingthe 3C’s ...

« High capacity computing systems emphasize the
overall work performed over a fixed time period. Work
Is defined as the aggregate amount of computation
performed across all functional units, all threads, all
cores, all chips, all coprocessors and network
interface cards in the system.

« High capability computing systems emphasize
improvement (reduction) in execution time of a single
user application program of fixed data set size.

High-performance throughput computing

Why Use Parallel Computing?

Save time and/or money

— In theory, throwing more resources at a task will shorten its time to completion, with potential
cost savings. Parallel clusters can be built from cheap, commodity components.
Solve larger problems: Many problems are so large and/or complex that itis
impractical or impossible to solve them on a single computer, especially given limited
computer memory.

— "Grand Challenge" (en.wikipedia.org/wiki/Grand_Challenge) problems requiring PetaFLOPS
and PetaBytes of computing resources.

— Web search engines/databases processing millions of transactions per second
Provide concurrency: A single compute resource can only do one thing at a time.
Multiple computing resources can be doing many things simultaneously.

— the Access Grid (www.accessqarid.org) provides a global collaboration network where people
from around the world can meet and conduct work "virtually".
Use of non-local resources: Using compute resources on a wide area network, or
even the Internet when local compute resources are scarce.

— SETI@home (setiathome.berkeley.edu) uses over 330,000 computers for a compute power
over 528 TeraFLOPS (as of August 04, 2008)

— Folding@home (foldinq.stanford.edu% uses over 340,000 computers for a compute power of
4.2 PetaFLOPS (as of November 4, 2008)

Why Use Parallel Computing?
(continued)

« Limits to serial computing

— Both physical and practical reasons pose significant constraints to simply
building ever faster serial computers

+ Transmission speeds - the speed of a serial computer is directly dependent upon how
fast data can move through hardware. Absolute limits are the speed of light (30 cm/
nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing
speeds necessitate increasing proximity of processing elements.

« Limits to miniaturization - processor technology is allowing an increasing number of
transistors to be placed on a chip. However, even with molecular or atomic-level
components, a limit will be reached on how small components can be.

— we are now at 90 nm and some 45 nm
— quantum effects such a leakage are making it very expensive to go from 90nm to 45nm

+ Economic limitations - it is increasingly expensive to make a single processor faster.
Using a larger number of moderately fast commodity processors to achieve the same
(or better) performance is less expensive.

« Current computer architectures are increasingly relying upon

hardware level parallelism to improve performance

— Multiple execution units
— Pipelined instructions
— Multi-core

Classes of problems that require
faster processing

* Simulation and Modeling
— Successive approximations
— More calculations, more precise

* Problems dependent on computations / manipulations of large amounts of data
— Image and Signal Processing
— Entertainment (Image Rendering)
— Database and Data Mining
— Seismic
* Grand Challenge Problems
— Climate Modeling
— Fluid Turbulence
— Pollution Dispersion
— Ocean Circulation
— Quantum Chromodynamics
— Semiconductor Modeling
— Superconductor Modeling
— Combustion Systems
— Vision & Cognition

Uses for Parallel Computing

 Historically "the high end of computing", and has been
used to model difficult scientific and engineering
problems

Atmosphere, Earth, Environment

Physics - applied, nuclear, particle, condensed matter, high
pressure, fusion, photonics

Bioscience, Biotechnology, Genetics

Chemistry, Molecular Sciences

Geology, Seismology

Mechanical Engineering - from prosthetics to spacecraft
Electrical Engineering, Circuit Design, Microelectronics
Computer Science, Mathematics

Commercial Applications Today

« These applications require the processing of large
amounts of data in sophisticated ways.

— Databases, data mining

— Oil exploration

— Web search engines, web based business services

— Medical imaging and diagnosis

— Pharmaceutical design

— Management of national and multi-national corporations
— Financial and economic modeling

— Advanced graphics and virtual reality, particularly in the
entertainment industry

— Networked video and multi-media technologies
— Collaborative work environments

saaaag asifion
I €13y
-Eu:,en_ SETENII
I Buiwesg

B Classified
0O Government
O Industry

W Research

@ Academic
@ Yendor

1%

o
5=
o

paiaadg JoN
| etpayy eubig
I Jopnpuodiwaeg
- mc:mmow._n_n_ Jaylespf,
” AR
Yaleasay alewl|) pue Jayleaps,
I DNLEETERR
I alemyos
- 831Mag

yoseasay

2%
61%

eIpay
[auiapay
I a3U3125 a7
‘ou_amm fuissaanlg uonewo|
-mu_amm uolELIo|
” alempleH

sa1shydoag

What Are They Using it For?

Who's Doing Parallel Computing?

3aueul4
I Juawuol AU
I Afiaug
I asuajaq
I aseqeleq
” Buiynsuo)
| 449
Afojoig
I furyiewyauag
, a Aoy

140
120
100

o soedsolay
o

State of the Art in Bigness

1. Greater than 1 PetaFLOP (> 1.5PF)

2. More than hundred thousand processors
(cores)

“THE PROBLEM” runs many days

4. Machine Mean Time Between Failures (MTBF)
about 56 hours

i

Items 3 & 4 => Need a very good checkpoint
restart capability => good /O as the footprint
reaches petaBytes

Some Basics

von Neumann Architecture

Control Arithmetic
Unit - Logic

1945

Unit
Comprised of four main components:

Memory
Control Unit m{(m
Arithmetic Logic Unit

Input/Output
Read/write, random access memory is used to store both program instructions and data
Program instructions are coded data which tell the computer to do something
Data is simply information to be used by the program
Control unit fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the programmed task.
Arithmetic Unit performs basic arithmetic operations
Input/Output is the interface to the human operator

Flynn's Classical Taxonomy
1966

Flynn's taxonomy distinguishes multi-processor computer architectures according to
two independent dimensions of Instruction and Data.

Each of these dimensions can have only one of two possible states:

Single or Multiple.

SISD SIMD
Single Instruction, Single Data Single Instruction, Multiple Data

MISD
Multiple Instruction, Single Data

Single Instruction, Single Data (SISD)
*A serial (non-parallel) computer
Single instruction: only one instruction stream is being
acted on by the CPU during any one clock cycle
*Single data: only one data stream is being used as
input during any one clock cycle
*Deterministic execution
*This is the oldest and even today, the most common
type of computer
*Examples: older generation mainframes,
minicomputers and workstations; most modern day

PCs.

load A
load B
C=A+B

aw1)

store C
A=B*2

store A

Single Instruction, Multiple Data (SIMD)
A type of parallel computer
*Single instruction: All processing units execute the same instruction at any given
clock cycle
*Multiple data: Each processing unit can operate on a different data element
*Best suited for specialized problems characterized by a high degree of
regularity, such as graphics/image processing.
*Synchronous (lockstep) and deterministic execution
*Two varieties: Processor Arrays and Vector Pipelines
*Examples:
*Processor Arrays: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV
*Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2,
Hitachi S820, ETA10
*Most modern computers, particularly those with graphics processor units
(GPUs) employ SIMD instructions and execution units.

prev instruct prev instruct prev instruct
load A(1) load A(2) load A(n)
load B(1) load B(2) load B(n) -
C(1)=A(1)*B(1) C(2)=A(2)*B(2) C(n)=A(n)*B(n)} 3
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
- — —

P1

P2

Pn

Multiple Instruction, Single Data (MISD):
A single data stream is fed into multiple processing units.
Each processing unit operates on the data independently via
independent instruction streams.
Few actual examples of this class of parallel computer have
ever existed. One is the experimental Carnegie-Mellon C.mmp
computer (1971).
Some conceivable uses might be:
multiple frequency filters operating on a single signal
stream
multiple cryptography algorithms attempting to crack a
single coded message.

prev instruct prev instruct prev instruct
load A(1) load A(1) load A(1)
C(1)=A(1)*1 C(2)=A(1)*2 C(n)=A(1)*n §’
store C(1) store C(2) store C(n)
next instruct next instruct next instruct
P P2 Pn

Multiple Instruction, Multiple Data (MIMD)

Currently, the most common type of parallel computer. Most modern
computers fall into this category.

Multiple Instruction: every processor may be executing a different instruction
stream

Multiple Data: every processor may be working with a different data stream
Execution can be synchronous or asynchronous, deterministic or non-
deterministic

Examples: most current supercomputers, networked parallel computer
clusters and "grids", multi-processor SMP computers, multi-core PCs.
Note: many MIMD architectures also include SIMD execution sub-
components

prev instruct prev instruct prev instruct
load A(1) call funcD do 10 i=1,N
load B(1) x=y*z alpha=w**3 -
C(1)=A(1)*B(1) sum=x*2 zeta=C(i) 2
store C(1) call sub1(i,j) 10 continue
next instruct next instruct next instruct
e P2 Pn

Class Example

 \What kind of machine was the class room
example?
A. SISD
B. SIMD
C. MISD
D. MIMD

Some Terminology

Task

— Alogically discrete section of computational work. A task is typically a program or program-
like set of instructions that is executed by a processor.

Parallel Task
— A task that can be executed by multiple processors safely (yields correct results)

Serial Execution

— Execution of a program sequentially, one statement at a time. In the simplest sense, this is
what happens on a one processor machine. However, virtually all parallel tasks will have
sections of a parallel program that must be executed serially.

Parallel Execution

— Execution of a program by more than one task, with each task being able to execute the
same or different statement at the same moment in time.

Pipelining
— Breaking a task into steps performed by different processor units, with inputs streaming
through, much like an assembly line; a type of parallel computing.

Some Terminology

Shared Memory
— From a strictly hardware point of view, describes a computer architecture where all processors have direct
(usually bus based) access to common physical memory. In a programming sense, it describes a model
where parallel tasks all have the same "picture" of memory and can directly address and access the same
logical memory locations regardless of where the physical memory actually exists.

Symmetric Multi-Processor (SMP)

— Hardware architecture where multiple processors share a single address space and access to all resources;
shared memory computing.

Distributed Memory
— In hardware, refers to network based memory access for physical memory that is not common. As a

programming model, tasks can only logically "see" local machine memory and must use communications to
access memory on other machines where other tasks are executing.

Communications
— Parallel tasks typically need to exchange data. There are several ways this can be accomplished, such as
through a shared memory bus or over a network, however the actual event of data exchange is commonly
referred to as communications regardless of the method employed.

Synchronization
— The coordination of parallel tasks in real time, very often associated with communications. Often
implemented by establishing a synchronization point within an application where a task may not proceed
further until another task(s) reaches the same or logically equivalent point. Synchronization usually involves
waiting by at least one task, and can therefore cause a parallel application's wall clock execution time to
increase.

Some Terminology

« Granularity

— In parallel computing, granularity is a qualitative measure of the ratio of computation to
communication.
» Coarse: relatively large amounts of computational work are done between communication events
* Fine: relatively small amounts of computational work are done between communication events

 Observed Speedup
— Observed speedup of a code which has been parallelized, defined as:
— wall-clock time of serial execution/ wall-clock time of parallel execution
— One of the simplest and most widely used indicators for a parallel program's performance.

« Parallel Overhead
— The amount of time required to coordinate parallel tasks, as opposed to doing useful work.
Parallel overhead can include factors such as:
» Task start-up time
« Synchronizations
» Data communications
« Software overhead imposed by parallel compilers, libraries, tools, operating system, etc.

» Task termination time

Some Terminology

Massively Parallel

— Refers to the hardware that comprises a given parallel system - having many processors. The meaning of "many" keeps
increasing, but currently, the largest parallel computers can be comprised of processors numbering in the hundreds of thousands.

Embarrassingly Parallel
— Solving many similar, but independent tasks simultaneously; little to no need for coordination between the tasks.

Scalability

— Refers to a parallel system's (hardware and/or software) ability to demonstrate a proportionate increase in parallel speedup with
the addition of more processors. Factors that contribute to scalability include:

* Hardware - particularly memory-cpu bandwidths and network communications
* Application algorithm

» Parallel overhead related

+ Characteristics of your specific application and coding

Multi-core Processors
— Multiple processors (cores) on a single chip.

Cluster Computing
— Use of a combination of commodity units (processors, networks or SMPs) to build a parallel system.

Supercomputing / High Performance Computing
— Use of the world's fastest, largest machines to solve large problems.

Key Terms and Concepts

« Speedup o Relative reduction of execution time of a fixed size
workload through parallel execution

execurion _rime _on_one _ processor

Speedup = - _
execufion _time _on N _ processors

—

« Efficiency [Ratio of the actual performance to the best possible
performance.

execufion _fime _on _one _ processor

Efficiency = . . _
(execution time on multiple processors x number of processors)

Amdahl’s Law: drive or fly?

+ Peak performance gain: 10X
— BMW cruise approx. 60 MPH
— Boeing 737 cruise approx. 600 MPH

+ Time door to door
— BMW

« Google estimates 4 hours 30 minutes
— Boeing 737
« Time to drive to BTRH from my house = 15 minutes
« Wait time at BTR =1 hour
« Taxi time at BTRH = 5 minutes
» Continental estimates BTH to IAH 1 hour
« Taxitime at IAH = 15 minutes (assuming gate available)
« Time to get bags at lAH = 25 minutes
« Time to get rental car = 15 minutes
« Time to drive to Hyatt Regency from |AH = 45 minutes
« Total ime =4 .0 hours

+ Sustained performance gain: 1.125X

Speadup

Amdahl’s Law

To
I/_F_ e _
-y ! H -
T T
'/- "A‘ N\l T = time for non - accelerated computation
start | - | end T4 = tune for accelerated computation
'TT-JE! Tk = time of portion of computation that can be accelerated

g = peak performance gain for accelerated portion of computation
f = fraction of non - accelerated computation to be accelerated

5 = speed up of computation with acceleration applied

g= 2 5=To/Tu
g= & .
gz 123 f=TTo
= b J
8= 100 - L={1—f]xru+[£]xm
g
<= To

] (1—f}xm+[§]ﬂu

1
i 1 1 i 1 1 1 1 5:_
0 0102 03 04 nf.5 08 07 08 09 1 1_f+[£]
g

Parallel Computer Memory
Architectures

Shared Memory

Shared memory parallel computers vary widely, but generally have in
common the ability for all processors to access all memory as global
address space.

Multiple processors can operate independently but share the same
memory resources.

Changes in a memory location effected by one processor are visible
to all other processors.

Shared memory machines can be divided into two main classes
based upon memory access times: UMA and NUMA.

Uniform Memory Access (UMA):

* Most commonly represented today by Symmetric Multiprocessor (SMP)
machines

* Identical processors
* Equal access and access times to memory

* Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent
means if one processor updates a location in shared memory, all the other
processors know about the update. Cache coherency is accomplished at the
hardware level.

Non-Uniform Memory Access (NUMA):

* Often made by physically linking two or more SMPs

* One SMP can directly access memory of another SMP

* Not all processors have equal access time to all memories
* Memory access across link is slower

* If cache coherency is maintained, then may also be called CC-NUMA - Cache
Coherent NUMA

Bus Interconnect

NUMA vs UMA

Advantages:
* Global address space provides a user-friendly programming perspective to memory

* Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

Disadvantages:

* Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can
geometrically increases traffic on the shared memory-CPU path, and for cache coherent systems,
geometrically increase traffic associated with cache/memory management.

* Programmer responsibility for synchronization constructs that insure "correct" access of global memory.

* Expense: it becomes increasingly difficult and expensive to design and produce shared memory
machines with ever increasing numbers of processors.

Parallel Programming Models

* There are several parallel programming
models in common use:

— Shared Memory
— Threads
— Message Passing
— Data Parallel
— Hybrid
(We will discuss these Thursday)

Where Are We and How Did
We Get here?

Definitions: “supercomputer”

. A computing system exhibiting high-en
Supercomputer: a t tem exhibiting high-end
performance capabilities and resource capacities within practical

constraints of technology, cost, power, and reliability. Thomas Stering,
2007

Su percomputer: a large very fast mainframe used especially
for scientific computations. Merriam-Webster Online

Su percomputer: any of a class of extremely powerful computers.
The term is commonly applied to the fastest high-performance systems

available at any given time. Such computers are used primarily for scientific

and engineering work requiring exceedingly high-speed computations.
Encyclopedia Britannica Online

Traditional Supercomputer
Technology

+ Single processors designed to be as fast as possible
— Cray vector machines for example

» The good
— sequential programming (people understand)
— 30+ years of compiler and tool development
— /O is relatively simple

+ Limitations
— Single high performance processors are exiremely expensive
— Significant cooling requirements

— 3ingle processor performance is reaching its asymptofic limit
(remember speed of light)

A Growth-Factor of a Billion in
Performance in a Single Lifetime

IBM 7094 1976 _ 1991 1996 2003 poadrunner
10¢ \\x 109 0” / 10“‘/

N
-2

” g
MegaOPS GlgaORF

:—CSPS_.

KiloOPS

1823 ' | ' ' 2001
1951 1964 1982 1988 1997
Babbage Difference 1943 1 60 XMP YMP ASCIReq Earth
Engine Harvard Ynivac CDC 6600 Cray Cray SCI Red Simulator

Mark 1

Performance: Top-500 list of supercomputers; metric
floating point operations/sec (FLOPS); on solving set of
linear equations (LINPACK)

~ 2.3 PF/s
1 Pflop/sk
: | 280.6 TF/s
100 Tflop/s § UM, - -
e BlueGens/L
10 Tflop/s §T-.167 TF/5 g N1 et coiator
| e 1BM ASCI White 2 |1.646 TF/s
1 Tflop/s 459.7 GF/s v intel ASCI Red —— <l
i : sandia
100 Gflop/s § —
i Rujitsu
| -
10 Gflop/sS§ : N=500
1 0.4GF/s .
1 Gflop/s &
100 Mflop/s ------------------------
)

Update: Nov 2008 Top 500 http://www.top500.org/ '

#1 = Roadrunner Los Alamos IBM bladecenter 1.456 petaFLOPS 129,600 cores
#2 = Jaguar Oak Ridge Cray XT5 1.38 petaFLOPS 150152 cores

#3 = Pleiades NASA Ames SGI Altix 0.6 petaFLOPS 51,200 cores

#4 = BlueGene/L

@SDOQ Projected Performance Development

CPERCONPUITER SITES

Roadrunner
10 PFlops f
j -& #1
1 PFlops - = #3500
a Sum
— 1 Trend
100 TFlops 2
Line
— #500 Trend
10 TFlope - ;
“ DAL Line
s — Sum Trend
E 1 TFlops Line
<]
=
4]
= 100 GFlops |
10 GFlops | apppppp
o
& o™
16F|ops;%q1d
1UUMF|0pS L . L L T T 3 v T b e e L ke L e L e LB § T T
O Y W © ~ O 00 O ~ &N 09 ¥ 10 © ~ 0O 00 O ~ N M 9 1 © -~
g O 00 O 0N 0N N O O O O 0O OO O R e e g e g
o OO O o o0 o0 o O 0O O O O 0O O CEECOERCITERCITRCUSS LI D 5 D D B
™ ™ Y o r r v & 0 SISOl UL U] D U] B B] B P

21th Liet/ November 2001 http:/'www._to p500.0rg/

a0n

450

400

UPERCOMPUTIR SITES

24th List / November 2004

Architectures / Systems

v topS500. org

B sIMD

B Single Processor
Cluster

. Constellations
SMP

I MPP

Roadrunner Detalls

Roadrunner, named after the New Mexico state bird, cost about $100
million, the world’ s first “hybrid” supercomputer — one powerful enough to
operate at one petaflop twice as fast as the then No.1 rated IBM Blue Gene
system at Lawrence Livermore National Lab

Roadrunner will primarilt))/ be used on nuclear weapons stockpile
applications. It will also be used for research into astronomy, energy, human
genome science and climate change.

Roadrunner is the world’ s first hybrid supercomputer. Cell Broadband
Engine® -- originally designed for video game platforms such as the Sony
Playstation 3® -- will work in conjunction with x86 processors from AMD®.

Roadrunner connects 6,562 dual-core AMD Opteron® chips as well as
12,240 Cell chips (on IBM Model QS22 blade servers).
— 98 terabytes of memory, and is housed in 278 refrigerator-sized, IBM
BladeCenter® racks occupying 5,200 square feet. Its 10,000 connections — both

Infiniband and Gigabit Ethernet -- require 55 miles of fiber optic cable.
Roadrunner weighs 500,000 Ibs.

— delivers world-leading efficiency — 437 million calculations per watt.

IBM bladecenter QS22

IBM Blue Gene/L

124

Moore’s Law

Moore’s Law

Memory (DRA M)

Panel 6 Years Ago “Is Moore’ s Law Dead?”

Microprocessor Clock Speed

Clock Speed Range

10000 -

1000 +

—

1003
10

Speed (MHz)

Intel Microprocessor Performance

Hyperthreading

10,000 (multicore)

Longer pipeline,
double-speed

Improvements in arithmetic

chip architecture

Increases in Full-speed
clock speed 2-level cache

1,000

MMX
multimedia

Speculative extensions
out-of-order

execution

Multiple
100 instructions
per cycle 733 MHz

Internal
memory

cache
Instruction 200 MHz

pipeline

300 MHz

Theoretical maximum performance
(million operations per second)

10

E————_—,_—,,—,,,,e—e,,ee,—eeee
1988 1990 1992 1994 1996 1998 2000 2002 2004

L]

Why Fast Machines Run Slow

L atency

— Waiting for access to memory or other parts of the system
Qverhead

— Exira work that has to be done to manage program

concurrency and parallel resources the real work you want
to perform

Starvation

— Not enough work to do due to insufficient parallelism or poor
load balancing among distributed resources

Contention

— Delays due to fighting over what task gets to use a shared
resource next. Network bandwidth is a major constraint.

Memory Speed Has Not Kept Up

200 — Dynamic RAM density
100 —
S0 — \
Processor speed

L 20— Memory Wall
&
= 10—
:
-
=
=
B
£

The SIA ITRS Roadmap

100,000
LI' MB |per DRAM Chip
10,000 o= | adic Transi

Clock (MHz)
1,000

100

10

1

f 9 1 3 5 3
9 9 0 0 0 0
9 9 0 0 0 0
1

Yehr of '?echnc?logy ﬂvailat?ility

MD—‘I-JF

Latency in a Single System

500¢
Ratio
} 1000 4000
n t
(100 300
¥
e ‘ r
© o L 200"
i / : 1007
T CPU Time "
0

1997 1999 2001 2003 2006 2909
X-Axis -

B CPU Clock Period (ns) M Ratio
B Memory System Access Time r

THE WALL

Driving Issues/Trends

Multicore
- MNow: 2
— possibly 100's
— will be million-way parallelism
Heterogeneity
- GPU
— Clearspeed
- Cell SPE

Component /0 Pins
— Off chip bandwidth not increasing
with demand
Limited number of pins
Limited bandwidth per pin (pair)
— Cache size per core may decline
— Shared cache fragmentation
System Interconnect
— Node bandwidth not increasing
proportionally to core demand
Power
— Mwatts at the high end = millions of
$s per year

Multi-Core

Single-core computer

CPU chip

register file

1C

: ALU

bus interface

(—

__— CPU Chip

system bus memory bus

e

LN
%

I l
J{e] <:> main
bridge memory

It HHF>

S0 AL

/O bus Expansion slots for
other devices such

usB graphics disk as network adapters.
controller adapter controller
mousekeyboard monitor -

m 156-213, S'06

Single-core CPU chip

CPU chip

the single core

register file

— e

—/
/ ALU
\qi

L

system bus

bus interface

o
b

-

Multi-core architectures

Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

register file register file register file register file

aALU aALU aALU aALU

1L — 30 — 30 — JF

bus interface < :>

Multi-core CPU chip

The cores run in parallel

thread 1 thread 2 thread 3 thread 4
C C C C
o) o) o) o)
r r r r
e e e e
1 2 3 4

Within each core, threads are time-sliced
(just like on a uniprocessor)

several several several several
threads threads threads threads
C C C C
0 0 0 0
r r r r
e e e e
1 2 3 4

\A A4 \AAA \A A4 \A A4

Interaction with OS

* OS perceives each core as a separate
processor

* OS scheduler maps threads/processes
to different cores

* Most major OS support multi-core today

Instruction-level parallelism

 Parallelism at the machine-instruction level

* The processor can re-order, pipeline
Instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

* Instruction-level parallelism enabled rapid
Increases in processor speeds over the
last 15 years

Thread-level parallelism (TLP)

This is parallelism on a more coarser scale

Server can serve each client in a separate
thread (Web server, database server)

A computer game can do Al, graphics, and
physics in three separate threads

Single-core superscalar processors cannot
fully exploit TLP

Multi-core architectures are the next step in
processor evolution: explicitly exploiting TLP

Simultaneous multithreading (SMT)

* Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

« Weaving together multiple “threads™
on the same core

« Example: if one thread is waiting for a floating
point operation to complete, another thread can
use the integer units

Without SMT, only a single thread
can run at any given time

k

Floﬁﬁg Point

1/

!

|
Thread 1: floating point

Without SMT, only a single thread
can run at any given time

N
Integ§(

|_‘t\

Al

l
Thread 2:
integer operation

SMT processor: both threads can
run concurrently

a H
Integ§{ Floﬁﬁg Point
B

LY I

!

.
Thread 2: Thread 1: floating point

integer operation

But: Can’ t simultaneously use the
same functional unit

A

Intebqr\
AN

Xy

\

.‘

Thread 1 Thread 2
IMPOSSIBLE

1

1

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit)

SMT not a “true” parallel processor

* Enables better threading (e.g. up to 30%)

« OS and applications perceive each
simultaneous thread as a separate
“virtual processor”

* The chip has only a single copy
of each resource

« Compare to multi-core:
each core has its own copy of resources

Multi-core:
threads can run on separate cores

~ X

Intéqer Ir\qger
\ I A I
X X

Al

== | ==

’ .

|

Thread 1 Thread 3

Combining Multi-core and SMT

» Cores can be SMT-enabled (or not)

* The different combinations:
— Single-core, non-SMT: standard uniprocessor
— Single-core, with SMT
— Multi-core, non-SMT
— Multi-core, with SMT

— The number of SMT threads:
2, 4, or sometimes 8 simultaneous threads

* Intel calls them “hyper-threads”

SMT Dual-core: all four threads can
run concurrently

L4
~\
In@er Floajhg Point

X

N1/

Floatiyg/lfoint

Ir\qger
A | /
Yedulerf

I

‘\

V

Thread 1 Thread 2

Thread 3 Thread 4

Comparison: multi-core vs SMT

 Multi-core:

— Since there are several cores,
each is smaller and not as powerful
(but also easier to design and manufacture)

— However, great with thread-level parallelism

« SMT

— Can have one large and fast superscalar core
— Great performance on a single thread

— Mostly still only exploits instruction-level
parallelism

TILEG4 Processor Block Diagram
A Complete Sysﬁm on a Chip

I JLIL_JtL

I8 T T 1 T T g
oCle 0 o me me Cme e e e ke
> we 8 = = = = = = = 8 ’P"ﬁf,‘fe/<t§>
W W W W W W W WS
mmE L E EFEE E E
>E%EEI’ o ||||E Il _ ||||E 1l 4 1l _ 1l _ 1l 1 m : - ¢ j>
BN B N B N B N ~<
1 o 1 o
>Flexibl s E E E E E E E : GbE ¢$
1A 1 1 | |
B e (=) Flexible (0 ¢j>
ot 1 1 {1 1 |
> MAC g = = = = = = =
i 1 1 1l ¢j}
== E E E E E E E EEa
| T T T S T B e
= =<

240 processing cores
Tesla Board peaks at 2 TeraFLOP

IBM Cell Chip

Highlights (3.2 GHz)

= 241M transistors — m"?”” %M:ll

= 235mma2
9 cores, 10 threads
>200 GFlops (SP)
>20 GFlops (DP)
Up to 25 GB/s memory B/W
Up to 75 GB/s I/0 B/W
>300 GB/s EIB
Top frequency >4GHz

(observed in lab)

Bus Interconnect

Shared Memory: UMA Shared Memory: NUMA

All processors access all memory as global address space.

Multiple processors operate independently but share
same memory resources.

Changes in memory made by one processor are visible
to all other processors

Distributed Memory

Processors have their own local memory.
Memory addresses in one processor do not map to another processor
there is no concept of global address space.

Each processor operates independently.
Changes it makes to its local memory have no effect on the memory of other processors

Cache coherency does not apply.

When a processor needs access to data in another processor,
it is the task of the programmer to explicitly define how and when data is communicated.
Synchronization between tasks is likewise the programmer's responsibility.

Distributed Memory

 Advantages:

— Memory is scalable with number of processors. Increase the number of
processors and the size of memory increases proportionately.

— Each processor can rapidly access its own memory without interference and
without the overhead incurred with trying to maintain cache coherency.

— Cost effectiveness: can use commaodity, off-the-shelf processors and networking.
(Clusters)

« Disadvantages:

— The programmer is responsible for many of the details associated with data
communication between processors.

— It may be difficult to map existing data structures, based on global memory, to
this memory organization.

— Non-uniform memory access (NUMA) times

Trade Off: We would like to have an infinite shared global address space BUT
it doesn’ t scale so we take on more programming difficulty for the added
scaling and performance advantages.

Cell System Features

 Heterogeneous
multi-core system
architecture

— Power
Processor
Element for
control tasks

— Synergistic
Processor
Elements for
data-intensive
processing

* Synergistic

Processor

Element (SPE)

consists of

64-bit Power Architecture with VMX

SPE
(EPU [P SPU (= SPU PU PU SPU
sxu (Il sxu [[I[| sxu [lI{l sxu [l sxu [llI[sxu [[lI[sxu |[l||| sxu |
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
LS LS LS LS LS LS LS LS
1GBICYCI | N A 4 v \4 v \4 \4 v
EIB (up to 96B/cycle)
A A AA
PPE QS cvcie 16B/cycle 16B/cycle (2x)
A 4 \A 4
PPU MIC BIC
L1#P XU I H H
ce16Br:ycIe
Dual FlexIO™
XDR™

Parallel programming models — Streaming

- SPE initiated DMA System Memory

- Large array of data fed | :0 80
through a group of SPE . 5
programs i -

« A special case of job queue 1, 0,
with regular data I O,

« Each SPE program locks lg Os
on the shared job queue to l; O;
obtain next job : :

 For uneven jobs, workloads
are self-balanced among
available SPEs PPE

H D Data-parallel> ornel) qamel) |t | Kemeld

Parallel programming models — Pipeline

I ON

l, 0,
Use LS to LS DMA , O,
bandwidth, not system :j 8:
memory bandwidth :: 8:
Flexibility in connecting :
pipeline functions i 0,
Larger collective code size
per pipeline PPE

Load-balance is harder

HD Task-parallel> -. = -

Example: Distributed
Computing

The cache coherence problem

Suppose variable x initially contains 15213

Core 1 <:E§EE:> <:EEEE:> Core 4

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 1 reads x

Core 1 <:E§EE:> <:EEEE:> Core 4

One or more
levels of
cache
x=15213

levels of
cache

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

The cache coherence problem

Core 2 reads x

Core 1 <:E§EE:> <:EEEE:> Core 4

One or more
levels of
cache
x=15213

levels of
cache
x=15213

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=15213

multi-core chip

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1 @ @ Core 4

x=21660

}

write-through
caches

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 x=15213
multi-core chip
Main memory assuming

The cache coherence problem

Core 2 attempts to read x... gets a stale copy

Core 1 <:E§EE:> <:EEEE:> Core 4

One or more
levels of
cache
x=21660

One or more
levels of
cache
x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip

Solutions for cache coherence

* This is a general problem with
multiprocessors, not limited just to multi-core

* There exist many solution algorithms,
coherence protocols, etc.

* A simple solution:
Invalidation-based protocol with snooping

Inter-core bus

One or more
levels of
cache

levels of
cache

Core 1 @ @ Core 4

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory

multi-core chip

inter-core
bus

Invalidation protocol with snooping

* |nvalidation:
If a core writes to a data item, all other

copies of this data item in other caches
are invalidated

* Snooping:
All cores continuously “snoop” (monitor)
the bus connecting the cores.

The cache coherence problem

Revisited: Cores 1 and 2 have both read x

Core 1 <:E§EE:> <:EEEE:> Core 4

One or more
levels of
cache
x=15213

One or more
levels of
cache
x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem

Core 1 writes to x, setting it to 21660

Core 1

Core 2 Core 3

Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache
x=21660 w
e N
.send.s . INVALIDATED
invalidation mu|tI-COl'e Ch|p
request
Main memory assuming .
B _ Inter-core
x=21660 } write-through buS

caches

The cache coherence problem

Core 2 reads x. Cache misses, and loads the new copy.

Core 1 @ @ Core 4

One or more
levels of
cache
x=21660

levels of
cache
x=21660

One or more

One or more
levels of
cache

One or more
levels of
cache

Main memory
x=21660

multi-core chip

Alternative to invalidate protocol:

update protocol

Core 1 writes x=21660:

Core 1 @ @ Core 4

One or more One or more One or more One or more
levels of levels of levels of levels of
cache cache cache cache

x=21660 x=21660
broadcasts : :
updated multi-core chip
value Main memory assuming .)
21660 | }wrtethrough €00

caches

Which do you think is better?
Invalidation or update”?

Invalidation vs update

* Multiple writes to the same location
— invalidation: only the first time
— update: must broadcast each write

* Writing to adjacent words in the same
cache block:

— invalidation: only invalidate block once
— update: must update block on each write

* Invalidation generally performs better:
It generates less bus traffic

Limits & Costs of Parallel
Programming

Amdahl's Law states that potential program speedup is defined by the fraction
of code (P) that can be parallelized:

speedup = ----—---

If none of the code can be parallelized, P = 0 and the speedup =1 (no
speedup).

If all of the code is parallelized, P = 1 and the speedup is infinite (in theory).

If 50% of the code can be parallelized, maximum speedup = 2, meaning the
code will run twice as fast.

Limits & Costs of Parallel
Programming

Introducing the number of processors performing the parallel fraction of work, the
relationship can be modeled by:

speedup = -------——--
P/N + S

where P = parallel fraction, N = number of processors and S = serial fraction.

25
Parallel Pomon
25%

0%—

-
o

Speedup
o = N W s N O

0% 10% 20% 30% 40% 50% 60% 70% S80% 90%
Parallel Portion of Code Number of Processors

[

M W N W - N
— OoN un O

—

2048
4096
8192
16384
32768
65536

Limits & Costs of Parallel
Programming

« Parallel applications are much more complex than
corresponding serial applications, perhaps an order of
magnitude

* You have multiple instruction streams executing at the
same time, but you also have data flowing between
them.

* The costs of complexity are measured in programmer
time in virtually every aspect of the software
development cycle:

— Design

— Coding

— Debugging
— Tuning

— Maintenance

Parallel Programming Models

Shared Memory
Threads
Message Passing
Data Parallel
Hybrid

Shared Memory Model

tasks share a common address space, which they read and write
asynchronously.

Various mechanisms such as locks / semaphores may be used to
control access to the shared memory.

advantage from the programmer's point of view
— No data "ownership" - no need to specify explicitly communication of
data between tasks. Program development can often be simplified.
Preformance disadvantage

— more difficult to understand and manage data locality.

« Keeping data local to the processor that works on it conserves memory
accesses, cache refreshes and bus traffic that occurs when multiple
processors use the same data.

« Unfortunately, controlling data locality is hard to understand and beyond the
control of the average user.

Threads Model

* a single process can have multiple,
concurrent execution paths.

* most simple analogy is the concept of a
single program that includes a number of

a.out

subroutines: e T1 T2

—
call sub2 —
do i=1,n
A(i)=fnc(i**2) T3
B(i)=A(i)*psi T4
end do
call sub3 —
call sub4 —

awiy

Y

Threads Model

From a programming perspective, threads implementations
commonly comprise:
— Alibrary of subroutines that are called from within parallel source code

- A ?jet of compiler directives imbedded in either serial or parallel source
code

programmer is responsible for determining all parallelism.

Threaded implementations are not new in computing. Historically,
hardware vendors have implemented their own proprietary versions
of threads. These implementations differed substantially from each
other making it difficult for programmers to develop portable
threaded applications.

Unrelated standardization efforts have resulted in two very different
implementations of threads: POSIX Threads and OpenMP.

Threads Model

* POSIX Threads

« Ope

Library based; requires parallel coding

Specified by the IEEE POSIX 1003.1c standard (1995).
C Language only

Commonly referred to as Pthreads.

Most hardware vendors now offer Pthreads in addition to their proprietary threads
implementations.

Very explicit parallelism; requires significant programmer attention to
detail.

nMP
Compiler directive based; can use serial code

Jointly defined and endorsed by a group of major computer hardware and
software vendors. The OpenMP Fortran APl was released October 28, 1997. The
C/C++ API was released in late 1998.

Portable / multi-platform, including Unix and Windows NT platforms
Available in C/C++ and Fortran implementations
Can be very easy and simple to use - provides for "incremental parallelism"

* Microsoft has its own implementation for threads, which is not related to the
UNIX POSIX standard or OpenMP.

« POSIX Threads tutorial: computing.linl.gov/tutorials/pthreads

« Ope

NMP tutorial: computing.linl.gov/tutorials/openMP

Note: This is a programming nightmare!

Message Passing Model

A set of tasks that use their own local memory during computation

Multiple tasks can be on the same physical machine as well across
an arbitrary number of machines.

Tasks exchange data through communications by sending and
receiving messages.

Data transfer usually requires cooperative operations to be
performed by each process. For example, a send operation must
have a matching receive operation.

Machine A Machine B
| task 0 | task 1
send() recv()
network
task 2 task 3
recv() send()

Message Passing Model -
Implementations

message passing implementations commonly comprise a library of
subroutines that are imbedded in source code.

The programmer is responsible for determining all parallelism.

A variety of message passing libraries have been available since the 1980s.
These implementations differed substantially from each other making it
difficult for programmers to develop portable applications.

In 1992, the MPI Forum was formed with the primary goal of establishing a
standard interface for message passing implementations.

Part 1 of the Message Passing Interface (MPI) was released in 1994. Part
2 (MPI-2) was released in 1996. Both MPI specifications are available on
the web at http://www-unix.mcs.anl.gov/mpli/.

MPI is now the "de facto" industry standard for message passing, replacing
virtually all other message passing implementations used for production
work. Most, if not all of the popular parallel computing platforms offer at
least one implementation of MPI. A few offer a full implementation of MPI-2.

MPI tutorial: computing.linl.gov/tutorials/mpi

Designing Parallel Programs

First understand the problem that you wish to solve in parallel
— If you are starting with a serial program, this necessitates understanding the existing code
also.
Before spending time in an attempt to develop a parallel solution for a problem,
determine whether or not the problem is one that can actually be parallelized.

Example of Parallelizable Problem: Calculate the potential energy for each of
several thousand independent conformations of a molecule. When done, find
the minimum energy conformation.

This problem is able to be solved in parallel. Each of the molecular conformations is
independently determinable. The calculation of the minimum energy conformation is
also a parallelizable problem.

Example of a Non-parallelizable Problem: Calculation of the Fibonacci series
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1) + F(k)

This is a non-parallelizable problem because the calculation of the Fibonacci
sequence as shown would entail dependent calculations rather than independent
ones. The calculation of the k + 2 value uses those of both k + 1 and k. These three
terms cannot be calculated independently and therefore, not in parallel.

Designing Parallel Programs

Identify hotspots

— Know where most of the real work is being done. The majority of scientific
a?d technical programs usually accomplish most of their work in a few
places.

— Profilers and performance analysis tools can help
— Focus on parallelizing the hotspots and ignore those sections of the
program that account for little CPU usage.
Identify bottlenecks

— Are there areas that are disproportionately slow, or cause parallelizable
work to halt or be deferred? For example, 1/O is usually something that
slows a program down.

— May be possible to restructure the program or use a different algorithm to
reduce or eliminate unnecessary slow areas

Identify inhibitors to parallelism. One common class of inhibitor is
data dependence, as demonstrated by the Fibonacci sequence above.

Investigate other algorithms if possible. This may be the single most
important consideration when designing a parallel application.

Designing Parallel Programs -
Partitioning

* One of the first steps in designing a parallel program is to break the problem
into discrete "chunks" of work that can be distributed to multiple tasks. This
is known as decomposition or partitioning.

 There are two basic ways to partition computational work among parallel
tasks

— domain decomposition
— functional decomposition.

« Domain Decomposition

— In this type of partitioning, the data associated with a problem is decomposed.
Each parallel task then works on a portion of of the data.

There are different ways to partition the data: -
[S— | LI T T T |

BLOCK CYCLIC

n
/ ' \
/S ’1') '1] o \)
- . . - — i B
— — — — E \Ill.l ﬁ

cycLic, * *, CYCLIC CYCLIC, CYCLIC

1D
Problem Data Set 20

Designing Parallel Programs -
Partitioning

* Functional Decomposition
— In this approach, the focus is on the computation that is to be performed rather
than on the data manipulated by the computation. The problem is decomposed
according to the work that must be done. Each task then performs a portion of
the overall work.
— Functional decomposition is good for problems that can be spilit into different

tasks.

Problem Instruction Set™

Designing Parallel Programs -

Partitioning

Ecosystem Modeling
Each program calculates the population of a given group. Each

group's growth depends on that of its neighbors. As time
progresses, each process calculates its current state, then
exchanges information with the neighbor populations. All tasks then

progress to calculate the state at the next time step.

time

Plants

to P1

!
I
e

!

Carnivores

Herbivores

Designing Parallel Programs -
Partitioning

Climate Modeling

Each model component can be thought of as a separate task. Arrows
represent exchanges of data between components during computation: the
atmosphere model generates wind velocity data that are used by the ocean
model, the ocean model generates sea surface temperature data that are
used by the atmosphere model, and so on.

Atmospheric Model

Hydrology
Model - Ocean
’ Model
A4

Land/Surface Model I .

Scope of Communications

« Knowing which tasks must communicate with each other is critical during
the design stage of a parallel code. Both of the two scopings described
below can be implemented synchronously or asynchronously.

— Point-to-point - involves two tasks with one task acting as the sender/producer
of data, and the other acting as the receiver/consumer.

— Collective - involves data sharing between more than two tasks, which are often
specified as being members in a common group, or collective. Some common
variations (there are more)

LA VRVE VR VRV VALY
o &
D

VR Ay
Nl Nl
=))

gather reduction

Overhead & Complexity
Parallel “Hello World” using MPI Library

woid main (int arge, char *argv]])
int myrank, size;
MPI_Init{ &argc, &argv);

MPI_Comm_rank{MPI_COMM_WORLD, & myrank);
MPI_Comm_size{MPI_COMM _WORLD, &size)

S —

i

printf{ "Processor %d of %d: Hello World!'n", mwank, size)
MPI_Finalize{)

1)

/s

H

iy

£l

Pl

£l

)
3 mmmw
e
)
deland_cl. v 4
25t ==
nlan []
‘
2 s,
=

Example of Parallel Communications Overhead
and Complexity: actual callgraph from the simple
parallel "hello world" program shown. Most of the
routines are from communications libraries.

Homework

« Suppose you have a parallel machine as follows:

— A single host with near infinite memory — plenty enough to hold all the
data necessary for this problem

— 8 homogeneous processors attached by a bus to the host

— Each homogeneous processor has a local memory of 256 KiloBytes.
This memory is not shared with any other processor

— The homogeneous processors can communicate with each other and
with the host over the bus
 The problem
— Describe how you would best do a matrix multiply in parallel using the machine
for the following matrix sizes (double precision 8 Byte floating point numbers)
+ 16x16
« 1024 x 1024
« 10**6 x 10**6

REF: http://www.cs.utexas.edu/users/plapack/papers/ipps98/ipps98.html,
“Analysis of a Class of Parallel Matrix Multiplication Algorithms™

