
Parallel Processing

Ed Upchurch
April 2011

Traditionally, software has been written for
serial computation:

 * Run on a single computer having a
single Central Processing Unit (CPU);

 * Problem is broken into a discrete
series of instructions.

 * Instructions are executed one after
another.

 * Only one instruction may execute at
any moment in time.

Parallel computing is the simultaneous use of multiple compute resources
to solve a computational problem:

 * Run using multiple CPUs

 * Problem is broken into discrete parts that can be solved concurrently

 * Each part is further broken down to a series of instructions

 * Instructions from each part execute simultaneously on different CPUs

Motivation

Two Types of Goals

•  Get a very large number (millions) of machines
to work together to solve really really big
problems – big data, lots of transactions, lots of
computations (SETI at home) (High Capacity)

•  Get a very large number (millions) of machines
to work together to solve really big problems
fast: real time needs, event threats, fusion
experiments (High Capability)

Why Use Parallel Computing?
•  Save time and/or money

–  In theory, throwing more resources at a task will shorten its time to completion, with potential
cost savings. Parallel clusters can be built from cheap, commodity components.

•  Solve larger problems: Many problems are so large and/or complex that it is
impractical or impossible to solve them on a single computer, especially given limited
computer memory.

–  "Grand Challenge" (en.wikipedia.org/wiki/Grand_Challenge) problems requiring PetaFLOPS
and PetaBytes of computing resources.

–  Web search engines/databases processing millions of transactions per second
•  Provide concurrency: A single compute resource can only do one thing at a time.

Multiple computing resources can be doing many things simultaneously.
–  the Access Grid (www.accessgrid.org) provides a global collaboration network where people

from around the world can meet and conduct work "virtually".
•  Use of non-local resources: Using compute resources on a wide area network, or

even the Internet when local compute resources are scarce.
–  SETI@home (setiathome.berkeley.edu) uses over 330,000 computers for a compute power

over 528 TeraFLOPS (as of August 04, 2008)
–  Folding@home (folding.stanford.edu) uses over 340,000 computers for a compute power of

4.2 PetaFLOPS (as of November 4, 2008)

Why Use Parallel Computing?
(continued)

•  Limits to serial computing
–  Both physical and practical reasons pose significant constraints to simply

building ever faster serial computers
•  Transmission speeds - the speed of a serial computer is directly dependent upon how

fast data can move through hardware. Absolute limits are the speed of light (30 cm/
nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing
speeds necessitate increasing proximity of processing elements.

•  Limits to miniaturization - processor technology is allowing an increasing number of
transistors to be placed on a chip. However, even with molecular or atomic-level
components, a limit will be reached on how small components can be.

–  we are now at 90 nm and some 45 nm
–  quantum effects such a leakage are making it very expensive to go from 90nm to 45nm

•  Economic limitations - it is increasingly expensive to make a single processor faster.
Using a larger number of moderately fast commodity processors to achieve the same
(or better) performance is less expensive.

•  Current computer architectures are increasingly relying upon
hardware level parallelism to improve performance

–  Multiple execution units
–  Pipelined instructions
–  Multi-core

Uses for Parallel Computing

•  Historically "the high end of computing", and has been
used to model difficult scientific and engineering
problems
–  Atmosphere, Earth, Environment
–  Physics - applied, nuclear, particle, condensed matter, high

pressure, fusion, photonics
–  Bioscience, Biotechnology, Genetics
–  Chemistry, Molecular Sciences
–  Geology, Seismology
–  Mechanical Engineering - from prosthetics to spacecraft
–  Electrical Engineering, Circuit Design, Microelectronics
–  Computer Science, Mathematics

Commercial Applications Today

•  These applications require the processing of large

amounts of data in sophisticated ways.
–  Databases, data mining
–  Oil exploration
–  Web search engines, web based business services
–  Medical imaging and diagnosis
–  Pharmaceutical design
–  Management of national and multi-national corporations
–  Financial and economic modeling
–  Advanced graphics and virtual reality, particularly in the

entertainment industry
–  Networked video and multi-media technologies
–  Collaborative work environments

State of the Art in Bigness
1.  Greater than 1 PetaFLOP (> 1.5PF)
2.  More than hundred thousand processors

(cores)
3.  “THE PROBLEM” runs many days
4.  Machine Mean Time Between Failures (MTBF)

about 56 hours

Items 3 & 4 => Need a very good checkpoint
restart capability => good I/O as the footprint
reaches petaBytes

Some Basics

von Neumann Architecture
1945

Comprised of four main components:
 Memory
 Control Unit
 Arithmetic Logic Unit
 Input/Output

Read/write, random access memory is used to store both program instructions and data
Program instructions are coded data which tell the computer to do something
Data is simply information to be used by the program

Control unit fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the programmed task.
Arithmetic Unit performs basic arithmetic operations
Input/Output is the interface to the human operator

Flynn's Classical Taxonomy
1966

 Flynn's taxonomy distinguishes multi-processor computer architectures according to
two independent dimensions of Instruction and Data.
Each of these dimensions can have only one of two possible states:
Single or Multiple.

S I S D
Single Instruction, Single Data

S I M D
Single Instruction, Multiple Data

M I S D
Multiple Instruction, Single Data

M I M D
Multiple Instruction, Multiple Data

Single Instruction, Single Data (SISD)
• A serial (non-parallel) computer
• Single instruction: only one instruction stream is being
acted on by the CPU during any one clock cycle
• Single data: only one data stream is being used as
input during any one clock cycle
• Deterministic execution
• This is the oldest and even today, the most common
type of computer
• Examples: older generation mainframes,
minicomputers and workstations; most modern day
PCs.

Single Instruction, Multiple Data (SIMD)
• A type of parallel computer
• Single instruction: All processing units execute the same instruction at any given
clock cycle
• Multiple data: Each processing unit can operate on a different data element
• Best suited for specialized problems characterized by a high degree of
regularity, such as graphics/image processing.
• Synchronous (lockstep) and deterministic execution
• Two varieties: Processor Arrays and Vector Pipelines
• Examples:
• Processor Arrays: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV
• Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2,
Hitachi S820, ETA10
• Most modern computers, particularly those with graphics processor units
(GPUs) employ SIMD instructions and execution units.

Multiple Instruction, Single Data (MISD):
A single data stream is fed into multiple processing units.
Each processing unit operates on the data independently via
independent instruction streams.
Few actual examples of this class of parallel computer have
ever existed. One is the experimental Carnegie-Mellon C.mmp
computer (1971).
Some conceivable uses might be:

multiple frequency filters operating on a single signal
stream
multiple cryptography algorithms attempting to crack a
single coded message.

Multiple Instruction, Multiple Data (MIMD)
Currently, the most common type of parallel computer. Most modern
computers fall into this category.
Multiple Instruction: every processor may be executing a different instruction
stream
Multiple Data: every processor may be working with a different data stream
Execution can be synchronous or asynchronous, deterministic or non-
deterministic
Examples: most current supercomputers, networked parallel computer
clusters and "grids", multi-processor SMP computers, multi-core PCs.
Note: many MIMD architectures also include SIMD execution sub-
components

Class Example

•  What kind of machine was the class room
example?

 A. SISD
 B. SIMD
 C. MISD
 D. MIMD

Some Terminology
•  Task

–  A logically discrete section of computational work. A task is typically a program or program-
like set of instructions that is executed by a processor.

•  Parallel Task
–  A task that can be executed by multiple processors safely (yields correct results)

•  Serial Execution
–  Execution of a program sequentially, one statement at a time. In the simplest sense, this is

what happens on a one processor machine. However, virtually all parallel tasks will have
sections of a parallel program that must be executed serially.

•  Parallel Execution
–  Execution of a program by more than one task, with each task being able to execute the

same or different statement at the same moment in time.

•  Pipelining
–  Breaking a task into steps performed by different processor units, with inputs streaming

through, much like an assembly line; a type of parallel computing.

Some Terminology
•  Shared Memory

–  From a strictly hardware point of view, describes a computer architecture where all processors have direct
(usually bus based) access to common physical memory. In a programming sense, it describes a model
where parallel tasks all have the same "picture" of memory and can directly address and access the same
logical memory locations regardless of where the physical memory actually exists.

•  Symmetric Multi-Processor (SMP)
–  Hardware architecture where multiple processors share a single address space and access to all resources;

shared memory computing.

•  Distributed Memory
–  In hardware, refers to network based memory access for physical memory that is not common. As a

programming model, tasks can only logically "see" local machine memory and must use communications to
access memory on other machines where other tasks are executing.

•  Communications
–  Parallel tasks typically need to exchange data. There are several ways this can be accomplished, such as

through a shared memory bus or over a network, however the actual event of data exchange is commonly
referred to as communications regardless of the method employed.

•  Synchronization
–  The coordination of parallel tasks in real time, very often associated with communications. Often

implemented by establishing a synchronization point within an application where a task may not proceed
further until another task(s) reaches the same or logically equivalent point. Synchronization usually involves
waiting by at least one task, and can therefore cause a parallel application's wall clock execution time to
increase.

Some Terminology
•  Granularity

–  In parallel computing, granularity is a qualitative measure of the ratio of computation to
communication.

•  Coarse: relatively large amounts of computational work are done between communication events
•  Fine: relatively small amounts of computational work are done between communication events

•  Observed Speedup
–  Observed speedup of a code which has been parallelized, defined as:
–  wall-clock time of serial execution/ wall-clock time of parallel execution
–  One of the simplest and most widely used indicators for a parallel program's performance.

•  Parallel Overhead
–  The amount of time required to coordinate parallel tasks, as opposed to doing useful work.

Parallel overhead can include factors such as:
•  Task start-up time
•  Synchronizations
•  Data communications
•  Software overhead imposed by parallel compilers, libraries, tools, operating system, etc.
•  Task termination time

Some Terminology
•  Massively Parallel

–  Refers to the hardware that comprises a given parallel system - having many processors. The meaning of "many" keeps
increasing, but currently, the largest parallel computers can be comprised of processors numbering in the hundreds of thousands.

•  Embarrassingly Parallel
–  Solving many similar, but independent tasks simultaneously; little to no need for coordination between the tasks.

•  Scalability
–  Refers to a parallel system's (hardware and/or software) ability to demonstrate a proportionate increase in parallel speedup with

the addition of more processors. Factors that contribute to scalability include:
•  Hardware - particularly memory-cpu bandwidths and network communications
•  Application algorithm
•  Parallel overhead related
•  Characteristics of your specific application and coding

•  Multi-core Processors
–  Multiple processors (cores) on a single chip.

•  Cluster Computing
–  Use of a combination of commodity units (processors, networks or SMPs) to build a parallel system.

•  Supercomputing / High Performance Computing
–  Use of the world's fastest, largest machines to solve large problems.

Parallel Computer Memory
Architectures

Shared Memory
Shared memory parallel computers vary widely, but generally have in
common the ability for all processors to access all memory as global
address space.
Multiple processors can operate independently but share the same
memory resources.
Changes in a memory location effected by one processor are visible
to all other processors.
Shared memory machines can be divided into two main classes
based upon memory access times: UMA and NUMA.

Uniform Memory Access (UMA):

 * Most commonly represented today by Symmetric Multiprocessor (SMP)
machines

 * Identical processors

 * Equal access and access times to memory

 * Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent
means if one processor updates a location in shared memory, all the other
processors know about the update. Cache coherency is accomplished at the
hardware level.

Non-Uniform Memory Access (NUMA):

 * Often made by physically linking two or more SMPs

 * One SMP can directly access memory of another SMP

 * Not all processors have equal access time to all memories

 * Memory access across link is slower

 * If cache coherency is maintained, then may also be called CC-NUMA - Cache
Coherent NUMA

NUMA vs UMA

Advantages:

 * Global address space provides a user-friendly programming perspective to memory

 * Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs

Disadvantages:

 * Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can
geometrically increases traffic on the shared memory-CPU path, and for cache coherent systems,
geometrically increase traffic associated with cache/memory management.

 * Programmer responsibility for synchronization constructs that insure "correct" access of global memory.

 * Expense: it becomes increasingly difficult and expensive to design and produce shared memory
machines with ever increasing numbers of processors.

Parallel Programming Models

•  There are several parallel programming
models in common use:
– Shared Memory
– Threads
– Message Passing
– Data Parallel
– Hybrid

(We will discuss these Thursday)

Where Are We and How Did
We Get here?

2009
Roadrunner
1.456 PetaFlops

Update: Nov 2008 Top 500 http://www.top500.org/
 #1 = Roadrunner Los Alamos IBM bladecenter 1.456 petaFLOPS 129,600 cores
 #2 = Jaguar Oak Ridge Cray XT5 1.38 petaFLOPS 150152 cores
 #3 = Pleiades NASA Ames SGI Altix 0.6 petaFLOPS 51,200 cores
 #4 = BlueGene/L

Roadrunner

Roadrunner Details
•  Roadrunner, named after the New Mexico state bird, cost about $100

million, the world’s first “hybrid” supercomputer – one powerful enough to
operate at one petaflop twice as fast as the then No.1 rated IBM Blue Gene
system at Lawrence Livermore National Lab

•  Roadrunner will primarily be used on nuclear weapons stockpile
applications. It will also be used for research into astronomy, energy, human
genome science and climate change.

•  Roadrunner is the world’s first hybrid supercomputer. Cell Broadband
Engine® -- originally designed for video game platforms such as the Sony
Playstation 3® -- will work in conjunction with x86 processors from AMD®.

•  Roadrunner connects 6,562 dual-core AMD Opteron® chips as well as
12,240 Cell chips (on IBM Model QS22 blade servers).

–  98 terabytes of memory, and is housed in 278 refrigerator-sized, IBM
BladeCenter® racks occupying 5,200 square feet. Its 10,000 connections – both
Infiniband and Gigabit Ethernet -- require 55 miles of fiber optic cable.
Roadrunner weighs 500,000 lbs.

–  delivers world-leading efficiency – 437 million calculations per watt.

IBM bladecenter QS22

Panel 6 Years Ago “Is Moore’s Law Dead?”

Intel Microprocessor Performance

Memory Speed Has Not Kept Up

Memory Wall

Multi-Core

Single-core computer
CPU Chip

Single-core CPU chip
the single core

Multi-core architectures

Replicate multiple processor cores on a
single die.

Core 1 Core 2 Core 3 Core 4

Multi-core CPU chip

The cores run in parallel

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

thread 1 thread 2 thread 3 thread 4

Within each core, threads are time-sliced
(just like on a uniprocessor)

c
o
r
e

1

c
o
r
e

2

c
o
r
e

3

c
o
r
e

4

several
threads

several
threads

several
threads

several
threads

Interaction with OS

•  OS perceives each core as a separate
processor

•  OS scheduler maps threads/processes
to different cores

•  Most major OS support multi-core today

Instruction-level parallelism

•  Parallelism at the machine-instruction level
•  The processor can re-order, pipeline

instructions, split them into
microinstructions, do aggressive branch
prediction, etc.

•  Instruction-level parallelism enabled rapid
increases in processor speeds over the
last 15 years

Thread-level parallelism (TLP)
•  This is parallelism on a more coarser scale
•  Server can serve each client in a separate

thread (Web server, database server)
•  A computer game can do AI, graphics, and

physics in three separate threads
•  Single-core superscalar processors cannot

fully exploit TLP
•  Multi-core architectures are the next step in

processor evolution: explicitly exploiting TLP

Simultaneous multithreading (SMT)

•  Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

•  Weaving together multiple “threads”
on the same core

•  Example: if one thread is waiting for a floating
point operation to complete, another thread can
use the integer units

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating point

Without SMT, only a single thread
can run at any given time

Without SMT, only a single thread
can run at any given time

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 2:
integer operation

SMT processor: both threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1: floating point Thread 2:
integer operation

But: Can’t simultaneously use the
same functional unit

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode ROM BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2

This scenario is
impossible with SMT
on a single core
(assuming a single
integer unit) IMPOSSIBLE

SMT not a “true” parallel processor

•  Enables better threading (e.g. up to 30%)
•  OS and applications perceive each

simultaneous thread as a separate
“virtual processor”

•  The chip has only a single copy
of each resource

•  Compare to multi-core:
each core has its own copy of resources

Multi-core:
threads can run on separate cores

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 3

Combining Multi-core and SMT

•  Cores can be SMT-enabled (or not)
•  The different combinations:

– Single-core, non-SMT: standard uniprocessor
– Single-core, with SMT
– Multi-core, non-SMT
– Multi-core, with SMT
– The number of SMT threads:

2, 4, or sometimes 8 simultaneous threads
•  Intel calls them “hyper-threads”

SMT Dual-core: all four threads can
run concurrently

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

BTB and I-TLB

Decoder

Trace Cache

Rename/Alloc

Uop queues

Schedulers

Integer Floating Point

L1 D-Cache D-TLB

uCode
ROM

BTB L2
 C

ac
he

 a
nd

 C
on

tro
l

B
us

Thread 1 Thread 2 Thread 3 Thread 4

Comparison: multi-core vs SMT

•  Multi-core:
– Since there are several cores,

each is smaller and not as powerful
(but also easier to design and manufacture)

– However, great with thread-level parallelism
•  SMT

– Can have one large and fast superscalar core
– Great performance on a single thread
– Mostly still only exploits instruction-level

parallelism

PCIe 1
MAC
PHY

PCIe 0
MAC
PHY

Serdes

Serdes

Flexible IO

GbE 0

GbE 1 Flexible IO

UART, HPI
JTAG, I2C,

SPI

DDR2 Memory Controller 3

DDR2 Memory Controller 0

DDR2 Memory Controller 2

DDR2 Memory Controller 1

XAUI
MAC
PHY 0

 Serdes

XAUI
MAC
PHY 1

 Serdes

TILE64 Processor Block Diagram
A Complete System on a Chip

PROCESSOR

P2

Reg File

P1 P0

CACHE
L2 CACHE

L1I L1D

ITLB DTLB

2D DMA

STN

MDN TDN

UDN IDN

SWITCH

240 processing cores
Tesla Board peaks at ½ TeraFLOP

IBM Cell Chip

Shared Memory: UMA Shared Memory: NUMA

All processors access all memory as global address space.

Multiple processors operate independently but share
same memory resources.

Changes in memory made by one processor are visible
to all other processors

Processors have their own local memory.
Memory addresses in one processor do not map to another processor
there is no concept of global address space.

Each processor operates independently.
Changes it makes to its local memory have no effect on the memory of other processors
Cache coherency does not apply.

When a processor needs access to data in another processor,
it is the task of the programmer to explicitly define how and when data is communicated.
Synchronization between tasks is likewise the programmer's responsibility.

Distributed Memory

Distributed Memory
•  Advantages:

–  Memory is scalable with number of processors. Increase the number of
processors and the size of memory increases proportionately.

–  Each processor can rapidly access its own memory without interference and
without the overhead incurred with trying to maintain cache coherency.

–  Cost effectiveness: can use commodity, off-the-shelf processors and networking.
(Clusters)

•  Disadvantages:
–  The programmer is responsible for many of the details associated with data

communication between processors.
–  It may be difficult to map existing data structures, based on global memory, to

this memory organization.
–  Non-uniform memory access (NUMA) times

Trade Off: We would like to have an infinite shared global address space BUT
it doesn’t scale so we take on more programming difficulty for the added
scaling and performance advantages.

Cell System Features
•  Heterogeneous

multi-core system
architecture
–  Power

Processor
Element for
control tasks

–  Synergistic
Processor
Elements for
data-intensive
processing

•  Synergistic
Processor
Element (SPE)
consists of
–  Synergistic

Processor Unit
(SPU)

–  Synergistic
Memory Flow
Control (MFC)

•  Data
movement
and
synchroniz
ation

•  Interface to
high-
performanc
e Element
Interconnec
t Bus

16B/cycle (2x) 16B/cycle

BIC

FlexIOTM

MIC

Dual
XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU
SPU

MFC

PXU L1

PPU

16B/cycle
L2

32B/cycle

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

LS

SXU
SPU

MFC

Parallel programming models – Streaming

•  SPE initiated DMA
•  Large array of data fed

through a group of SPE
programs

•  A special case of job queue
with regular data

•  Each SPE program locks
on the shared job queue to
obtain next job

•  For uneven jobs, workloads
are self-balanced among
available SPEs PPE

SPE1
Kernel()

SPE0
Kernel()

SPE7
Kernel()

System Memory

In

.
I7

I6

I5

I4

I3

I2

I1

I0

On

.
O7

O6

O5

O4

O3

O2

O1

O0

….. Data-parallel

Parallel programming models – Pipeline

•  Use LS to LS DMA
bandwidth, not system
memory bandwidth

•  Flexibility in connecting
pipeline functions

•  Larger collective code size
per pipeline

•  Load-balance is harder
PPE

SPE1
Kernel1()

SPE0
Kernel0()

SPE7
Kernel7()

System Memory

In

.

.
I6

I5

I4

I3

I2

I1

I0

On

.

.
O6

O5

O4

O3

O2

O1

O0

…..
DMA DMA

Task-parallel

Example: Distributed
Computing

The cache coherence problem
Suppose variable x initially contains 15213

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem
Core 1 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem
Core 2 reads x

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=15213

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=21660

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip
assuming
write-through
caches

The cache coherence problem
Core 2 attempts to read x… gets a stale copy

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=21660

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip

Solutions for cache coherence

•  This is a general problem with
multiprocessors, not limited just to multi-core

•  There exist many solution algorithms,
coherence protocols, etc.

•  A simple solution:
invalidation-based protocol with snooping

Inter-core bus

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

multi-core chip

inter-core
bus

Invalidation protocol with snooping

•  Invalidation:
If a core writes to a data item, all other
copies of this data item in other caches
are invalidated

•  Snooping:
All cores continuously “snoop” (monitor)
the bus connecting the cores.

The cache coherence problem
Revisited: Cores 1 and 2 have both read x

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=15213

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=15213

multi-core chip

The cache coherence problem
Core 1 writes to x, setting it to 21660

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=21660

One or more
levels of
cache

x=15213

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip
assuming
write-through
caches

INVALIDATED sends
invalidation
request

inter-core
bus

The cache coherence problem
Core 2 reads x. Cache misses, and loads the new copy.

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=21660

One or more
levels of
cache

x=21660

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip

Alternative to invalidate protocol:
update protocol

Core 1 writes x=21660:

Core 1 Core 2 Core 3 Core 4

One or more
levels of
cache

x=21660

One or more
levels of
cache

x=21660

One or more
levels of
cache

One or more
levels of
cache

Main memory

x=21660

multi-core chip
assuming
write-through
caches

UPDATED

broadcasts
updated
value inter-core

bus

Which do you think is better?
Invalidation or update?

Invalidation vs update

•  Multiple writes to the same location
–  invalidation: only the first time
– update: must broadcast each write

•  Writing to adjacent words in the same
cache block:
–  invalidation: only invalidate block once
– update: must update block on each write

•  Invalidation generally performs better:
it generates less bus traffic

Limits & Costs of Parallel
Programming

Amdahl's Law states that potential program speedup is defined by the fraction
of code (P) that can be parallelized:

 1

 speedup = --------

 1 - P

If none of the code can be parallelized, P = 0 and the speedup = 1 (no
speedup).

If all of the code is parallelized, P = 1 and the speedup is infinite (in theory).

If 50% of the code can be parallelized, maximum speedup = 2, meaning the
code will run twice as fast.

Limits & Costs of Parallel
Programming

Introducing the number of processors performing the parallel fraction of work, the
relationship can be modeled by:

 1

 speedup = ------------

 P /N + S

where P = parallel fraction, N = number of processors and S = serial fraction.

Limits & Costs of Parallel
Programming

•  Parallel applications are much more complex than
corresponding serial applications, perhaps an order of
magnitude

•  You have multiple instruction streams executing at the
same time, but you also have data flowing between
them.

•  The costs of complexity are measured in programmer
time in virtually every aspect of the software
development cycle:
–  Design
–  Coding
–  Debugging
–  Tuning
–  Maintenance

Parallel Programming Models

•  Shared Memory
•  Threads
•  Message Passing
•  Data Parallel
•  Hybrid

Shared Memory Model

•  tasks share a common address space, which they read and write
asynchronously.

•  Various mechanisms such as locks / semaphores may be used to
control access to the shared memory.

•  advantage from the programmer's point of view
–  No data "ownership" - no need to specify explicitly communication of

data between tasks. Program development can often be simplified.
•  Preformance disadvantage

–  more difficult to understand and manage data locality.
•  Keeping data local to the processor that works on it conserves memory

accesses, cache refreshes and bus traffic that occurs when multiple
processors use the same data.

•  Unfortunately, controlling data locality is hard to understand and beyond the
control of the average user.

Threads Model
•  a single process can have multiple,

concurrent execution paths.
•  most simple analogy is the concept of a

single program that includes a number of
subroutines:

Threads Model
•  From a programming perspective, threads implementations

commonly comprise:
–  A library of subroutines that are called from within parallel source code
–  A set of compiler directives imbedded in either serial or parallel source

code
•  programmer is responsible for determining all parallelism.
•  Threaded implementations are not new in computing. Historically,

hardware vendors have implemented their own proprietary versions
of threads. These implementations differed substantially from each
other making it difficult for programmers to develop portable
threaded applications.

•  Unrelated standardization efforts have resulted in two very different
implementations of threads: POSIX Threads and OpenMP.

Threads Model
•  POSIX Threads

–  Library based; requires parallel coding
–  Specified by the IEEE POSIX 1003.1c standard (1995).
–  C Language only
–  Commonly referred to as Pthreads.
–  Most hardware vendors now offer Pthreads in addition to their proprietary threads

implementations.
–  Very explicit parallelism; requires significant programmer attention to

detail.
•  OpenMP

–  Compiler directive based; can use serial code
–  Jointly defined and endorsed by a group of major computer hardware and

software vendors. The OpenMP Fortran API was released October 28, 1997. The
C/C++ API was released in late 1998.

–  Portable / multi-platform, including Unix and Windows NT platforms
–  Available in C/C++ and Fortran implementations
–  Can be very easy and simple to use - provides for "incremental parallelism"

•  Microsoft has its own implementation for threads, which is not related to the
UNIX POSIX standard or OpenMP.

•  POSIX Threads tutorial: computing.llnl.gov/tutorials/pthreads
•  OpenMP tutorial: computing.llnl.gov/tutorials/openMP

Note: This is a programming nightmare!

Message Passing Model
•  A set of tasks that use their own local memory during computation
•  Multiple tasks can be on the same physical machine as well across

an arbitrary number of machines.
•  Tasks exchange data through communications by sending and

receiving messages.
•  Data transfer usually requires cooperative operations to be

performed by each process. For example, a send operation must
have a matching receive operation.

Message Passing Model -
Implementations

•  message passing implementations commonly comprise a library of
subroutines that are imbedded in source code.

•  The programmer is responsible for determining all parallelism.
•  A variety of message passing libraries have been available since the 1980s.

These implementations differed substantially from each other making it
difficult for programmers to develop portable applications.

•  In 1992, the MPI Forum was formed with the primary goal of establishing a
standard interface for message passing implementations.

•  Part 1 of the Message Passing Interface (MPI) was released in 1994. Part
2 (MPI-2) was released in 1996. Both MPI specifications are available on
the web at http://www-unix.mcs.anl.gov/mpi/.

•  MPI is now the "de facto" industry standard for message passing, replacing
virtually all other message passing implementations used for production
work. Most, if not all of the popular parallel computing platforms offer at
least one implementation of MPI. A few offer a full implementation of MPI-2.

•  MPI tutorial: computing.llnl.gov/tutorials/mpi

Designing Parallel Programs
•  First understand the problem that you wish to solve in parallel

–  If you are starting with a serial program, this necessitates understanding the existing code
also.

•  Before spending time in an attempt to develop a parallel solution for a problem,
determine whether or not the problem is one that can actually be parallelized.

•  Example of Parallelizable Problem: Calculate the potential energy for each of
several thousand independent conformations of a molecule. When done, find
the minimum energy conformation.

•  This problem is able to be solved in parallel. Each of the molecular conformations is
independently determinable. The calculation of the minimum energy conformation is
also a parallelizable problem.

•  Example of a Non-parallelizable Problem: Calculation of the Fibonacci series
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1) + F(k)

•  This is a non-parallelizable problem because the calculation of the Fibonacci
sequence as shown would entail dependent calculations rather than independent
ones. The calculation of the k + 2 value uses those of both k + 1 and k. These three
terms cannot be calculated independently and therefore, not in parallel.

Designing Parallel Programs
•  Identify hotspots

–  Know where most of the real work is being done. The majority of scientific
and technical programs usually accomplish most of their work in a few
places.

–  Profilers and performance analysis tools can help
–  Focus on parallelizing the hotspots and ignore those sections of the

program that account for little CPU usage.
•  Identify bottlenecks

–  Are there areas that are disproportionately slow, or cause parallelizable
work to halt or be deferred? For example, I/O is usually something that
slows a program down.

–  May be possible to restructure the program or use a different algorithm to
reduce or eliminate unnecessary slow areas

•  Identify inhibitors to parallelism. One common class of inhibitor is
data dependence, as demonstrated by the Fibonacci sequence above.

•  Investigate other algorithms if possible. This may be the single most
important consideration when designing a parallel application.

Designing Parallel Programs -
Partitioning

•  One of the first steps in designing a parallel program is to break the problem
into discrete "chunks" of work that can be distributed to multiple tasks. This
is known as decomposition or partitioning.

•  There are two basic ways to partition computational work among parallel
tasks

–  domain decomposition
–  functional decomposition.

•  Domain Decomposition
–  In this type of partitioning, the data associated with a problem is decomposed.

Each parallel task then works on a portion of of the data.
There are different ways to partition the data:

Designing Parallel Programs -
Partitioning

•  Functional Decomposition
–  In this approach, the focus is on the computation that is to be performed rather

than on the data manipulated by the computation. The problem is decomposed
according to the work that must be done. Each task then performs a portion of
the overall work.

–  Functional decomposition is good for problems that can be split into different
tasks.

Designing Parallel Programs -
Partitioning

•  Ecosystem Modeling
Each program calculates the population of a given group. Each
group's growth depends on that of its neighbors. As time
progresses, each process calculates its current state, then
exchanges information with the neighbor populations. All tasks then
progress to calculate the state at the next time step.

Designing Parallel Programs -
Partitioning

•  Climate Modeling
Each model component can be thought of as a separate task. Arrows
represent exchanges of data between components during computation: the
atmosphere model generates wind velocity data that are used by the ocean
model, the ocean model generates sea surface temperature data that are
used by the atmosphere model, and so on.

Scope of Communications
•  Knowing which tasks must communicate with each other is critical during

the design stage of a parallel code. Both of the two scopings described
below can be implemented synchronously or asynchronously.

–  Point-to-point - involves two tasks with one task acting as the sender/producer
of data, and the other acting as the receiver/consumer.

–  Collective - involves data sharing between more than two tasks, which are often
specified as being members in a common group, or collective. Some common
variations (there are more)

Overhead & Complexity
Parallel “Hello World” using MPI Library

Homework
•  Suppose you have a parallel machine as follows:

–  A single host with near infinite memory – plenty enough to hold all the
data necessary for this problem

–  8 homogeneous processors attached by a bus to the host
–  Each homogeneous processor has a local memory of 256 KiloBytes.

This memory is not shared with any other processor
–  The homogeneous processors can communicate with each other and

with the host over the bus
•  The problem

–  Describe how you would best do a matrix multiply in parallel using the machine
for the following matrix sizes (double precision 8 Byte floating point numbers)

•  16x16
•  1024 x 1024
•  10**6 x 10**6

REF: http://www.cs.utexas.edu/users/plapack/papers/ipps98/ipps98.html,
“Analysis of a Class of Parallel Matrix Multiplication Algorithms”

