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Traditionally, software has been written for 
serial computation: 

 

    * Run on a single computer having a 
single Central Processing Unit (CPU); 

    * Problem is broken into a discrete 
series of instructions. 

    * Instructions are executed one after 
another. 

    * Only one instruction may execute at 
any moment in time.  



Parallel computing is the simultaneous use of multiple compute resources 
to solve a computational problem: 

 

    * Run using multiple CPUs 

    * Problem is broken into discrete parts that can be solved concurrently 

    * Each part is further broken down to a series of instructions 

    * Instructions from each part execute simultaneously on different CPUs  



Motivation 



Two Types of Goals 

•  Get a very large number (millions) of machines 
to work together to solve really really big 
problems – big data, lots of transactions, lots of 
computations (SETI at home) (High Capacity) 

•  Get a very large number (millions) of machines 
to work together to solve really big problems 
fast: real time needs, event threats, fusion 
experiments (High Capability) 







Why Use Parallel Computing? 
•  Save time and/or money 

–  In theory, throwing more resources at a task will shorten its time to completion, with potential 
cost savings. Parallel clusters can be built from cheap, commodity components. 

•  Solve larger problems: Many problems are so large and/or complex that it is 
impractical or impossible to solve them on a single computer, especially given limited 
computer memory.  

–  "Grand Challenge" (en.wikipedia.org/wiki/Grand_Challenge) problems requiring PetaFLOPS 
and PetaBytes of computing resources.  

–  Web search engines/databases processing millions of transactions per second  
•  Provide concurrency: A single compute resource can only do one thing at a time. 

Multiple computing resources can be doing many things simultaneously. 
–  the Access Grid (www.accessgrid.org) provides a global collaboration network where people 

from around the world can meet and conduct work "virtually".  
•  Use of non-local resources: Using compute resources on a wide area network, or 

even the Internet when local compute resources are scarce.  
–  SETI@home (setiathome.berkeley.edu) uses over 330,000 computers for a compute power 

over 528 TeraFLOPS (as of August 04, 2008)  
–  Folding@home (folding.stanford.edu) uses over 340,000 computers for a compute power of 

4.2 PetaFLOPS (as of November 4, 2008)  



Why Use Parallel Computing? 
(continued) 

•  Limits to serial computing 
–  Both physical and practical reasons pose significant constraints to simply 

building ever faster serial computers  
•  Transmission speeds - the speed of a serial computer is directly dependent upon how 

fast data can move through hardware. Absolute limits are the speed of light (30 cm/
nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing 
speeds necessitate increasing proximity of processing elements.  

•  Limits to miniaturization - processor technology is allowing an increasing number of 
transistors to be placed on a chip. However, even with molecular or atomic-level 
components, a limit will be reached on how small components can be.  

–  we are now at 90 nm and some 45 nm 
–  quantum effects such a leakage are making it very expensive to go from 90nm to 45nm 

•  Economic limitations - it is increasingly expensive to make a single processor faster. 
Using a larger number of moderately fast commodity processors to achieve the same 
(or better) performance is less expensive.  

•  Current computer architectures are increasingly relying upon 
hardware level parallelism to improve performance  

–  Multiple execution units  
–  Pipelined instructions  
–  Multi-core  





Uses for Parallel Computing 

•  Historically "the high end of computing", and has been 
used to model difficult scientific and engineering 
problems 
–  Atmosphere, Earth, Environment 
–  Physics - applied, nuclear, particle, condensed matter, high 

pressure, fusion, photonics 
–  Bioscience, Biotechnology, Genetics 
–  Chemistry, Molecular Sciences 
–  Geology, Seismology 
–  Mechanical Engineering - from prosthetics to spacecraft 
–  Electrical Engineering, Circuit Design, Microelectronics 
–  Computer Science, Mathematics  



Commercial Applications Today 
 
•  These applications require the processing of large 

amounts of data in sophisticated ways.  
–  Databases, data mining  
–  Oil exploration  
–  Web search engines, web based business services  
–  Medical imaging and diagnosis  
–  Pharmaceutical design  
–  Management of national and multi-national corporations  
–  Financial and economic modeling  
–  Advanced graphics and virtual reality, particularly in the 

entertainment industry  
–  Networked video and multi-media technologies  
–  Collaborative work environments  





State of the Art in Bigness 
1.  Greater than 1 PetaFLOP (> 1.5PF) 
2.  More than hundred thousand processors 

(cores) 
3.  “THE PROBLEM” runs many days 
4.  Machine Mean Time Between Failures (MTBF) 

about 56 hours 

Items 3 & 4 => Need a very good checkpoint 
restart capability => good I/O as the footprint 
reaches petaBytes 



Some Basics 



von Neumann Architecture 
1945 

Comprised of four main components:  
 Memory  
 Control Unit  
 Arithmetic Logic Unit  
 Input/Output  

Read/write, random access memory is used to store both program instructions and data  
Program instructions are coded data which tell the computer to do something  
Data is simply information to be used by the program  

Control unit fetches instructions/data from memory, decodes the instructions 
and then sequentially coordinates operations to accomplish the programmed task.  
Arithmetic Unit performs basic arithmetic operations  
Input/Output is the interface to the human operator  



Flynn's Classical Taxonomy 
1966 

 Flynn's taxonomy distinguishes multi-processor computer architectures according to 
two independent dimensions of Instruction and Data.  
Each of these dimensions can have only one of two possible states: 
Single or Multiple.  

S I S D  
Single Instruction, Single Data 

S I M D  
Single Instruction, Multiple Data 

M I S D  
Multiple Instruction, Single Data 

M I M D  
Multiple Instruction, Multiple Data 



Single Instruction, Single Data (SISD) 
• A serial (non-parallel) computer  
• Single instruction: only one instruction stream is being 
acted on by the CPU during any one clock cycle  
• Single data: only one data stream is being used as 
input during any one clock cycle  
• Deterministic execution  
• This is the oldest and even today, the most common 
type of computer  
• Examples: older generation mainframes, 
minicomputers and workstations; most modern day 
PCs.  

                               



Single Instruction, Multiple Data (SIMD)  
• A type of parallel computer  
• Single instruction: All processing units execute the same instruction at any given 
clock cycle  
• Multiple data: Each processing unit can operate on a different data element  
• Best suited for specialized problems characterized by a high degree of 
regularity, such as graphics/image processing.  
• Synchronous (lockstep) and deterministic execution  
• Two varieties: Processor Arrays and Vector Pipelines  
• Examples: 
• Processor Arrays: Connection Machine CM-2, MasPar MP-1 & MP-2, ILLIAC IV  
• Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC SX-2, 
Hitachi S820, ETA10  
• Most modern computers, particularly those with graphics processor units 
(GPUs) employ SIMD instructions and execution units.  

 



Multiple Instruction, Single Data (MISD):  
A single data stream is fed into multiple processing units.  
Each processing unit operates on the data independently via 
independent instruction streams.  
Few actual examples of this class of parallel computer have 
ever existed. One is the experimental Carnegie-Mellon C.mmp 
computer (1971).  
Some conceivable uses might be:  

multiple frequency filters operating on a single signal 
stream  
multiple cryptography algorithms attempting to crack a 
single coded message.  

 



Multiple Instruction, Multiple Data (MIMD) 
Currently, the most common type of parallel computer. Most modern 
computers fall into this category.  
Multiple Instruction: every processor may be executing a different instruction 
stream  
Multiple Data: every processor may be working with a different data stream  
Execution can be synchronous or asynchronous, deterministic or non-
deterministic  
Examples: most current supercomputers, networked parallel computer 
clusters and "grids", multi-processor SMP computers, multi-core PCs.  
Note: many MIMD architectures also include SIMD execution sub-
components  
 



Class Example 

•  What kind of machine was the class room 
example? 

 A. SISD 
 B. SIMD 
 C. MISD 
 D. MIMD 



Some Terminology 
•  Task  

–  A logically discrete section of computational work. A task is typically a program or program-
like set of instructions that is executed by a processor.  

•  Parallel Task  
–  A task that can be executed by multiple processors safely (yields correct results)  

•  Serial Execution  
–  Execution of a program sequentially, one statement at a time. In the simplest sense, this is 

what happens on a one processor machine. However, virtually all parallel tasks will have 
sections of a parallel program that must be executed serially.  

•  Parallel Execution  
–  Execution of a program by more than one task, with each task being able to execute the 

same or different statement at the same moment in time.  

•  Pipelining  
–  Breaking a task into steps performed by different processor units, with inputs streaming 

through, much like an assembly line; a type of parallel computing.  



Some Terminology 
•  Shared Memory  

–  From a strictly hardware point of view, describes a computer architecture where all processors have direct 
(usually bus based) access to common physical memory. In a programming sense, it describes a model 
where parallel tasks all have the same "picture" of memory and can directly address and access the same 
logical memory locations regardless of where the physical memory actually exists.  

•  Symmetric Multi-Processor (SMP)  
–  Hardware architecture where multiple processors share a single address space and access to all resources; 

shared memory computing.  

•  Distributed Memory  
–  In hardware, refers to network based memory access for physical memory that is not common. As a 

programming model, tasks can only logically "see" local machine memory and must use communications to 
access memory on other machines where other tasks are executing.  

•  Communications  
–  Parallel tasks typically need to exchange data. There are several ways this can be accomplished, such as 

through a shared memory bus or over a network, however the actual event of data exchange is commonly 
referred to as communications regardless of the method employed.  

•  Synchronization  
–  The coordination of parallel tasks in real time, very often associated with communications. Often 

implemented by establishing a synchronization point within an application where a task may not proceed 
further until another task(s) reaches the same or logically equivalent point. Synchronization usually involves 
waiting by at least one task, and can therefore cause a parallel application's wall clock execution time to 
increase.  



Some Terminology 
•  Granularity  

–  In parallel computing, granularity is a qualitative measure of the ratio of computation to 
communication.  

•  Coarse: relatively large amounts of computational work are done between communication events  
•  Fine: relatively small amounts of computational work are done between communication events  

•  Observed Speedup  
–  Observed speedup of a code which has been parallelized, defined as:  
–  wall-clock time of serial execution/ wall-clock time of parallel execution  
–  One of the simplest and most widely used indicators for a parallel program's performance.  

•  Parallel Overhead  
–  The amount of time required to coordinate parallel tasks, as opposed to doing useful work. 

Parallel overhead can include factors such as:  
•  Task start-up time  
•  Synchronizations  
•  Data communications  
•  Software overhead imposed by parallel compilers, libraries, tools, operating system, etc.  
•  Task termination time  



Some Terminology 
•  Massively Parallel  

–  Refers to the hardware that comprises a given parallel system - having many processors. The meaning of "many" keeps 
increasing, but currently, the largest parallel computers can be comprised of processors numbering in the hundreds of thousands.  

•  Embarrassingly Parallel  
–  Solving many similar, but independent tasks simultaneously; little to no need for coordination between the tasks.  

•  Scalability  
–  Refers to a parallel system's (hardware and/or software) ability to demonstrate a proportionate increase in parallel speedup with 

the addition of more processors. Factors that contribute to scalability include:  
•  Hardware - particularly memory-cpu bandwidths and network communications  
•  Application algorithm  
•  Parallel overhead related  
•  Characteristics of your specific application and coding  

•  Multi-core Processors  
–  Multiple processors (cores) on a single chip.  

•  Cluster Computing  
–  Use of a combination of commodity units (processors, networks or SMPs) to build a parallel system.  

•  Supercomputing / High Performance Computing  
–  Use of the world's fastest, largest machines to solve large problems.  









Parallel Computer Memory 
Architectures  

Shared Memory 
Shared memory parallel computers vary widely, but generally have in 
common the ability for all processors to access all memory as global 
address space.  
Multiple processors can operate independently but share the same 
memory resources.  
Changes in a memory location effected by one processor are visible 
to all other processors.  
Shared memory machines can be divided into two main classes 
based upon memory access times: UMA and NUMA.  



Uniform Memory Access (UMA): 

 

    * Most commonly represented today by Symmetric Multiprocessor (SMP) 
machines 

    * Identical processors 

    * Equal access and access times to memory 

    * Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent 
means if one processor updates a location in shared memory, all the other 
processors know about the update. Cache coherency is accomplished at the 
hardware level.  



Non-Uniform Memory Access (NUMA): 

 

    * Often made by physically linking two or more SMPs 

    * One SMP can directly access memory of another SMP 

    * Not all processors have equal access time to all memories 

    * Memory access across link is slower 

    * If cache coherency is maintained, then may also be called CC-NUMA - Cache 
Coherent NUMA  



NUMA vs UMA 

 

Advantages: 

    * Global address space provides a user-friendly programming perspective to memory 

    * Data sharing between tasks is both fast and uniform due to the proximity of memory to CPUs  

 

Disadvantages: 

    * Primary disadvantage is the lack of scalability between memory and CPUs. Adding more CPUs can 
geometrically increases traffic on the shared memory-CPU path, and for cache coherent systems, 
geometrically increase traffic associated with cache/memory management. 

    * Programmer responsibility for synchronization constructs that insure "correct" access of global memory. 

    * Expense: it becomes increasingly difficult and expensive to design and produce shared memory 
machines with ever increasing numbers of processors.  



Parallel Programming Models  

•  There are several parallel programming 
models in common use:  
– Shared Memory  
– Threads  
– Message Passing  
– Data Parallel  
– Hybrid  

(We will discuss these Thursday) 



Where Are We and How Did 
We Get here? 







2009  
Roadrunner 
1.456 PetaFlops 



Update: Nov 2008 Top 500 http://www.top500.org/ 
 #1 = Roadrunner Los Alamos IBM bladecenter 1.456 petaFLOPS 129,600 cores 
 #2 = Jaguar Oak Ridge Cray XT5 1.38 petaFLOPS 150152 cores  
 #3 = Pleiades NASA Ames SGI Altix 0.6 petaFLOPS 51,200 cores 
 #4 = BlueGene/L 



Roadrunner 





Roadrunner Details 
•  Roadrunner, named after the New Mexico state bird, cost about $100 

million, the world’s first “hybrid” supercomputer – one powerful enough to 
operate at one petaflop twice as fast as the then No.1 rated IBM Blue Gene 
system at Lawrence Livermore National Lab  

•  Roadrunner will primarily be used on nuclear weapons stockpile 
applications. It will also be used for research into astronomy, energy, human 
genome science and climate change.  

•  Roadrunner is the world’s first hybrid supercomputer. Cell Broadband 
Engine® -- originally designed for video game platforms such as the Sony 
Playstation 3® -- will work in conjunction with x86 processors from AMD®.  

•  Roadrunner connects 6,562 dual-core AMD Opteron® chips as well as 
12,240 Cell chips (on IBM Model QS22 blade servers). 

–  98 terabytes of memory, and is housed in 278 refrigerator-sized, IBM 
BladeCenter® racks occupying 5,200 square feet. Its 10,000 connections – both 
Infiniband and Gigabit Ethernet -- require 55 miles of fiber optic cable. 
Roadrunner weighs 500,000 lbs. 

–  delivers world-leading efficiency – 437 million calculations per watt.  



IBM bladecenter QS22 





Panel 6 Years Ago “Is Moore’s Law Dead?” 





Intel Microprocessor Performance 





Memory Speed Has Not Kept Up 

Memory Wall 









Multi-Core 



Single-core computer 
CPU Chip 



Single-core CPU chip 
the single core 



Multi-core architectures 

 
Replicate multiple processor cores on a 
single die. 

Core 1 Core 2 Core 3 Core 4 

Multi-core CPU chip 



The cores run in parallel 
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Within each core, threads are time-sliced 
(just like on a uniprocessor) 
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Interaction with OS 

•  OS perceives each core as a separate 
processor 

•  OS scheduler maps threads/processes  
to different cores 

•  Most major OS support multi-core today 



Instruction-level parallelism 

•  Parallelism at the machine-instruction level 
•  The processor can re-order, pipeline 

instructions, split them into 
microinstructions, do aggressive branch 
prediction, etc. 

•  Instruction-level parallelism enabled rapid 
increases in processor speeds over the 
last 15 years 



Thread-level parallelism (TLP) 
•  This is parallelism on a more coarser scale 
•  Server can serve each client in a separate 

thread (Web server, database server) 
•  A computer game can do AI, graphics, and 

physics in three separate threads 
•  Single-core superscalar processors cannot 

fully exploit TLP 
•  Multi-core architectures are the next step in 

processor evolution: explicitly exploiting TLP 



Simultaneous multithreading (SMT) 

•  Permits multiple independent threads to execute 
SIMULTANEOUSLY on the SAME core 

•  Weaving together multiple “threads”  
on the same core 

•  Example: if one thread is waiting for a floating 
point operation to complete, another thread can 
use the integer units 
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Thread 1: floating point 

Without SMT, only a single thread 
can run at any given time 



Without SMT, only a single thread 
can run at any given time 
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Thread 2: 
integer operation 



SMT processor: both threads can 
run concurrently 
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Thread 1: floating point Thread 2: 
integer operation 



But: Can’t simultaneously use  the 
same functional unit 
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Thread 1 Thread 2 

This scenario is 
impossible with SMT 
on a single core 
(assuming a single 
integer unit) IMPOSSIBLE 



SMT not a “true” parallel processor 

•  Enables better threading (e.g. up to 30%) 
•  OS and applications perceive each 

simultaneous thread as a separate  
“virtual processor” 

•  The chip has only a single copy  
of each resource 

•  Compare to multi-core: 
each core has its own copy of resources 



Multi-core:  
threads can run on separate cores 
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Thread 1 Thread 3 



Combining Multi-core and SMT 

•  Cores can be SMT-enabled (or not) 
•  The different combinations: 

– Single-core, non-SMT: standard uniprocessor 
– Single-core, with SMT  
– Multi-core, non-SMT 
– Multi-core, with SMT 
– The number of SMT threads: 

2, 4, or sometimes 8 simultaneous threads 
•  Intel calls them “hyper-threads”  



SMT Dual-core: all four threads can 
run concurrently 
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Comparison: multi-core vs SMT 

•  Multi-core: 
– Since there are several cores, 

each is smaller and not as powerful 
(but also easier to design and manufacture) 

– However, great with thread-level parallelism 
•  SMT 

– Can have one large and fast superscalar core 
– Great performance on a single thread 
– Mostly still only exploits instruction-level 

parallelism 
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240 processing cores 
Tesla Board peaks at ½ TeraFLOP 



IBM Cell Chip 



Shared Memory: UMA Shared Memory: NUMA 

All processors access all memory as global address space. 
 
Multiple processors operate independently but share 
same memory resources. 
 
Changes in memory made by one processor are visible 
to all other processors  



Processors have their own local memory. 
Memory addresses in one processor do not map to another processor 
there is no concept of global address space. 
 
Each processor operates independently. 
Changes it makes to its local memory have no effect on the memory of other processors 
Cache coherency does not apply. 
 
When a processor needs access to data in another processor, 
it is the task of the programmer to explicitly define how and when data is communicated. 
Synchronization between tasks is likewise the programmer's responsibility.  

Distributed Memory 



Distributed Memory 
•  Advantages:  

–  Memory is scalable with number of processors. Increase the number of 
processors and the size of memory increases proportionately.  

–  Each processor can rapidly access its own memory without interference and 
without the overhead incurred with trying to maintain cache coherency.  

–  Cost effectiveness: can use commodity, off-the-shelf processors and networking. 
(Clusters) 

•    Disadvantages:  
–  The programmer is responsible for many of the details associated with data 

communication between processors.  
–  It may be difficult to map existing data structures, based on global memory, to 

this memory organization.  
–  Non-uniform memory access (NUMA) times  

Trade Off: We would like to have an infinite shared global address space BUT 
it doesn’t scale so we take on more programming difficulty for the added 
scaling and performance advantages. 



Cell System Features 
•  Heterogeneous 

multi-core system 
architecture 
–  Power 

Processor 
Element for 
control tasks 

–  Synergistic 
Processor 
Elements for 
data-intensive 
processing 

•  Synergistic 
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Element (SPE) 
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Parallel programming models – Streaming 

•  SPE initiated DMA 
•  Large array of data fed 

through a group of SPE 
programs 

•  A special case of job queue 
with regular data 

•  Each SPE program locks 
on the shared job queue to 
obtain next job 

•  For uneven jobs, workloads 
are self-balanced among 
available SPEs PPE 
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Parallel programming models – Pipeline 

•  Use LS to LS DMA 
bandwidth, not system 
memory bandwidth 

•  Flexibility in connecting 
pipeline functions 

•  Larger collective code size 
per pipeline 

•  Load-balance is harder 
PPE 

SPE1 
Kernel1() 

SPE0 
Kernel0() 

SPE7 
Kernel7() 

System Memory 

In 

. 

. 
I6 

I5 

I4 

I3 

I2 

I1 

I0 

On 

. 

. 
O6 

O5 

O4 

O3 

O2 

O1 

O0 

….. 
DMA DMA 

Task-parallel 



Example: Distributed 
Computing 



The cache coherence problem 
Suppose variable x initially contains 15213 
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The cache coherence problem 
Core 1 reads x 
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The cache coherence problem 
Core 2 reads x 
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The cache coherence problem 
Core 1 writes to x, setting it to 21660 
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The cache coherence problem 
Core 2 attempts to read x… gets a stale copy 

Core 1 Core 2 Core 3 Core 4 

One or more  
levels of  
cache 

x=21660 

One or more  
levels of  
cache 

x=15213 

One or more  
levels of  
cache 

 

One or more  
levels of  
cache 

 

 
Main memory 

x=21660 

multi-core chip 



Solutions for cache coherence 

•  This is a general problem with 
multiprocessors, not limited just to multi-core 

•  There exist many solution algorithms, 
coherence protocols, etc. 

•  A simple solution: 
invalidation-based protocol with snooping 
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Invalidation protocol with snooping 

•  Invalidation: 
If a core writes to a data item, all other 
copies of this data item in other caches 
are invalidated 

•  Snooping:  
All cores continuously “snoop” (monitor) 
the bus connecting the cores. 



The cache coherence problem 
Revisited: Cores 1 and 2 have both read x 
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The cache coherence problem 
Core 1 writes to x, setting it to 21660 
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The cache coherence problem 
Core 2 reads x. Cache misses, and loads the new copy. 
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Alternative to invalidate protocol: 
update protocol 

Core 1 writes x=21660: 
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Which do you think is better? 
Invalidation or update? 



Invalidation vs update 

•  Multiple writes to the same location 
–  invalidation: only the first time 
– update: must broadcast each write 

•  Writing to adjacent words in the same 
cache block: 
–  invalidation: only invalidate block once 
– update: must update block on each write 

•  Invalidation generally performs better: 
it generates less bus traffic 



Limits & Costs of Parallel 
Programming 

# Amdahl's Law states that potential program speedup is defined by the fraction 
of code (P) that can be parallelized: 

                              1 

    speedup   =   --------  

                          1  - P 

# If none of the code can be parallelized, P = 0 and the speedup = 1 (no 
speedup). 

# If all of the code is parallelized, P = 1 and the speedup is infinite (in theory). 

# If 50% of the code can be parallelized, maximum speedup = 2, meaning the 
code will run twice as fast.  



Limits & Costs of Parallel 
Programming 

# Introducing the number of processors performing the parallel fraction of work, the 
relationship can be modeled by: 

                                 1   

    speedup   =   ------------  

                          P /N  +  S 

where P = parallel fraction, N = number of processors and S = serial fraction. 



Limits & Costs of Parallel 
Programming 

•  Parallel applications are much more complex than 
corresponding serial applications, perhaps an order of 
magnitude 

•  You have multiple instruction streams executing at the 
same time, but you also have data flowing between 
them.  

•  The costs of complexity are measured in programmer 
time in virtually every aspect of the software 
development cycle:  
–  Design  
–  Coding  
–  Debugging  
–  Tuning  
–  Maintenance  



Parallel Programming Models 

•  Shared Memory 
•  Threads 
•  Message Passing 
•  Data Parallel 
•  Hybrid  



Shared Memory Model 

•  tasks share a common address space, which they read and write 
asynchronously.  

•  Various mechanisms such as locks / semaphores may be used to 
control access to the shared memory.  

•  advantage from the programmer's point of view 
–  No data "ownership"  - no need to specify explicitly communication of 

data between tasks. Program development can often be simplified.  
•  Preformance disadvantage 

–  more difficult to understand and manage data locality.  
•  Keeping data local to the processor that works on it conserves memory 

accesses, cache refreshes and bus traffic that occurs when multiple 
processors use the same data.  

•  Unfortunately, controlling data locality is hard to understand and beyond the 
control of the average user.  



Threads Model 
•  a single process can have multiple, 

concurrent execution paths.  
•  most simple analogy is the concept of a 

single program that includes a number of 
subroutines:  



Threads Model 
•  From a programming perspective, threads implementations 

commonly comprise:  
–  A library of subroutines that are called from within parallel source code  
–  A set of compiler directives imbedded in either serial or parallel source 

code  
•  programmer is responsible for determining all parallelism.  
•  Threaded implementations are not new in computing. Historically, 

hardware vendors have implemented their own proprietary versions 
of threads. These implementations differed substantially from each 
other making it difficult for programmers to develop portable 
threaded applications.  

•  Unrelated standardization efforts have resulted in two very different 
implementations of threads: POSIX Threads and OpenMP.  



Threads Model 
•  POSIX Threads  

–  Library based; requires parallel coding  
–  Specified by the IEEE POSIX 1003.1c standard (1995).  
–  C Language only  
–  Commonly referred to as Pthreads.  
–  Most hardware vendors now offer Pthreads in addition to their proprietary threads 

implementations.  
–  Very explicit parallelism; requires significant programmer attention to 

detail.  
•  OpenMP  

–  Compiler directive based; can use serial code  
–  Jointly defined and endorsed by a group of major computer hardware and 

software vendors. The OpenMP Fortran API was released October 28, 1997. The 
C/C++ API was released in late 1998.  

–  Portable / multi-platform, including Unix and Windows NT platforms  
–  Available in C/C++ and Fortran implementations  
–  Can be very easy and simple to use - provides for "incremental parallelism"  

•  Microsoft has its own implementation for threads, which is not related to the 
UNIX POSIX standard or OpenMP.  

•  POSIX Threads tutorial: computing.llnl.gov/tutorials/pthreads  
•  OpenMP tutorial: computing.llnl.gov/tutorials/openMP  
 
Note: This is a programming nightmare! 



Message Passing Model 
•  A set of tasks that use their own local memory during computation 
•  Multiple tasks can be on the same physical machine as well across 

an arbitrary number of machines.  
•  Tasks exchange data through communications by sending and 

receiving messages.  
•  Data transfer usually requires cooperative operations to be 

performed by each process. For example, a send operation must 
have a matching receive operation.  



Message Passing Model - 
Implementations 

•  message passing implementations commonly comprise a library of 
subroutines that are imbedded in source code. 

•  The programmer is responsible for determining all parallelism.  
•  A variety of message passing libraries have been available since the 1980s. 

These implementations differed substantially from each other making it 
difficult for programmers to develop portable applications.  

•  In 1992, the MPI Forum was formed with the primary goal of establishing a 
standard interface for message passing implementations.  

•  Part 1 of the Message Passing Interface (MPI) was released in 1994. Part 
2 (MPI-2) was released in 1996. Both MPI specifications are available on 
the web at http://www-unix.mcs.anl.gov/mpi/.  

•  MPI is now the "de facto" industry standard for message passing, replacing 
virtually all other message passing implementations used for production 
work. Most, if not all of the popular parallel computing platforms offer at 
least one implementation of MPI. A few offer a full implementation of MPI-2.  

•  MPI tutorial: computing.llnl.gov/tutorials/mpi  



Designing Parallel Programs 
•  First understand the problem that you wish to solve in parallel 

–  If you are starting with a serial program, this necessitates understanding the existing code 
also.  

•  Before spending time in an attempt to develop a parallel solution for a problem, 
determine whether or not the problem is one that can actually be parallelized.  

•  Example of Parallelizable Problem: Calculate the potential energy for each of 
several thousand independent conformations of a molecule. When done, find 
the minimum energy conformation.  

•  This problem is able to be solved in parallel. Each of the molecular conformations is 
independently determinable. The calculation of the minimum energy conformation is 
also a parallelizable problem.  

•  Example of a Non-parallelizable Problem: Calculation of the Fibonacci series 
(1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1) + F(k)  

•  This is a non-parallelizable problem because the calculation of the Fibonacci 
sequence as shown would entail dependent calculations rather than independent 
ones. The calculation of the k + 2 value uses those of both k + 1 and k. These three 
terms cannot be calculated independently and therefore, not in parallel.  



Designing Parallel Programs 
•  Identify hotspots 

–  Know where most of the real work is being done. The majority of scientific 
and technical programs usually accomplish most of their work in a few 
places.  

–  Profilers and performance analysis tools can help 
–  Focus on parallelizing the hotspots and ignore those sections of the 

program that account for little CPU usage.  
•  Identify bottlenecks  

–  Are there areas that are disproportionately slow, or cause parallelizable 
work to halt or be deferred? For example, I/O is usually something that 
slows a program down.  

–  May be possible to restructure the program or use a different algorithm to 
reduce or eliminate unnecessary slow areas  

•  Identify inhibitors to parallelism. One common class of inhibitor is 
data dependence, as demonstrated by the Fibonacci sequence above.  

•  Investigate other algorithms if possible. This may be the single most 
important consideration when designing a parallel application.  



Designing Parallel Programs - 
Partitioning 

•  One of the first steps in designing a parallel program is to break the problem 
into discrete "chunks" of work that can be distributed to multiple tasks. This 
is known as decomposition or partitioning.  

•  There are two basic ways to partition computational work among parallel 
tasks 

–  domain decomposition 
–  functional decomposition.  

•    Domain Decomposition  
–  In this type of partitioning, the data associated with a problem is decomposed. 

Each parallel task then works on a portion of of the data.  
There are different ways to partition the data: 



Designing Parallel Programs - 
Partitioning 

•  Functional Decomposition  
–  In this approach, the focus is on the computation that is to be performed rather 

than on the data manipulated by the computation. The problem is decomposed 
according to the work that must be done. Each task then performs a portion of 
the overall work. 

–  Functional decomposition is good for problems that can be split into different 
tasks.   



Designing Parallel Programs - 
Partitioning 

•  Ecosystem Modeling  
Each program calculates the population of a given group. Each 
group's growth depends on that of its neighbors. As time 
progresses, each process calculates its current state, then 
exchanges information with the neighbor populations. All tasks then 
progress to calculate the state at the next time step.  



Designing Parallel Programs - 
Partitioning 

•  Climate Modeling  
Each model component can be thought of as a separate task. Arrows 
represent exchanges of data between components during computation: the 
atmosphere model generates wind velocity data that are used by the ocean 
model, the ocean model generates sea surface temperature data that are 
used by the atmosphere model, and so on.  



Scope of Communications 
•  Knowing which tasks must communicate with each other is critical during 

the design stage of a parallel code. Both of the two scopings described 
below can be implemented synchronously or asynchronously.  

–  Point-to-point - involves two tasks with one task acting as the sender/producer 
of data, and the other acting as the receiver/consumer.  

–  Collective - involves data sharing between more than two tasks, which are often 
specified as being members in a common group, or collective. Some common 
variations (there are more) 



Overhead & Complexity 
Parallel “Hello World” using MPI Library 



Homework 
•  Suppose you have a parallel machine as follows: 

–  A single host with near infinite memory – plenty enough to hold all the 
data necessary for this problem 

–  8 homogeneous processors attached by a bus to the host 
–  Each homogeneous processor has a local memory of 256 KiloBytes. 

This memory is not shared with any other processor 
–  The homogeneous processors can communicate with each other and 

with the host over the bus 
•  The problem 

–  Describe how you would best do a matrix multiply in parallel using the machine 
for the following matrix sizes (double precision 8 Byte floating point numbers) 

•  16x16 
•  1024 x 1024 
•  10**6 x 10**6 

REF: http://www.cs.utexas.edu/users/plapack/papers/ipps98/ipps98.html, 
“Analysis of a Class of Parallel Matrix Multiplication Algorithms”  


