Some Examples of Virtual Observatory Enabled Science

S. George Djorgovski

Lecture 2 - Part 2

Inaugural BRAVO Lecture Series, São José dos Campos, July 2007

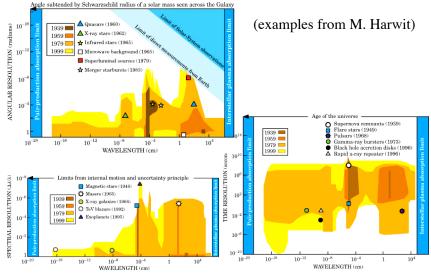
A Generic Example: Exploration of Observable Parameter Space

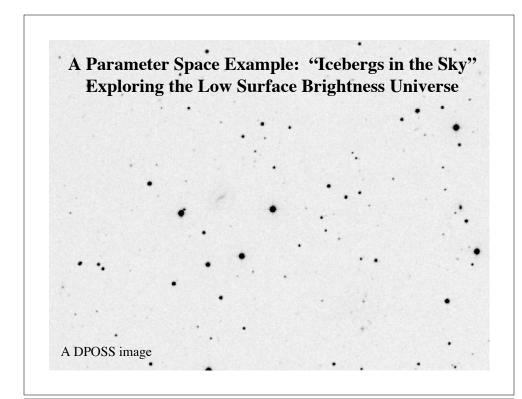
- A purely general approach to a systematic exploration of the universe
- Every astrophysical observation (or even a survey) carves out a specific slice in the parameter space, and is thereby limited
- Usually, new discoveries are made when some new portion of the observable parameter space opens up (e.g., a new wavelength range but it could be improved resolution, etc.)
- Once sources are identified and catalogued in some survey or a federation thereof, they form data vectors in a highly multidimensional parameter space:
 - Sources of different types (e.g., stars, galaxies, quasars...) form clusters and correlations in this parameter space
 - Outliers may represent rare, unusual, or even new types of objects

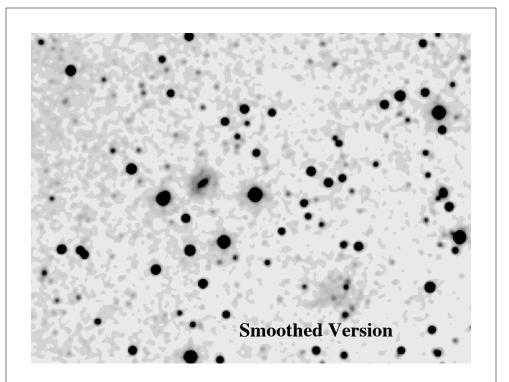
The Observable Parameter Space

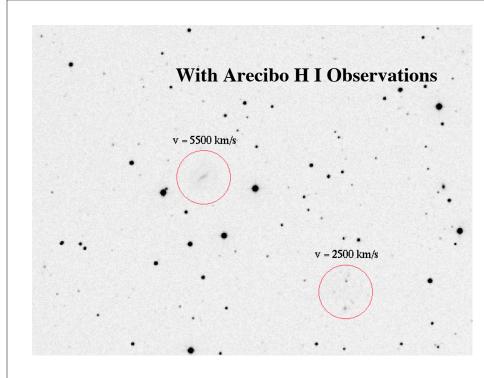
Non-Electromagnetic
Observations (CR, GW, v, ...)

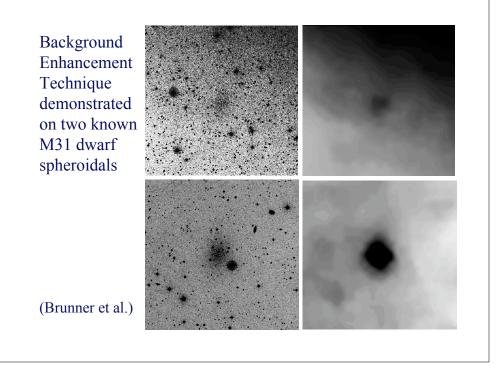
Spectroscopic Resolution,
Polarimetry

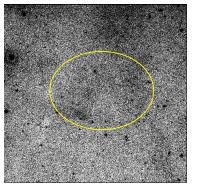

Area
Coverage


Angular
Resolution


Precision and
Dynamical Range


The Time Domain:
Depth, sampling, baselines, ...


Covering the Observable Parameter Space Aggle subtended by Schwarzschild radius of a solar mass seen across the Galaxy



Exploring the Low Surface Brightness (Low Contrast) Universe

Comparison between HI, Ha, and 100µ Diffuse Emission IRAS 100 Micron Image

DPOSS red image

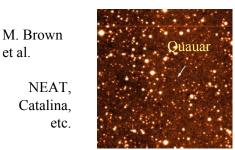
Time Domain Astrophysics

- Moving objects: Solar system, Galactic structure, exoplanets
- Intrinsic • Variability < Modulation along the LOS: microlensing, ISS, eclipses, variable extinction ...

Physical causes of intrinsic variability:

- Evolution (structural changes etc.), generally long time scales
- Internal processes, e.g., turbulence inside stars
- Accretion / collapse, protostars to CVs to GRBs to QSOs
- Thermonuclear explosions
- Magnetic field reconnections, e.g., stellar flares
- Line of sight changes (rotation, jet wiggles...)

Variability is known on time scales from ms to 10¹⁰ yr Synoptic, panoramic surveys → event discovery Rapid follow-up and multi- $\lambda \rightarrow$ keys to understanding

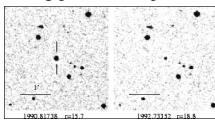

Things That Move in Our Solar System

Dwarf planets and KBOs

Killer Asteroids

Donald Rumsfeld's Epistemology

There are known knowns, There are known unknowns, and There are unknown unknowns



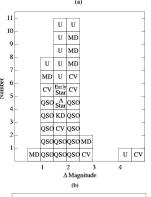
Intrinsically Variable Phenomena

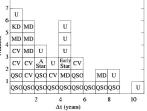
- Things we know about:
 - **Stars:** oscillations, noise, activity cycles, atmospheric phenomena (flares, etc.), eclipses, explosions (SNe, GRBs), accretion (CVs, novae), spinning beams (pulsars, SS 433, ...)
 - AGN: accretion power spectrum, beaming phenomena
- Things we see, but don't really understand:
 - Faint fast transients
 - Archival optical transients (OT)
 - Megaflares on normal stars
- Things we expect to see, and maybe we do:
 - Breakout shocks of Type II SNe
 - SMBH loss cone accretion events
 - BH mergers (LIGO, LISA?), QSO formation...?
- Things as yet unknown and/or unexpected:
 - Manifestations of ETCs? (SETF?)

DPOSS Pilot Search for Highly Variable Objects

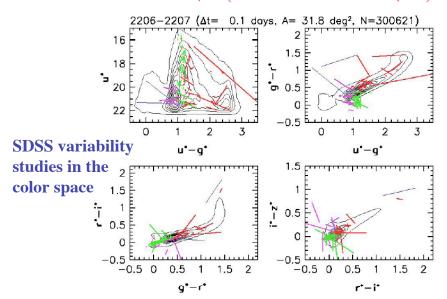
(using plate overlaps)

Spectroscopic IDs:

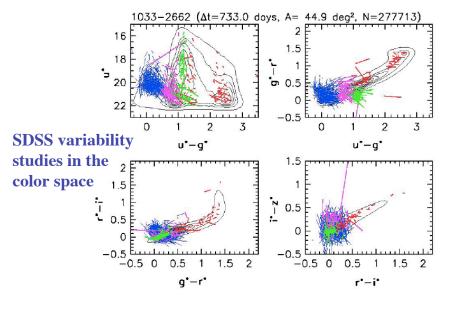

35% QSOs (1/2 radio loud)


18% CVs

18% M dwarfs

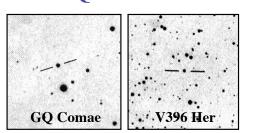

6% Earlier type stars

23% Unidentified (likely BL Lacs?)



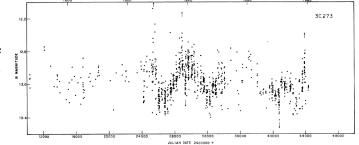
Scans 3 hours apart (note the absence of low-z QSOs):


$\Delta t \sim$ 2 years. QSOs dominate the variable sample!

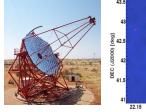

Quasar Variability

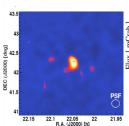
Typically quantified using the structure function,

$$S(au) = \left\{ rac{1}{N(au)} \sum_{i < j} [m(i) - m(j)]^2
ight\}^{1/2} \quad ext{where} \quad au = t_j - t_i$$
 Structure function for QSO variability (SDSS and POSS measurements)

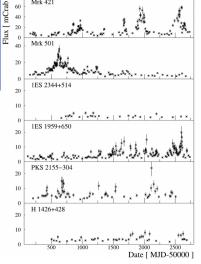


How Quasars Were Not Discovered



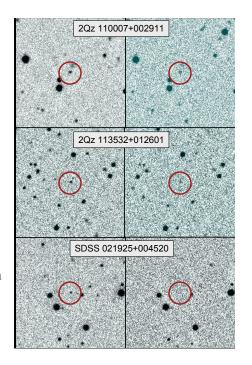

Noted as variable sources even in the 19th century, but ... misclassified as variable stars

Beamed AGN: Blazars (Cosmic Accelerators)



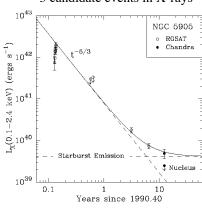
1ES 2344+514

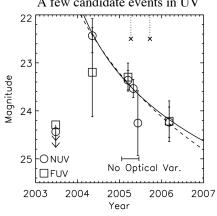
Presumed sources of TeV γ-rays and possibly some UHECRs



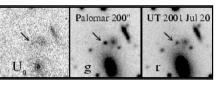
Important for the GLAST mission, and ground-based TeV and UHECR experiments (e.g. Auger)

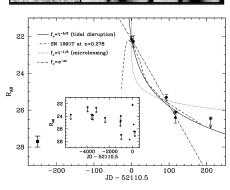
PQ Variability of **AGN** and **Blazars**


- Characterize the high-ampl. variability of known QSOs and especially Blazars
- Use to devise a pure optical variability (and color?) selection of Blazars
- Are we missing a population not found by the traditional radio or X-ray selection?
- A good multi-λ synergy with GLAST, TeV γ-ray, and UHECR surveys and experiments

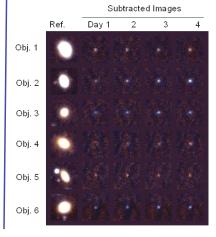

Accretion Flares From Otherwise Quiescent SMBHs Tidal disruption of passing-by stars, and fallback.

Tidal disruption of passing-by stars, and fallback. Expected rate $\sim 10^{-4}$ /galaxy/yr, $L_{peak} \sim 10^{44}$ erg/s


Komossa et al. (Rosat) 5 candidate events in X-rays



Gezari et al. (GALEX)
A few candidate events in UV

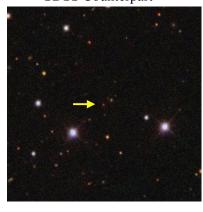

PALS-1: A possible gravitationally magnified U-band dropout ($z \sim 3.3$?) behind Abell 267 (Stern et al.)

Variable sources in the centers of apparently normal galaxies at $z \sim$ few tenths

(Totani et al., SUBARU)

Flaring M Dwarfs (a vermin of the synoptic sky surveys?)

Lynx OT (Catalina Sky Survey)

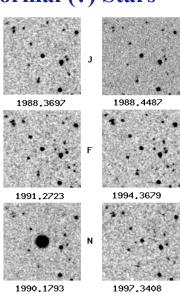


SDSS Counterpart

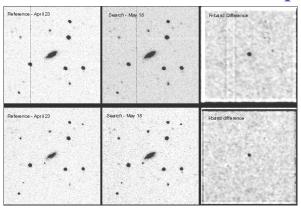
(just like the

Solar flares.

but much, much bigger)



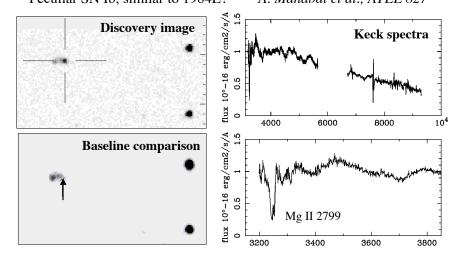
Megaflares From Normal (?) Stars


An example from DPOSS: A normal, main-sequence star which underwent an outburst by a factor of > 300.

There is some anecdotal evidence for such **megaflares** in normal stars (Schaefer).

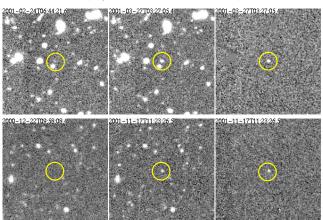
The cause(s), duration, and frequency of these outbursts is currently **unknown**.

PQ Search for Low-z Supernovae


In collaboration with R. Ellis, S.R. Kulkarni, A. Gal-Yam, and the LBL SN Factory

(Using the image subtraction technique)

- Calibration of the SN Ia Hubble diagram
- New standard candles from SN II
- Endpoints of massive star evolution


Discoveries of Peculiar Supernovae

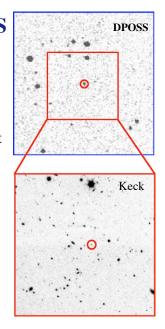
OT 060520:143933+054636, SNF discovery, Caltech follow-up Peculiar SN Ib, similar to 1984L? *A. Mahabal et al.*, ATEL 827

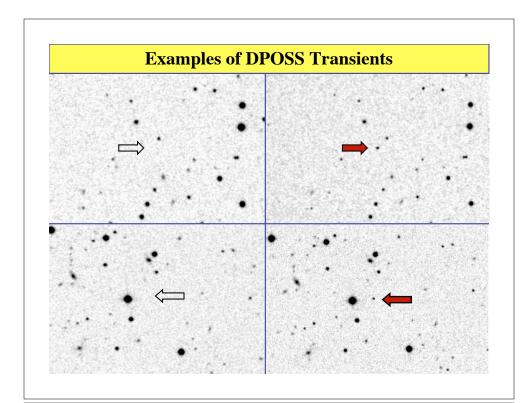
Faint, Fast Transients From DLS

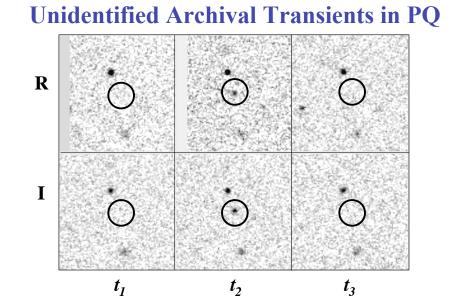
(Tyson, Becker, et al.)

Some are flaring M-stars, some are extragalactic, ...

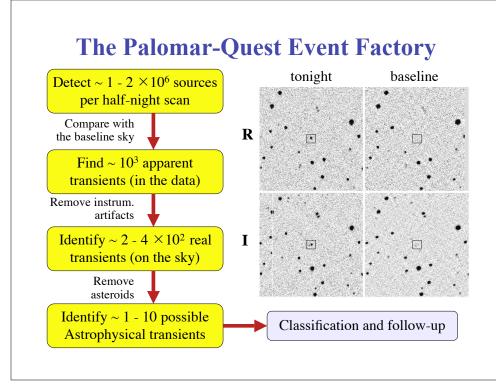
→ A heterogeneous population!

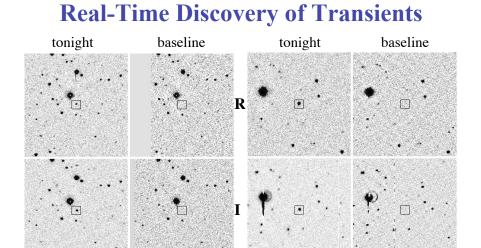

Optical Transients in DPOSS

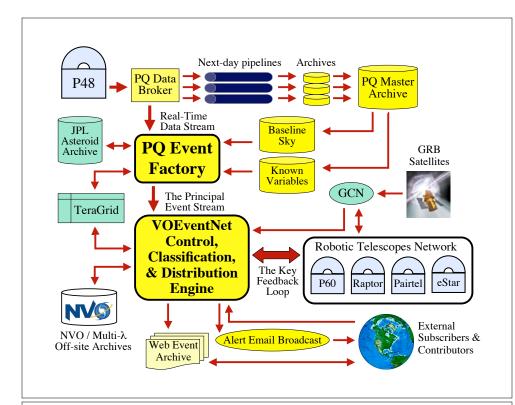

A possible **orphan afterglow** \rightarrow discovered serendipitously in DPOSS: an 18th mag transient associated with a 24.5 mag galaxy. At $z_{\text{est}} \sim 1$, the observed brightness is ~ 100 times that of a SN at the peak.


How many do we expect to see?

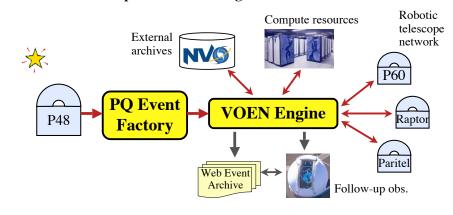
Depending on the beaming factors, there should be ~ 10 afterglows down to R ~ 20 mag per all-sky snapshot.

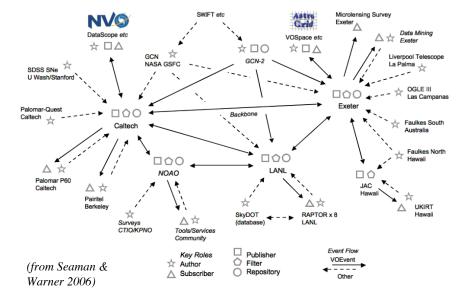

... But it could be something else entirely...




(A. Drake, A. Mahabal, et al.)

Examples of optical transients discovered in the real time in Sept.'06,

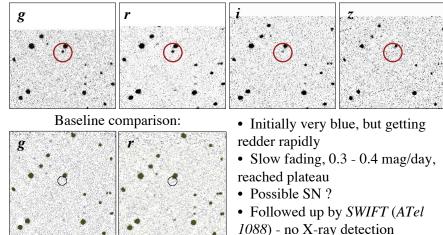

using a prototype real-time pipeline


The VOEventNet Project

PI: R. Williams

- A telescope sensor network with a feedback
- Scientific measurements spawning other measurements and data analysis in the real time
- Please see http://voeventnet.org

The Emerging Global VOEvent Network



An Unidentified PQ Real-Time Event

PQOT 070519:143933+054636

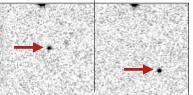
A. Drake et al., ATel 1083

Discovery images:

Real-Time Event Publishing & Distribution With VOEventNet

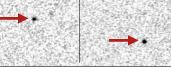
R. Williams, A. Drake, M. Graham, et al. http://voeventnet.caltech.edu

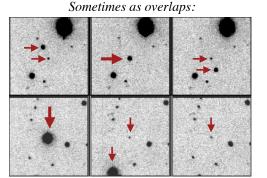
- Home
- Project Description
- Personnel
- GCN VOEvents
- OGLE Microlensing
- PO Transients
- IVOA VOEvent pages
- . Search the Nexus
- Subscribe

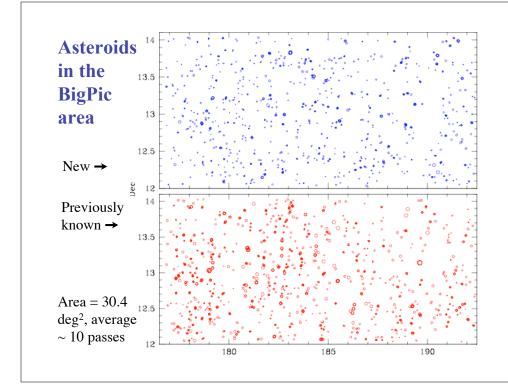

EventNet: Real-Time Astronomy with	n a Rapid-Response Telescope Grid

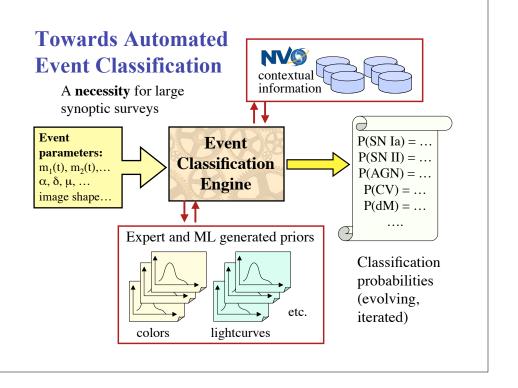
- VOEvents from the Palomar Quest Transient Search
- This page is generated automatically as incoming PQ events are received and was last updated at · Additional information about PO Transients that are available here .
- Information on subscribing to receive PQ Transients and other VOEvents in real time is here: 🤟
- A near real time feed is available here: XML RSS
- This table contains information about Transients obtained from PQ (Table Help)
- 7052101243010670393 7052101243030690374 7052101243010670393 2007-05-21T07:16:57

2007-05-21T06:36:53 2007-05-21T05:56:58 217.9791300 11.6790801


Asteroids: A Major Contaminant!


- We have many "transient" detections, but they are mostly asteroids
- We find $\sim 1 3$ asteroids / deg^2 down to ~ 20 - 21 mag, per epoch




Mitigation:

- Optimized cadence: scan and rescan the same night $\sim 3 - 4^h$ apart
- Crossmatch to asteroid DB's (Horizons, IMCCE)
- Improved proper motions and colors

Some Things We Have Learned

(from DPOSS, SDSS, DLS, PQ ...)

- In a single-pass snapshot survey there are $\sim 10^{-2}$ astrophysical transients/deg² down to ~ 21 mag at high Galactic latitudes
- Most of the transients and variables are known types of objects; stars dominate on short time scales (~ minutes to months), AGN on longer time scales (~ years and beyond)
- Populations of as yet unidentified transients do exist; some may be new types of objects or phenomena
 - Real-time follow-up is necessary in order to understand them
- The quality of the *baseline/fiducial sky* is a key issue
 - It must be deep, clean, complete, and wavelength-matched
 - Generating a standard, dynamically evolving, annotated, multiλ, baseline sky may be a good community (VO) project; we are developing a prototype from PQ

This is a Rapidly Evolving Field!

- Now: data streams of ~ 0.1 TB / night, ~ 10 10² transients / night (SDSS, PQ, various SN surveys, asteroid surveys)
- Forthcoming on a time scale ~ 1 5 years:
 ~ 1 TB / night, ~10⁴ transients / night
 (PanSTARRS, Skymapper, VISTA, VST...)
- Forthcoming in \sim 5 10 years: LSST, \sim 30 TB / night, \sim 10⁵ 10⁶ transients / night

A major, qualitative change!

Time-Domain Astronomy is the VO "Killer App"

Synoptic, panoramic surveys → Event discovery

Rapid follow-up and multi-λ → Keys to understanding

Massive data streams + rapid, automated response

→ No humans in the loop (need machine intelligence)

Some Thoughts on Time Domain Astronomy

- Scientific motivation and opportunities
 - A very rich variety of astrophysical phenomena: from asteroids to cosmology, extrasolar planets to extreme relativistic physics
 - Time domain can provide unique new insights
 - Time domain astronomy ≠ small (telescope) science
 Rather, it is intrinsically optimal for telescope systems
- Distinguish general surveys vs. dedicated experiments
 - The same synoptic survey data streams can (and do) serve multiple scientific goals
 - The same infrastructure can serve multiple follow-up needs
- Event discovery is just a start: 99% of the astrophysics is in the follow-up, and mostly in optical spectroscopy
 - Spectroscopic follow-up will be a key bottleneck for any synoptic sky survey!

What Are the Implied Technological and Methodological Needs?

- Data discovery and access mechanisms
- Data federation in both catalog and image domains
- Manipulation tools for combined data sets
- On-demand source re-extraction from panoramic imagery
- Clustering analysis tools in the catalog domain
- Visualization, visualization, visualization!
- Statistical analysis tools
- Methods to compare data and numerical simulations
- Automated robotic telescope and software systems for time domain exploration, event publishing mechanisms

... etc., etc.