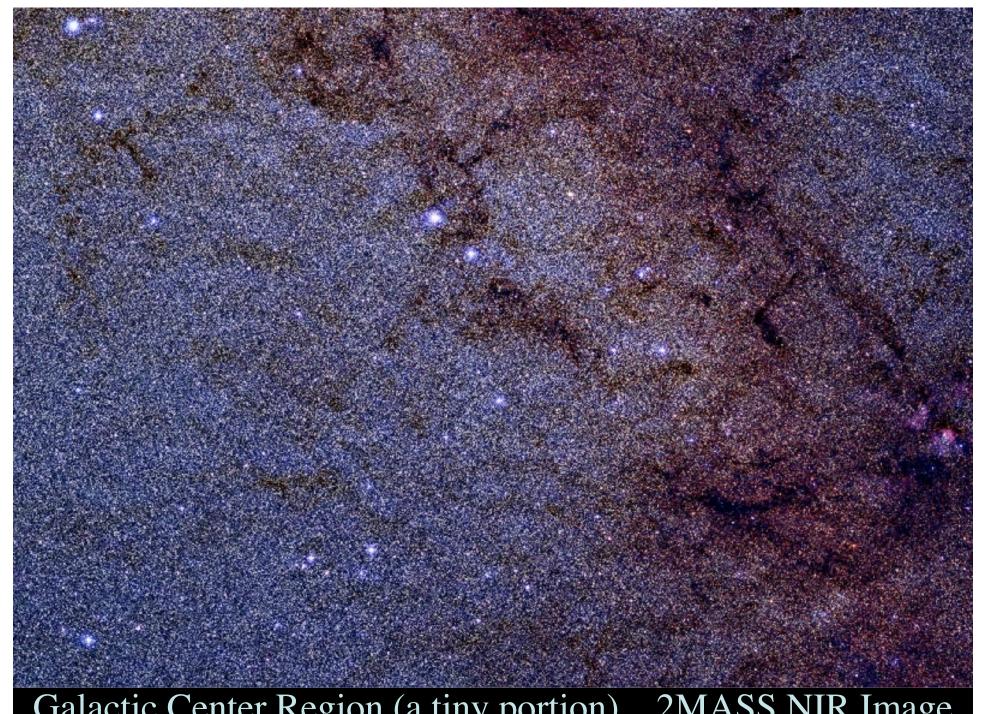


S. G. Djorgovski (Caltech)

With special thanks to
Roy Williams, Alex Szalay,
Jim Gray, and many other VO founders
and Cyber-Science pioneers ...

An Overview:

- Astronomy in the era of information abundance The IT revolution, challenges and opportunities
- The Virtual Observatory concept What is it, how it all got started
- Virtual Observatory status
 Where are we now, where are we going
- From technology to science (and back)
 New tools for the science of 21st century
- Musings on cyber-science in general
 The changing nature of scientific inquiry
- The new roles of resarch libraries
 The changing nature of data and information needs

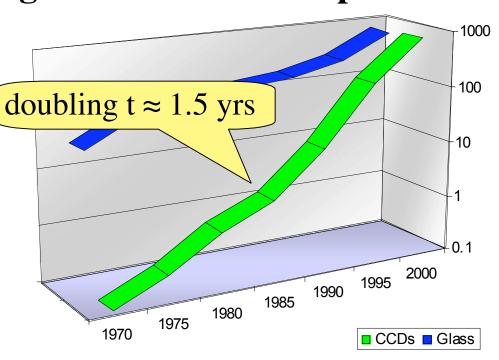

Astronomy is Now a Very Data-Rich Science

Multi-Terabyte (soon: multi-PB) sky surveys and archives over a broad range of wavelengths ...

1 microSky (DPOSS)

1 nanoSky (HDF-S)

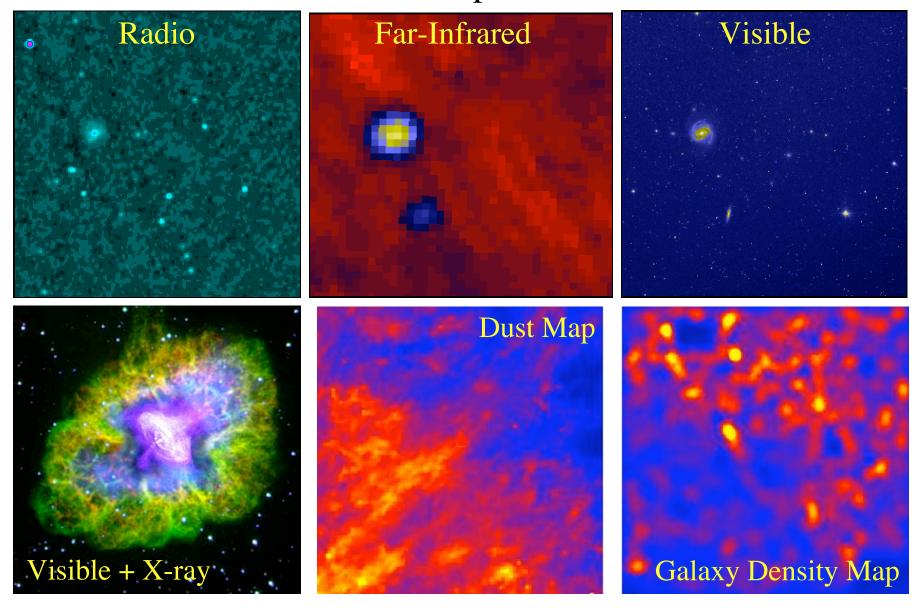
Billions of detected sources, hundreds of measured attributes per source ...

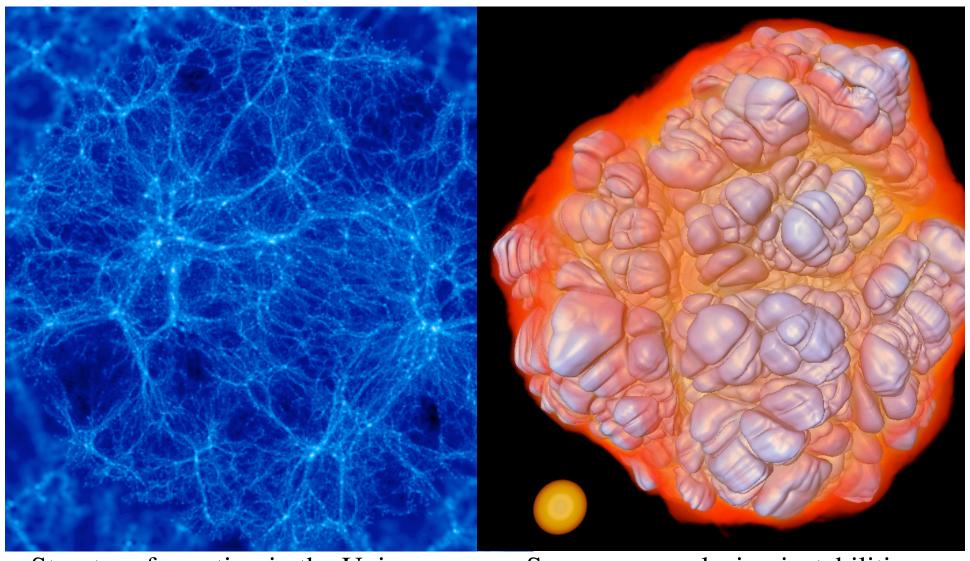


2MASS NIR Image Galactic Center Region (a tiny portion)

- Large digital sky surveys are becoming the dominant source of data in astronomy: $\sim 10\text{-}100$ TB/survey (soon PB), $\sim 10^6$ 10^9 sources/survey, many wavelengths...
- Data sets many orders of magnitude larger, more complex, and more homogeneous than in the past

Data → **Knowledge** ?

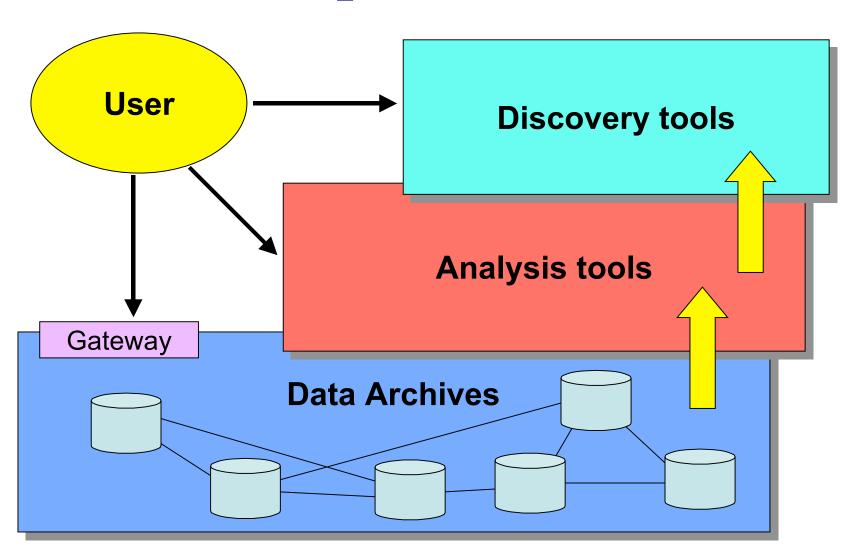

The exponential growth of data volume (and also complexity, quality) driven by the exponential growth in detector and computing technology


... but our understanding of the universe increases much more slowly!

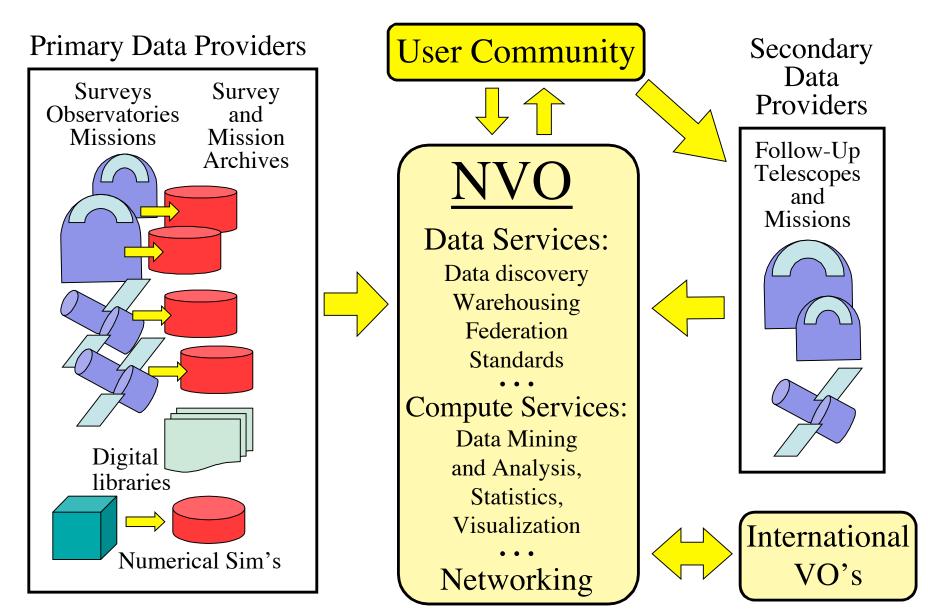
Panchromatic Views of the Universe:

Data Fusion → A More Complete, Less Biased Picture

Theoretical Simulations Are Also Becoming More Complex and Generate TB's of Data


Structure formation in the Universe

Supernova explosion instabilities


The Virtual Observatory Concept

- Astronomy community response to the scientific and technological challenges posed by massive data sets
 - Harness the modern information technology in service of astronomy, and partner with it
- A complete, dynamical, distributed, open research environment for the new astronomy with massive and complex data sets
 - Provide content (data, metadata) services, standards, and analysis/compute services
 - Federate the existing and forthcoming large digital sky surveys and archives, facilitate data inclusion and distribution
 - Develop and provide data exploration and discovery tools
 - Technology-enabled, but science-driven

VO: Conceptual Architecture

A Systemic View of the NVO

Why is VO a Good Scientific Prospect?

- Technological revolutions as the drivers/enablers of the bursts of scientific growth
- Historical examples in astronomy:
 - 1960's: the advent of electronics and access to space *Quasars, CMBR, x-ray astronomy, pulsars, GRBs, ...*
 - 1980's 1990's: computers, digital detectors (CCDs etc.) Galaxy formation and evolution, extrasolar planets, CMBR fluctuations, dark matter and energy, GRBs, ...
 - 2000's and beyond: information technology

The next golden age of discovery in astronomy?

VO is the mechanism to effect this process

Information Technology → **New Science**

- The information volume grows exponentially *Most data will never be seen by humans!*
 - The need for data storage, network, database-related technologies, standards, etc.
- Information complexity is also increasing greatly

 Most data (and data constructs) cannot be

 comprehended by humans directly!
 - The need for data mining, KDD, data understanding technologies, hyperdimensional visualization, AI/Machine-assisted discovery ...
- VO is the framework to effect this for astronomy

A Modern Scientific Discovery Process

Data Gathering Data Farming

→ Data Farming:

Storage/Archiving
Indexing, Searchability
Data Fusion, Interoperability

Database
Technologies

Data Mining (or Knowledge Discovery in Databases):

Key Technical Challenges Pattern or correlation search

Clustering analysis, automated classification

Outlier / anomaly searches

Hyperdimensional visualization

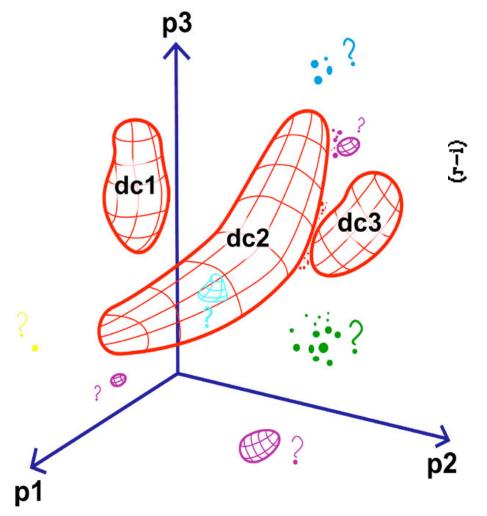
Data Understanding

► New Knowledge

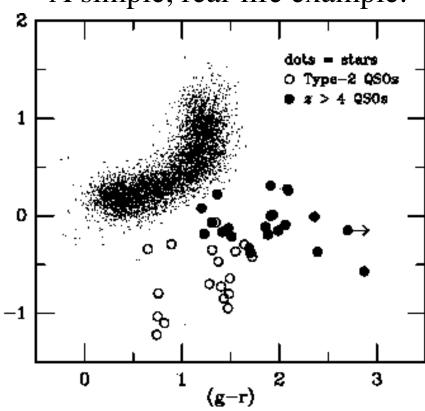
Key Methodological Challenges

How and Where are Discoveries Made?

- Conceptual Discoveries: e.g., Relativity, Quantum Mechanics, Strings, Inflation ... Theoretical, may be inspired by observations
- Phenomenological Discoveries: e.g., Dark Matter, Dark Energy, QSOs, GRBs, CMBR, Extrasolar Planets, Obscured Universe ... Empirical, inspire theories, can be motivated by them


Phenomenological Discoveries:

- Making new connections (e.g., multi-□)
 WO critical!

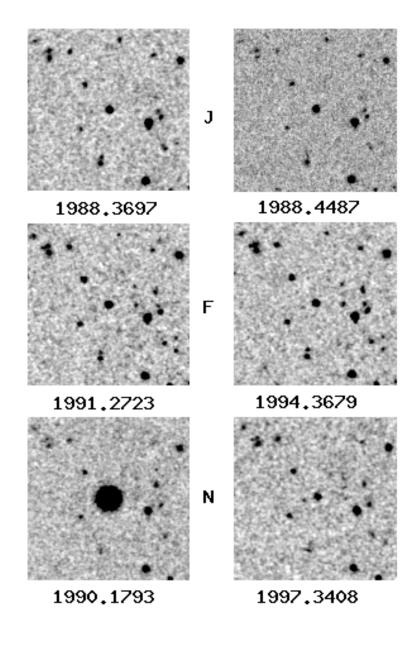

Understanding of complex astrophysical phenomena requires complex, information-rich data (and simulations?)

Exploration of observable parameter spaces and searches for rare or new types of objects

A Generic Machine-Assisted Discovery Problem: Data Mapping and a Search for Outliers

A simple, real-life example:

Now consider $\sim 10^9$ data vectors in $\sim 10^2$ - 10^3 dimensions ...


Exploration of the Time Domain ...

... and the advent of Synoptic Sky Surveys

An example (from DPOSS) of a new type of a phenomenon which may be discovered in a systematic exploration of the **Time Domain**:

A normal, main-sequence star which underwent an outburst by a factor of > 300. There is some anecdotal evidence for such **megaflares** in normal stars.

The cause, duration, and frequency of these outbursts is currently **unknown**.

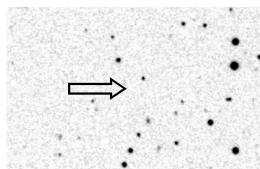
An Example of a Synoptic Sky Survey:

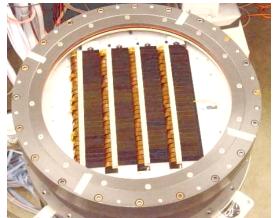
Palomar-Quest

A Caltech-Yale-JPL collaboration

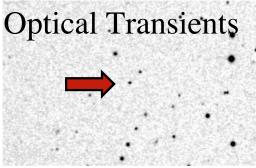
Huge data rate:

~ 1 TB/month (but in < 10 yrs, we'll have > 1 TB/day)


Look for things that move...


... and things that go **Bang!** in the night

Palomar 40-inch telescope



The 112-CCD camera

Scientific Roles and Benefits of a VO

- Facilitate science with massive data sets (observations and theory/simulations) ==> efficiency amplifier
- Provide an <u>added value</u> from federated data sets (e.g., multi-wavelength, multi-scale, multi-epoch ...)
 - Discover the knowledge which is present in the data,
 but can be uncovered *only* through data fusion
- Enable and stimulate some *qualitatively new* science with massive data sets (not just old-but-bigger)
- Optimize the use of expensive resources (e.g., space missions, large ground-based telescopes, computing ...)
- Provide R&D drivers, application testbeds, and stimulus to the **partnering disciplines** (CS/IT, statistics ...)

VO Developments and Status

- The concept originated in 1990's, developed and refined through several conferences and workshops
- Major blessing by the National Academy Report
- In the US: National Virtual Observatory (NVO)
 - Concept developed by the NVO Science Definition Team (SDT). See the report at http://www.nvosdt.org
 - NSF/ITR funded project: http://us-vo.org
 - A number of other, smaller projects under way
- Worldwide efforts: International V.O. Alliance
- A good synergy of astronomy and CS/IT
- Good progress on data management issues, a little on data mining/analysis, first science demos forthcoming

US National Virtual Observatory

search

Grid Computing

News

NVO Summer School
Data Inventory Service
Discovery by VO Demo
VO Alliance Formed
NVO News Archive

About

<u>What is the NVO?</u>
<u>Who is Involved?</u> Science Objectives

Community

<u>NVO Meetings</u> International VO Alliance

Documents

Recent NVO Documents: Conesearch definition

Quarterly Report Q104
Management Plan
VO Resource Registry
All NVO Documents
IVOA Documents

Supported by the National Science Foundation

NVO - Facilitating Scientific Discovery

Data Access Publish

NVO's objective is to enable new science by greatly enhancing access to data and computing resources. The NVO is developing tools that make it easy to locate, retrieve, and analyze astronomical data from archives and catalogs worldwide, and to compare theoretical models and simulations with observations.

Education

NVO in Use

These tools are based upon international standards developed in collaboration with the International Virtual Observatory Alliance.

We expect to deliver the first production quality services in early 2005. Some examples of existing prototypes:

- Use the VO Spectrum Services to analyze over 500,000 spectra.
- Cross-correlate objects from more than 15 surveys with <u>SkyQuery</u>
- Use <u>YourSky</u> to make custom infrared sky images based on DPOSS or 2MASS.

The NVO also provides software libraries and sample code of VO Services for people who want to write their own VO-enabled applications.

NVO - Data Access

Registry

The NVO encourages astronomical research organizations to make their data collections and source catalogs available via the standard VO protocols. These include image access, spectrum access, and catalog search.

A number of <u>astronomical research facilities and survey projects</u> are already making use of NVO interfaces and protocols in support of data processing, analysis, and distribution.

Available collections and services can be located through the NVO Registries -- the Yellow Pages of astronomical resources, with regularly updated entries. Try the different interfaces at NCSA, STScI, or Caltech to the NVO registries already containing more than 6000 entries!

NVO - Education and Public Outreach

Astronomical images are treasured by the public for their beauty, and thus are an excellent vehicle for science education at all levels. We seek partnerships with educational organizations, museums, and planetariums to help them use our tools to incorporate NVO-ready data into their programs and curricula. Sample projects:

Project LITE is an interactive environment to study astronomical spectra
 nyOne, a next-generation web-browser providing encyclopedic access to ence information.

http://us-vo.org

site is a community-maintained collection with content control by the NVO Executive Committee. ged by the extent to which it: (a) reflects an aspect of the Virtual Observatory, such as astronomy data, (b) uses VO standards or software, or (c) exemplifies grid-based astronomical computing. If

you would like a description of your project, data, or software included here, please write to web at us-vo.org with a short description of your work.

Summer School

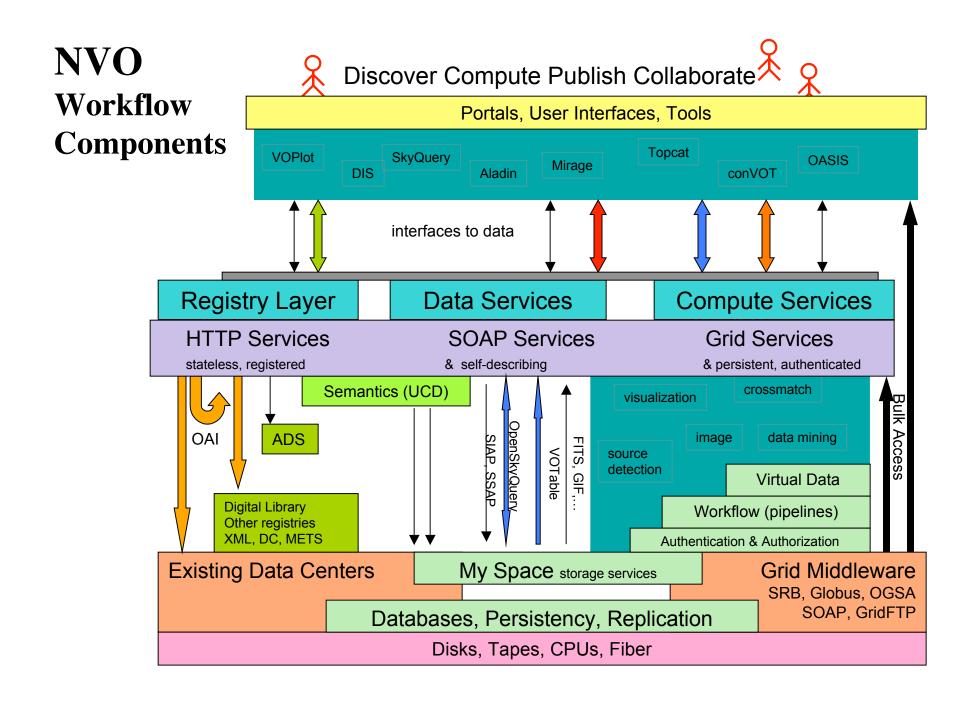
Contact Us

Aspen CO, Sep 13-17. More Information

Interop Meeting

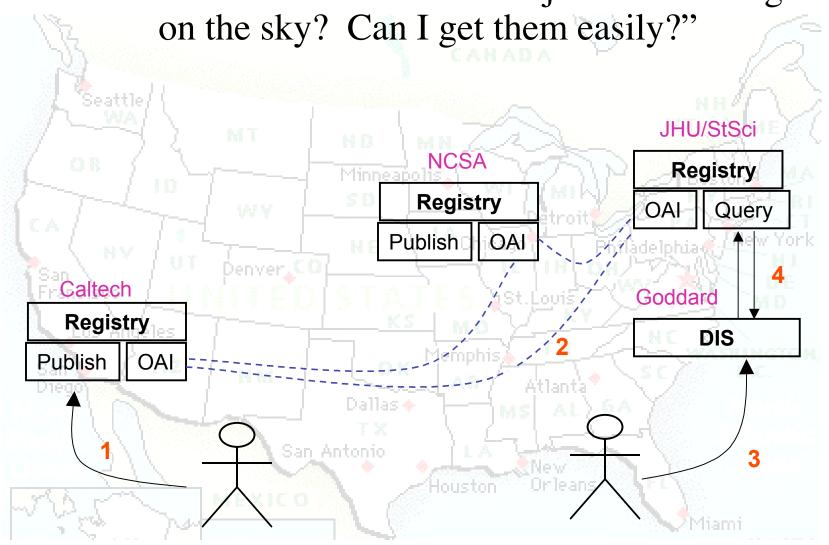
Sep 27-29, 2004, IUCAA Pune, India More Information

Data Inventory



Find images and catalog objects around a given sky position with the <u>Data Inventory Service</u>.

Project LITE



Project LITE is an instructional environment for astronomical spectra

NVO: A Prototype Data Inventory Service

"What data are available for some object or some region

Data Inventory Service

National Virtual Observatory: Hosted at the HEASARC

What do we know about regions of sky?

Using new Virtual Observatory protocols we can gather and organize information efficiently on a given region of sky.

Enter a position(or name) and the maximum size of the region of sky you're interested in.

Object Position or Name:	cen a	(degrees or sexagesimal)
Size:	0.25	(in decimal degrees)
Send Request	Reset Form	

☐ Ignore cache! The DIS will reprocess an identical request rather than linking to the existing cache results.

Example Inputs for the Object Position or Name

- 13.29, -18.47 [Object Position: Decimal degrees]
- 6 45 10.8, -16 41 58 [Object Position: Sexagesimal format; RA in hours]
- 3c273 [Object name]
- Use a comma to delimit J2000 RA and Dec pair.

About Data Inventory Service

- 1. A user request is broadcast to sites scattered all over the world using two simple common protocols.
- 2. Catalog data and lists of available images are returned using the new VOTable XML standard.
- 3. Image, observation and catalog data from these sites are collected and organized for immediate viewing.
- 4. Data may be analyzed or visualized in Aladin or OASIS

Participating sites currently include: NRAO, NOAO, JHU, ST Scl, HEASARC, NCS, IRSA, CDS, NED, ESO, SDSS, CXC.

A service of the <u>Laboratory for High Energy Astrophysics (LHEA)</u> and the <u>High Energy Astrophysics Science Archive Research Center (HEASARC)</u> at <u>NASA/ GSFC</u>

DIS user interface

Data Inventory Results: cen a

Data missing - Instructions

<u>Home</u>

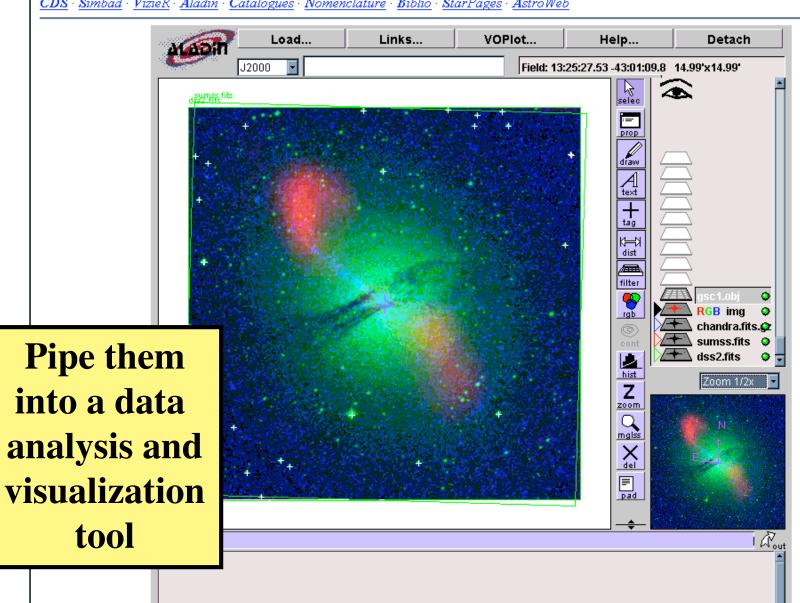
National Virtual Observatory: Hosted at the HEASARC

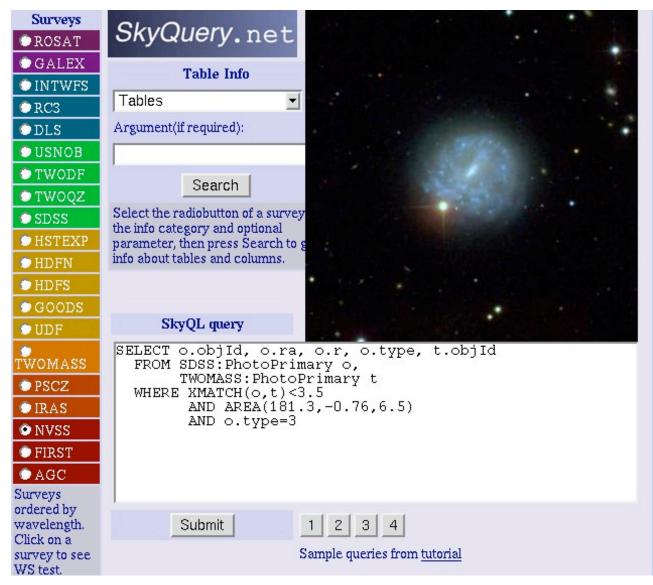
Note: Inventory request completed

RA Dec Size 13 25 27.62 -43 01 08.8 0.25

□ Check All

DIS search results


Im	ogos (EITS/CIE)				
	ages (FITS/GIF)				
Optical	□DSS1SV	☑DSS2	□DSS2B	□ DSS2IR	□DSS2R
Infrared	□2MASS-H	□ 2MASS-J	□ <u>2MASS-K</u>		
Radio	✓ SUMSS				
X-ray	□RASSB	☑ Chandra(6)			
Obse	rvations (VOTable)				
Optical	□HST(100)	□ STIS(100)	□ WFPC2(100)	□WFPC1(22)	□ <u>HSTG(394)</u>
Infrared	□ <u>NICMOS(100)</u>				
X-ray	□ASCA(3)	□ROSAT(9)	□ ROSPUBLC(10)	□ <u>RXTE(23)</u>	□EXOSAT(12)
	□ CHANMAST(10)	□ Einstein(5)	□XMMMAST(3)	□ ASCAMAST(3)	□XTEINDEX(5)
Gamma-ray	□ OSSE(29)				
UV	□FUSE(1)	□ FOC(20)	□ <u>HUT(2)</u>	□ <u>IUE(41)</u>	□ <u>UIT(7)</u>
	□WUPPE(1)				
Ob	jects (VOTable)				
Surveys	□ <u>USNO-A2.0(1197)</u>	□ <u>USNO-SA2.0(1197)</u>	☑ GSC1(289)	□ GSC2.2(2259)	□ <u>UCAC1(305)</u>
	□ <u>USNO-A2.0 CDS(999)</u>				
Galaxies	□ <u>SGC(1)</u>	□ <u>PGC(1)</u>	□ <u>NBG(1)</u>	□ RC3(1)	□RNGC(1)
	□PSCz(3)				
Stars	□ <u>HIP(1)</u>	□ SAO(2)	□ WDS(1)	□ AC2000.2(30)	□ ASCC-2.5(21)
	□ <u>HD(4)</u>				
Misc.	□ EGRET3(45)	□WGACAT(35)	□ Radio Catalogs(69)	□ 2MASS-PSC(CDS)(999)	□ Veron-Veron(1)
	□ TYCHO-2(22)				
	•				


Aladin sky atlas

CDS · Simbad · VizieR · Aladin · Catalogues · Nomenclature · Biblio · StarPages · AstroWeb

SkyQuery: NVO Prototype Catalog Cross-Matching Service (Data Federation)

... and much more is coming!

Broader and Societal Benefits of a VO

• **Professional Empowerment:** Scientists and students anywhere with an internet connection would be able to do a first-rate science A broadening of the talent pool in astronomy, democratization of the field

• Interdisciplinary Exchanges:

- The challenges facing the VO are common to most sciences and other fields of the modern human endeavor
- Intellectual cross-fertilization, feedback to IT/CS

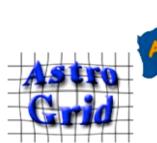
Education and Public Outreach:

- Unprecedented opportunities in terms of the content,
 broad geographical and societal range, at all levels
- Astronomy as a magnet for the CS/IT education

"Weapons of Mass Instruction"

Image courtesy of <u>Digital Palomar Observatory Sky Survey</u>

Image center is RA,Dec=14.679072 60.933364 Image width is 53.715627 minutes Get VS [peg Get VS FITS]



International Virtual Observatory Alliance

Member Organizations

http://ivoa.net

Do We Know How to Run a VO?

- The VO is *not* yet another data center, archive, mission, or a traditional project \implies *It does not fit into any of the usual structures today*
 - It is inherently *distributed*, and web-centric
 - It is fundamentally based on a *rapidly developing* technology (IT/CS)
 - It transcends the traditional boundaries between different wavelength regimes, agency domains
 - It has an unusually broad range of constituents and interfaces
 - It is inherently *multidisciplinary*
- The VO represents <u>a novel type of a scientific</u> <u>organization</u> for the era of information abundance

Now Let's Take A Look At Some Relevant Technology Trends ...

The rate of the overall computing power has been amazingly growing for more than one hundred years

Computing efficiency in ops/s/\$ had 3 growth curves:

Combination of Hans Moravac + Larry Roberts + Gordon Bell WordSize*ops/s/sysprice

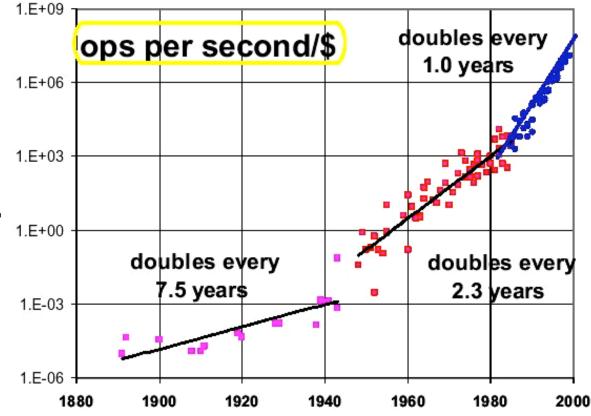
1890-1945

Mechanical

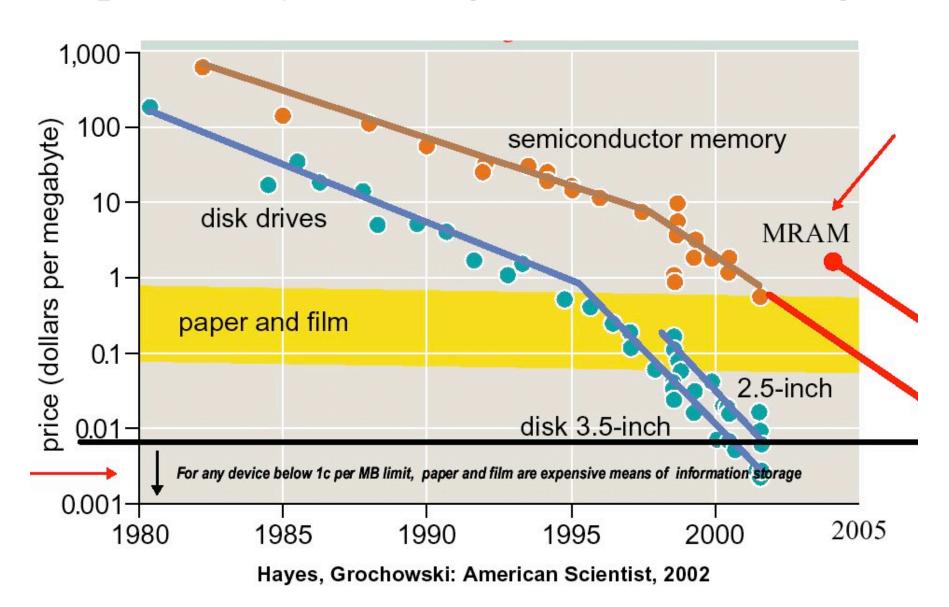
Relay

7-year doubling

1945-1985


Tube, transistor,...

2.3 year doubling


1985-2000

Microprocessor

1.0 year doubling

Exponentially Declining Cost of Data Storage

Computing is Cheap ...

Today (~2004), 1 \$ buys:

- 1 day of CPU time
- 4 GB (fast) RAM for a day
- 1 GB of network bandwidth
- 1 GB of disk storage for 3 years
- 10 M database accesses
- 10 TB of disk access (sequential)
- 10 TB of LAN bandwidth (bulk)
- 10 KWh = 4 days of computer time
- ... Yet somehow computer companies make billions: you do want some toys, about \$ 10^5 worth ≈ 1 postdoc year

... But People are Expensive!

People ~ Software, maintenance, expertise, creativity ...

Moving Data is Slow!

How long does it take to move a Terabyte?

(how about a Petabyte?)

Context	Speed Mbps	Rent \$/month	\$/Mbps	\$/TB Sent	Time/TB
Home phone	0.04	40	1,000	3,086	6 years
Home DSL	0.6	50	117	360	5 months
T1	1.5	1,200	800	2,469	2 months
Т3	43	28,000	651	2,010	2 days
OC3	155	49,000	316	976	14 hours
OC 192	9600	1,920,000	200	617	14 minutes
100 Mpbs	100				1 day
Gbps	1000				2.2 hours

Source: TeraScale Sneakernet, Microsoft Research, Jim Gray et al.

Disks are Cheap and Efficient

- Price/performance of disks is improving faster than the computing (Moore's law): a factor of ~ 100 over 10 years!
 - Disks are now already cheaper than paper
- Network bandwith used to grow even faster, but no longer does
 - And most telcos are bancrupt ...
 - Sneakernet is faster than any network
- Disks make data preservation easier as the storage technology evolves
 - Can you still read your 10 (5?) year old tapes?

An Early Disk for Information Storage

Phaistos Disk:Minoan, 1700 BC

• No one can read it ©

(From Jim Gray)

The Gospel According to Jim Gray:

- Store everything on disks, with a high redundancy (cheaper than the maintenance/recovery)
 - Curate data where the expertise is
- Do not move data over the network: bring the computation to data!
 - The Beowulf paradigm: Datawulf clusters, smart disks ...
 - The Grid paradigm (done right): move only the questions and answers, and the flow control
- You will learn to use databases!
- And we need a better fusion of databases and data mining and exploration

These Challenges Are Common!

- Astronomical data volume *ca*. 2004: **a** few 10² TB (but PB's are coming soon!)
- All recorded information in the world: a few \square 10⁷ TB (but most of it is video, *i.e.*, junk)
- The data volume everywhere is growing exponentially, with e-folding times ~ 1.5 yrs (Moore's law)
 - NB: the data rate is also growing exponentially!
- So, *everybody* needs efficient db techniques, DM (searches, trends & correlations, anomaly/outlier detection, clustering/classification, summarization, visualization, etc.)
- What others discover will help us, and maybe we can also help change the world (remember the WWW!)

The Evolution of Science

Empirical/Descriptive
Analytical+Experimental

Technology

A+E+Simulations A+E+S+**DM/DE/KDD**

Their interplay: $A \longleftrightarrow E \qquad A \swarrow S \qquad A \longleftrightarrow DM$

Computational science rises with the advent of computers Data-intensive science is a more recent phenomenon

The Evolving Role of Computing:

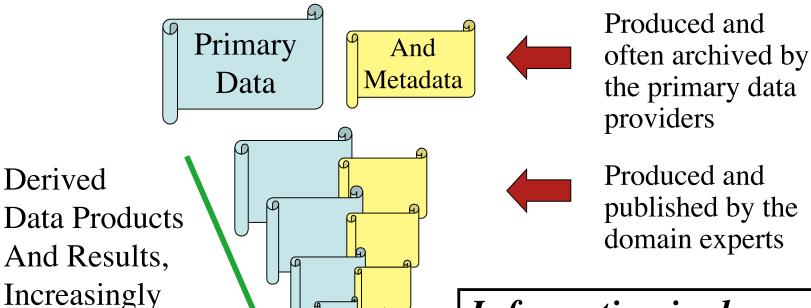
Number crunching → Data intensive (data farming, data mining)

Some Musings on CyberScience

- Enables a broad spectrum of users/contributors
 - From large teams to small teams to individuals
 - Data volume ~ Team size
 - Scientific returns ≠ f(team size)
 - Human talent is distributed very broadly geographically
- Transition from data-poor to data-rich science
 - Chaotic → Organized ... However, some chaos (or the lack of excessive regulation) is good, as it correlates with the creative freedom (recall the WWW)
- Computer science as the "new mathematics"
 - It plays the role in relation to other sciences which mathematics did in ~ 17th 20th century
 (The frontiers of mathematics are now elsewhere...)

The Fundamental Roles of Research/University Libraries

To preserve, organize, and provide/facilitate access to scientific and scholarly data and results


This purpose is constant, but the implementation and functionality evolve.

What should the libraries become in the 21st century?

The Concept of Data (and Scientific Results) is Becoming More Complex

Data Actual data (preserved)

Virtual data (recomputed as needed)

Distilled down

Information is cheap, but expertise and knowledge are expensive!

Scientific Publishing is Changing

- Journals (and books?) are obsolete formats; must evolve to accommodate data-intensive science
- Massive data sets can be only published as electronic archives and should be curated by domain experts
- Peer review / quality control for data and algorithms?
- The rise of un-refereed archives (e.g., archiv.org): very effective and useful, but highly heterogeneous and unselective
- A low-cost entry to publish on the web
 - Who needs journals?
 - Will there be science blogs?
- Persistency and integrity of data (and pointers)
- Interoperability and metadata standards

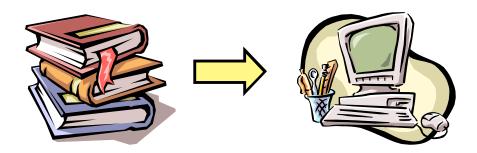
Research Libraries for the 21st Century

- How should research libraries evolve in the era of information abundance and complexity?
- What should be their roles / functionality?
 - Data discovery services
 - Data provider federators
 - Primary and/or derived data archivers
- Libraries
 As Virtual
 Organizations?
- How much domain expertise should be provided?
- Quality control?
- Relationship with web portals and search engines?
- Is this too much for a single type of an institution?
 - Are libraries obsolete (inadequate)?
 - Should they split into several types of institutions?

VO Summary

- National/International Virtual Observatory is an *emerging framework* to harness the power of IT for astronomy with massive and complex data sets
 - Enable data archiving, fusion, exploration, discovery
 - Cross the traditional boundaries (wavelength regimes, ground/space, theory/observation ...
 - Facilitate inclusion of major new data providers, surveys
 - Broad professional empowerment via the WWW
 - Great for E/PO at all educational levels
- It is *inherently multidisciplinary*: an excellent synergy with the applied CS/IT, statistics...and it can lead to new IT advances of a broad importance
- It is *inherently distributed* and web-based

But It Is More General Than That:


• Coping with the data flood and extracting knowledge from massive/complex data sets is *a universal problem facing all sciences today:*

Quantitative changes in data volumes + IT advances:

- → Qualitative changes in the way we do science
- (N)VO is an example of *a new type of a scientific* research environment / institution(?) in the era of information abundance
- This requires new types of scientific management and organization structures, a challenge in itself
- The real intellectual challenges are methodological: how do we formulate *genuinely new types of scientific inquiries*, *enabled by this technological revolution?*

... and the Evolution of Libraries

- Scientific / research *libraries must evolve*, in order to stay useful in the era of data-intensive, computation-based science
 - Database technologies are essential
 - Fusion with data exploration technologies will be next
 - A growing importance of domain expertise
 - Blending in the web, then semantic web?

For more details and links, please see http://www.astro.caltech.edu/~george/vo/