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Abstract

We discuss noise sources in normal-
insulator-superconductor (NIS) tunnel junctions rel-
evant for their X-ray and particle detection applica-
tions. The electric current shot noise and correlated
tunneling power shot noise are calculated. The ther-
modynamic noise due to the electron-phonon coupling
is derived for the general case T, # T,.

Introduction

Normal-insulator-superconductor (NIS) tunnel junc-
tion devices are presently being developed for X-ray
and particle detection applications ([1], [2], [3], [4], [5])-
An important consideration is the devices’ sensitivity
limit as imposed by intrinsic noise sources. We present
an analysis of these noise sources under only three ap-
proximations: all distribution functions are thermal,
backtunneling is negligible, and the substrate and S
electrode are well heat-sunk. Comparison of shot noise
and sensitivity push one to low R,,, so we take a typical
junction to have R, = 0.5Q with N electrode volume
10*pm?3, voltage biased with SQUID readout.

NIS Junction Fundamentals

We quickly review the theory of NIS junctions. We
define the sign of the bias voltage by U = Uy — Ug,
where N and S are the two electrodes. Quasielectrons
(E > 0) and quasiholes (E < 0) can tunnel in both
directions. The quasiholes are transformed to negative
energy for convenience. If we define (for |E| > A only)

91(E) = SRR fa (B — eU) [1 = f(E)]

92(E) = SRR F(B)[1 = ful B — €U)]

then tbe number currents are I'y(E > 0) = ¢1(F),
Tin(E > 0) = ¢2(F), Ths(E < 0) = g2(F), and
LB < 0) = g1(E). g = ZIMD,(0)D,(0)
contains the tunneling matrix element and density of
states factors. e < 0 is the charge of the electron.
N(E) = % is the BCS modification to the den-
sity of states and f,, and f; are the N and S elec-
tron distribution functions (referred to their respective
Fermi levels). The electric current is

I=—|e| [ dE sgn(E) [Ty (E) — Tin(E)

|E|>A

Numerical integration of the above expression is
preferable to analytic approximations (those in the lit-
erature can be off by 50%). The sensitivity parameter,
S = % at fixed U, can be calculated by finite differ-
ence of the numerical integral.

There is a power associated with the tunneling cur-
rent when the lead to the N electrode is a superconduc-
tor with A > kT because tunneling particles must be
replaced by Cooper pairs at the Fermi level from the
lead to maintain charge neutrality. Therefore, parti-
cles tunneling out of the N electrode remove energy
¢ = sgn(E)(E — eU), while those tunneling in bring
this energy; hence the power entering the N electrode
is

Prun = — /lglg;gnw)(ﬂ — ¢U) [To(E) — Ton(E)]

Again, approximations to the integral are inaccurate.
Because of this power flow, the N electrode and sub-
strate temperatures may differ. For this reason, oth-
ers are investigating the use of the NIS tunnel junc-
tion as a microrefrigerator ([6], [7]). To determine
the exact steady state, we should solve coupled Boltz-
mann equations for the N electrons, the S electrons,
and the phonons, fully accounting for energy transfer
between the three systems via tunneling hot electrons
and athermal phonons. Instead, we make three ap-
proximations to render the problem tractable:

e The distribution functions of all three systems are
thermal on all timescales (infinitely fast thermaliza-
tion within each system)

e There is no quasiparticle backtunneling or athermal
phonon transmission to the N electrode, which can
return tunneling power to the N electrode rather
than deposit it in the heat sink.

e The thermal impedance from the S electrons and
phonons to the heat sink is negligible, and hence
Ts = Tp = Tyink-

Relaxation of these approximations is discussed by

Jochum, et al., [5]. We use these approximations as

a “best case” scenario for the noise while maintaining

the salient aspects of electrothermal feedback. With

this, the N electron temperature is set by equating the
electron-phonon power (P, = SV (T? —T;’), Y~1-5
nW K~=%um™3 typically) to the the tunneling power
and solving for 7T, numerically. For low resistance
junctions, T, is significantly decreased below the sub-
strate (phonon) temperature. This can yield gains in
sensitivity due to reduction in heat capacity of the N
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electrons (C,) and increased S.

For our noise analysis, we require the junction cur-
rent’s response to energy deposition in the N electrons.
This is found by solving the dynamic energy conserva-
tion equation in the standard way; the result is

(SI((.J) = iPdep(w) [1 + i(";T]_

where Pg.p(w) is the Fourier transform of the power
deposition (Pyep(w) = E for a X-ray-like Py, = Fé(t)

dPep dPiyy —
dT ’ Gtun - _dtTa G= Gep+

G'tun 1s the total conductance, and 7 = % is the decay
time. Note that the tunneling cooling path (Giyn)
reduces 7.

deposition), Gep = —

Noise Sources

The intrinsic noise sources are:

e Shot noise due to the tunneling current.

e “Thermodynamic” noise due to shot noise on the
tunneling power; this is correlated with the tunnel-
ing current shot noise.

e “Thermodynamic” noise due to fluctuations of the
electron-phonon power flow.

The tunneling power fluctuation is 6P(t) =

[—> 1 ek 6(t — )] — (P) where ¢ is the energy re-

moved by the kth tunneling particle. Note the sign

convention. We apply the response function, add the
current shot noise fluctuations, and Fourier transform

to find
(SItun((.d) =

— 5227 (P)§(w) [1 + iwr] "

[0 - Sen (14 dwr] ] eon
=27 (I} é(w)

The correlation of the power and current fluctuations
is incorporated by the matched phase factor. For dif-
ferent tunneling events, the phases are uncorrelated,
so cross terms between different events vanish in the
averaging done to derive the noise power spectral den-
sity (PSD):

Tan(@ #0) = e [(2)° () - 2.2 4] + ()

where I' = T',,; +T'y,, is the total number current. Ex-
plicitly, the three terms are

T{¢?) = le|? | dE [T
(q?) ||/|E|>A[
"= fE e

dE (E
|E|>A

ns(E) + Lo (E)]

—eU)* [Lus(E) + Len(E)]

I{ge) = —le| —€U) [[as(E) + Ten(E)]

The noise PSDs of different directions and energies add
as they do because they are uncorrelated. In typical
conditions, one type of carrier dominates the current;
in such cases, I' (¢e) is evidence of anticorrelation be-

tween the current shot noise and the current induced

by the power shot noise (for w < 7=1). This is a form
of the electrothermal feedback discussed by Mather
[8] and more recently by Irwin [9]. While such ef-
fects modify the noise PSD, the overall resolution is
unchanged because the noise amplitude decrease coin-
cides with a noise bandwidth increase.

The é-function phonon emission and absorption that
vield the electron-phonon power also yield a power
shot noise. From the standard form for this power
[10], we find the power noise PSD is

TP (w #0) :/0 dE; f(E;) D(Ep) (VQj’r)a e2
< 1= #Be_p) 6(Ee — Br_g —cp)ln(@ + 1
[ Ay ) (B — Epygob =) i)}
¢7 is squared as usual for a shot noise. The two terms
correspond to phonon emission and absorption, added

here as uncorrelated noises. Integration of this expres-
sion and application of the response function yields

Tl #0) = 0 (TGS + W I3G, € (72)]

where G, = 5ZVT! (= G, defined above) and G, =
BEVT4 are the standard conductances and

£ (_: = 51“(5)((5)/ eysiyl y?—i + 1] [ey% — 1]_1

In general, there is no closed form for &; it must be
calculated numerically. However, for T, = T,, the inte-
2¢(5)=¢(6)
¢(5)
standard equilibrium result 2k, T2G. For T), >> T, one

finds £ = %(%, yielding ka;Gp%(% and thus making

Sl

gral simplifies and one finds £ = , vielding the

the noise symmetric in the two extreme cases.

The contributions Jiy, and J¢, are uncorrelated and
thus the total noise power spectral density is their sum.
For further information, including plots of the currents
and noise PSDs and optimal energy resolution calcu-
lations, please go to

http://cfpa.berkeley.edu/golwala
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