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Section 1
Introduction to Course

1.1 Course Material
1.2 Notation; including Deviations from Griffiths
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Section 1.1 Introduction to Course: Course Material

Course Material

Overview

This is a course on electrodynamics. It will review the basic material you learned in
Ph1bc but will go beyond in both content as well as in mathematical sophistication.

The intended learning outcome of both Ph106b and Ph106c is for students to acquire
the ability to calculate electric and magnetic potentials, fields, energies, and forces in
a variety of basic physical configurations combined with an understanding of the
underlying physical principles and calculation techniques. This outcome requires both
an understanding of principles as well as the ability to apply them to do calculations!

The course will primarily use and follow Introduction to Electrodynamics by Griffiths
(fourth edition). Supplementary material is drawn from Jackson and from Heald &
Marion, both on electronic and physical reserve from the library. The material
presented here will be self-contained, but past students have found it useful to obtain
a copy of Jackson. It is certainly a book you will want if you continue in physics or a
related field.
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Section 1.1 Introduction to Course: Course Material

Prerequisites

Physics:

I Electricity and Magnetism: While Ph1bc is a formal prerequisite for the course,
we will develop the material from scratch. However, review material will be
covered quickly and a basic familiarity with the concepts will be assumed.

I Classical mechanics: Generally, mechanics at the level of Ph1a is sufficient for
this course, though some optional material at the end of Ph106c will make use
of Ph106a material.
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Section 1.1 Introduction to Course: Course Material

Mathematics:

I Chapter 1 of Griffiths except for Sections 1.1.5 (“How Vectors Transform”) and
1.5 (“The Dirac Delta Function”). We will review some of prerequisite material
as needed.

I Solutions to second-order linear ordinary differential equations with constant
coefficients (i.e., simple harmonic oscillator).

I Orthonormal functions/bases.

I Over the course, we will develop the following more sophisticated concepts:

I Dirac Delta function.
I Separation of variables to reduce second-order linear partial differential

equations to ordinary differential equations.
I Various specific types of orthonormal functions, specifically sinusoids,

Legendre polynomials, and spherical harmonics.
I Tensor formalism for relativity.

I Key point: Mathematics is the language of physics. You must be competent in
the above basic mathematics to understand and use the material in this course.
Intuition is crucial, but it must be formalized mathematically.

However, mathematics is not just symbolic manipulation or brute force
calculation. Make sure you understand the meaning of every mathematical
expression — i.e., carry along the intuition with the symbols! Only do algebra
and explicit differentiation and integration as a last resort! We will demonstrate
this approach regularly.
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Section 1.1 Introduction to Course: Course Material

Topics to be Covered

New topics for Ph106b not covered in Ph1bc

New topics for Ph106c not covered in Ph1bc

I Review of basic electrostatics — Coulomb’s Law; Gauss’s Law; electric field,
potential, and potential energy; conductors, capacitors, and capacitance matrix.

I Advanced electrostatics — boundary value problems (BVP) for determining
potentials and fields; Green Functions for BVP; multipole expansion of potential.

I Electrostatics in Matter — polarization, susceptibility, permittivity of matter;
BVP with polarizable materials, energy and forces in matter.

I Magnetostatics — Lorentz force; Biot-Savart Law; Ampère’s Law; vector
potential; boundary conditions; multipole expansion of potential.

I Magnetostatics in Matter — magnetization, susceptibility, and permeability of
matter; boundary conditions; ferromagnetism; BVP with magnetizable materials.

I Electrodynamics — electromotive force and electromagnetic induction;
inductance and energy in magnetic fields; Maxwell’s equations in vacuum and in
matter; boundary conditions for Maxwell’s equations.

I Conservation Laws — Continuity equation; Poynting’s Theorem; electrodynamic
momentum and energy.

I Electromagnetic Waves — in vacuum, in polarizable/magnetizable matter, in
conductors, in transmission lines and waveguides.
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Section 1.1 Introduction to Course: Course Material

I Potentials and Radiation — potential formulation; fields and potentials of
moving point charges; radiated electromagnetic waves; antennas.

I Relativity and Electrodynamics — review of special relativity including
relativistic kinematics and collisions, relativistic tensor notation, transformation
of fields, transformation of field tensor, relativistic potentials, relativistic
formulation of Maxwell’s Equations, relativistic dynamics with EM fields,
relativistic conservation theorems.
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Section 1.2 Introduction to Course: Notation; including Deviations from Griffiths

Notation; including Deviations from Griffiths

I We will use standard black text for material that is covered in lecture, while
magenta text will be used for material that is skipped during lecture for which
you remain responsible. We will skip material generally when it consists of
computation or calculation that is tedious to do on the chalkboard, summarizing
the results as necessary. You will need to be able to apply the skipped material
as well as the techniques developed in this skipped material.

I Green text will be used to indicate supplementary material for which you will
not be responsible.

I Griffiths uses boldface notation to indicate vectors and a script ~r to indicate the
difference vector ~r − ~r ′. In order to better match what can be written by hand,
we use ~ rather than boldface for vectors and we use ~R for the difference vector.

I Griffiths uses ~r to refer to the position of the test charge Q and ~r ′ to refer to
the position of the source charge q. This seems unnecessarily confusing. We
instead use q and ~r for the test charge and q′ and ~r ′ for the source charge.

I Griffiths uses δ3(~r) to refer to the delta function in three spatial dimension. We
use δ(~r) for this for reasons that are explained after Equation 2.9.
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Section 2
Review of Basics of Electrostatics

2.1 Study Guidelines
2.2 The Assumed Conditions for Electrostatics
2.3 Coulomb’s Law and the Electric Field
2.4 Gauss’s Law
2.5 The Electric Field has Vanishing Curl
2.6 The Electric Potential
2.7 Aside on Techniques
2.8 Boundary Conditions on the Electric Field and Potential
2.9 Poisson’s and Laplace’s Equations
2.10 Electrostatic Energy
2.11 Electric Conductors
2.12 Capacitors and Capacitance
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Section 2.1 Review of Basics of Electrostatics: Study Guidelines

Study Guidelines

You have seen all the material in this section before in Ph1b. However, the derivations
done there were not as rigorous as they could be because you were simultaneously
learning vector calculus. Our goal in this section is to do more rigorous derivations to
give you some practice in using the mathematical tools. We won’t do any examples in
lecture or the notes because they duplicate Ph1b. But you should make sure you are
comfortable with the examples in Griffiths Chapter 2.
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Section 2.2 Review of Basics of Electrostatics: The Assumed Conditions for Electrostatics

The Assumed Conditions for Electrostatics

Electrostatics is the study of electric fields, potentials, and forces under two
assumptions:

I All electric charges sourcing the electric field are stationary and have been so for
a sufficiently long time that all fields are static and thus the electric field can be
written in terms of the source charges’ current positions.

I The source charges are held fixed and cannot react to the fields from any test
charges that may be stationary or moving relative to the source charges.

We will see later that, when charges are moving, it takes time for the information
about the position to propagate and thus the fields at a given point depend on the
configuration of the charges at earlier times.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Coulomb’s Law and the Electric Field

Coulomb’s Law, Electrostatic Forces, and Superposition

We begin with two empirical facts:

I Coulomb’s Law: the empirical fact that the force on a test charge q at position
~r due to a source charge q′ at ~r ′ is given by Coulomb’s Law:

~F =
1

4π εo

q′ q

R2
R̂ with ~R ≡ ~r − ~r ′ (2.1)

where εo = 8.85 × 10−12 C2 N−1 m−2. The force points along the line from q′

to q as indicated by the sign of the definition of ~R. The electric charge is in the
units of Coulombs (C), which is a fundamental unit that cannot be written in
terms of other fundamental units.

Recall that: we use ~ rather than boldface to indicate vectors; R where Griffiths
uses a script r ; and a different convention from Griffiths for the symbols for the
two charges and their position vectors.

I Superposition: the empirical fact that Coulomb’s Law obeys the principle of
superposition: the force on a test charge q at ~r due to N charges {q′i } at
positions {~r ′i } is obtained by summing the individual vector forces:

~F =
N∑

i=1

~Fi =
N∑

i=1

1

4π εo

q′i q

R2
i

R̂i with ~Ri ≡ ~r − ~r ′i (2.2)

Section 2.3.1 Coulomb’s Law, Electrostatic Forces, and Superposition Page 19



Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

The Electric Field

Given that any test charge q placed at the position ~r feels the same force per unit
charge, we are motivated to abstract away the test charge and define what we call the
electric field at that position ~r :

~E(~r) =
~F

q
=


1

4π εo

q′

R2 R̂ for a single source charge q′ at ~r ′∑N
i=1

1
4π εo

q′i
R2

i

R̂i for N source charges {q′i } at positions {~r ′i }

(2.3)

The electric field has units of N/C.

Section 2.3.2 The Electric Field Page 20



Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Coulomb’s Law for Continuous Charge Distributions

If a charge distribution is continuous, then the natural extension of Coulomb’s Law is
to integrate the electric field or force over the contributions from the infinitesimal
charge elements dq at ~r ′:

~E(~r) =
1

4π εo

∫
1

R2
R̂ dq(~r ′) (2.4)

where ~R varies with the location ~r ′ of dq as the integral is performed. dq is
admittedly undefined here. However, before worrying about that, let us note that the
integrand is a vector and so this integral requires some care: we must break up R̂ into
its components and individually integrate each component. For example, if we use

Cartesian coordinates, then R̂ = x̂
(

R̂ · x̂
)

+ ŷ
(

R̂ · ŷ
)

+ ẑ
(

R̂ · ẑ
)

, and, since the

Cartesian unit vectors do not depend on the location of the infinitesimal charge
dq(~r ′), we may write the integral out as follows:

~E(~r) = (2.5)

1

4π εo

[
x̂

∫
1

R2

(
R̂ · x̂

)
dq(~r ′) + ŷ

∫
1

R2

(
R̂ · ŷ

)
dq(~r ′) + ẑ

∫
1

R2

(
R̂ · ẑ

)
dq(~r ′)

]
which is sum of three integrals with scalar integrands.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Now, consider some specific charge distributions:

I volume charge distribution:

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)

R2
R̂

with ρ(~r ′) having units of C m−3,
~r ′ running over all points in the
volume distribution V, and dτ ′

being the differential volume
element at ~r ′ for V

(2.6)

I surface charge distribution:

~E(~r) =
1

4π εo

∫
S

da′σ(~r ′)

R2
R̂

with σ(~r ′) having units of C m−2,
~r ′ running over all points in the
surface distribution S, and da′

being the differential area element
at ~r ′ for S

(2.7)
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

I line charge distribution:

~E(~r) =
1

4π εo

∫
C

d`′λ(~r ′)

R2
R̂

with λ(~r ′) having units of C m−1,
~r ′ running over all points in the
line distribution C, and d`′ being
the differential length element
at ~r ′ for C

(2.8)

Using the Dirac delta function we will define below, one can write the first two as
special cases of the latter by using delta functions in the dimensions in which the
charge distribution has no extent.
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Aside: The Dirac Delta Function

Relating Equation 2.6 to Equation 2.3 offers us both the opportunity to rigorously
connect them as well as a chance to introduce the Dirac delta function. The Dirac
delta function at ~ro , δ(~r − ~ro ), is defined by what it does when it is multiplied against
an arbitrary function f (~r) and integrated: For any function f (~r) and any volume V
containing the point ~ro , it holds that

∫
f (~r ′) δ(~r ′ − ~ro ) dτ ′ =

{
f (~ro ) ~ro ∈ V
0 ~ro 6∈ V (2.9)

In particular, if f (~r) is unity, then the right side of the above integral is unity for
~ro ∈ V: the integral of a delta function over the volume containing its ~ro is 1, and,
conversely, the integral of a delta function over any volume not containing its ~ro

vanishes.

Section 2.3.4 Aside: The Dirac Delta Function Page 24



Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

Two notes on dimensions and notation:

I In order for the units in the above equation to work out, the delta function
above must have units of m−3. The general rule is that the delta function’s
units are the inverse of those of the differential that its argument says it should
be integrated with. In this case, the argument is a vector in 3D space and the
differential is the differential volume element dτ , and so the delta function has
units of m−3. The units can be subtle, though. If one considers a delta function
that picks out a 2D surface in 3D space (e.g., for collapsing an integral of a
volume charge density to one of a surface charge density), its argument will be a
3D vector, but it should have units of m−1 since it eliminates only one of the
three dimensions. (One example would be if the surface were a sphere; then one
would have δ(r − ro ), implying units of m−1.)

I Griffiths refers to the above delta function as δ3(~r − ~ro ). He does this because
one can think of this delta function in terms of 1D delta functions

δ3(~r − ~ro ) = δ(x − xo )δ(y − yo )δ(z − zo ) where
~r = x x̂ + y ŷ + z ẑ
~ro = xo x̂ + yo ŷ + zo ẑ

(2.10)

We drop the 3 because it is unnecessary: the dimension of the delta function is
implied by its argument, the fact that it picks a single point out of 3D space.
Moreover, the 3 notation is misleading and confusing because it suggests that δ3

is the cube of something that has ~r − ~ro as its argument. It is not!
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Section 2.3 Review of Basics of Electrostatics: Coulomb’s Law and the Electric Field

With the above, if we define the charge distribution for a set of point charges {q′i } at
positions {~r ′i } to be

ρ(~r) =
N∑

i=1

q′i δ(~r − ~r ′i ) (2.11)

then, when we do the integral in Equation 2.6 over any volume V containing all N
charges, we recover the discrete version of the expression for the electric field,
Equation 2.3.

This is seen as follows:

~E(~r) =
1

4π εo

∫
V

N∑
i=1

dτ ′q′i δ(~r ′ − ~r ′i )

|~r − ~r ′|2
~r − ~r ′
|~r − ~r ′|

=
1

4π εo

N∑
i=1

∫
V

dτ ′q′i δ(~r ′ − ~r ′i )
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

N∑
i=1

q′i
~r − ~r ′i
|~r − ~r ′i |3

=
1

4π εo

N∑
i=1

q′i
R2

i

R̂i (2.12)

which recovers Equation 2.3.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Gauss’s Law

Statement of Gauss’s Law

The flux of the electric field through a surface is the integral of the component of the
electric field normal to the surface over the surface:

FS =

∫
S
~E · n̂(~r) da (2.13)

where ~r lies on the surface S and n̂(~r) is the surface normal at that point ~r . Note that
the flux has a sign based on the choice of the orientation of n̂.

Gauss’s Law relates the flux of the electric field through any closed surface to the total
charge enclosed by that surface:

FS =

∮
S
~E · n̂(~r) da =

1

εo

∫
V(S)

dτ ρ(~r) (2.14)

where V(S) is the surface enclosed by S and
∮

indicates the integral over a closed
surface. Our derivation below will take the surface normal direction to be outward
from the closed volume.

Section 2.4.1 Statement of Gauss’s Law Page 27



Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Utility of Gauss’s Law

Gauss’s Law has three uses:

I For charge distributions having some amount of geometrical symmetry, it
provides a way to calculate the electric field that is much easier than brute-force
integration of Coulomb’s Law.

I We will see that it will enable us to relate the electric field’s boundary
conditions at an interface between two volumes (the conditions relating the
electric field components on the two sides of the interface) to the amount of
charge at that interface.

I We can obtain a differential version of it, relating spatial derivatives of the
electric field to the charge density locally. Doing so directly from Coulomb’s
Law is difficult (though not impossible, given what we will prove about the
divergence of Coulomb’s Law!).
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

Proof of Gauss’s Law

The proof offered in Griffiths’ is unnecessarily unrigorous; we follow Jackson §1.3.

c© 1999 Jackson, Classical Electrodynamics

First consider a charge distribution
ρ(~r) that lies completely inside an
arbitrarily shaped closed surface S.
What is the infinitesimal flux through
an infinitesimal portion da of S at
a point ~r due to the infinitesimal
amount of charge in the infinitesimal
volume dτ ′ at the location ~r ′? It is

d2FS(~r , ~r ′) =
1

4π εo

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
· n̂(~r) da (2.15)

The left side is a double differential because the right side is. If one considers the
geometry (see diagram above), one sees that the quantity (~r − ~r ′) · n̂(~r) da/|~r − ~r ′| is
the projected area of the area element da normal to the unit vector (~r − ~r ′) /|~r − ~r ′|
from ~r ′ to ~r . Since |~r − ~r ′|2 is the square of the distance from ~r ′ to ~r , then the
quantity (~r − ~r ′) · n̂(~r) da/|~r − ~r ′|3 is the solid angle dΩ(~r , ~r ′) subtended by da at ~r
as viewed from ~r ′.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

The corresponding mathematical formula is

d2FS(~r , ~r ′) =
1

4π εo
dτ ′ρ(~r ′) dΩ(~r , ~r ′) (2.16)

We know that if we integrate the solid angle over the entire closed surface S
surrounding our source charge point ~r ′, we recover 4π, so:

dFS(~r ′) =
1

4π εo

∮
S

dτ ′ρ(~r ′) dΩ(~r , ~r ′) =
1

εo
dτ ′ρ(~r ′) (2.17)

That is, for any infinitesimal volume element dτ ′ at ~r ′, the flux of the electric field
due to that element through any surface S enclosing it is equal to the charge in that
infinitesimal volume divided by εo .
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

We expect that, due to superposition, if the above is true for the flux due to an
infinitesimal volume of charge, then it holds for the whole distribution of charge
enclosed by S. We can prove this by calculating the flux through S due to the entire
charge distribution, using the fact that the distribution is fully contained inside S (one
of our starting assumptions):

FS =

∮
S
~ES(~r) · n̂(~r) da =

1

4π εo

∮
S

∫
V(S)

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
· n̂(~r) da

=
1

4π εo

∮
S

∫
V(S)

dτ ′ρ(~r ′) dΩ(~r , ~r ′) =
1

4π εo

∮
S

∫
V(S)

d2FS(~r , ~r ′) (2.18)

where ~ES(~r) is the electric field at ~r due to all the charge contained by S. Note that

we implicitly used superposition in the above via the formula relating ~ES(~r) to the
charge distribution. Exchanging the order of integration,

FS =
1

4π εo

∫
V(S)

∮
S

d2FS(~r , ~r ′) =
1

εo

∫
V(S)

dFS(~r ′) =
1

εo

∫
V(S)

dτ ′ρ(~r ′) (2.19)

which is Gauss’s Law.

Note how the proof depended on the 1/r2 dependence of Coulomb’s Law. The proof
could be done in the opposite direction: Gauss’s Law implies Coulomb’s Law. In
general, for any force, there is a simple Gauss’s Law if and only if the force has a 1/r2

dependence. Another example is gravity, as you learned in Ph1a and Ph106a.
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Section 2.4 Review of Basics of Electrostatics: Gauss’s Law

But we are not quite done yet, as we assumed at the start that the charge distribution
vanishes outside of S. Does the result generalize to the case where there is some
charge outside of S so that ~ES receives contributions from that charge? Yes, it does.

Returning to d2FS(~r , ~r ′) (Equation 2.16), suppose we consider a source charge at a
point ~r ′ that lies outside of S. (See diagram below.) Then, for a given point ~r on S
and the solid angle it subtends dΩ(~r , ~r ′) as viewed from the source charge point ~r ′,
there will be second point on S that has the same unit vector to the source charge
point ~r ′ and subtends the same solid angle. But, because the direction of n̂(~r) enters
the expression for d2FS(~r , ~r ′), and the two points subtending the same solid angle
will have opposite signs of n̂, their two contributions cancel. Thus, the integral over S
that yields dFS(~r ′) vanishes for ~r ′ outside of S, and, therefore, the charge
distribution at points outside of S do not contribute to the flux through S, and so our
derivation remains valid.

c© 1999 Jackson, Classical Electrodynamics
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The Divergence of ~E and the Differential Version of Gauss’s Law

You learned about the divergence theorem (Gauss’s theorem) in Ma1abc. Applied to
~E , the divergence theorem says∫

V(S)

~∇ · ~E(~r) dτ =

∮
S
~E(~r) · n̂(~r) da (2.20)

Gauss’s Law tells us
1

εo

∫
V(S)

dτ ρ(~r) =

∮
S
~E(~r) · n̂(~r) da (2.21)

Combining the two, we have∫
V(S)

~∇ · ~E(~r) dτ =
1

εo

∫
V(S)

dτ ρ(~r) (2.22)

Since the above holds for any volume V, the integrands must be equal, giving us the
differential version of Gauss’s Law:

~∇ · ~E(~r) =
1

εo
ρ(~r) (2.23)

We will frequently employ this technique of using an equality between two integrals
over an arbitrary volume or surface to conclude their integrands are equal.
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Direct Proof of Differential Version of Gauss’s Law

We can prove the above differential version by simply calculating the divergence of ~E
using Coulomb’s Law, also. This is of course not independent of Gauss’s Law because
Gauss’s Law is proven using Coulomb’s Law, but it provides some exercise in vector
calculus and leads us to the Dirac delta function. We take the divergence of
Coulomb’s Law for ~E :

~∇ · ~E(~r) = ~∇ ·
∫
V′

1

4π εo

dτ ′ρ(~r ′)

|~r − ~r ′|3
(
~r − ~r ′

)
(2.24)

Now, the integral is over ~r ′ over the volume V ′, but the divergence is calculated
relative to the ~r coordinate, so we can bring the divergence inside the integral. Note
that it does not act on ρ because ρ is a function of ~r ′, not ~r . Thus, we have

~∇ · ~E(~r) =
1

4π εo

∫
V′

dτ ′ρ(~r ′) ~∇ · ~r − ~r ′
|~r − ~r ′|3 (2.25)

One could calculate the above divergence explicitly in any particular coordinate
system. But it is both more rigorous and more instructive to do it using the
divergence theorem.
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We can calculate the integral of the above divergence over some arbitrary volume V
(with surface S, with neither V nor S necessarily related to V ′ and S′), as we need to
do for Gauss’s Law, by exchanging the order of integration (no prohibition on doing so

because we don’t move ~∇ around) and converting the volume integral over ~r to an
easier-to-do surface integral using the divergence theorem:∫

V
dτ ~∇ · ~E(~r) =

∫
V

dτ
1

4π εo

∫
V′

dτ ′ρ(~r ′) ~∇ · ~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V′

dτ ′ρ(~r ′)

∫
V

dτ ~∇ · ~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V′

dτ ′ρ(~r ′)

∮
S(V)

da n̂(~r) · ~r − ~r ′
|~r − ~r ′|3 (2.26)

We can apply to the surface integral the same argument about solid angles that we
used in proving Gauss’s Law. The integrand above is just the solid angle subtended by
the area element da at ~r as viewed from ~r ′. As before, if ~r ′ is inside V, then the
above integral yields the total solid angle, 4π. If ~r ′ is not inside of V, then, for every
area element da at ~r , there is an area element with an equal and opposite
contribution, making the integral vanish. That is,∫

V
dτ ~∇ · ~r − ~r ′

|~r − ~r ′|3 =

{
4π if ~r ′ is inside V
0 if ~r ′ is outside V (2.27)

The divergence in the integrand looks a lot like a delta function; more on that later.
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The above statement says that the integral over V vanishes if ~r ′ is not inside V and
yields 4π if it is inside V. This turns the double integral over V and V ′ into a single
integral over V ∩ V ′:∫

V
dτ ~∇ · ~E(~r) =

1

4π εo

∫
V∩V′

dτ ′ 4π ρ(~r ′) =
1

εo

∫
V∩V′

dτ ′ρ(~r ′) (2.28)

Now, consider points in V but outside V ∩ V ′. Because V ′ is the entire volume
containing charge (by Coulomb’s Law), the charge density vanishes in V − V ∩ V ′. We
can thus add the volume V − V ∩ V ′ without changing the integral of the charge
density because the contribution from the added volume vanishes. This changes the
volume of integration from V ∩ V ′ to V. Therefore,∫

V
dτ ~∇ · ~E(~r) =

1

εo

∫
V

dτ ′ρ(~r ′) (2.29)

The volume V is arbitrary, so the integrands must be equal:

~∇ · ~E(~r) =
1

εo
ρ(~r) (2.30)

which is again the differential version of Gauss’s Law.
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Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under
Inversion of its Argument

We can use the above manipulations to prove another property of the Dirac delta
function. Let’s apply the differential version of Gauss’s Law to the left side of
Equation 2.25, yielding

ρ(~r) =
1

4π

∫
V′

dτ ′ρ(~r ′) ~∇ · ~r − ~r ′
|~r − ~r ′|3 (2.31)

Now, ρ(~r) is an arbitrary function, so we see that the divergence in the integrand acts
like the δ function: it picks out ρ(~r ′ = ~r). Thus, we have also proven

~∇ · ~r − ~r ′
|~r − ~r ′|3 = 4π δ(~r ′ − ~r) (2.32)

(note the ordering of ~r and ~r ′ in the argument of the delta function! ~r is the
equivalent of ~ro in Equation 2.9.) We will find this is a useful property of the delta
function: the delta function is the divergence of the 1/r2 law.

Since the delta function picks out the point where its argument vanishes, it doesn’t
matter what the sign of the argument is. One can prove this explicitly using change of
variables: when the sign of the argument changes, the sign of the differential and of
the limits of integration change also. Those two sign flips cancel each other. Thus

δ(~r ′ − ~r) = δ(~r − ~r ′) (2.33)
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It may seem that this last property is not true given the above relation between the
delta function and a divergence. In particular, let’s flip the sign on the function the
divergence is acting on:

4π δ(~r ′ − ~r) = ~∇ · ~r − ~r ′
|~r − ~r ′|3 = ~∇ · − ~r ′ − ~r

|~r ′ − ~r |3 = −~∇ · ~r ′ − ~r
|~r ′ − ~r |3

?
= −4π δ(~r − ~r ′)

(2.34)

Don’t we have a problem? No, because we failed to recognize that ~∇ takes derivatives
with respect to ~r . Since ~r − ~r ′ just offsets ~r , then the divergence with respect to
~r − ~r ′ is the same as the divergence with respect to ~r . But, when we flip the sign on
~r − ~r ′, we should do the same for the divergence: the divergence should be taken with
respect to ~r ′ − ~r . That flips the sign of the divergence operator: ~∇~r−~r ′ = −~∇~r ′−~r .
Finally, ~r acts like an offset for ~r ′, and so the divergence with respect to ~r ′ − ~r is the
same as with respect to ~r ′. That is:

~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = ~∇~r−~r ′ ·

~r − ~r ′
|~r − ~r ′|3 =

(
−~∇~r ′−~r

)
·
(
− ~r ′ − ~r
|~r ′ − ~r |3

)
= ~∇~r ′ ·

~r ′ − ~r
|~r ′ − ~r |3

Therefore: 4π δ(~r ′ − ~r) = ~∇~r ·
~r − ~r ′
|~r − ~r ′|3 = ~∇~r ′ ·

~r ′ − ~r
|~r ′ − ~r |3 = 4π δ(~r − ~r ′) (2.35)

Note this technique of applying an offset; we will use it again.

Errors of the above type are easy to make and not self-evident! Mathematics in
physics is not just symbol manipulation: there is meaning that must be understood in
order to be sure those manipulations are justified.
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The Electric Field has Vanishing Curl

Calculating the Curl of the Electric Field

The curl of ~E can be shown to vanish simply by calculating it for an arbitrary charge
distribution:

~∇× ~E(~r) =
1

4π εo

~∇×
∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3

=
1

4π εo

∫
V

dτ ′ρ(~r ′) ~∇× ~r − ~r ′
|~r − ~r ′|3 (2.36)

We could brute-force calculate the curl in the integrand in Cartesian or spherical
coordinates, but that would be painful because the function on which the curl is
acting has no symmetry in the ~r coordinate system.
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Let’s take a simpler, more geometric, and more intuitive approach. As we saw above,
~r ′ is just an offset to ~r , thus

~∇~r ×
~r − ~r ′
|~r − ~r ′|3 = ~∇~r−~r ′ ×

~r − ~r ′
|~r − ~r ′|3 (2.37)

Note that, in doing this offset, the curl will be expressed in terms of the components
of ~r − ~r ′. This does not change the bounds of integration, but it may make the
expression look complicated because the variable of integration is still ~r ′. Since we
will show this expression, the integrand, vanishes, this bookkeeping complication is not
important. If we define ~s = ~r − ~r ′, then we have

~∇~r ×
~r − ~r ′
|~r − ~r ′|3 = ~∇~s ×

~s

s3
(2.38)

Now, the function on which the curl is acting has symmetry in the coordinate system
in which the curl is acting, and hence the calculation will be simplified. You can
probably see intuitively that the above curl vanishes, but let’s prove it. (Note also that
the change of variables would require a change to the limits of integration, but, again,
because we will prove the integrand will vanish, this bookkeeping complication will not
be important.)
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With the above form, we can trivially apply the formula for the curl in spherical
coordinates, which is listed in Griffiths. For the sake of being explicit, that formula is

~∇× ~v =
1

r sin θ

[
∂

∂θ

(
vφ sin θ

)
− ∂vθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂vr

∂φ
− ∂

∂r

(
r vφ

)]
θ̂

+
1

r

[
∂

∂r
(r vθ)− ∂vr

∂θ

]
φ̂ (2.39)

Don’t get confused between ~s and ~r ; the r derivatives and subscripts refer to the
radial coordinate of the coordinate system in which the curl is being taken. In our
case, s is the radial variable and the radial component of ~s/s3 is 1/s2. Thus, ~v has
only a radial component and that radial component depends only on the radial
distance from the origin. All the derivatives involving the θ and φ components of ~v
vanish because the components themselves vanish, and the derivatives involving the
radial component vanish because those derivatives are with respect to θ and φ. (Don’t
be confused: ~v itself depends on θ and φ because the direction of ~v depends on them;
but the curl formula takes care of that dependence.)

Thus, we have ~∇~s × (~s/s3) = 0 and the integrand in Equation 2.36 vanishes. So:

~∇× ~E(~r) = 0 (2.40)

Note again that we did not brute-force differentiate, but rather we thought about how
to simplify the calculational aspect (via origin offset) and then saw that made the
result both geometrically/intuitively obvious and easier to demonstrate via calculation.
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The Line Integral of the Electric Field

Stokes’ Theorem (a mathematical theorem we will not prove here but that you saw in
Ma1abc) then tells us that, for any surface S with boundary C(S),∮

C(S)
d ~̀ · ~E(~r) =

∫
S

da n̂(~r) ·
[
~∇× ~E(~r)

]
= 0 (2.41)
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The Electric Potential

Electric Potential Definition using Line Integral

We used above the fact that the line integral of the electric field
around any closed loop C vanishes. If we consider two points along
the loop ~r1 and ~r2, C defines two paths along the loop from ~r1 to
~r2, C1 and C2. Let’s difference the line integrals along these two
paths, using the vanishing of the line integral around the loop to
see that the difference vanishes:∫ ~r2

C1,~r1

d ~̀ · ~E(~r)−
∫ ~r2

C2,~r1

d ~̀ · ~E(~r) =

∫ ~r2

C1,~r1

d ~̀ · ~E(~r) +

∫ ~r1

C2,~r2

d ~̀ · ~E(~r)

=

∮
C

d ~̀ · ~E(~r) = 0 (2.42)

(Be careful again about the endpoint ordering and signs of the two terms!) Therefore,

∫ ~r2

C1,~r1

d ~̀ · ~E(~r) =

∫ ~r2

C2,~r1

d ~̀ · ~E(~r) (2.43)
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The above relation tells us that the value of the above line integral depends only on
the location of its endpoints, not on the path taken. Thus, we can construct a
function, the electric potential, V (~r), defining it via its differences between points:

V (~r2)− V (~r1) ≡ −
∫ ~r2

~r1

d ~̀ · ~E(~r) (2.44)

The fundamental theorem of calculus for line integrals in multiple dimensions implies

V (~r2)− V (~r1) =

∫ ~r2

~r1

d ~̀ · ~∇V (~r) (2.45)

where ~∇V (~r) is the gradient of the electric potential. The above two formulae hold
regardless of choice of endpoints and path, so the integrands are equal and we have

~E(~r) = −~∇V (~r) (2.46)

which can be viewed as an alternate definition of the potential. The offset of V (~r) is

not defined because it has no influence on ~E(~r), which is the quantity we began with
from Coulomb’s Law.

The electric potential has units of (N m/C) = (J/C), which we call the volt, V. (The
appearance of J will be important when we discuss electric potential energy.) The
electric field is frequently written in units of V/m instead of N/C.
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Relation of the Electric Potential to the Charge Distribution

We know two things now:

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 and V (~r2)− V (~r1) ≡ −

∫ ~r2

~r1

d ~̀ · ~E(~r)

We can use these to obtain an explicit expression for the potential in terms of the
charge distribution. In practice, trying to do the line integral explicitly using the
definition of ~E is tedious and not illuminating.

Instead, let us use our understanding of the meaning of the mathematical expression
~E(~r) = −~∇V (~r) to make an Ansatz. If we have a point charge at the origin, then the
electric field points radially outward and falls off as 1/r2. What function’s derivative
gives that dependence? V (~r) = 1/r . This suggests to us

V (~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
1

|~r − ~r ′| (2.47)

We may then prove explicitly this form is correct by taking the gradient.

Section 2.6.2 Relation of the Electric Potential to the Charge Distribution Page 46



Section 2.6 Review of Basics of Electrostatics: The Electric Potential

First, pass ~∇ inside the integral because it is ~∇~r while the variable of integration is ~r ′:

−~∇~r V (~r) = − 1

4π εo

∫
V

dτ ′ρ(~r ′) ~∇~r
(

1

|~r − ~r ′|

)
(2.48)

As we did earlier when calculating ~∇× ~E , we change variables to ~s = ~r − ~r ′ to
evaluate the gradient:

~∇~r
(

1

|~r − ~r ′|

)
= ~∇~r−~r ′

(
1

|~r − ~r ′|

)
= ~∇~s

1

s
= − ŝ

s2
= − ~r − ~r ′
|~r − ~r ′|3 (2.49)

where we used the formula for the gradient in spherical coordinates from Griffiths:

~∇T (~r) =
∂T

∂r
r̂ +

1

r

∂T

∂θ
θ̂ +

1

r sin θ

∂T

∂φ
φ̂ (2.50)

Hence, we see that our form for V (~r) yields the correct electric field:

−~∇V (~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 = ~E(~r) (2.51)
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Comments on the Electric Potential

I The electric potential obeys superposition
This is trivial consequence of superposition for the electric field: because the
electric potential is a linear function of the electric field, and integration is a
linear operation, superposition for the electric field transfers to superposition for
the electric potential. One can also see it from Equation 2.47, where the
potential is a linear function of the charge density.

I Definition of potential offset
There are two typical choices. When the charge distribution is confined to a
finite volume, the electric field vanishes at infinity, which suggests one should
define the electric potential to vanish at infinity too. When the charge
distribution is not confined (e.g., a uniform electric field over all of space), it is
typical to choose the origin to be the point at which the potential vanishes. Any
other point would work, too, but will generally make the explicit functional form
of V (~r) unnecessarily complicated if one is interested in using the above integral
expression. There will be situations, however, where such a choice is the most
convenient.

I Utility of the electric potential
The electric potential is scalar, not a vector, function, and thus applying
superposition to calculate the potential due to a charge distribution, followed by
taking the gradient to find the electric field, is usually much simpler than
explicitly calculating the electric field.
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Aside on Techniques

It is important to recognize how we almost uniformly avoided brute-force calculations
of divergences, curls, and gradients so far. The only times we did those calculations
explicitly were when we had rendered the calculations trivial. A key part of doing
E&M successfully and with minimal pain is avoiding algebra and calculus whenever
possible and instead making use of clever arguments of the type we used above. Only
do algebra and calculus as a last resort! There are two reasons for this.

First, the kinds of arguments we used are more physical and help you develop
intuition. For example, in proving the differential version of Gauss’s Law, at no point
did we explicitly take derivatives of ~E ! Incredible, right? Instead, we proved that the
divergence of the 1/r2 law is the delta function (again, not explicitly, but by referring
to the geometric proof we made for the integral version of Gauss’s Law) and used that
fact. We could have done the brute-force calculation in Cartesian coordinates, and it
would have given the same result. But you would have derived no intuition from it.

Second, brute-force calculations are prone to oversights — like the one about the sign
flip on ~∇ in the delta-function symmetry derivation — as well as bookkeeping
mistakes — algebraic sign flips, misapplications of the product and chain rules, etc.
Doing brute-force calculations does not help you understand physics, or even
mathematics. Of course, sometimes brute-force calculations are needed, but try to
avoid them, and keep your wits and intuition about you as you do them!

It takes time to learn how to work this way, but we do derivations (rather than just
quote results) so you can learn these techniques.
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Boundary Conditions on the Electric Field and Potential

While Gauss’s Law makes it possible to determine the electric field for charge
distributions with sufficient symmetry, the more important application of Gauss’s Law
and the vanishing of ~∇× ~E is to obtain generic information on the behavior of the
electric field and potential across an interface between two regions.
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Boundary Condition on the Normal Component of the Electric Field

c© 1999 Jackson, Classical Elec-

trodynamics

Construct a Gaussian cylinder of infinitesimal height
dz whose axis is normal to the interface under ques-
tion at the point of interest. Let n̂ be the surface
normal at ~r , with orientation from region 1 to region
2. Let’s calculate the flux through the cylinder’s
(non-infinitesimal) faces S1 and S2:

F =

∫
S1

da (−n̂(~r)) · ~E1(~r)

+

∫
S2

da n̂(~r) · ~E2(~r) (2.52)

where ~E is evaluated over the two faces. We neglect the flux through the cylindrical
wall because we will let dz vanish in the end and so its area will vanish and it will
contribute no flux. We momentarily make the assumption that there is no charge
density that is singular in the direction parallel to the interface — i.e., point charges or
a line charge density — so that we don’t have to worry about possible singularities in
the electric field that might complicate the flux calculation. We allow only a surface
charge density, which is delta-function singular in the z dimension but not in the
dimensions parallel to the interface.
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For Gauss’s Law, the volume integral of the charge density enclosed has two
contributions: from the non-delta-function-like volume charge density in the
half-cylinders and from any delta-function-like surface charge density on the surface.
The contribution of the former will vanish as we let dz → 0. The latter converts the
volume integral to a surface integral:

F =
1

εo

∫
V

dτ δ(~r − S)σ(~r) =
1

εo

∫
S

da σ(~r) (2.53)

where S is the area at the interface intersected by the cylinder. (Note that this is a
case where the delta function’s argument requires some interpretation to understand
the delta function’s units. It is the S in the argument that implies the function has
units of m−1 rather than m−3: it is picking out a surface rather than a point and thus
changing the units by one power of distance, not three.) Equating the two expressions
for F , letting dz → 0, and seeing that S1,S2 → S as dz → 0 in the flux integral yields∫

S
da n̂(~r) ·

[
~E2(~r)− ~E1(~r)

]
=

1

εo

∫
S

da σ(~r) (2.54)
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This holds for any choice of cylinder and thus any S, so the integrands must be equal:

n̂(~r) ·
[
~E2(~r)− ~E1(~r)

]
=

1

εo
σ(~r) (2.55)

That is, the change in the normal component of the electric field across the interface
is proportional to the surface charge density at the interface. If there is no surface
charge at the interface, this component of the electric field must be continuous.
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Let’s now reconsider the condition we placed at the start of the derivation, that there
be no charge density at the intersection of the cylinder and interface that is singular in
the dimension parallel to the interface, which could consist of a set of point charges
and/or a line charge density.

If that charge density is not at the contour C consisting of the intersection of the
cylinder’s wall and the interface, then the flux of its field remains entirely calculable. It
may cause σ(~r) to have a delta-function singularity in one or two dimensions parallel
to the interface, but no part of the derivation fails. We simply allow that type of σ(~r)
in Equation 2.55.

If the parallel-dimension-singular charge density is on C, then things are bit more
complicated. If we consider the flux through the cylindrical wall anywhere but on the
charge density, that flux vanishes because the field of the charge density is always
parallel to the cylindrical wall as dz → 0. What about on the charge density?
Answering this question in a mathematically explicit fashion — i.e., by calculation —
is difficult, as the field not only becomes singular at this point but the direction of the
singular field depends on the direction from which one approaches the charge. One
can, however, conclude from this indeterminancy that there cannot be a contribution
to the flux, as it would imply that the field direction is not indeterminate so that n̂ · ~E
can be nonzero. This is a mathematically valid proof by contradiction. Thus, such
charge distributions do not affect the derivation and Equation 2.55 continues to hold.

We will see the above expectation confirmed in practice when we compare the
potential for the point charge near the grounded sphere derived by method of images
(which does not rely on Equation 2.55 in the case of such a singular charge
distribution) and by separation of variables (which does).
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Boundary Condition on the Tangential Component of the Electric Field

c© 1999 Jackson, Classical Electrody-

namics

Construct a rectangular loop C with two legs normal
to the interface of interest (i.e., along n̂(~r) at posi-
tions ~ra and ~rb) having infinitesimal length dz and
two (non-infinitesimal) legs parallel to the interface
C1 and C2. Let t̂(~r) denote the normal to the loop
area (so n̂(~r) · t̂(~r) = 0). t̂ will set the orientation
of the line integral we will do around the loop fol-
lowing the right-hand rule. The loop legs C1 and
C2 parallel to the interface are parallel to the vector
ŝ(~r) = t̂(~r)× n̂(~r). Let’s calculate the line integral

of ~E along this loop (referencing the diagram: ~ra at
the lower right, ~rb at the upper left):

∮
C

d ~̀ · ~E(~r) =

∫ ~ra−n̂(~r) dz
2

C1,~rb−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ (2.56)

where we neglect the contributions from the infinitesimal legs because they will vanish
as dz → 0. (We may apply arguments similar those just used in the derivation of the
normal field boundary condition to show that these legs contribute nothing even in the
case of a charge density at the interface with a delta-function singularity in the
dimension parallel to the interface.)
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Be careful about the signs of the integrals: d ~̀ for an open contour acquires its
orientiation from the the ordering of the endpoints; it has no intrinsic orientation
until this ordering is specified. Therefore, the sign of d ~̀ and of the endpoint ordering
do not multiply; they are redundant. Specifically, in this case, the endpoints imply
that d ~̀ points along +ŝ for the second term and −ŝ for the first term and thus that
the integrands have opposite sign. Do not then think that the opposite polarity of the
endpoint ordering of the two terms implies another relative sign between the two
integrals, with the two relative signs canceling!
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The vanishing of the curl of the electric field implies the left side of the equation is
zero.

We can combine the two terms on the right side by changing the endpoint ordering on
the first term and recognizing that C1 → C2 as dz → 0 (remember: C1 and C2

themselves have no orientation: the orientation of the line integrals is set by the
ordering of the endpoints). Thus, we have

0 = −
∫ ~rb−n̂(~r) dz

2

C1,~ra−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ dz→0−→
∫ ~rb

C2,~ra

[
~E2(~r)− ~E1(~r)

]
· d ~̀

With this ordering of the endpoints, we may identify d ~̀= ŝ(~r) ds. Since the contour
C2 is arbitrary, the integrand must vanish, yielding

ŝ(~r) ·
[
~E2(~r)− ~E1(~r)

]
= 0 (2.57)

This expression holds for any t̂ and thus ŝ parallel to the surface, so it tells us that the
tangential component of the electric field is continuous across any boundary
(regardless of whether there is surface charge present).

Section 2.8.2 Boundary Condition on the Tangential Component of the Electric Field Page 57



Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Conditions on the Electric Potential

From our definition of the electric potential as the line integral of the electric field, and
the corollary ~E = ~∇V , we can derive boundary conditions on the electric potential:

I Continuity of the electric potential
The electric potential is the line integral of the electric field. If we think about
calculating the discontinuity in V by integrating ~E · n̂ d` across the boundary, we
recognize that, as the length of the path goes to zero, the only way to prevent
the integral from vanishing is if ~E · n̂ is not only nonzero but delta-function
singular. The only place that can conceivably happen is at a point where a
charge density becomes singular in at least one dimension (point charge or linear
or surface charge density). In the same way as we argued in the derivation of
the normal field boundary condition, Equation 2.55, we may also argue here that
this quantity ~E · n̂ still vanishes and thus V is always continuous.

We do note that, while V could become infinite near these charge densities, it
must approach infinity from both sides of the boundary in the same way, and
thus it remains continuous. We will see this in the example of the point charge
near the grounded sphere when we do separation of variables in spherical
coordinates.
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I Change in the normal gradient
This is just a direct rewriting of the boundary condition on the normal
component of the field, Equation 2.55:

1

εo
σ(~r) = n̂(~r) ·

[
~E2(~r)− ~E1(~r)

]
= n̂(~r) ·

[
−~∇V2(~r) + ~∇V1(~r)

]

=⇒ n̂(~r) ·
[
~∇V2(~r)− ~∇V1(~r)

]
= − 1

εo
σ(~r) (2.58)

Note the sign!

I Continuity of the tangential gradient
Again, this follows directly from the continuity of the tangential component of
the electric field, Equation 2.57:

0 = ŝ(~r) ·
[
~E2(~r)− ~E1(~r)

]
= ŝ(~r ·

[
−~∇V2(~r) + ~∇V1(~r)

]
=⇒ ŝ(~r) ·

[
~∇V2(~r)− ~∇V1(~r)

]
= 0 (2.59)
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Poisson’s and Laplace’s Equations

It is natural to rewrite Gauss’s Law in terms of the electric potential:

1

εo
ρ(~r) = ~∇ · ~E(~r) = −∇2V (~r) (2.60)

Rewritten more cleanly:

∇2V (~r) = − 1

εo
ρ(~r) (2.61)

This is known as Poisson’s Equation.

Poisson’s Equation is a partial differential equation. You know from basic calculus that
a differential equation alone is not sufficient to obtain a full solution V (~r): constants
of integration are required. For partial differential equations in multiple dimensions,
the constants of integration are given by specifying boundary conditions, conditions for
how the solution or its derivatives must behave on the boundary of the volume in
which we are specifying ρ(~r) and would like to determine V (~r).
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Our expression for the potential in terms of the charge distribution, Equation 2.47, is
the explicit solution to this equation for a particular boundary condition, V (~r)→ 0 as
r →∞. Section 3.11 will develop the concept of a Green Function, which is the
generic tool for solving Poisson’s Equation for arbitrary boundary conditions.

When there is no charge and the right side vanishes, Equation 2.61 is known as
Laplace’s Equation. The importance of this equation is that it implies that, in a region
where there is no charge, the second derivative vanishes everywhere, which implies
there can be no local maxima or minima (they would require a positive or negative
second derivative). We will prove this explicitly in Section 3.1.

For completeness, let’s also rewrite the curl-freeness of the electric field in terms of
the electric potential. There is a mathematical theorem that the curl of a gradient
always vanishes:

~∇× (−~∇V ) = 0 (2.62)

This is not surprising, as the vanishing of the curl of ~E is the mathematical property of
~E that allowed us to define the potential as a line integral, which then allowed us to
write ~E as the gradient of the potential. The above must be true for self-consistency.
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Electrostatic Energy

Electric Potential Energy of a Point Charge in an Electric Field

Consider moving a point charge from ~r1 to ~r2 along a contour C. The work done on
the charge is given by doing the line integral of the negative of the electric force along
the path because that is the mechanical force that has to be exerted to move the
charge against the electric force ~Fe :

W12 = −
∫ ~r2

C,~r1

d ~̀ · ~Fe (~r) (2.63)

The force is related to the electric field, and so we have

W12 = −q

∫ ~r2

C,~r1

d ~̀ · ~E(~r) = q [V (~r2)− V (~r1)] (2.64)

That is, the work done on the charge by the mechanical force in going from ~r1 to ~r2 is
given by the charge times the change in electric potential between the two positions.
Note the sign: if the potential is higher at the end point, then the work done was
positive.
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Of course, this lets us to define the electric potential energy by

U(~r2)− U(~r1) = q [V (~r2)− V (~r1)] (2.65)

That is, the electric potential energy of the charge and the electric potential of the
field are simply related. Since it was defined in terms of work done against a force,
electric potential energy obviously has units of Joules (J). That is explicit in the above
form, which is C (N m/C) = (N m) = J.

Note that the electric field can also do work on the charge. In this case, the sign in
the above line integral for the work is flipped and work is done as the charge loses
potential energy. In this case, the work done by the electric field on a charge is what
gives it the kinetic energy it has at the end: the electric potential energy is converted
to mechanical kinetic energy.
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Electric Potential Energy of a Charge Distribution

How much work must be done to assemble a distribution of charge? This energy is
most easily understood by first considering the assembly of a set of point charges
one-by-one by bringing them in from infinity. When the ith charge is brought in, work
must be done against the electric field of the first i − 1 charges. Put another way, the
ith charge starts with zero potential energy and ends with potential energy

Ui =

i−1∑
j=1

qi
1

4π εo

qj

|~ri − ~rj |
(2.66)

Thus, the total potential energy is

U =
1

4π εo

N∑
i=1

i−1∑
j=1

qi qj

|~ri − ~rj |
=

1

8π εo

N∑
i,j=1,i 6=j

qi qj

|~ri − ~rj |
(2.67)

where the factor of 1/2 was introduced to allow i and j to both run from 1 to N.
Generalizing this to a continuous charge distribution, we have

U =
1

8π εo

∫
V

dτ

∫
V

dτ ′
ρ(~r) ρ(~r ′)

|~r − ~r ′| (2.68)
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Electric Potential Energy in Terms of the Electric Field

We can use the relations between potential, field, and charge density (Equations 2.6,
2.47, and 2.61) and the divergence theorem (Equation 2.20) to obtain an alternate
expression for the electric potential energy in terms of the electric field as follows:

U =
1

8π εo

∫
V

dτ

∫
V

dτ ′
ρ(~r) ρ(~r ′)

|~r − ~r ′| =
1

2

∫
V

dτρ(~r) V (~r) = − εo

2

∫
V

dτ
[
∇2V (~r)

]
V (~r)

ibp
= − εo

2

∫
V

dτ ~∇ ·
[
V (~r) ~∇V (~r)

]
+
εo

2

∫
V
|~∇V (~r)|2 with

ibp
= ≡ integration by parts

divergence
theorem

=
εo

2

∫
S(V)

da n̂ ·
[
V (~r) ~E(~r)

]
+
εo

2

∫
V
|~∇V (~r)|2 (2.69)

In the last line, the first term is an integral of the product of the potential and the
field at the surface of the volume. In order to get the full energy of the charge
distribution, V must include all the charge. If we assume the charge distribution is
restricted to some finite volume, then V is naturally the volume containing the charge
distribution. But we can add volume that does not contain charge because it
contributes nothing to the initial expression for the electric potential energy.
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Therefore, we replace V with all of space and let S go to infinity:

U =
εo

2

∫
r→∞

da n̂ ·
[
V (~r) ~E(~r)

]
+
εo

2

∫
all space

|~∇V (~r)|2 (2.70)

Because the charge distribution is restricted to the finite volume V and thus looks like
a point charge as r →∞, the field and potential fall off like 1/r2 and 1/r . The surface
area of S only grows as r2, so the integral goes like 1/r and thus vanishes as r →∞.
(If the charge distribution is not restricted to a finite volume, the surface term may
not vanish, requiring one to either keep the surface term or use the initial expression.)

It may seem strange that we can make this choice of S, as changing V and S affects
both integrals in the last expression. The explanation is that the choice of S changes
the two integrals but leaves their sum constant, and taking S to infinity simply zeros
out the first integral, leaving only the contribution of the second integral.

We thus find

U =
εo

2

∫
|~E(~r)|2 (2.71)

where the integral is over all of space. Correspondingly, the quantity u = εo
2
|~E |2 is an

energy density. We interpret this form as indicating that the potential energy created
by assembling the charge distribution is stored in the field: less charge implies a
smaller field and therefore less potential energy.
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Superposition and Electric Potential Energy

Because the electric potential energy is a quadratic function of the charge distribution
or the electric field,

electric potential energy does not obey superposition

The energy of a sum of fields is more than just the sum of the energies of the
individual fields because there are cross terms due to the potential energy of the
charges in one another’s fields.
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Self-energy and Point Charges vs. Continuous Charge Distributions

We were slightly cavalier in going from Equation 2.67 to Equation 2.68 in that the
“self-energy” term i = j that was not included in the former did get included in the
latter. In the point-charge version, this term is infinite because the denominator
vanishes. In the continuous distribution version, ρ(~r) ρ(~r ′) dτ → 0 as |~r − ~r ′| → 0 as
long as ρ remains finite over all space, and thus there is no infinite contribution. (If ρ
included a delta function, as would be necessary to represent a point charge, then it
would produce an infinite contribution because the integral would yield δ(~0)/0.) Thus,
we must be careful and choose the appropriate formula depending on the situation.

The infinite self-energy of a point charge reflects the fact that we do not know how to
assemble a point charge. In fundamental particle physics, the existence of point
charges such as the electron is an assumption, not a consequence, of the theory. In
fact, there is scheme, called “renormalization,” by which the infinite self-energy one
calculates for such a charge from Equation 2.71 is “subtracted off” in a self-consistent
fashion across all situations. While this practice is accepted and applied carefully, it is
not understood. String theory, which postulates that all particles are actually vibrating
string-like objects with finite extent, may offer a solution, but string theory currently is
not complete — it does not offer a way to calculate the Standard Model — and there
is no explicit proof it is correct.
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Electric Conductors

Definition and Behavior of a Conductor

We now talk about electric conductors, both because they are interesting and because
they provide a first opportunity to use boundary conditions to determine properties of
the charge distribution, field, and potential. Notice that we derive these properties
without explicit calculations!

An electric conductor is defined to be a material in which charge is able to flow
completely freely in response to an external electric field. It is assumed, a priori, to
contain equal and opposite amounts of positive and negative electric charge that
perfectly cancel everywhere in the absence of an electric field (ρ = 0) but that can
separate in response to an electric field. One can add charge to a conductor explicitly.

Without any calculation, we know what the response of the conductor will be to an
externally applied electric field: If there is any field present in the conductor, positive
and negative charge densities will separate in response to the field. That separation
results in an additional field whose direction is opposite the applied field because of
the direction the two polarities of charge move in response to the applied field. This
movement occurs until the sum field vanishes, at which point there is no further force
on the charges and the system becomes static. Therefore, ~E = 0 inside any conductor.
Note the lack of distinction between the applied field and the field created by the
charges: each charge is only sensitive to the total field, so it is the total field that
must vanish inside the conductor. The charges arrange themselves so their
contribution to the total field cancels that of the applied field.
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Derived Properties of a Conductor

We may derive the following conductor properties from the fact that ~E = 0 inside a
conductor everywhere:

I ρ also vanishes inside a conductor
This follows directly from Gauss’s Law: because ~E = 0 everywhere in the
interior, then ~∇ · ~E = ρ/εo also vanishes.

Another way of seeing this, at least for a conductor with no net charge, is that,
if there were a nonzero ρ, then there must be an equal and opposite amount of
charge elsewhere in the conductor because the conductor is neutral overall. An
electric field would appear between the oppositely signed charge distributions,
contradicting the ~E = 0 condition. Alternatively, the opposite charge will be
attracted to the nonzero ρ by the field and move to cancel it until the field
vanishes.
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I Any net charge or induced charge resides on the surface
The picture we described before, of charge separation being induced by the
external field, does imply that there may be such induced charge on the surface.
This does not violate Gauss’s Law because ~E may be nonzero outside the
conductor and thus one has to be careful in calculating ~∇ · ~E at the conductor
boundary (we must resort to the boundary conditions we derived,
Equations 2.55 and 2.57).

Also, if we intentionally add charge to a conductor, it must also move to the
surface by the same Gauss’s Law argument. An alternative, microscopic way of
seeing this is that, if we add charge to a neutral conductor, which has no electric
field or charge density in its interior, the added charge repels itself, pushing itself
to the exterior (as far as it can go without leaving the conductor). An
alternative picture is that the added charge attracts charge from the surface to
cancel it, leaving net charge on the surface. Regardless, the added charge that
now appears on the surface arranges itself so there is no net field in the interior.

Aside: As Griffiths notes in a footnote, this property can be interpreted to be a
consequence of the fact that the electric field obeys the Coulomb’s Law 1/r2

dependence in three dimensions (from which we derived Gauss’s Law, which we
used above in the proof). In a different number of dimensions, or with a
different dependence on r , we would not have been able to derive Gauss’s Law!
There will be a homework problem considering conductors when Coulomb’s Law
is modified.
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I A conductor has the same electric potential everywhere
That is, a conductor is an equipotential. This occurs because ~E vanishes
everywhere in the conductor: any line integral of ~E between two points must
therefore also vanish. The conductor may have a nonzero electric potential, but
the value is the same everywhere.

One can see this using the gradient, too. If V were not constant in the
conductor, there would be a nonzero ~E = −~∇V , which we said above is not
allowed.

I The electric field just outside a conductor is always normal to its surface
This arises from the boundary conditions we derived, Equations 2.55 and 2.57.
Since ~E vanishes inside the conductor, and the tangential component of ~E is
continuous across any interface, the tangential component must vanish just
outside the conductor, too. There is no such condition on the normal component
because there may be an induced or net surface charge density σ on the surface.

Another way of looking at this is is that an electric field tangential to the
surface would cause charge to move along the surface until that tangential
component vanished. No such argument applies to the normal component
because the charge is no longer free to move normal to the surface when it sits
at the surface — it cannot leave the conductor.
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Conductors with Cavities

The mental image we have so far is of a conductor that has no cavities inside of it.
What additional properties can we derive for a conductor with cavities?

I A charge q inside a cavity in a conductor results in an equal induced charge q
on the surface of the conductor

c© 2013 Griffiths, Introduction

to Electrodynamics

To see this, construct a surface S that lies inside the
conductor but also contains the cavity. The electric
field vanishes on S because it is in the conductor,
so the net charge enclosed must vanish. Since a
charge q is inside the cavity, there must be a cancel-
ing charge −q inside S. Since S can be shrunk to be
arbitrarily close to the inner surface without chang-
ing this statement, the induced charge must lie on
the inner surface of the cavity.

Since −q has appeared on the inner surface, we know, by neutrality of the
conductor, there must be a charge +q elsewhere on the conductor. If we now
expand S to approach the outer surface, the above statement about −q inside
S continues to hold, so the only place +q can be is on the outer surface.
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The exact distribution of q on the surface depends on the geometry. For cases
with some symmetry, we may be able to guess the solution easily.

Consider a conductor with a spherical outer surface. Since there are no field
lines inside the conductor, there is no way the charge in the cavity or on the
inner surface of the conductor can influence the distribution of charge on the
outer surface, even if the inner cavity is non-spherical and/or the charge is not
placed at the center of the cavity. Thus, the charge must distribute itself on the
outer surface of the conductor in the same way as it would if charge +q were
added to a spherical conductor with no cavity. By symmetry, that distribution is
uniform with surface charge density σ = q/4π r2.

Note, however, that, in general, the charge on the inner surface of the conductor
will not be distributed uniformly. It will only be uniform if the inner surface is
spherical and the charge in the cavity is at the center of the cavity, as this
situation has symmetry. (Note that the shape of the outer surface, or the inner
cavity’s location with respect to the outer surface, have no impact, for the same
reasons as the inner cavity does not affect the distribution of charge on the
outer surface.) In any other case, the field lines from the charge in the cavity
will exhibit no symmetry as they terminate on the cavity wall and therefore the
surface charge required to cancel those field lines in the conductor will have no
symmetry.
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I If there is no net charge inside a cavity in a conductor, the electric field inside
the cavity vanishes, independent of the external field applied to or net charge
added to the conductor

c© 2013 Griffiths, Introduc-

tion to Electrodynamics

We use proof by contradiction. Assume there is a
nonzero electric field in the cavity. Since there is no
charge in the cavity, the field lines must start and end
on charges on the surface of the cavity. Therefore,
there is a path through the cavity with

∫
d ~̀ · ~E 6=

0. Now close the path with a segment inside the
conductor. This portion of the now-closed loop C
contributes nothing to the line integral

∮
C d ~̀· ~E over

the entire loop because ~E = 0 inside the conductor.
Since

∮
C d ~̀ · ~E = 0, the contribution from inside

the cavity must vanish also. Contradiction. So the
assumption ~E 6= 0 in the cavity must be false.

Aside 1: Note the technique of proof by contradiction, which we will use again
in E&M.

Aside 2: This fact is used for shielding of experiments from external electric
fields (and also electromagnetic waves) and is called a Faraday cage. Note that
the conductor can have some net charge on it (and correspondingly sit at some
nonzero electric potential with respect to infinity) and this property still holds.
As we will see later, it also holds in the presence of external electromagnetic
waves, which is the more typical and important application.
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Surface Charge and the Force on the Surface of a Conductor

Our boundary condition for the normal component of the electric field combined with
the fact that the electric field vanishes inside a conductor tells us that the electric field
infinitesimally above the surface of the conductor is

~E =
σ

εo
n̂ (2.72)

where n̂ points from the inside to the outside of the conductor.

There is a charge density σ at this point, and an electric field above it, so is there a
force on the charge? Yes, but the calculation is subtle. The thing to recognize is that
the small element of charge σ da in an infinitesimal area da cannot exert a force on
itself. The field to which this element of charge is subject is the field of the charge
distribution excluding it. We find this field by finding the field of this charge element
and subtracting it from the total field. This is an example of one of the indirect
approaches we must apply in E&M: a brute-force approach will not be successful or
generic.
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We know (Griffiths Example 2.5) that the electric field of a charge sheet in the xy

plane is ~E = ±(σ/2 εo ) ẑ where the sign applies depending on whether z > 0 or z < 0.
While the small patch we are considering is not an infinite sheet, it looks like one if we
are infinitesimally close to it. We also know ~Eother must be continuous at the charge
element because, in the absence of that charge element, there is no charge at the
boundary and thus no surface charge density to cause a discontinuity in the normal
component. (Note that we do not claim we know ~Eother , only that we know that it
has this continuity property!) Thus, we may write the equations

~Eoutside = ~Eother +
σ

2 εo
n̂ ~Einside = ~Eother −

σ

2 εo
n̂ (2.73)

where ~Eother is the field due to the rest of the charge distribution excepting da and,
because of its continuity, the same expression for ~Eother appears in both equations.
(Note this technique, which you learned doing story problems in middle-school
pre-algebra, of writing down an equation in which the knowns are not segregated on
one side yet.) Using ~Eoutside = (σ/εo ) n̂ and/or ~Einside = 0, we find ~Eother = (σ/2 εo ) n̂.
This is the field that acts on the charge σ da in da. Therefore, the force per unit area
is

~f =
~F

da
=
σ da ~Eother

da
= σ

σ

2 εo
n̂ =

σ2

2 εo
n̂ (2.74)
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Writing the force per unit area in terms of the field at the surface ~E = (σ/εo ) n̂:

~f =
σ2

2 εo
n̂ =

εo

2
E 2 n̂ (2.75)

That is, the surface of a conductor always feels an outward force. Consider what
would happen if you put charge on a balloon with a metallized surface.

Note the force per unit area, which has units of energy density, is actually equal to the
energy density just above the conductor. We could have in fact used the energy
density to derive the force: the force per unit area is the gradient of the energy per
unit area, and moving the conductor surface in or out by an infinitesimal distance dz
would have changed the total energy per unit area by u dz.

Note the indirect technique of proof. Again, we did no integral and we did not use
Coulomb’s Law explicitly.
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Capacitance

Consider two conductors (of arbitrary shapes) and suppose we put equal and opposite
charges Q and −Q on them. The potential difference ∆V between the two is of
course given by the line integral of the electric field from any point on the surface of
one to any point on the surface of the other. How does ∆V scale with the charges?

The linear dependence of ~E on the charge density ρ ensures that ∆V is linear in Q.
Therefore, we may define the capacitance

C =
Q

∆V
(2.76)

Capacitance is a purely geometric quantity: it does not depend on the amount of
charge on the two conductors (as long as equal and opposite charges are given to
each, a caveat we will remove soon). It does depend on the shapes of the conductors
and their relative position and orientation because those determine the shape of the
electric field (while Q varies its normalization). The unit of capacitance is
Coulombs/volt, which we define to be the Farad, F.

One can talk about the capacitance of a single conductor with charge Q by implicitly
assuming there is another conductor at infinity that has charge −Q and is defined to
be at V = 0.
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Now departing from Griffiths and instead following Jackson §1.11, we can generalize
capacitance to include multiple conductors by simply assuming a generalized linear
relationship between potentials, which we also call voltages, and charges as we argued
above must be true:

Vi =
N∑

j=1

Dij Qj or V = D Q (2.77)

where V and Q are N-element column matrices for the voltages and charges on the N
conductors and D is a N × N matrix that connects the two. It is explicit that any

voltage depends linearly on all the charges. The capacitance matrix is then C = D−1,
with

Qi =
N∑

j=1

Cij Vj or Q = C V (2.78)

This form serves to make it clear that the capacitance is not just a single quantity
between two conductors, but is more general. According to Jackson, the diagonal
element Cii is the “capacitance” of electrode i , and the Cij are termed the “coefficients
of induction” to convey that they indicate the charge induced on electrode i when a
voltage is placed on electrode j . We will show below that neither of these is what one
would consider the capacitance of a pair of conductors as we discussed initially.
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In all of this, there is an implicit assumption that V (r →∞) = 0. Without this
assumption, we would always need to explicitly include the electrode at ∞ (with an
additional index in C and D) in order to get the right offset for V .

To calculate the capacitance or the capacitance matrix, one clearly needs to
determine, given a set of charges {Qi}, what the voltages {Vi} are. To do this
trivially, there typically must be a symmetry or approximation that allows one to guess
what the charge distributions on the conductors are (e.g., uniform as for an infinite
parallel plate capacitor) and to calculate the field using Gauss’s Law and from the field
the potential. For more complex geometries, the boundary-value problem techniques
we will develop may be sufficient. The total charge on each electrode normalizes the
voltage.
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For the simple case of two mirror-symmetric electrodes with equal and opposite
charges ±Q and voltages ±V , we can relate the elements of the capacitance matrix to
the pair capacitance, which is what we usually call the capacitance (e.g., in Ph1b).
We can assume the following form for the capacitance matrix:

C =

[
Cs −Cm

−Cm Cs

]
(2.79)

Why could we assume the above form? The symmetry of the system implies
C11 = C22. We shall see below that all capacitance matrices are symmetric matrices,
so C12 = C21. We chose the negative sign on C12 = −Cm with some foreknowledge of
the result, but that’s a choice and doesn’t affect the value of C12.
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The defining condition of the pair capacitance is that equal and opposite charges are
placed on the two conductors. By symmetry, we can conclude that the conductors
carry equal and opposite voltages (not true for a non-mirror-symmetric configuration).
Thus

Q1 = Cs V1 − CmV2 = Cs V − Cm(−V ) = (Cs + Cm) V (2.80)

Q2 = −CmV1 + Cs V2 = −CmV + Cs (−V ) = −(Cs + Cm) V (2.81)

which yields Q2 = −Q1 = −Q as assumed. Thus, the capacitance of the pair is

C =
Q

∆V
=

(Cs + Cm) V

2 V
=

Cs + Cm

2
(2.82)

After we have discussed energy, we will return to this system for a more detailed
analysis of what one can say about Cs and Cm.
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Capacitance and Field Lines

Let’s also think about capacitance in terms of field lines. The diagonal element Dii

tells us the potential of electrode i if we put charge on it and no other electrodes. That
potential is the line integral of the field from infinity to the electrode, so it is telling us
about the field lines going from the charge on that electrode to infinity (or to/from if
the charge is negative). The off-diagonal elements Dji tell us how the potential of
electrode j changes when charge is put on electrode i . This makes sense, as that
charge on i will change the overall field configuration, also due to the addition of the
field lines that must start from or end on its charge, and that change will affect Vj .

The elements of C are interpreted differently. When we put one electrode i at a

voltage while holding the others fixed (possibly at zero), charge must be added to that
electrode. The diagonal element Cii tells us how much charge must go onto the
electrode, and that charge sources field lines. The off-diagonal elements Cji then tell
us how much charge must appear on the other electrodes so their voltages Vj remain
fixed. This reflects the fact that some of the new field lines starting (or ending) on
electrode i due to the new charge on it must end (start) on some of the other
electrodes j , and in fact tells us how much charge must be added to those other
electrodes to terminate those new field lines.

As a corollary, an off-diagonal element of D or C can only vanish if there is no mutual
influence of the two electrodes. It is hard to see how this could happen unless they are
infinitely far apart!
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Electric Potential Energy of a Capacitor

In a simple two-electrode, mirror-symmetric capacitor with charges ±q on the
electrodes and a voltage difference ∆V = q/C between the two electrodes, the
amount of work required to change the charge from q to q + dq is given by the
amount of work required to move a charge dq from the negative electrode (which has
charge −q and voltage −∆V (q)/2) to the positive electrode (which has charge +q
and voltage +∆V (q)/2):

dU = dq

[
∆V (q)

2
−
(
−∆V (q)

2

)]
= ∆V (q) dq =

q

C
dq (2.83)

Note that ∆V is a function of q here: the voltage is not held fixed while the charge is
moved; rather, the voltage and charge increase together (linearly).
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We integrate this expression from 0 to the final charge Q to find

U =
1

C

∫ Q

0
q dq =

1

2

Q2

C
(2.84)

Alternatively, using Q = C ∆V ,

U =
1

2

Q2

C
=

1

2
C (∆V )2 (2.85)

We could have modeled the above process differently. Our transferral of dq from one
electrode to the other is the equivalent of taking charge dq from the negative voltage
electrode, carrying it out to infinity (where we set V = 0), and bringing it back and
putting it on the positive voltage electrode. The equivalence is because the voltage
difference between two points is path-independent. This process is, then, equivalent to
bringing charges dq and −dq in from infinity and putting them on the positive and
negative voltage electrodes, respectively. And the last process is equivalent to bringing
the charges in consecutively rather than simultaneously because we proved earlier the
potential energy does not depend on the order of assembly of the charge distribution.
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The above picture is what we need for considering a multi-electrode system: we build
up the charge on each conductor by bringing in charge from infinity and calculating the
work done. Consider bringing charge dqi in from infinity and adding it to electrode i .
The change in the electric potential energy of the system due to adding this charge is

dUi = Vi dqi =
N∑

j=1

Dij qj dqi (2.86)

There are two possible double-countings we must avoid: 1) This infinitesimal element
of charge dqi is moved from V = 0 at infinity to V = Vi on the ith electrode, so the
voltages of the other electrodes are irrelevant during this infinitesimal charge transfer
and we should not bring them into the equation; 2) Because the charges on all the
other electrodes j 6= i are physically immobile as dqi is brought in, no work is done on
them, and so there are no other contributions to include (as strange as it may seem
given that their voltages change by dVj = Dji dqi ; remember, a force must be exerted
over a distance for it to do work).
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Now, let’s integrate over dqi . We will later do a sum over i . The ordering of the two
steps does not matter because we proved earlier that the electric potential energy does
not depend on the order of assembly. But we do need to worry about the order of how
we have brought in the charges because we should not calculate cross-terms for
charges that do not yet exist. Let’s assume that, if we are integrating the ith charge,
then the first i − 1 charges have already been integrated to their full values {Qj},
j = {1, . . . , i − 1}, and the remaining N − i electrodes j = {i + 1, . . . ,N} have no
charge on them yet. Thus, the voltage Vi (qi ; {Qj}j<i ) is given by

Vi (qi ; {Qj}j<i ) =
N∑

j=1

Dij qj = Dii qi +

i−1∑
j=1

Dij Qj (2.87)

because qj = Qj has already been achieved for j = {1, . . . , i − 1}, qj = 0 for
j = {i + 1, . . . ,N}, and qi 6= Qi is still being changed. Therefore,

Ui =

∫ Qi

0
Vi (qi ; {Qj}j<i ) dqi =

∫ Qi

0

Dii qi dqi +

i−1∑
j=1

Dij Qj dqi


=

1

2
Dii Q

2
i +

i−1∑
j=1

Dij Qj Qi (2.88)
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Next, we need to sum over i to account for the charging up of all the electrodes:

U =
1

2

N∑
i=1

Dii Q
2
i +

N∑
i=1

i−1∑
j=1

Dij Qi Qj (2.89)

Modifying the second sum to be symmetric (assuming D is symmetric, which we will

prove below) and including a factor of 1/2 to correct for double-counting, we have

U =
1

2

N∑
i=1

Dii Q
2
i +

1

2

N∑
i,j=1,i 6=j

Dij Qi Qj =
1

2

N∑
i,j=1

Dij Qi Qj
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We can write this more succinctly as

U =
1

2
QT C−1Q (2.90)

Using Q = C V , we can rewrite as

U =
1

2
V T C V (2.91)

Let’s check that this gives the correct result for an elementary capacitor with two
mirror-symmetric electrodes having equal and opposite charges ±Q and voltages ±V .
Using the capacitance matrix we derived earlier (recall, C11 = C22 = Cs and
C12 = C21 = −Cm),

U =
1

2

[
C11(+V )2 + C22(−V )2 + C12(+V )(−V ) + C21(−V )(+V )

]
=

1

2
V 2 [Cs + Cs + Cm + Cm] = 2 C V 2 =

1

2
C(∆V )2 (2.92)

as expected.
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Properties of the Capacitance Matrix and Its Inverse

We can derive a number of useful properties:

I Both C and D are symmetric.
Let’s consider two electrodes, i and j with i 6= j . From Equation 2.88, their
contribution to the potential energy, assuming j has been charged up before i , is

Uij =
1

2

(
Dii Q

2
i + Djj Q

2
j

)
+ Dij Qi Qj (2.93)

What happens if we reverse the charging order? Then we get

Uji =
1

2

(
Dii Q

2
i + Djj Q

2
j

)
+ Dji Qi Qj (2.94)

In our initial discussion of the electric potential energy, we argued that the
charging order does not matter. So we may equate the two, Uij = Uji .
Recognizing that Qi and Qj are arbitrary then implies

Dij = Dji ⇐⇒ DT = D ⇐⇒ C T = C (2.95)
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I The self-capacitances Cii are positive.
We need only consider the energy in the case that all other electrodes are held
at zero potential. Then the energy is

Ui (all others grounded) =
1

2
Cii V 2

i (2.96)

Since the energy should be positive (it takes work to add charge dqi in the
presence of the same-sign charge qi , as is done when charging up the electrode),
Cii must be positive.

I The diagonal elements of the inverse capacitance matrix, C−1
ii = Dii are

positive.
Now, we consider the energy in the case that all other electrodes are kept
neutral. Then the energy is

Ui (all others neutral) =
1

2
Dii Q2

i (2.97)

Again, since the energy should be positive, Dii must be positive.
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I The off-diagonal elements of the inverse capacitance matrix C−1
ij = Dij are

positive.
Now, let’s consider two electrodes i , j in a multi-electrode configuration, with all
the other electrodes uncharged. Let’s suppose electrode i is already raised to its
final charge, and now we want to consider the work needed to increment
electrode j ’s charge:

dUij = Djj qj dqj + Dij Qi dqj (2.98)

(The self-terms and cross-terms vanish for all the electrodes k 6= i , j because
they have Qk = 0.) If we consider the case of Qi , qj positive, and if we bring in
more positive charge dqj , it is obvious that both the change in the jth
self-energy and the energy cross-term should be positive: we are bringing
positive charges in proximity to existing positive charges. (While the existing
charge might move around on the electrodes, those electrodes are conductive
and so are equipotentials: no work is done.) We already know the self-energy
terms are positive. In order for the energy cross-term to be positive, Dij must be
positive. In the mirror-symmetric electrode case, we would see via explicit
inversion of C that D’s off-diagonal elements are positive.

Another way to see that the cross-terms must be positive is to recall that the
entire expression must be consistent with our original expression for the electric
potential energy, Equation 2.68. That expression could be broken down into
three integrals, one for each self-energy term and one for the cross-term. When
the charge density is positive, all contributions to that expression are manifestly
positive.
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I The off-diagonal elements of the capacitance matrix Cij are negative.
Let’s consider the same multi-electrode system with electrodes k 6= i , j grounded
(i.e., Vk = 0), electrode i at its final positive voltage Vi , and electrode j ’s
voltage being incremented from vj to vj + dvj , both positive. The change in
energy is

dUij = Cjj vj dvj + Cij Vi dvj (2.99)

We already know the first term is positive. The second term is more
challenging. If we want to increment a positive voltage vj by a positive amount
dvj , we need to put positive charge on it. This positive charge will draw
negative charge out of the battery holding Vi constant: some of the field lines
of that new charge on electrode j have to terminate on electrode i if Cij is
non-zero. Again, from Equation 2.68, we know that contribution to the electric
potential energy must be negative even if Vi is positive. Thus, the energy
cross-term must be negative, which requires Cij to be negative. (If Vi is
negative, that implies Qi is negative. It takes positive work to add negative
charge to an electrode that already has negative charge on it, so Cij < 0 ensures
the cross-term becomes positive, as it should.)
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I |∑i 6=j Cij | ≤ |Cjj |: for a given electrode, the sum of the off-diagonal elements
of the capacitance matrix is no larger in magnitude than the corresponding
diagonal element.
Just consider the same situation as just considered. The change in the charge
on the jth electrode is dqj = Cjj dvj . The field lines from those added charges
will terminate either on other electrodes or infinity, so the total negative charge
added to all the other electrodes can be no larger in magnitude than |dqj |.
Therefore,∣∣∣∣∣∣
∑
i 6=j

dqi =
∑
i 6=j

Cij dvj

∣∣∣∣∣∣ ≤ ∣∣dqj = Cjj dvj

∣∣ =⇒

∣∣∣∣∣∣
∑
i 6=j

Cij

∣∣∣∣∣∣ ≤ ∣∣Cjj

∣∣ (2.100)
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Capacitance Matrix of a Mirror-Symmetric Configuration Revisited

Considering again a mirror-symmetric two-electrode configuration, we now know
Cs > Cm > 0, and we know the pair capacitance we are familiar with is related to
them by C = (Cs + Cm) /2, but can we determine Cs and Cm explicitly?

If we consider the case V1 = V and V2 = 0, we find Q1 = Cs V and Q2 = −Cm V , so
we can determine Cs and Cm if we know the full field configuration, with the boundary
condition V = 0 at infinity: we obtain the surface charge density from the normal
component of the field at the electrode surfaces and integrate it to get Q1 and Q2 and
thus Cs and Cm. (Remember, if V 6= 0 at infinity, we need to include infinity explicitly
as an electrode of the system.)

Maybe we can then do this for the one mirror-symmetric case whose full electric field
configuration we can calculate trivially, the infinite parallel-plate capacitor? No! The
infinite parallel-plate capacitor violates the condition V = 0 at infinity because, if
either plate has non-zero potential, that plate’s non-zero equipotential surface extends
off to infinity in the transverse direction. We violate the assumption that allowed us to
ignore the electrode at infinity. Moreover, infinity is no longer even an equipotential
surface in this configuration! On the equipotentials defined by the two electrodes (at,
e.g., z = ±d/2), the potential at infinity is the potential of the corresponding
electrode. If the two plates have equal and opposite potentials, then the field outside
the plates vanishes and the potential on the surface of that volume at infinity is zero.
The potential on the line z = 0 is also zero. And then, for 0 < |z| < d/2 and
x , y →∞, the potential is the same linear function of z that it would be at x , y = 0.
Clearly, our assumptions are violated!

Section 2.12.5 Capacitance Matrix of a Mirror-Symmetric Configuration Revisited Page 98



Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

We note that, formally, C is infinite for this mirror-symmetric configuration, anyways:
the mirror-symmetric potential configuration requires infinite charge on each electrode!
The pair capacitance per unit area, however, is finite and trivially calculated.

So, we are stymied. In order for the V = 0 at infinity condition to be satisfied, our
electrodes must be finite in extent. But, for electrodes finite in extent, we cannot
calculate the potential in a trivial fashion, so we cannot determine Cs and Cm, or even
C , trivially. We need to develop the full machininery for solving Poisson’s and
Laplace‘’s Equations, which we will begin to do soon.
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Intuitive Approach to Laplace’s Equation

As we mentioned earlier, the integral forms for the electric field or the potential

~E(~r) =
1

4π εo

∫
V

dτ ′ρ(~r ′)
~r − ~r ′
|~r − ~r ′|3 and V (~r) =

1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.1)

are always correct but can be difficult to deal with in practice. Most systems will not
have symmetries that make the integrals easily doable (or avoidable via Gauss’s Law).
Moreover, and this is the greater problem, it is rare that one completely specifies ρ(~r)
in setting up a problem. Experimentally, what we can easily control are the shapes,
positions, and potentials (voltages) of conductors. We do not control how the charge
arranges itself on the conductors. Thus, we need to seek alternate ways to solve for
the potential and field over all of space. Laplace’s and Poisson’s Equations are the key.
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Laplace’s Equation in One Dimension

In one dimension, Laplace’s Equation takes the simple form

d2V

dx2
= 0 (3.2)

We can solve this by direct integration to obtain

V (x) = m x + b (3.3)

where m and b are two constants of integration. We determine m and b by boundary
conditions: specification of V or dV /dx at specific point(s). In the one dimensional
case, there are two options for how to specify the boundary conditions:

I Specify V at two points.

I Specify V at one point and dV /dx at one point (possibly the same point).

Note that these are the only choices in one dimension. Specifying dV /dx at two
points either yields a contradiction (if two different values of dV /dx are given) or
insufficient information (if the same value is given). There are no other quantities to
specify: all higher derivatives vanish thanks to Laplace’s Equation.
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Let us note two important characteristics of the solutions of Laplace’s Equation:

I V (x) is equal to the average of any pair of points V (x + a) and V (x − a) for
any a such that x ± a belong to the region being considered:

1

2
[V (x + a) + V (x − a)] =

1

2
[(m (x + a) + b) + (m (x − a) + b)]

= m x + b = V (x) (3.4)

Solutions to Laplace’s Equation have this intrinsic averaging property.

I V (x) has no nontrivial local maxima or minima. We already mentioned this
property for the three-dimensional Laplace’s Equation. The proof is
straightforward in one dimension. Suppose x0 is a local maximum or minimum.
Then we have dV /dx = 0 at this point x0. Then, for any other point x1:

dV

dx

∣∣∣∣
x1

=
dV

dx

∣∣∣∣
x0

+

∫ x1

x0

d2V

dx2
dx = 0 + 0 = 0 (3.5)

Therefore, if dV /dx vanishes anywhere, V (x) is a constant. This is a trivial
local maximum/minimum. If dV /dx vanishes nowhere, then the endpoints of
the region give the maximum and minimum of V (x) or, if there are no
endpoints, there are no maxima or minima at all. Consider, for example, a
uniform electric field ~E0 over all of space.
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Laplace’s Equation in Multiple Dimensions

We quote the analogues of the above two properties for arbitrary numbers of
dimensions and prove them for three dimensions:

I The value V (~r) of a solution to Laplace’s Equation at any point is equal to the
average of its value on any sphere centered on that point in the region of
interest:

V (~r) = 〈V (~r)〉a ≡
∫
Sa(~r) da′ V (~r ′)∫
Sa(~r) da′

(3.6)

where Sa(~r) is the sphere of radius a centered on ~r . This is straightforward to
show (Griffiths Problem 3.37). Let’s integrate Laplace’s Equation over the
volume enclosed by Sa(~r), Va(~r), and use the divergence theorem:

0 =

∫
Va(~r)

dτ ′∇2
~r ′V (~r ′) =

∫
Sa(~r)

da′ n̂(~r ′) · ~∇~r ′V (~r ′)

=

∫
Sa(~r)

da′ n̂(~r ′) · ~∇~r ′−~r V (~r ′) (3.7)

In the last step, we have used the fact that ~∇ does not care about the location
of the origin (since it is just an offset).
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Now, we can define ~s = ~r ′ − ~r . In this coordinate system, where ~r is at the
origin, n̂(~r ′) = ŝ, the radial unit vector in the ~s coordinate system. So, we have
(inserting a factor 1/4π a2):

0 =
1

4π a2

∫
Sa(~s=~0)

a2dΩs
∂V

∂s

∣∣∣∣
s=a

(3.8)

where Sa(~s = ~0) is the sphere of radius a centered on the origin of the ~s system
(i.e., the same as the sphere of radius a centered on ~r in the ~r ′ coordinate
system). If we pull the factor a2 outside of the integral, the integral is now over
the spherical angles in the ~s coordinate system, while the derivative is in the
radial direction in this coordinate system. Thus, we can pull the derivative
outside the integral too, yielding

0 =
1

4π a2
a2
∫
Sa(~s=~0)

dΩs
∂V

∂s

∣∣∣∣
s=a

=
1

4π

∂

∂a

∫
Sa(~s=~0)

dΩs V (~s) (3.9)

Because the limits of integration state to evaluate the integrand at s = a, the
derivative changes from being with respect to s to being with respect to a.
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Thus, the integral must be a constant

C =
1

4π

∫
Sa(~s=~0)

dΩs V (~s) =
1

4π a2

∫
Sa(~r)

da′V (~r ′) (3.10)

where we switched the variable of integration back to ~r ′ and we reinserted a2.
The right side is just the average of V over the sphere of radius a centered at ~r .
Since this holds for any a, it must hold as a→ 0, which tells us C = V (~r). So,
we have

V (~r) =
1

4π a2

∫
Sa(~r)

da′V (~r ′) (3.11)

I As a consequence of Laplace’s Equation and the above property, V can have no
local maxima or minima in the region of interest. The proof of this property is
trivial: if there were such a candidate maximum (minimum), simply draw a
sphere around it. Because the point is a maximum (minimum) there must be
some radius of the sphere for which the values of all the points on the sphere are
less than (greater than) the value at the candidate maximum (minimum). The
average over this sphere is therefore less than (greater than) the value at the
candidate maximum (minimum). This contradicts the above averaging property.

One could also prove this by a technique similar to the 1D case, calculating ~∇V
at any point ~r ′ in the region by doing a line integral of Laplace’s Equation from
the candidate extremum ~r to that point. Since ~∇V vanishes at the candidate
extremum (because it is an extremum of V ), and the integrand (∇2V ) of the

line integral vanishes by Laplace’s Equation, ~∇V vanishes at ~r ′.
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Uniqueness Theorem

Before obtaining a solution of Laplace’s and Poisson’s Equations, we prove some
uniqueness theorems we will need. This section draws from Jackson §1.8 and §1.9.

Green’s Identities and Theorem

First, some mathematical preliminaries. Let us apply the divergence theorem to the
function φ~∇ψ where φ(~r) and ψ(~r) are arbitrary functions:∮

S
da n̂ ·

(
φ~∇ψ

)
=

∫
V(S)

dτ ~∇ ·
(
φ~∇ψ

)
This yields Green’s First Identity:∮

S
daφ n̂ · ~∇ψ =

∫
V(S)

dτ
[
φ∇2ψ + ~∇φ · ~∇ψ

]
(3.12)

The function n̂ · ~∇ψ is the normal gradient of ψ because it is the projection of the
gradient of ψ along the direction normal to the surface. If we exchange φ and ψ and
then difference the two versions, we have Green’s Second Identity or Green’s Theorem:∮

S
da
[
φ n̂ · ~∇ψ − ψ n̂ · ~∇φ

]
=

∫
V(S)

dτ
[
φ∇2ψ − ψ∇2φ

]
(3.13)

Section 3.2.1 Green’s Identities and Theorem Page 108



Section 3.2 Advanced Electrostatics: Uniqueness Theorem

Types of Boundary Conditions

We shall see in the proof of the Uniqueness Theorem that three types of boundary
conditions are permitted:

I Dirichlet boundary condition
In this case, the value of the potential V (~r) is specified on all bounding
surfaces. This is the most typical experimentally realized situation, where we
attach a number of conductors to voltage sources to set their voltages.

I Neumann boundary condition
In this case, the value of the normal derivative of the voltage, n̂ · ~∇V (~r), is
specified on the boundary. An example of such a condition is specification of the
electric field (or, equivalently, the surface charge density) at the surfaces of a set
of conductors; since the tangential electric field vanishes at these surfaces, the
normal electric field fully defines the electric field at the conductors.

I Mixed boundary conditions
Dirichlet in some places, Neumann in others, is allowed as long as both are not
specified at the same place.

If the volume under consideration is not bounded by a surface on which we specify the
boundary conditions, then we must also specify a boundary condition at infinity.

The proof of the Uniqueness Theorem will not show why only one of these types of
boundary conditions may be specified. That proof will be provided soon, in §3.4.1.
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Generic Uniqueness Proof for Poisson’s Equation

Suppose we have specified one of the above three types of boundary conditions.
Assume that, for a particular given charge distribution ρ(~r), there are two independent
solutions V1(~r) and V2(~r) of Poisson’s Equation that satisfy the boundary condition.
Let V3 = V1 − V2. Since the charge distribution is the same, ∇2V1 = −ρ/εo = ∇2V2

and thus ∇2V3 = 0: V3 satisfies Laplace’s Equation. By a similar differencing
argument, V3 either satisfies the Dirichlet boundary condition V3(~r ∈ S) = 0, the

Neumann boundary condition n̂ · ~∇V3(~r ∈ S) = 0, or a mixed boundary condition of
these types. If we apply Green’s first identity with φ = ψ = V3, we have∮

S
da V3 n̂ · ~∇V3 =

∫
V(S)

dτ
(

V3∇2V3 + ~∇V3 · ~∇V3

)
(3.14)

The left side vanishes because of the boundary condition (any type). The first term on
the right side vanishes by Laplace’s Equation. Thus, we have∫

V(S)
dτ |~∇V3|2 = 0 =⇒ ~∇V3(~r) = 0 =⇒ V3 = constant (3.15)

where we take the second step because the integrand is nonnegative. This result
implies that our two candidate solutions V1(~r) and V2(~r) differ by at most a constant.
Hence, uniqueness is proven.
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Special Cases of Uniqueness Theorem

Given the above, we may state/prove three special cases of the uniqueness theorem,
the ones given in Griffiths:

I The solution to Laplace’s Equation in some volume V is uniquely specified if V
is specified on the boundary surface S(V).
This is the above uniqueness theorem with ρ = 0 in V and a Dirichlet boundary
condition on S(V).

I The solution to Poisson’s Equation in some volume V is uniquely specified if
ρ(~r) is specified throughout the region and V is specified on the boundary
surface S(V).
This is the above uniqueness theorem with arbitrary ρ(~r) in V and a Dirichlet
boundary condition on S(V).

I In a volume V surrounded by conductors at the surface(s) S(V) and containing
a specified charge density ρ(~r), the electric field is uniquely determined if the
total charge on each conductor is specified.
This one is not as obvious, but we can show that this BC yields the same input
to the Uniqueness Theorem derivation as the other BCs we have specified.
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Let each conductor i have surface Si and charge Qi . Since we know the surface
charge density on each conductor is related to the normal component of the
electric field at that conductor, we may see∮

Si

da n̂(~r) · ~E(r̂) =
1

εo

∮
Si

da σ(~r) =
1

εo
Qi (3.16)

Now, as before, let’s assume that there are two different solutions V1(~r) and
V2(~r) and their difference is V3 = V2 − V1. Let’s evaluate the left-hand side of
Equation 3.14 for the BC we are specifying here:∮

S
da V3 n̂ · ~∇V3 = −

∑
i

∮
Si

da V3 n̂ · ~E3 = −
∑

i

V3,i

∮
Si

da n̂ · ~E3 (3.17)

where we were able to pull V3 out of the integrals because V1 and V2 have
equipotentials on each surface and so therefore does V3 (with values V3,i , which

we do not need to know). The surface integral of the normal component of ~E3

over each Si vanishes because, as we indicated above, specifying Qi specifies
this surface integral to be the same for ~E1 and ~E2, so the surface integral
vanishes for ~E3 = ~E2 − ~E1. Thus, the LHS of Equation 3.14 also vanishes for
this BC, and so the remainder of the proof of uniqueness carries through.

Note how this proof relied on the boundary surfaces being conductors! Knowing
the total charges on nonconducting boundary surfaces would not be sufficient.
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Method of Images

Overview: The Basic Idea of Method of Images

The method of images uses the concept of uniqueness of solutions to Poisson’s
Equation. Basically, given a physical setup involving a true charge distribution ρ(~r)
and Dirichlet boundary conditions for some volume V, one tries to replace the region
outside of V with an image charge distribution ρimage (~r) such that, when the image
charge’s potential is summed with that of ρ(~r), the potential on the boundary is the
same as that specified by the Dirichlet BC.

The technique works because of the uniqueness theorem: since the potential due to
the image and original charges matches the boundary conditions and satisfies
Poisson’s Equation with the same source term inside V, it is the solution to Poisson’s
Equation for that source term and choice of boundary conditions.

The imagined charge distribution is called image charge because, at least in the
example of the boundary condition being imposed by the presence of a conductor, the
image charges appear to be a (possibly distorted) mirror image of the original charges
through the boundary. “Image charge” is also used (somewhat erroneously) to refer to
the surface charge induced on a conducting boundary that sources the potential that
one models as due to the image charge.

Note that the image charge must be placed outside the volume V because we may not
change ρ(~r) inside V; that would change the problem we are trying to solve.

We will see later how the potential due to the image charge distribution (the induced
surface charge) is a component of the particular problem’s Green Function.
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A Point Charge near a Grounded Infinite Conducting Plane

For a system with the point charge q at d ẑ above a conducting plane at z = 0 with
V = 0, and considering the volume V consisting of the z > 0 half-space, the
appropriate image charge is −q at −d ẑ. By symmetry, the (Dirichlet) boundary
condition V = 0 at z = 0 is met. Thus, the solution for V (~r) for ~r ∈ V (the z > 0
half-space) is

V (~r) =
1

4π εo

[
q√

x2 + y2 + (z − d)2
− q√

x2 + y2 + (z + d)2

]
(3.18)

The potential clearly satisfies V (z = 0) = 0 (and V (r →∞)→ 0). Let’s use this
solution to do some other calculations:

I Induced surface charge
This we can calculate by recognizing that it is given by the change in the normal
component of the electric field at the conducting boundary. Since ~E = −~∇V ,

σ = − εo
∂V

∂z

∣∣∣∣
z=0

=
q

4π

[
z − d

(x2 + y2 + (z − d)2)3/2
− z + d

(x2 + y2 + (z + d)2)3/2

]∣∣∣∣∣
z=0

= − q

2π

d

(x2 + y2 + d2)3/2
(3.19)

We will treat the surface charge density and the normal component of the
electric field (the normal gradient of the potential) as almost equivalent going
forward.
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We can calculate the total induced surface charge:

Qind =

∫ ∞
0

r dr

∫ 2π

0
dφ
−q d

2π

1

(r2 + d2)3/2
= q d

1√
r2 + d2

∣∣∣∣∞
0

= −q (3.20)

This is an example of an important general theorem: The total induced surface
charge is equal to the image charge, or to the negative of the real charge, or to
some combination of the two, depending on the geometry, by Gauss’s Law.
Because of the mirror symmetry of this problem, the two cases are degenerate,
so this is not a particularly illustrative example of the theorem. Furthermore,
because the volumes and surfaces one must integrate over are infinite, Gauss’s
Law cannot be applied to such a geometry. We’ll return to this theorem in our
next example where there is no such issue.

I Force on the point charge
The induced charge is opposite in sign to the real charge, so the two are
attracted to each other. We can calculate the force by taking the gradient of
the potential due to the image charge only (because the real charge does not
feel a force due to its own potential). Since the image charge’s potential is just
that of a point charge, calculating the force is straightforward:

~F = q ~Eimage charge (d ẑ) = − 1

4π εo

q2

(2d)2
ẑ (3.21)

This is equivalent to just calculating the force on the real charge exerted by the
image charge, which is in general a valid approach. Whether to calculate the
image charge potential and take the gradient or calculate the image charge force
is a matter of choice and convenience.

Section 3.3.2 A Point Charge near a Grounded Infinite Conducting Plane Page 115



Section 3.3 Advanced Electrostatics: Method of Images

I Electric potential energy
Here we have to be more careful because potential energy is not linear in
charge, and, moreover, because the induced charge depends on the original
point charge. Let’s figure this out by calculating the work one would have to do
against the electric force (i.e., the mechanical force doing the work is opposite
in sign to the attractive electric force) to bring q from z = d to z =∞.

U = −
∫ ∞

d
(−F (z)) dz = − 1

4π εo

q2

4

∫ ∞
d

dz

z2
= − 1

4π εo

q2

4 d
(3.22)

Note that this result is half what one would get for the potential energy of two
equal and opposite point charges separated by a distance 2d :

Ualt = − 1

4π εo

q2

2d
(3.23)

There are two ways to understand this. The first is to recognize that, unlike in
the case of two point charges, no energy is gained or lost in moving the negative
charge because it is in the conductor, where V = 0 and thus q V = 0
everywhere. The second is to recognize that the above expression is the energy
stored in all of space in the field of two point charges, but, in this case, the field
is only real in the z > 0 half-space and so the integrated energy is reduced by a
factor of 2.
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A Point Charge near a Grounded, Conducting Sphere

Consider a conducting sphere of radius R centered on the origin and held at V = 0.
Place a point charge at a ẑ with a > R so the point charge is outside the sphere. We
would like to know the potential in the volume V outside the conducting sphere,
which is the volume in which the point charge sits.

By symmetry, the appropriate image charge must be on the z axis. Let its value be q′

and its position be b ẑ, where b may be positive or negative. We can find q′ and b by
requiring that V = 0 at ~r = ±R ẑ:

0 = V (+R ẑ) =
1

4π εo

[
q

a− R
+

q′

R − b

]
0 = V (−R ẑ) =

1

4π εo

[
q

a + R
+

q′

R + b

]
=⇒ q′ = −q

R

a
6= −q b =

R2

a
(3.24)

(This is an example of how one does not always need to consider the generic case;
these special cases at the two poles give us the information we need.) We see that
both values are always physically reasonable because R < a. In particular, b < R so
the image charge remains outside V (i.e., inside the sphere), as we expect. Note that
q′ 6= −q!
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The potential at a point (r ≥ R, θ, φ) is found by summing the potentials of the real
charge and the image charge:

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
(3.25)

=
q

4π εo

 1√
r2sin2θ + (a− r cos θ)2

− R/a√
r2sin2θ + ( R2

a
− r cos θ)2


(3.26)

We can use the above expression to see that the boundary condition V (r = R) = 0 is
satisfied in full generality:

V (r = R, θ, φ) =
q

4π εo

 1√
R2sin2θ + (a− R cos θ)2

− R/a√
R2sin2θ + ( R2

a
− R cos θ)2


=

q

4π εo

 1√
R2 sin2 θ + (a− R cos θ)2

− 1√
a2 sin2 θ + (R − a cos θ)2


= 0 (3.27)
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Let’s calculate the induced surface charge from n̂ · ~∇V = ∂V /∂r :

σ = − εo
∂V

∂r

∣∣∣∣
r=R

(3.28)

‘=
q

4π

 R sin2 θ − (a− R cos θ) cos θ

(R2sin2θ + (a− R cos θ)2)3/2
− R

a

R sin2 θ − ( R2

a
− R cos θ) cos θ(

R2sin2θ + ( R2

a
− R cos θ)2

)3/2


=

q

4π

 R − a cos θ

(R2 + a2 − 2 a R cos θ)3/2
− a2

R2

R − R2

a
cos θ

(a2 + R2 − 2 a R cos θ)3/2


=

q

4π

R(1− a2

R2 )

(R2 + a2 − 2 a R cos θ)3/2
=− q

4πR2

R

a

1− R2

a2(
1 + R2

a2 − 2 R
a

cos θ
)3/2

One can show by integration that the total induced charge is q′. In this geometry, this
makes sense because the volume enclosed by a surface integral of electric field flux at
the boundary encloses the volume containing the image charge. This example
illustrates one case of the theorem stated earlier; in this case, the total induced surface
charge is equal to the image charge. We will see other cases illustrated in the next
example.

The force on the point charge and the electric potential energy can be calculated in a
manner similar to that used for the conducting plane.
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Some Related Examples

These are drawn from Jackson Chapter 2.

Example 3.1: Point charge inside a spherical volume with a conducting
boundary

The geometry of this problem is like the last one, except the point charge is inside the
spherical boundary, a < R, and everything outside the boundary is conductor. One can
show that the solution is identical: same formula for image charge value and position,
same induced surface charge density. However, strangely enough, the total surface
charge is now just −q!

Mathematically, this is because the evaluation of the integral depends on whether
R < a or R > a. (There is a power series expansion involved, which must be done
differently in the two cases.)

Physically, this is because the calculation of the total induced surface charge via
Gauss’s Law must be done differently. One method is to use a spherical surface just
outside the boundary, so it is in the conducting volume where the field vanishes. This
implies that the sum of the real and induced charge vanishes, so the induced charge is
the negative of the real charge.
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The other method is to put the surface just inside the boundary. Now, the charge
enclosed is only the real charge. As the surface approaches the boundary, though, the
flux integral is equal to the negative of the integral of the surface charge density (up
to εo ) because the electric field near a conductor is σ/εo (with the negative because
the field is pointed inward). So this tells us the total induced surface charge is the
negative of the real charge too.

Thus, we see illustrated another case of the theorem we stated earlier, that the total
induced surface charge is the image charge, the negative of the real charge, or some
combination of the two. Which one depends on the geometry: is the boundary outside
the volume of interest, inside, or some combination of the two?

In the case of the point charge outside the conducting sphere, we noted that the
Gauss’s Law calculation, with the Gaussian sphere just inside the volume V (i.e.,
having radius infinitesimally larger than a), yields q′ 6= −q. The distinction is whether
the volume V of interest is “outside” the boundary (neglecting the boundary at
infinity) as in the previous case or “inside” the boundary as in this case.

(In the previous case, the Gauss’s Law calculation outside V (i.e., using a Gaussian
sphere of radius less than a) yields no useful information because the sphere doesn’t
contain the induced surface charge. The flux through such a sphere vanishes because
the field is zero inside the conductor, which just tells us that all the induced surface
charge resides, well, on the surface.)
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Example 3.2: Point charge in the presence of a conducting sphere at fixed
potential V0

We can treat this by superposition. Consider first bringing the sphere up to the
desired potential in the absence of the point charge, then bringing the point charge in
from infinity to its final position a ẑ. We can use the grounded-case solution for the
latter part because it has V = 0 on the sphere and V → 0 at infinity, so the sum of it
and the solution for the V 6= 0 sphere alone satisfies the boundary condition of the
problem of the point charge near the V 6= 0 sphere, and thus it must be the correct
solution. (Note the use of the principle of superposition for the potential.)

What is the solution for the V 6= 0 sphere on its own? Certainly, the sphere is an
equipotential with the desired value V0. By symmetry (remember, the point charge is
not present for this problem), the charge is uniformly distributed on the surface. Thus,
we can apply Gauss’s Law to the problem, which tells us that the potential of the
sphere is identical to that of a point charge at the origin. To figure out the value of
the point charge, we require that the point charge’s potential match the boundary
condition:

q0

4π εo R
= V0 =⇒ q0 = 4π εo V0 R =⇒ V (r) = V0

R

|~r | (3.29)

Finally, we add the two solutions together:

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
+ V0

R

|~r | (3.30)
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Example 3.3: Point charge in the presence of a charged, insulated, conducting
sphere

We can solve this using the solution we just calculated along with the principle of
superposition (again!). Suppose we want to have a charge Q on the sphere. This is
the same as first bringing the point charge q in while the sphere is grounded,
disconnecting the grounding wire, adding Q − q′ (> Q for q > 0), which causes the
sphere to float to some nonzero voltage, and then connecting to a voltage source with
that voltage. This situation is identical to the situation we just studied if we require

q0 = Q − q′ =⇒ V0 =
q0

4π εo R
=

Q − q′

4π εo R
=

Q + q R
a

4π εo R
(3.31)

Plugging this into solution for the sphere held at V0 gives

V (r ≥ R, θ, φ) =
q

4π εo

[
1

|~r − a ẑ| −
R/a

|~r − R2

a
ẑ|

]
+

Q + q R
a

4π εo |~r |
(3.32)

Notice that this reduces to our original point charge near a sphere solution not when
Q = 0 but rather when Q = q′ = −q R/a, which is the charge that must flow onto
the sphere for it to stay at V = 0 (i.e., grounded).
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Formal Solution to Poisson’s Equation: Green Functions

The remaining material in this section of the notes is based on Jackson §1.10.

Integral Equation for the Electric Potential

Can we solve Poisson’s Equation? Sort of. We can convert it from a differential
equation for V in terms of ρ (with boundary conditions separately specified) to an
integral equation for V in terms of ρ with the need for the boundary conditions quite
explicit. It is still not a closed-form solution for V in terms of ρ and the boundary
conditions, but it helps us to frame the problem of finding solutions for V in a
different manner that is helpful.

We obtain this equation by applying Green’s Theorem (Equation 3.13) with
φ(~r ′) = V (~r ′) and ψ(~r ′) = |~r − ~r ′|−1. Note that ~r ′ is the variable we integrate over;
~r is considered a constant for the purposes of the Green’s Theorem integrals.∫
V(S)

dτ ′
[

V (~r ′)∇2
~r ′

1

|~r − ~r ′| −
1

|~r − ~r ′| ∇
2
~r ′V (~r ′)

]
=

∮
S

da

[
V (~r ′) n̂(~r ′) · ~∇~r ′

1

|~r − ~r ′| −
1

|~r − ~r ′| n̂(~r ′) · ~∇~r ′V (~r ′)

]
(3.33)
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We reduce this by making use of the very important relation

∇2
~r ′

1

|~r ′ − ~r | = −4π δ(~r − ~r ′) (3.34)

which is seen by combining Equations 2.32 and 2.49:

~∇~r ′ ·
~r − ~r ′
|~r − ~r ′|3 = 4π δ(~r − ~r ′) and ~∇~r ′

1

|~r ′ − ~r | = − ~r − ~r ′
|~r − ~r ′|3

Using the above expression for the Laplacian of |~r − ~r ′|−1, doing the integral over the
delta function, applying Poisson’s Equation, moving the second term on the right side
to the left side, and multiplying everything by − 1

4π
yields, now only for ~r ∈ V(S):

V (~r ∈ V(S)) =
1

4π εo

∫
V(S)

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.35)

+
1

4π

∮
S

da

[
1

|~r − ~r ′| n̂(~r ′) · ~∇~r ′V (~r ′)− V (~r ′) n̂(~r ′) · ~∇~r ′
1

|~r − ~r ′|

]

(The left side vanishes for ~r 6∈ V(S) because the integral was over ~r ′ ∈ V(S)).
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This is a formal equation for the electric potential. The boundary conditions are
present on the right side: in the case of Dirichlet, we specify V (~r ′) for ~r ′ ∈ S, while

in the case of Neumann, we specify n̂(~r ′) · ~∇~r ′V (~r ′) for ~r ′ ∈ S. Our Uniqueness
Theorem says we should only need to specify one or the other at any given point on
the boundary. In fact, since the Uniqueness Theorem says that knowing one specifies
the other (knowing one gives the full solution, which determines the other), we don’t
have the freedom to specify both independently! Knowing both essentially requires
knowing the solution to the problem. For example, if we consider the simplest possible
case of specifying an equipotential on the boundary, then knowing the other boundary
term requires knowing the normal gradient of the potential at the boundary, which is
equivalent to knowing the surface charge density on the boundary. We would not be
able to guess this except in cases with sufficient symmetry.

Therefore, this is not a closed-form solution but rather an integral equation for V (~r ′)
for ~r ′ ∈ V(S) ∪ S: the boundary condition does not provide everything on the right
side, but, if we know the solution, it will satisfy the equation.

Note that, in the limit of S → ∞ and V (r →∞) ∝ 1/r → 0, the integrand of the
surface integral falls off as r−3 and so the surface term vanishes and we recover the
usual Coulomb’s Law expression for V (~r), Equation 2.47. That is, in a situation where
we know the behavior of both surface terms is trivial, the equation does provide a
closed-form expression for V (~r) in terms of ρ(~r).

So far, however, this integral equation is not very useful. Once we have introduced the
concept of Green Functions, we will see its utility.
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The Concept of Green Functions

Suppose we have the generalization of Poisson’s Equation, the linear partial
differential equation

O~r f (~r) = g(~r) (3.36)

where O~r is a linear partial differential operator taking derivatives with respect to the
coordinate ~r , f is a generalized potential, and g is a generalized source function.
Poisson’s Equation is an example, with O~r = −εo∇2, f (~r) = V (~r), and g(~r) = ρ(~r).
Is there a general approach for finding f given g?

Yes, there is, it is called the Green Function approach. The basic idea is to find the
“impulse” response function for the differential equation: the generalized potential one
gets if one has a point-like source. Given the impulse response function, and the
linearity of O~r , one can obtain the generalized potential for an arbitrary source
function by convolving the impulse response function with that source function.
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Mathematically, the impulse response function, or Green Function, is the function
G(~r , ~r ′) that solves the equation

O~r G(~r , ~r ′) = δ(~r − ~r ′) (3.37)

meaning that G(~r , ~r ′) calculates the generalized potential at the point ~r for a point
source of size q = 1 at the position ~r ′ (i.e., the total source charge recovered by
integrating over the source function is 1). If such a G exists, then, for an arbitrary
source function g(~r), G gives us the following solution f (~r) to the generalized linear
partial differential equation, Equation 3.36:

f (~r) =

∫
dτ ′G(~r , ~r ′) g(~r ′) (3.38)

We can check that Equation 3.36 is satisfied by this solution by applying the operator:

O~r f (~r) = O~r

∫
dτ ′G(~r , ~r ′) g(~r ′) =

∫
dτ ′

[
O~r G(~r , ~r ′)

]
g(~r ′) (3.39)

=

∫
dτ ′δ(~r − ~r ′) g(~r ′) = g(~r) (3.40)

Note how this check relied on the linearity of O~r , which allowed us to bring it inside
the integral. Assuming solutions to the generalized linear partial differential equation
are unique (true for Poisson’s Equation), the Green Function is the only solution we
need to find.
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General Discussion of Green Functions for Poisson’s Equation

Let’s consider the simplest possible case, that in which there is no bounding surface
and the potential vanishes at infinity. We can read the Green Function off by rewriting
our usual expression for the potential for this boundary condition, Equation 2.47, in
the same form as Equation 3.38:

V (~r) =
1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| =

∫
V

dτ ′ G(~r , ~r ′) ρ(~r ′) (3.41)

Therefore, the Green Function for Poisson’s Equation is

G(~r , ~r ′) =
1

4π εo

1

|~r − ~r ′| if V = all space,V (r →∞)→ 0 (3.42)
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More generally — i.e., for a more complex boundary condition — Poisson’s Equation
implies that its Green Function must decompose into the form

G(~r , ~r ′) =
1

4π εo

1

|~r − ~r ′| + F (~r , ~r ′) with ∇2
~r F (~r , ~r ′) = 0 (3.43)

where the first term provides the right side of Poisson’s Equation but the second term
is not only allowed by Poisson’s Equation but, we will see, is crucial for satisfying the
boundary conditions for any situation except the trivial one noted above, that of the
potential vanishing at infinity. The F term plays multiple roles, depending on the type
of boundary condition, and we will explain those roles later. Finding G thus consists of
finding F .

We note that both G and F are symmetric in their arguments, G(~r ′, ~r) = G(~r , ~r ′)
and F (~r ′, ~r) = F (~r , ~r ′), for reasons we will explain later.
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Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary
Conditions

To apply the concept of Green Functions to Poisson’s Equation, we start by taking
φ(~r ′) = V (~r ′) and ψ(~r ′) = −εo G(~r , ~r ′) in Green’s Theorem (Equation 3.13) and
assuming

−εo∇2
~r ′G(~r , ~r ′) = δ(~r − ~r ′) (3.44)

Note that this equation does not match Equation 3.37, which had the Laplacian
acting on ~r , not ~r ′. We will recover Equation 3.37 later. We then apply the same
kinds of manipulations we did to obtain the integral equation for the potential,
Equation 3.35 (these manipulations rely on Equation 3.44), giving

V (~r) =

∫
V

dτ ′ ρ(~r ′) G(~r , ~r ′) (3.45)

+ εo

∮
S(V)

da′
[
G(~r , ~r ′) n̂(~r ′) · ~∇~r ′V (~r ′)− V (~r ′) n̂(~r ′) · ~∇~r ′G(~r , ~r ′)

]
We see that, if we can find the appropriate G for a particular boundary condition and
force the term involving the other boundary condition to vanish, our integral equation
for V (~r) reduces to an integration over the source distribution with the Green Function
and over the boundary condition with the Green Function or its normal gradient.
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We also see that, even though we assumed Equation 3.44 instead of Equation 3.37 for
the equation defining the Green Function, the result we obtain above is consistent
with Equation 3.38, which states that the source function ρ(~r ′) should be convolved
with the Green Function, integrating over its second argument, to obtain the potential
function in its first argument. We will resolve this apparent inconsistency shortly.

Note that the equation we obtain for V (~r) is different from the integral equation for
V (~r), Equation 3.35, because there we could not impose such a condition on V (~r),

since it is set by the situation under consideration, or on |~r − ~r ′|−1 (obviously).
G(~r , ~r ′) is, on the other hand, our tool for solving that integral equation, so we may
design the tool to do its job as long as it respects its defining equation.

We can be more specific about what we mean by “forcing the other BC term to
vanish” by picking a type of boundary condition:

I Dirichlet boundary condition

In this case, V (~r) is specified for ~r ∈ S. Therefore, n̂(~r) · ~∇~r V (~r) should be left
unspecified — it should be determined by the solution itself — so we need for it
to not appear in the integral equation. We can eliminate the term containing
this normal derivative if we require the Dirichlet Green Function, GD (~r , ~r ′), to
satisfy

GD (~r , ~r ′) = 0 for ~r ′ ∈ S, ~r ∈ V,S (3.46)
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Note that we want the above condition to hold for not just ~r ∈ V but also for
~r ∈ S so the expression is usable for calculating the potential on the boundary
to ensure the boundary condition remains satisfied (i.e., the expression for V (~r)
is self-consistent).

Using the interpretation implied by the convolution of the charge density with
the Green Function in Equation 3.45 (admittedly, an interpretation not
obviously consistent with the defining equation, Equation 3.44), the above
condition is equivalent to requiring that charge on the boundary (~r ′ ∈ S) yield
no contribution to the potential elsewhere on the boundary (~r ∈ S) or in the
volume (~r ∈ V). In one sense, this is what we expect, as the Dirichlet boundary
condition specifies V (~r) on the boundary, so any charge that appears on the
boundary to enforce that boundary condition had better do so in a way that
does not modify the boundary condition.

However, in another sense, it is the opposite of what we expect: how can the
induced surface charge on the boundary not affect the potential on the surface
or in the volume? Wasn’t that the whole idea behind the method of images,
that one calculates the additional potential of the induced surface charge on the
boundary by replacing it with an image charge? We resolve this confusion below.

With the above condition, the solution for V (~r) reduces to

V (~r) =

∫
V

dτ ′ ρ(~r ′) GD (~r , ~r ′)− εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.47)

Section 3.4.4 Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary Conditions Page 134



Section 3.4 Advanced Electrostatics: Formal Solution to Poisson’s Equation: Green Functions

This form allows us to resolve our confusion above:

I The first term calculates the potential due to the real charge, including
the potential due to the “image” charge induced by it on the boundary.
(We’ll start being sloppy about the use of the word “image” and drop the
quotes.) The latter contribution must come from this term (and not the
surface term) because the image charge and its potential ought to be
linear in the real charge density: there is no image charge without real
charge. The defining condition does not contradict this: GD (~r , ~r ′) 6= 0 is
allowed for ~r , ~r ′ ∈ V, GD (~r , ~r ′) = 0 is only required for ~r ′ ∈ S (and
~r ∈ V,S).

I The second term adds a contribution to the potential for surface charge
that appears on the boundary in order for the boundary to sit at the
nonzero potential given by the boundary condition. This is not image
charge because it is not induced by real charge and it appears even if there
is no real charge in V (this term’s presence does not depend on whether ρ
is present or not). In the case of the point charge near the sphere, this is
the charge q0 = 4π εo V0 R that appears so the sphere sits at V = V0. It
has nothing to do with the point charge q. The condition GD (~r , ~r ′) = 0
for ~r ′ ∈ S is the sensible condition that this additional surface charge does
not induce its own image charge. It is sort of amazing that this simple
term does all that work — figures out the surface charge required to
realize the Dirichlet boundary condition and calculates its potential in V.
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For a Dirichlet boundary condition, the symmetry of GD in its arguments can be
proven by applying Green’s Theorem with φ = GD (~r , ~x) and ψ = GD (~r ′, ~x),
where ~x is the variable that is integrated over, and using the defining equation,
Equation 3.44, and the defining boundary condition GD (~r , ~x) = 0 for ~x on the
boundary and ~r in the volume and on the boundary (which also implies the
same for GD (~r ′, ~x)). Symmetry of GD implies symmetry of FD given that their
difference is symmetric in ~r and ~r ′.

When this symmetry property is applied to Equation 3.44, and we also use the
symmetry of the delta function, Equation 3.37 is recovered (after relabeling
~r ↔ ~r ′). This resolves the apparent inconsistency between wanting the Green
Function to satisfy Equation 3.37 but having to assume Equation 3.44 at the
start to get Equation 3.45.

We can use the symmetry requirement to reinterpret the condition
GD (~r , ~r ′) = 0 for ~r ′ ∈ S. We can now think of the unit charge as being at
~r ∈ V,S and the potential being calculated at ~r ′ ∈ S. Thus, this condition
requires that GD yields zero contribution to the potential on the boundary from
charges in the volume or on the surface. For charges in the volume, this
statement is the requirement that the image charge induced by the real charge
cannot modify the boundary condition. For charges on the surface, it is the
requirement that charge on the surface cannot induce its own image charge and
generate a potential contribution from that image charge.
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We can also now provide an interpretation of FD (~r , ~r ′) in the Dirichlet case.
Because 1) FD (~r , ~r ′) satisfies Laplace’s Equation in the volume V, and 2) when
added to the potential of a unit point charge at ~r ′ (the first term in our
expression relating GD and FD , Equation 3.43), the sum satisifies the specified
boundary condition on S, FD (~r , ~r ′) can be interpreted as the potential function
in the volume due to the image charge induced on the boundary by the real
charges in the volume with the boundary grounded. This image charge depends
on where the charges in the volume are, hence the integration over ~r ′ ∈ V to
calculate this effect of this term.

What remains a bit mysterious or magical is how the second term in
Equation 3.47 works. Clearly, that term calculates the surface charge density on
the boundary needed for the Dirichlet boundary condition to be satisfied and
then calculates the potential in the volume due to that surface charge density. It
requires both terms in GD (i.e., |~r − ~r ′|−1 and FD ) to do that. It seems this
part just falls out of the mathematics.
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I Neumann boundary condition

In this case, n̂ · ~∇V (~r) is specified for ~r ∈ S, so we need to render irrelevant the
term containing V (~r) because we should not have to simultaneously specify it.

While we might be inclined to require n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = 0 for ~r ′ ∈ S to
make this happen, this requirement is not consistent with Equation 3.44 defining
G : if one integrates this equation for GN over ~r ′ ∈ V(S), and turns it into a
surface integral using the divergence theorem, one obtains the requirement

−εo

∮
S(V)

da′ n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = 1 for ~r ∈ V,S

Thus, the simplest condition we can impose on GN is

n̂(~r ′) · ~∇~r ′GN (~r , ~r ′) = −
[
εo

∮
S(V)

da′

]−1

for ~r ∈ V,S, ~r ′ ∈ S (3.48)
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Applying this condition, the solution for V (~r) reduces to

V (~r) =

∫
V

dτ ′ ρ(~r ′) GN (~r , ~r ′) + εo

∮
S(V)

da′GN (~r , ~r ′) n̂(~r ′) · ~∇~r ′V (~r ′) + 〈V (~r)〉S(V)

with 〈V (~r)〉S(V) ≡
∮
S(V) da′ V (~r ′)∮
S(V) da′

(3.49)

While V (~r) on the boundary has not been completely eliminated, its only
appearance is via its average value on the boundary. This makes sense, as the
Neumann boundary condition does not specify the potential offset since it only
specifies derivatives of the potential. The appearance of this term reflects the
freedom we have to set the potential offset for problems with Neumann
boundary conditions. Recall that the Uniqueness Theorem only showed
uniqueness up to an overall offset.

What is the interpretation of a Neumann Green Function? Since
n̂(~r ′) · ~∇~r ′V (~r ′) specifies the surface charge density on the boundary, GN (~r , ~r ′)
simply calculates the potential at a point ~r in the volume due to this boundary
surface charge density at ~r ′. Note that GN is convolved with the volume charge
density and the surface charge density in the same way, reinforcing this
interpretation. A Neumann Green Function thus has a simpler interpretation
than a Dirichlet Green Function. There is no interpretation of GN or FN as
calculating contributions from image charge.
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What is the interpretation of FN (~r , ~r ′) for the Neumann case? One can show
that it has no effect (one needs to make use of symmetry of FN in its
arguments, see below). Not that it is identically zero, but that all terms
involving it vanish. This makes sense: if we specify the surface charge density
everywhere in the volume and on the surface, we should be able to just use
Coulomb’s Law to calculate the potential everywhere, which just requires the
Coulumb’s Law part of GN .

The triviality of the Neumann Green Function may seem to render pointless the
extended discussion leading to this point. Recall, however, that Dirichlet
boundary conditions are far more common: we tend to specify potentials on the
boundary in real situations, not the charge density. We derived the Neumann
Green Function for completeness, not because it is really needed.

For a Neumann boundary condition, the symmetry of GN and FN is not a result
of the boundary condition, but it may be assumed without loss of generality; see
K.-J. Kim and J. D. Jackson, Am. J. Phys. 61:1144 (1993). As with the
Dirichlet Green Function, this symmetry property allows Equation 3.37 to be
obtained from the assumed defining equation, Equation 3.44, closing the loop
on that apparent inconsistency.

To make further progress in obtaining a functional form for the Green Function, we
must specify the boundary conditions in more detail. We will consider examples of this
next.
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Obtaining Green Functions from the Method of Images

We mentioned earlier that the component FD (~r , ~r ′) of the full Dirichlet Green
Function GD (~r , ~r ′) can be determined by the method of images in some cases. Let’s
see how this works for the two cases we have considered:

I Point charge near grounded conducting plane

The full potential at a point ~r for the point charge at d ẑ is

V (~r) =
1

4π εo

[
q

|~r − d ẑ| −
q

|~r + d ẑ|

]
(3.50)

We can see by inspection that the Dirichlet Green Function is given by taking
q = 1 and by replacing d ẑ in the first term with ~r ′ and −d ẑ in the second
term with ~r ′ mirrored through the x ′y ′ plane:

GD (~r , ~r ′) =
1

4π εo

[
1

|~r − ~r ′| −
1

|~r − (x ′x̂ + y ′ŷ − z ′ẑ)|

]
(3.51)

One can test this by plugging into Equation 3.46 with ρ(~r ′) = q δ(~r ′ − d ẑ).

The second term accounts for the fact that induced charge appears on the
grounded conducting plane and calculates the contribution to the potential due
to it; it is the F (~r , ~r ′) term while the first term is the usual Coulomb’s Law term.
The first term solves Poisson’s Equation while the second term solves Laplace’s
Equation. Both terms depend on the position of the point charge at ~r ′.
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This GD is not manifestly symmetric under exchange of ~r and ~r ′, but one can
rewrite it so it is:

GD (~r , ~r ′) =
1

4π εo

[
1

[(x − x ′)2 + (y − y ′)2 + (z − z ′)2]1/2

− 1

[(x − x ′)2 + (y − y ′)2 + (z + z ′)2]1/2

]

One can now also see how G(z = 0, ~r ′) = 0 always: the two terms become
identical in this case.

It is also important to notice that, for our boundary condition V (z = 0) = 0,
there is no term in V (~r) for the surface term because it vanishes in this case.
That is, in the Dirichlet case, we expect a surface term from Equation 3.47

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.52)

Since the Dirichlet boundary condition is V (z = 0) = 0, this integral vanishes
and we indeed only have the volume integral term from Equation 3.47
convolving the original charge distribution with GD .
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I Point charge near conducting plane held at V0

Suppose our boundary condition had instead been V (z = 0) = V0, a constant
(and also V (r →∞) = V0 for consistency; we will elaborate on this later). Is
the above Green Function still valid? Yes! We have not changed the charge
distribution in V or the type of boundary condition; all we have done is change
the value of the boundary condition. We can check that the new value of the
Dirichlet boundary condition is respected when we apply GD derived on the
basis of the V0 = 0 case.

This is an important point about the Dirichlet Green Function: while one may
find it using a special case, it is, by construction, valid for any Dirichlet
boundary condition for the same geometry. It does not care about the details of
either the charge distribution or the boundary condition. Of course, the special
case used must be general enough that one can find the entire Green Function.
When we later do an example using Separation of Variables in Cartesian
coordinates to solve Laplace’s Equation, we will see how that example
determines a portion of the Dirichlet Green Function but not all of it.

Returning to the matter at hand: because V (~r ′) = V0 for ~r ′ ∈ S(V), we can
pull it outside the integral, so we just have the surface integral of the normal
gradient of GD over the surface:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −εo V0

∮
S(V)

da′n̂(~r ′) · ~∇~r ′GD (~r , ~r ′)
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We recall that, by definition, GD (~r , ~r ′) is the potential at the point ~r due to a
point charge of unit magnitude (q = 1) at ~r ′. By the symmetry of its
arguments, it is also the potential at the point ~r ′ due to a unit point charge at
~r . Earlier, when we did the method of images solution for the grounded
conducting plane, we calculated the surface charge density at ~r due to the point
charge at d ẑ from −εo ~∇~r V (~r , d ẑ). In this case, −εo ~∇~r ′GD (~r , ~r ′) is the
surface charge density at ~r ′ due to a unit charge at ~r . Since V0 has come
outside the integral, our surface integral is now just the integral of this surface
charge density over the boundary, or the total induced charge on the boundary.
We calculated this when we did the method of images and found it was
Qind = −q, so, in this case, it will be −1. That is:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −V0

∮
S(V)

da′σind (~r ′, q = 1)

= −V0Qind (q = 1) = V0 (3.53)

So, we see that the surface term serves to add the potential offset that the
boundary condition V (z = 0) = V0 requires. Therefore, the solution is now

V (~r) =
1

4π εo

[
q

|~r − d ẑ| −
q

|~r + d ẑ|

]
+ V0 (3.54)

This solution has V (z = 0) = V0 and V (r →∞) = V0.
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This example serves to highlight the fact that one has to be careful about the
self-consistency of boundary conditions, especially when they involve a condition
at infinity. Consider two alternative, invalid BCs:

I One cannot set V (z = 0) = V0 and V (r →∞) = 0 because that is not
self-consistent for z = 0, (x , y)→∞: should the BC be V0 or 0 for this
part of the boundary?

I One cannot even require V (z = 0) = V0 and V (z →∞) = 0 because it

leaves unspecified the boundary condition for V (z,
√

x2 + y2 →∞). If
one then thinks about what type of BC to specify there, one finds that it
should be impossible to specify something that is consistent with
V (z →∞) = 0. Think about the case of the conductor held at V0 and
no point charge. We know the solution is a uniform sheet of surface
charge on the conductor, and we know that the field is then a constant
~E(~r) = (σ/εo ) ẑ and the potential is V (~r) = −(σ/εo ) z. This potential
does not vanish as z →∞. If one knows that a set of boundary
conditions is not self-consistent for the case of no point charge, then
linearity/superposition tells us there is no way to fix the inconsistency by
adding charges to V: one would have to add a potential that is also not
self-consistent to cancel out the self-inconsistency of the q = 0 potential!
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I Point charge near grounded conducting sphere

The full potential at a point ~r for the point charge at a ẑ was (Equation 3.25):

V (~r) =
1

4π εo

[
q

|~r − a ẑ| −
q R

a

|~r − R2

a
ẑ|

]
(3.55)

Thus, the Dirichlet Green Function is given by letting ~r ′ = a ẑ and taking q = 1:

GD (~r , ~r ′) =
1

4π εo

 1

|~r − ~r ′| −
R/r ′∣∣∣~r − ~r ′ R2

(r ′)2

∣∣∣
 (3.56)

Again, the second term accounts for the potential due to the charge induced on
the surface of the sphere and is the term that solves Laplace’s Equation in this
situation (the FD (~r , ~r ′) term). And again, one can this test form for GD by
plugging into Equation 3.46 with ρ(~r ′) = q δ(~r ′ − a ẑ).
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It is perhaps not so obvious that the second term in this Green Function is
symmetric in its arguments. Let’s rewrite it:

R/r ′

|~r − ~r ′ R2

(r ′)2 |
=

R

|r̂ r r ′ − R2 r̂ ′| =
R√

(r r ′)2 + R4 − 2 r r ′R2 r̂ · r̂ ′
(3.57)

Now the symmetry is manifest.

The same point about the surface integral term as for the conducting plane
holds here: that term vanishes because V (~r ′) = 0 for ~r ′ ∈ S.
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I Point charge near conducting sphere held at fixed potential

In this case, we can see the effect of the surface integral term in Equation 3.47
because V (~r) on the boundary does not vanish. The integral term is, from
Equation 3.47:

−εo

∮
S(V)

da′ V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) (3.58)

When we encountered this nonvanishing surface term for the prior case of a
point charge near a conducting plane, we recognized that V (~r ′) = V0 could be
pulled outside the integral and that the integral of the normal gradient of the
Green Function gives the total charge induced on the boundary for a unit charge
at ~r . To calculate that total induced charge, we invoke the theorem (based on
Gauss’s Law) we discussed earlier. In this case, the surface encloses the image
charge, so the total induced charge is equal to the image charge. That is:

−εo

∮
S(V)

da′V (~r ′) n̂(~r ′) · ~∇~r ′GD (~r , ~r ′) = −V0Qind = −V0qimage = V0
R

r

(3.59)

This is again just the potential due to a point charge at the origin whose
magnitude is such that the potential at radius R is V0.
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With this integral evaluated, the full solution for V (~r) is given by summing the
term that involves the integral with ρ, which we calculated already for the
grounded sphere case, with the boundary term:

V (~r) =
q

4π εo

[
1

|~r − aẑ| −
R/a

|~r − R2

a
ẑ|

]
+ V0

R

r

This is what we found earlier when we discussed the same problem using the
method of images.

I Point charge in the presence of a charged, insulated, conducting sphere

The prior situation is identical to this one: specifying the charge on a conductor
is the same as specifying its potential. So the result for V (~r) is the same, where
we must take V0 = (Q + (R/a)q)/(4π εo R). Note that, even though we are
talking about a boundary condition in which charge is specified, it is not a
Neumann boundary condition because we do not specify σ(~r ′ ∈ S), we are still
effectively specifying V (~r ′ ∈ S). This case is like the third special case of the
Uniqueness Theorem we discussed earlier.
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Introduction to Separation of Variables

General Points on Separation of Variables

Griffiths makes this seem harder than it is. In separation of variables, we assume that
the solution of Laplace’s Equation factors into functions of single coordinates. This
allows us to reduce the partial differential equation to a set of ordinary differential
equations, which can be solved by standard techniques. Constants of integration
appear that help to define the solutions. We apply the boundary conditions as defined
by the voltages and/or the charge densities (normal derivative of voltage) at the
boundaries. Once we find a set of solutions, we know from Sturm-Liouville theory that
they form a complete set, so we are assured that we can write any solution to
Laplace’s Equation for the given boundary conditions in terms of these solutions.

We will only develop separation of variables for Laplace’s Equation and, in the near
term, we will only apply it to solving problems with specific types of boundary
conditions rather than trying to use it to find the F piece of the Green Function.
(Recall, F satisfies Laplace’s Equation while G satisfies Poisson’s Equation.) We will
see later, at the tail end of our discussion of separation of variables in spherical
coordinates, that this technique will actually be sufficient to obtain the Green
Function for an arbitrary geometry, which then provides us the solution to Poisson’s
Equation. (One will be able to see that it is not feasible to do separation of variables
for Poisson’s Equation in the same way we do it for Laplace’s Equation: the process
very much relies on the vanishing of one side of the equation!)
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Digression on Orthonormal Functions

The general topic of the properties of solutions to second-order linear differential
equations is beyond the scope of this course; it falls under the name Sturm-Liouville
theory, and it is covered in ACM95/100. We will simply quote some results that are
important for this course.

Sturm-Liouville theory consists of recognizing that the second-order linear ordinary
differential equations we encounter in many places in this course are self-adjoint
(Hermitian) operators on the Hilbert space of functions that satisfy the differential
equation. You know from linear algebra that Hermitian operators are guaranteed to
have a set of eigenvalues and eigenvectors (in this case, eigenfunctions), and that the
eigenvectors form an orthonormal basis for the space under consideration (here, again,
the space of functions that satisfy the differential equation). The same results apply
here. What this means is that, for such equations, there are a set of solution functions
{fp(w)} that are the eigenfunctions of the operator, and there are corresponding
eigenvalues {λp}. These eigenfunctions form a complete, orthonormal set. (Note: w
is intended to represent any coordinate, one- or multi-dimensional.)
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Orthonormality is written mathematically as∫ t

s
dw f ∗p (w) fq(w) = δpq (3.60)

where integration over the interval of interest [s, t] is the Hilbert space inner product.

Completeness is defined to be∑
p

f ∗p (w ′) fp(w) = δ(w ′ − w) (3.61)

where the sum is over all eigenfunctions of the differential equation.

Section 3.5.2 Digression on Orthonormal Functions Page 153



Section 3.5 Advanced Electrostatics: Introduction to Separation of Variables

Completeness, as its name indicates, enables us to show that any function g(w) on
[s, t] can be expanded in terms of the eigenfunctions {fp}:

g(w) =

∫ t

s
dw ′ g(w ′) δ(w ′ − w) =

∫ t

s
dw ′ g(w ′)

∑
p

f ∗p (w ′)fp(w)

=
∑

p

fp(w)

∫ t

s
dw ′ f ∗p (w ′)g(w ′)

That is, we have the expansion:

g(w) =
∑

p

Apfp(w) (3.62)

with coefficients given by

Ap =

∫ t

s
dw ′ f ∗p (w ′) g(w ′) (3.63)

We could have derived Equation 3.63 also by applying orthornomality to the expansion
Equation 3.62; this is the usual way we think of finding the {Ap} as we will see below.
They are of course equivalent derivations.
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Separation of Variables in Cartesian Coordinates

We assume that the function V (~r) can be factorized as

V (~r) = X (x) Y (y) Z(z) (3.64)

Plugging this into Laplace’s Equation, we obtain

Y (y) Z(z)
d2X

dx2
+ X (x) Z(z)

d2Y

dY 2
+ X (x) Y (y)

d2Z

dz2
= 0

1

X (x)

d2X

dx2
+

1

Y (y)

d2Y

dY 2
+

1

Z(z)

d2Z

dz2
= 0 (3.65)

We have three terms, the first a function of x , the second of y , and the third of z.
Given these mismatched dependences, the only way the equation can hold is if each
term is a constant. That is, it must hold that

1

X (x)

d2X

dx2
= K1

1

Y (y)

d2Y

dY 2
= K2

1

Z(z)

d2Z

dz2
= K3 (3.66)

with K1 + K2 + K3 = 0.
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We know that the solution to these ordinary differential equations are exponentials,

X (x) = A exp(x
√

K1) + B exp(−x
√

K1) (3.67)

Y (y) = C exp(y
√

K2) + C exp(−y
√

K2) (3.68)

Z(z) = E exp(z
√
−(K1 + K2)) + F exp(−z

√
−(K1 + K2)) (3.69)

We have not specified which of K1, K2, and K3 are positive and which are negative
(clearly, they cannot all be the same sign). That will be determined by the boundary
conditions. Note that we are also neglecting linear solutions that also satisfy the
individual ordinary differential equations; we will see they are not necessary in the
examples we consider here (though they may be needed more generally).

At this point, we cannot make further generic progress; we need to apply a set of
boundary conditions. These will place constraints on the allowed values of the
exponents and coefficients and restrict the family of solutions. There are a number of
examples in Griffiths. To avoid duplication, we use a different one here from Jackson
§2.9.
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Example 3.4: Empty box with five walls grounded and one held at a potential

Consider a box with side lengths a, b, and c in the x , y , and z dimensions and with
one corner at the origin. The boundary conditions are

V (x = 0) = 0 V (y = 0) = 0 V (z = 0) = 0 (3.70)

V (x = a) = 0 V (y = b) = 0 V (z = c) = φ(x , y) (3.71)

where φ(x , y) is a function that is given. In SoV, we always apply the homogeneous
(vanishing RHS) BCs first because, we will see, they restrict the functional form of the
solutions. The homogeneous BC in the ith dimension (e.g., y) can only be satisfied if
the ith function (e.g., Y (y)) satisfies it alone because it must be satisfied for all
values of the other coordinates. Let’s do x , y first for convenience (with
foreknowledge of solution):

X (0) = A + B = 0 X (a) = A exp(a
√

K1) + B exp(−a
√

K1) = 0 (3.72)

Y (0) = C + D = 0 Y (b) = C exp(b
√

K2) + D exp(−b
√

K2) = 0 (3.73)

Reducing,

A
[
exp(a

√
K1)− exp(−a

√
K1)
]

= 0 (3.74)

C
[
exp(b

√
K2)− exp(−b

√
K2)
]

= 0 (3.75)
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There is no solution to these equations for K1 > 0 and K2 > 0: the unit-normalized
decaying and rising exponentials are only equal when their arguments both vanish, and
they do not. Therefore, let’s take K1 = −α2 and K2 = −β2 so these become
oscillating exponentials. We thus obtain the conditions

sin(α a) = 0 sin(β b) = 0 (3.76)

This places conditions on the allowed values of α and β:

αn =
n π

a
βm =

m π

b
n, m positive integers (3.77)

where n and m may only be positive integers because negative values are redundant
with the positive ones and n = 0 and m = 0 yield vanishing functions. Thus, we have

X (x) =
∞∑

n=1

An sinαnx Y (y) =
∞∑

m=1

Cm sinβmy (3.78)

where the {An} and {Cm} are constants to be determined. These solutions clearly
respect the V = 0 boundary conditions at x = 0, a and y = 0, b because they vanish
at those points.
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Now, let’s apply the remaining homogeneous BC to Z(z). At z = 0, we have

Z(0) = E + F = 0 =⇒ F = −E (3.79)

Therefore, Z(z) is of the form

Z(z) = Enm

[
exp(z

√
α2

n + β2
m)− exp(−z

√
α2

n + β2
m)

]
(3.80)

= E ′nm sinh(γnmz) with γnm =
√
α2

n + β2
m (3.81)

(sinh not sin because we know α2
n + β2

m > 0.) Our solutions thus have the form

Vnm(x , y , z) = Anm sin(αnx) sin(βmy) sinh(γnmz) with γnm =
√
α2

n + β2
m (3.82)

where we have combined all the arbitrary coefficients Am, Cn, and E ′nm into a single
coefficient Anm. Each Vnm(~r) satisfies all five homogeneous BCs.

Page 159



Section 3.6 Advanced Electrostatics: Separation of Variables in Cartesian Coordinates

Now, we want to apply the last boundary condition, V (x , y , z = c) = φ(x , y). How?
Not the same way as we applied the previous ones. The prior boundary conditions
were homogeneous, meaning that they forced the solution to vanish somewhere. The
remaining one is inhomogeneous because it requires the solution to take on a particular
functional form on a boundary. These must be treated differently, for two reasons.

I The first involves linearity and uniqueness. Because the right-hand side of a
homogeneous BC is zero, the BC is satisfied by any linear combination of
functions that satisfy the BC. The same is not true of inhomogeneous BC. If it
were possible for two different functions to satisfy the inhomogeneous BC, then
only a subset of linear combinations of them would satisfy the same BC: the
linear combinations in which the coefficients sum to unity. This condition
violates linearity. The only resolution is for there to be precisely one solution to
the inhomogeneous BC. This requirement is consistent with uniqueness: the
inhomogeneous BC is applied last, and it completes the application of the BC,
so the solution should be unique once it is applied.

I From the purely calculational point of view, requiring the solution for a given n,
m to satisfy the inhomogeneous boundary condition would imply

Vnm(x , y , z = c) = φ(x , y) (3.83)

Anm sin(αnx) sin(βmy) sinh(γnmc) = φ(x , y) (3.84)

There simply is not enough freedom in the functional form on the left to satisfy
the boundary condition for arbitrary φ(x , y).
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The only way to have enough freedom to satisfy the inhomogeneous boundary
condition is to consider a linear combination of the individual n, m:

V (~r) =
∞∑

n,m=1

Anm sin(αnx) sin(βmy) sinh(γnmz) (3.85)

where Anm are now constants to find based on requiring the above linear combination
solution satisfies the inhomogeneous boundary condition at z = c, which now becomes

φ(x , y) = V (x , y , z = c) =
∞∑

n,m=1

Anm sin(αnx) sin(βmy) sinh(γnmc) (3.86)

This condition will let us determine the Anm, but how, and why are we certain they
exist? We make use of the theory of orthonormal functions we cited earlier.
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We will use the fact (not proven here) that the functions {
√

2/a sin(αnx)} for n ≥ 1
form a complete, orthonormal set on the x ∈ [0, a] interval (with the given boundary

conditions at x = 0, a), as do {
√

2/b sin(βny)} for m ≥ 1 on y ∈ [0, b] (again, with
BC). Therefore, we may recover the Anm by multiplying by them and integrating:∫ a

0
dx

∫ b

0
dy φ(x , y)

√
2

a
sin(αpx)

√
2

b
sin(βqy)

=

∫ a

0
dx

∫ b

0
dy

∞∑
n,m=1

Anm sinh(γnmc) sin(αpx)

√
2

a
sin(αnx) sin(βmy)

√
2

b
sin(βqy)

=
∞∑

n,m=1

Anm sinh(γnmc)

√
a

2
δpn

√
b

2
δqm =

√
a b

2
Apq sinh(γpqc) (3.87)

Now, be aware that we did more work than necessary above. Once we are told that
the {

√
2/a sin(αnx)

√
2/b sin(βmy)} form an orthonormal set, we do not need to do

the integrals on the right-hand side! We only need write the right-hand side of the
original equation in terms of the orthonormal functions, then use orthonormality
(Equation 3.63) to obtain the equations for the individual coefficients; i.e.:

φ(x , y) =

√
a b

4

∞∑
n,m=1

Anm

√
2

a
sin(αnx)

√
2

b
sin(βmy) sinh(γnmc) (3.88)

=⇒
∫ a

0
dx

∫ b

0
dy

√
2

a
sin(αpx)

√
2

b
sin(βqy)φ(x , y) =

√
a b

4
Apq sinh(γpqc) (3.89)
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Next, we move the coefficients to one side to obtain (replacing pq with mn):

Anm =
1

sinh(γnmc)

∫ a

0
dx

∫ b

0
dy

2

a
sin(αnx)

2

b
sin(βmy)φ(x , y) (3.90)

Our full solution for the applied set of boundary conditions is

V (~r) =
4

a b

∞∑
n,m=1

sin(αnx) sin(βmy)
sinh(γnmz)

sinh(γnmc)

∫ a

0
dx ′
∫ b

0
dy ′φ(x ′, y ′) sin(αnx ′) sin(βmy ′)

(3.91)

Summary: The homogeneous boundary conditions restricted the solutions to a specific
orthonormal set, and the single inhomogeneous boundary condition set the coefficients
of the appropriate linear combination of that orthonormal set.

A good exercise is to write down the solutions for the five other inhomogeneous
boundary condition cases (especially the ones with the inhomogeneous condition on
the x , y , or z = 0 planes) “by inspection” — i.e., by simply changing the solution we
already have by replacing z with x , y , or a− x , b − y , or c − z — rather than by
rederiving. Clearly, these other problems are not different in any conceptual way, they
are only different calculationally, and only barely. There is no reason to redo all that
calculation from scratch!
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If we had used a more general boundary condition, specifying V to be nonzero on all
six sides of the box, then we could solve the similar problem for each of the six faces
independently (i.e., let V be nonzero and arbitrary on that face and zero on all the
other faces) and then sum the solutions since each individual solution does not affect
the capability of the other solutions to satisfy their boundary conditions. (Of course,
the boundary conditions themselves must be consistent with each other at the edges
and corners where they meet.) In fact, we would have to do this; the separation of
variables technique provides no way to satisfy two generic, independent
inhomogeneous boundary conditions simultaneously. Rather, to solve problems
involving multiple inhomogeneous boundary conditions, one must use the property
that an inhomogeneous boundary condition solution can always be summed with an
arbitrary number of homogeneous boundary condition solutions and still satisfy the
inhomogeneous boundary condition.

It is interesting to consider the intermediate case, consisting of the same geometry
with constant potentials φ0 at the z = c face and −φ0 at the z = 0 face. As stated
above, one can solve the two cases of φ0 and −φ0 separately and add them. One can
also solve the problem directly by simultaneously applying the two boundary
conditions, and one can show that the two solutions are the same (using some
hyperbolic trigonometry identities). This is possible because the
double-inhomogeneous boundary condition in this case is very simple, having only one
free parameter, φ0. A generic double-inhomogeneous boundary condition problem
cannot be solved in this way.
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Referring back to our discussion of Green Functions, the above solution is the surface
term in Equation 3.47 for the particular boundary condition we have applied. By
comparison of the two expressions, we infer (not derive!)

− εo n̂(~r ′) · ~∇~r ′GD (~r , ~r ′ = x ′x̂ + y ′ŷ + cẑ) (3.92)

=
4

a b

∞∑
n,m=1

sin(αnx) sin(βmy)
sinh(γnmz)

sinh(γnmc)
sin(αnx ′) sin(βmy ′)

Note that this expression does not fully specify GD (or FD )! The above information is
sufficient for the particular physical situation we have set up, which consists of no
physical charge in the volume and the above boundary condition, because:

I The term consisting of the integral of the charge density in the volume
convolved with GD is zero in this case because the charge density vanishes in
the volume. Therefore, we do not need to know GD (or FD ) completely.

I The above surface term is the only one needed because V = 0 on the other
boundaries.
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For the more general problem of an arbitrary charge distribution in the volume and
arbitrary Dirichlet boundary conditions on the surfaces, we would need to find the full
GD . It may seem like one could do as suggested earlier, finding the solution for each
option for which face is held at nonzero potential, then using the results analogous to
the above as six Neumann boundary conditions on GD , and applying separation of
variables to find GD . But one would have to require that GD solve Poisson’s Equation
for a unit point charge, not Laplace’s Equation. This, as we noted earlier, is not
feasible with separation of variables because of the nonzero right side of the equation.
There is a way to deal with this, which we will show a bit later when we develop the
spherical harmonic expansion for the Green Function in spherical coordinates.

Another approach that does work would be the method of images with the condition
V = 0 on all the surfaces. It is left as an exercise for the reader to think about what
set of image charges is appropriate; the situation gets complicated for a charge at an
arbitrary position in the box, but it is solvable. Certainly, from the resulting GD , we
could compute the normal gradient of GD on any surface and thus obtain the general
solution for V in the volume for any Dirichlet boundary condition. We should find that
the normal gradient of GD on the z = c surface is what is given above.

It may seem like separation of variables is unsatisfactory for this reason — the
procedure does not give you the full Green Function, while the method of images
does. But, as we have seen, the method of images is not a systematic procedure —
one has to guess the correct image charge distribution. By contrast, separation of
variables is an entirely algorithmic procedure to give you a solution if a separable one
exists for the particular boundary condition you are applying. It is less general but
more reliable. More importantly, we will show later how, by applying separation of
variables in a more sophisticated way, we can in fact find the full Green Function.
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There is, nevertheless, no guarantee that there will be a separable solution; this
depends on the geometry of the boundary conditions. The boundary conditions need
to respect the separability assumed. For example, a boundary condition on a spherical
boundary would not likely yield a solution via separation of variables in Cartesian
coordinates!

Note also that the method of images technique is not appropriate for a Neumann
boundary condition because the method of images solution generally solves the V = 0
Dirichlet BC problem. One needs a technique like separation of variables for such
cases.
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Separation of Variables in Spherical Coordinates: General Theory

Doing the Separation in Spherical Coordinates

We do this in a slightly more general manner than Griffiths, dropping the assumption
of azimuthal symmetry until it is time to solve the separated differential equations.

Laplace’s Equation in spherical coordinates is:

1

r2

∂

∂r

(
r2 ∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0 (3.93)

If we assume a separable form

V (r , θ, φ) = R(r) Θ(θ) Φ(φ) (3.94)

then, after dividing through by V (r , θ, φ) and multiplying by r2 sin2 θ, we have

sin2 θ

[
1

R(r)

d

dr

(
r2 dR

dr

)
+

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+

1

Φ(φ)

d2Φ

dφ2
= 0 (3.95)
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We see that first term depends only on r and θ while the second term depends only on
φ, so we can immediately assume they are each equal to a constant:

1

Φ(φ)

d2Φ

dφ2
= −m2 (3.96)

The choice of the form of the constant is motivated by what will come next, but we
can see why it needs to be of this form. As we saw in Cartesian coordinates, the above
differential equation is solved either by growing/decaying exponentials (right side
positive) or oscillating exponentials (right side negative). Since φ is a coordinate that
repeats on itself (φ = 2 n π are the same physical coordinate) the solutions Φ(φ) must
also be periodic, forcing the choice of the oscillating exponential. (For the same
reason, the linear solutions we ignored in the Cartesian case are disallowed here.) We
saw before that it is convenient to define the constant to incorporate a squaring.

The solutions of this equation are straightforward:

Φ(φ) = A exp(i m φ) + B exp(−i m φ) (3.97)

Periodicity in φ with period 2π requires m be an integer. One can either require
m ≥ 0 and keep the {Am} and {Bm} or allow m to be any integer and drop the {Bm}
(which would be redundant with the {Am} for m < 0). In either case, only one of A0

or B0 is required.
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Returning to the other term, we now have

sin2 θ

[
1

R(r)

d

dr

(
r2 dR

dr

)
+

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
= m2 (3.98)

1

R(r)

d

dr

(
r2 dR

dr

)
+

[
1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ

]
= 0 (3.99)

Now, we see that the first term depends only on r and the second only on θ, so we can
separate again by setting the two terms equal to constants that sum to zero. Here, we
rely on prior knowledge of the result to choose the constant to be `(`+ 1) so that

1

R(r)

d

dr

(
r2 dR

dr

)
= `(`+ 1) (3.100)

1

Θ(θ)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= −`(`+ 1) (3.101)

Note that the radial equation does not depend on m. This implies that the R(r)
functions will not depend on the azimuthal properties of the problem, in particular
whether it has azimuthal symmetry. But R(r) depends on `, so it will depend on the
polar properties of the problem. Θ(θ) depends on ` and m, so its behavior depends on
both the polar and azimuthal properties of the problem. Φ(φ) looks like it may only
depend on the azimuthal properties because it depends only on m, but m is tied to `
through the polar equation, so there will be some relationship.
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Solving the Radial Equation

Here, we add another item to our “bag of tricks” and define U(r) by R(r) = U(r)/r
and plug in. (This is motivated by the r2 that the second d/dr must act on: assuming
this dependence gets rid of the extra terms arising because of that factor.) We find

d2U

dr2
− `(`+ 1)

r2
U(r) = 0 (3.102)

Since the two derivatives would reduce the exponent of a power-law solution by 2, and
the second term does the same by dividing by r2, the above equation suggests U(r) is
a power law in r . (Or, try making it work with a transcendental function: you can’t.)
If we plug in such a form U(r) = ra, we find

a(a− 1)ra−2 − `(`+ 1)ra−2 = 0 =⇒ a1 = `+ 1 or a2 = −` (3.103)

=⇒ R(r) =
U(r)

r
= A ra1−1 + B ra2−1 = A r` +

B

r`+1
(3.104)

There is no constraint on ` yet.
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The Polar Equation and the Generalized Legendre Equation

We may rewrite the polar angle equation as

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
Θ(θ) = 0 (3.105)

Motivated by the fact that sin θ dθ = −d(cos θ), we add another trick to our bag of
tricks by writing

x = cos θ Θ(θ) = P(cos θ) = P(x) 1− x2 = sin2 θ (3.106)

Then we may rewrite the polar differential equation as

d

dx

[
(1− x2)

dP

dx

]
+

[
`(`+ 1)− m2

1− x2

]
P(x) = 0 (3.107)

This is called the generalized Legendre equation.
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As you have seen in ACM95/100, differential equations of this type can be solved by
assuming the solution is a polynomial in x and requiring termination after a finite
number of terms. That is, one assumes

Pm
` (x) =

∞∑
k=1

ak xk (3.108)

and then, plugging the above form into the differential equation, one requires the
series to terminate (ak = 0 for some k). This condition forces ` to be a nonnegative
integer and −` ≤ m ≤ `. (We already know m is an integer to ensure Φ(φ) is
single-valued.) These polynomials are the associated Legendre polynomials.

Mathematically, there should be a second solution for each `,m because the equation
is second order. These are the solutions one finds by not requiring termination but
simply convergence for −1 < x < 1 (corresponding to 0 < θ < π). If one has a
geometry that excludes the z-axis (where these solutions diverge), these solutions
must be considered. If the z-axis is in the space, then these solutions are unphysical
and can be discarded.
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Separation of Variables in Spherical Coordinates with Azimuthal
Symmetry

The Polar Equation Solution with Azimuthal Symmetry: the Legendre
Equation and Legendre Polynomials

Consider the special case of azimuthal symmetry, for which m = 0 and Φ(φ) =
constant. The generalized Legendre Equation reduces to the Legendre Equation:

d

dx

[
(1− x2)

dP

dx

]
+ `(`+ 1) P(x) = 0 (3.109)

The same series solution applies here with m = 0, so ` must still be a nonnegative
integer. These solutions are the Legendre Polynomials. One can show they obey
Rodrigues’ Formula:

P`(x) =
1

2``!

(
d

dx

)` (
x2 − 1

)`
(3.110)
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Properties of the Legendre Polynomials

One can see by inspection or prove the following properties:

I P`(x) is a ` th-order polynomial in x .

I P`(x) has only even powers of x if ` is even and only odd powers if ` is odd.
=⇒ P`(x) is an even function of x for ` even and an odd function for ` odd.

I The Legendre polynomials are a complete, orthonormal set: any function on the
interval [−1, 1] can be written in terms of them. Their orthonormality relation is

∫ 1

−1
dx

√
2`+ 1

2
P`(x)

√
2`′ + 1

2
P`′ (x) = δ` `′ (3.111)

and their completeness relation is

∞∑
`=0

2`+ 1

2
P`(x)P`(x ′) = δ(x − x ′) (3.112)

I P`(1) = 1 and P`(−1) = (−1)`.

I P`(0) = [(−1)n (2n − 1)!!]/2n n! for even ` = 2 n. P`(0) = 0 for odd `.
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Full Solution to Laplace’s Equation with Azimuthal Symmetry

Combining our radial and polar equation solutions, we have that, for any problem with
azimuthal symmetry and in which the z-axis is included, the potential must have the
form

V (r , θ) =
∞∑
`=0

(
A` r` +

B`

r`+1

)
P`(cos θ) (3.113)

The coefficients {A`} and {B`} are set by the boundary conditions. If the volume
includes the origin and the boundary conditions imply the potential must be finite
there, the {B`} may be eliminated, and, if the volume includes infinity and the
boundary conditions require the potential be finite (usually zero) there, the {A`} may
be eliminated. In other cases, some or all of the {A`} and {B` } can be nonzero.
Usually, application of the boundary conditions on V will require use of the
orthonormality relations for the Legendre polynomials.

We note that, in the process of doing separation of variables, we have proven that the
angular solution satisfies the eigenvalue-eigenfunction equation

∇2P`(cos θ) = − `(`+ 1)

r2
P`(cos θ) (3.114)

For the angular equation, r acts as a constant and so appears in the eigenvalue.
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Examples of Separation of Variables with Azimuthal Symmetry

We will start first with a case in which the boundary condition is quite obviously
Dirichlet and the application is very much like what we did in Cartesian coordinates.
Generally speaking, however, boundary conditions are not always so obvious. One has
to use whatever information one is given and turn it into boundary conditions of the
type that we know provides uniqueness.
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Example 3.5: Dirichlet Boundary Condition on a Spherical Boundary with
Azimuthal Symmetry

Suppose V (R, θ), the potential as a function of θ on a sphere of radius R, is specified,
where the sphere is either the outer boundary or the inner boundary of the space.
What is the explicit form for the resulting potential?

Let’s consider the two cases together. If the space is r < R, then we require the {B`}
to vanish to ensure a finite potential at the origin. (There is no charge in the volume,
so we are assured that the potential cannot be infinite there.) If the space is r > R,
then we require the {A`} to vanish so the potential goes to zero at infinity. That is:

V (r , θ) =
∞∑
`=0

A` r` P`(cos θ) or V (r , θ) =
∞∑
`=0

B`

r`+1
P`(cos θ) (3.115)

To apply the boundary condition at R, we evaluate the above equations at that value:

V (R, θ) =
∞∑
`=0

A` R` P`(cos θ) or V (R, θ) =
∞∑
`=0

B`

R`+1
P`(cos θ) (3.116)
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Then, to find the coefficients, we apply orthornomality to both sides, as we did for
separation of variables in Cartesian coordinates. For the case of r < R, we have:

2 `+ 1

2

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.117)

=
∞∑
`′=0

A`′ R`
′
∫ π

0
sin θ dθ

2 `+ 1

2
P`(cos θ) P`′ (cos θ) (3.118)

=
∞∑
`′=0

A`′ R`
′
δ``′ = A` R` (3.119)

which we can solve for A`. Or, based on the orthornormality relation Equation 3.111,
we can just state by inspection (yielding the same result as the above calculation):

A` =
2 `+ 1

2

1

R`

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.120)

Notice how R` appears in the formula for A`. This is analogous to the same way that
sinh(γnm c) appeared in the solution for the coefficients Anm in the Cartesian case
(Equation 3.90).
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Similarly, for the case r > R,

B` =
2 `+ 1

2
R`+1

∫ π

0
sin θ dθV (R, θ) P`(cos θ) (3.121)

Therefore, the solutions are

V (r < R, θ) =
∞∑
`=0

2 `+ 1

2

r`

R`
P`(cos θ)

∫ π

0
sin θ ′ dθ ′ V (R, θ ′) P`(cos θ ′) (3.122)

V (r > R, θ) =
∞∑
`=0

2 `+ 1

2

R`+1

r`+1
P`(cos θ)

∫ π

0
sin θ ′ dθ ′ V (R, θ ′) P`(cos θ ′) (3.123)

Notice how the units of the coefficients cancel the powers of r in the solution so our
result has the same units of electrostatic potential as the boundary condition.
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Let’s make some other observations, connecting to separation of variables in Cartesian
coordinates.

I In our Cartesian example, we had five homogeneous boundary conditions and
one inhomogeneous one. The five homogeneous ones determined the form of
the individual terms in the solution: they created relationships between the
coefficients, and also imposed quantization requirements, that reduced the form
from being a product of three sums of two exponentials with six arbitrary
argument coefficients and four arbitrary normalization coefficients to being a
product of two sines and a hyperbolic sine with quantized argument coefficients
with one overall arbitrary normalization coefficient. The same happened here:
the homogeneous boundary condition at r = 0 or r →∞ eliminated one of the
two coefficients in each term. (Why five homogeneous boundary conditions in
the Cartesian case and only one here? Requiring single-valued behavior in φ and
at the poles imposes another three boundary conditions, and azimuthal
symmetry is a fourth. So we effectively already applied four in the form for the
solution we assumed.) In the Cartesian case, those conditions had the effect of
both “quantizing” the argument coefficients (restricting the freedom in the
arguments of the exponentials) and restricting the normalization coefficients
(showing we had only sines and hyperbolic sines, eliminating cosines and
hyperbolic cosines). In this case, the “quantization” is imposed by the geometry
and azimuthal symmetry from the start, yielding the “already-quantized” form
we started with.

Section 3.8.4 Examples of Separation of Variables with Azimuthal Symmetry Page 182



Section 3.8 Advanced Electrostatics: Separation of Variables in Spherical Coordinates with Azimuthal Symmetry

I In our Cartesian example, we applied the homogeneous boundary conditions
term-by-term and then finally we were forced to consider a sum of them to
match the inhomogeneous boundary condition. In this case, we started off with
the sum and applied the homogeneous boundary conditions to the sum. But one
can see that, by use of orthonormality, this process really was applied
term-by-term. In the Cartesian case, we could not write down such a sum so
early because we had not yet obtained the quantization conditions on the
argument coefficients: in Cartesian coordinates, those conditions come from the
specific geometry of the problem and its homogeneous boundary conditions
rather than from the coordinate system. At the end of the general derivation,
we did not even know whether the argument coefficients were purely real or
purely imaginary numbers! Any sum would have had to be written down as an
integral over an unspecified domain. So, we had to apply the homogeneous
boundary conditions first to even be able to write down a sum.

I In both cases, the application of the inhomogeneous boundary condition is done
to the entire sum, and the result even looks quite similar, involving an
integration of the inhomogeneous boundary condition over the surface with the
orthonormal functions of which the solution is composed.
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Example 3.6: Dirichlet Boundary Conditions at r = 0 and ∞, Neumann
Boundary Condition at r = R

Griffiths does an example in which a surface charge density is specified at r = R and
the potential has to be found over all of space. This is almost a Neumann boundary
condition, but not quite, since the surface charge density specifies the change in the
normal derivative of V at r , not the normal derivative of V itself. By solving for V
over all of space, one effectively turns it into a Neumann boundary condition by using
the solution in one region to specify the condition on the normal derivative as one
approaches the surface from the other side. One writes down different solutions for
the two regions: the {B`} vanish for the r < R solution to avoid a divergence at the
origin, and the {A`} vanish for the r > R solution to ensure the potential vanishes at
infinity (as we saw above). Then, one applies the conditions that the potential must
be continuous at R and that the normal derivative must change by the surface charge
density (divided by −εo ). The first condition is effectively the specification of 〈V 〉R ,
which we recall from our generic discussion of Green Functions for Neumann boundary
conditions. The second condition is the actual Neumann boundary condition. This
first condition relates the {A`} and {B`} at each `. With now just a single set of
coefficients to determine, the Neumann boundary condition can be used with the
orthonormality relation to find a formula for the coefficient for each `.

Note the use of two different solutions in the two regions: this is a generally useful
technique.
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Example 3.7: Uncharged Metal Sphere in a Uniform Field: Unusual Dirichlet
Boundary Conditions

Griffiths does the example of an uncharged metal sphere in a uniform electric field in
the z direction, ~E = E0ẑ. The boundary condition is a bit mixed again. Because the
sphere is metal, it is an equipotential. But that doesn’t specify the value of V on the
sphere. Since the field is uniform, we cannot set V to vanish at infinity. Instead,
V (z = 0) = 0 is chosen. From that choice and the fact that the equipotential sphere
is in contact with z = 0, we can conclude that the sphere satisfies V = 0. But now V
at infinity is not specified, so we don’t yet have a Dirichlet boundary condition. The
sensible thing to do is to require the potential approach V (~r) = −E0z at infinity:
whatever induced charge the sphere picks up, its contribution to the potential and
field must fall off at infinity, leaving only the uniform field. Now we have a Dirichlet
boundary condition. Because the potential is allowed to diverge at infinity, we cannot
eliminate the {A`} in this case. But it is easy to see that only A1 is nonzero: for
` > 0, the behavior goes like r`, and since the potential must go like z = r cos θ at
large r , all the ` > 1 terms must vanish. This large r behavior sets A1 = −E0. A0 = 0
because the potential has no offset. That leaves the {B`} to be determined.
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Applying the boundary condition V = 0 at r = R gives:

0 = A1R cos θ +
∞∑
`=0

B`

R`+1
P`(cos θ) (3.124)

−A1R cos θ =
∞∑
`=0

B`

R`+1
P`(cos θ) (3.125)

Since the left side has a ` = 1 term, and the Legendre polynomials are orthonormal,
there can also be only a ` = 1 term on the right side, implying B` = 0 for ` 6= 1 and
B1/R2 = −A1R or B1 = E0R3. Thus, the solution is

V (~r) = −E0

(
r − R3

r2

)
cos θ (3.126)

Note the use of a nontrivial boundary condition at infinity and the need to realize that
the sphere has the same potential as the z = 0 plane; without these boundary
conditions, it would have been impossible to start the problem.
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Example 3.8: Separation of Variables for a Point Charge near a Grounded
Conducting Sphere

Let’s reconsider the situation we looked at before via method of images, the point
charge near the conducting sphere. The setup is as before, with the point charge at
a ẑ and the sphere centered on the origin with radius R and V = 0 on its surface. One
difficulty is that the presence of the point charge implies Laplace’s equation is not
satisfied in the full volume! It is, however, satisfied separately in the regions R < r < a
and a < r <∞, and we have the charge density at r = a, so we should somehow solve
separately in the two regions and then join the solutions together (as we did before for
the spherical shell of charge, which we recast as a Neumann boundary condition
(Example 3.6)).

Since we have seen how the method of images can provide the Green Function for a
system, the aforementioned equivalence suggests that we may be able to use
separation of variables to find the full Green Function for a system in the “sum over
orthonormal functions” form rather than in the “system of point charges form.” This
is indeed true and we will do this in general fashion for spherical coordinates later in
§3.9.4 using a technique similar to the one we use for this example.
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We may guess that the appropriate way to write the charge density at r = a is

σ(θ, φ) =
q

2π a2 sin θ
δ(θ) (3.127)

The rationale for this guess is that a2 sin θ cancels the r2 sin θ portion of the volume
element and 2π cancels the φ integral. It has the right units, too, surface charge
density, charge/length2; remember, δ(θ)/ sin θ is unitless because θ is unitless. One
can see the form is correct because integration returns q:

∫ π

0

∫ 2π

0
da σ(θ, φ) =

∫ π

0
sin θdθ

∫ 2π

0
dφ a2 q

2π a2 sin θ
δ(θ) (3.128)

=
1

2π

∫ π

0
dθ

∫ 2π

0
dφ q δ(θ) = q (3.129)

Notice that no δ(φ) is required.
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We can largely apply what we did in the case of the Example 3.6 except that we
cannot eliminate the {B`} for r < a because the inner boundary is at r = R, not
r = 0. Let’s apply the (homogeneous) boundary condition V (r = R) = 0:

0 =
∞∑
`=0

(
Ain
` R` +

B in
`

R`+1

)
P`(cos θ) (3.130)

where we use the in superscript to indicate these are the coefficients for the solution in
the region inside of the charge at r = a; i.e., the R < r < a region. Since this a
homogeneous boundary condition, we know from prior discussion we can apply it
term-by-term. Perhaps easier to remember/justify is to apply orthonormality to the
sum, which forces the coefficent of P` at each ` to vanish independently:

Ain
` R` = − B in

`

R`+1
=⇒ V (r < a, θ) =

∞∑
`=0

Ain
`

(
r` − R2`+1

r`+1

)
P`(cos θ) (3.131)

For r > a, we start with the same form for the solution, but of course now with
different coefficients {Aout

` } and {Bout
` }. Do not confuse these coefficients with the

{Ain
` } and {B in

` } determined above: these are solutions in different regions, so they are
different functions and there is no reason to expect the coefficients are the same! The
{Aout

` } must all vanish so the potential vanishes at infinity. So we have

V (r > a, θ) =
∞∑
`=0

Bout
`

r`+1
P`(cos θ) (3.132)
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Next, we join the solutions at the boundary between them by applying the Neumann
boundary condition there, which requires that V be continuous at r = a and that
∂V /∂r be continuous there except at θ = 0, where it has a discontinuity specified by
σ(0). We apply the first (homogeneous) condition, term-by-term like any
homogeneous boundary condition or via the orthonormality of the P`:

Ain
`

(
a` − R2`+1

a`+1

)
=

Bout
`

a`+1
=⇒ Bout

` = Ain
`

(
a2`+1 − R2`+1

)
(3.133)

Let’s put everything we have so far together in a suggestive form:

V in(r , θ) ≡ V (r < a, θ) =
∞∑
`=0

Ain
` a`+1

 r`

a`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.134)

V out (r , θ) ≡ V (r > a, θ) =
∞∑
`=0

Ain
` a`+1

 a`

r`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.135)

Notice the length−1 units of the portion in parentheses, implying that Ain
` will have

units of ε−1
o (length)−(`+1). Next, we apply the derivative matching (Neumann)

condition: (
∂V out

∂r
− ∂V in

∂r

)∣∣∣∣
r=a

= −σ(θ)

εo
(3.136)
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The derivatives are

∂V in

∂r
=
∞∑
`=0

Ain
` a`+1

 ` r`−1

a`+1
+ (`+ 1)

R
a

(
R2

a

)`
r`+2

P`(cos θ) (3.137)

∂V out

∂r
=
∞∑
`=0

Ain
` a`+1 (`+ 1)

− a`

r`+2
+

R
a

(
R2

a

)`
r`+2

P`(cos θ) (3.138)

Evaluating at r = a gives

∂V in

∂r

∣∣∣∣
r=a

=
∞∑
`=0

Ain
` a`+1

 `

a2
+ (`+ 1)

R
a

(
R2

a

)`
a`+2

P`(cos θ) (3.139)

∂V out

∂r

∣∣∣∣
r=a

=
∞∑
`=0

Ain
` a`+1 (`+ 1)

− 1

a2
+

R
a

(
R2

a

)`
a`+2

P`(cos θ) (3.140)
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When we difference the two, the second terms in the expressions cancel, leaving

−
∞∑
`=0

(2 `+ 1)Ain
` a`−1P`(cos θ) = − q δ(θ)

2π a2εo sin θ
(3.141)

This is our inhomogeneous boundary condition so, as usual, we must use
orthonormality to obtain a formula for the coefficients in terms of an integral of the
boundary condition with the orthonormal functions. We can multiply by
P`′ (cos θ) sin θ and integrate over θ, or we can just apply orthonormality. (Recall the
orthonormality relation: [2/(2`+ 1)]

∫ π
0 sin θ dθ P`(cos θ) P`′ (cos θ) = δ``′ ). This

extracts the Ain
`′ term we want, and it also simplifies the right-hand side:

−2 Ain
`′a

`′−1 = − q

2π a2εo

∫ π

0
sin θ dθ

δ(θ) P`′ (cos θ)

sin θ
(3.142)

= − q

a2εo
P`′ (cos (θ = 0)) = − q

a2εo
(3.143)

Ain
`′ =

1

a`′+1

q

4π εo
(3.144)
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Writing the full solution, we have

V (r < a, θ) =
q

4π εo

∞∑
`=0

 r`

a`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.145)

V (r > a, θ) =
q

4π εo

∞∑
`=0

 a`

r`+1
−

R
a

(
R2

a

)`
r`+1

P`(cos θ) (3.146)

The form is hardly one we would have guessed! Separation of variables is more
algorithmic than method of images, but it is also less intuitive. We will connect the
two next.

Recognize that the integral over the boundary condition that we expect from past
experience with separation of variables has already been done on the prior page, so it
is not visible here. Also, that integral did not include an integral over φ as we might
have expected. We could have integrated over φ on both sides if we wanted, yielding a
closer analogy to Equation 3.90, but it would have just yielded a common factor of 2π
on the two sides since neither side has φ dependence. We did not need to do this
because the problem is azimuthally symmetric and thus we know the solution must
include only the m = 0 term.
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Connecting Method of Images to Separation of Variables via a Useful
Expansion in Legendre Polynomials

We have two techniques — method of images and separation of variables — that we
can evidently use for the same problem. By the Uniqueness Theorem, the solutions
must be the same. Comparing Equations 3.145 and 3.146 that we just obtained via
separation of variables to Equation 3.25 obtained via method of images, the
connection is hardly obvious! To see it, we must first prove a theorem.

We will show

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ) (3.147)

with r< = min(|~r |, |~r ′|) r> = max(|~r |, |~r ′|) cos γ = r̂ · r̂ ′

This will let us go back and forth between separation-of-variables solutions and
functions that look like the Coulomb potential (e.g., point charge near the grounded
sphere!). Griffiths sort of derives this, using a far less interesting and powerful
technique. He also does it in §3.4.1, after the discussion of separation of variables, so
he is unable to use this theorem to connect the method of images and separation of
variables solutions for the point charge near the grounded, conducting sphere.
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To prove this, orient the coordinate system so ~r ′ = r ′ ẑ. The function on the
left-hand side of Equation 3.147 is the potential at ~r of a point charge q = 4π εo in
magnitude (not units!) at r ′ along the z-axis. It satisfies azimuthal symmetry and
thus is expandable in terms of the above solutions of Laplace’s Equation in spherical
coordinates with azimuthal symmetry (because these solutions form a complete,
orthonormal set!):

1

|~r − ~r ′| =
∞∑
`=0

(
A` r` +

B`

r`+1

)
P`(cos θ) (3.148)

Consider two cases separately:

I r < r ′

We must eliminate the B` coefficients to keep the function finite as r → 0. To
find the A`, let’s consider the point ~r = r ẑ (i.e., cos γ = 1), which implies

1

r ′ − r
=

1

|~r − ~r ′| =
∞∑
`=0

A` r` (3.149)

(Recall, P`(1) = 1.) Thus, the A` are just the coefficients of the power series
expansion of the left side, which we know (recall: (1− x)−1 = 1 + x + x2 + · · ·
for 0 < x < 1) is

1

r ′ − r
=

1

r ′
1

1− r
r ′

=
1

r ′

∞∑
`=0

( r

r ′

)`
(3.150)

The series converges because x = r/r ′ < 1. Thus, A` = 1/(r ′)`+1. This now
sets the {A`} for arbitrary ~r (i.e., arbitrary cos γ rather than the special case
cos γ = 1 we have considered).
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I r > r ′

We must eliminate the A` coefficients to keep the function finite as r →∞.
Again, consider ~r = r ẑ, which implies

1

r − r ′
=

1

|~r − ~r ′| =
∞∑
`=0

B`

r`+1
(3.151)

For this case, we consider an expansion in r ′/r rather than r/r ′ because now
0 < r ′/r < 1 while, above, 0 < r/r ′ < 1. Again, the B` are just the coefficients
of the power series expansion of the left side, which we know is

1

r − r ′
=

1

r

1

1− r ′
r

=
1

r

∞∑
`=0

(
r ′

r

)`
(3.152)

Thus, B` = (r ′)`.

Combining the above two cases, and generalizing back from cos θ to cos γ, yields
Equation 3.147.
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A few notes on the above derivation:

I Note some elements of technique: without loss of generality, we: a) set
~r ′ = r ′ ẑ so cos γ = cos θ; and b) evaluated the expression at cos θ = 1, similar
to the manner in which we applied the boundary conditions for the point charge
near the grounded sphere. These are useful techniques to keep in mind for the
future.

I Note also that this was effectively separation of variables, separately in the
r < r ′ and r > r ′ spaces (like our separate consideration of r < R and r > R in
the previous example) but with an unusual boundary condition: Rather than
specifying a condition on the function (the “potential”) on the boundary r = r ′,
we used the fact that we knew the solution along the line ~r = r r̂ ′ (which we
took to be ~r = r ẑ in this case). That is, we specified the potential for a locus
of points in the volume V rather than on the surface S(V). We do not have a
general theorem about such boundary conditions because the derivation of the
Uniqueness Theorem used Green’s Theorem, which involves S. Evidently,
though, appropriate specification of the potential on some locus of points in V is
also sufficient to yield a unique solution!

I In the prior example of the point charge near the conducting sphere, we saw an
alternate approach to this derivation problem, treating the point charge at ~r ′ as
a surface charge density that yields a Neumann boundary condition. That
approach is a bit more cumbersome but benefits from the Uniqueness Theorem
and the full separation-of-variables machinery. We did not do that here because
we knew ahead of time the solution on the ~r = r r̂ ′ locus.
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With that theorem proven, we can make the advertised connection. If we compare
Equations 3.145 and 3.146 from separation of variables for the point charge near the
conducting sphere to Equation 3.147, we see that all four terms in the former are of
the form used in the latter. The first term of the first equation has r< = r and r> = a
as appropriate for r < a, while the first term of the second equation has r< = a and
r> = r as needed for r > a. The second terms of both equations are of the same form
with r< = R2/a, r> = r and the charge multiplied by −R/a. Thus, we recover

V (~r) =
q

4π εo

 1

|~r − a ẑ| −
R/a∣∣∣~r − R2

a
ẑ
∣∣∣
 (3.153)

which matches Equation 3.25. Remarkable! This is a case where we were able to use
separation of variables to recover the full potential and thus the full method of images
solution, which we know then gives us the Green Function: it is possible!

Could we have done a similar thing if we had a point charge in the five-sides-grounded
box problem? There is no reason to think it would not work.

In fact, we will later show how to use a similar technique to find the Green Function in
spherical coordinates for systems without azimuthal symmetry.
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Separation of Variables in Spherical Coordinates without Azimuthal
Symmetry

The Full Polar Equation Solution: the Associated Legendre Polynomials

There is a relation yielding the associated Legendre polynomials for m ≥ 0 from the
Legendre polynomials:

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm
P`(x) (3.154)

which, using Rodrigues’ Formula (Equation 3.110), implies

Pm
` (x) =

(−1)m

2` `!
(1− x2)m/2 d`+m

dx`+m
(x2 − 1)` (3.155)

which is now valid for all m. It should be clear that P0
` = P`. It should also be clear

that parity in x (evenness/oddness) of the associated Legendre functions is given by
(−1)`+m (where −1 implies oddness): the parity of P` is given by (−1)`, and each
derivative changes the parity by a factor of −1 (note that the powers of (1− x2) have
no effect on the parity because it is an even function). There are a number of other
properties of these functions, but it is more useful to consider them together with the
φ solutions.
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The Full Solution to the Angular Piece of Laplace’s Equation: the Spherical
Harmonics

When one combines the Pm
` (cos θ) and the e imφ solutions of the polar and azimuthal

equations, one obtains the Spherical Harmonics

Y`m(θ, φ) =

√
2 `+ 1

4π

(`−m)!

(`+ m)!
Pm
` (cos θ) e imφ (3.156)

They are an orthonormal, complete basis for functions on the sphere (θ, φ) (assuming
the z-axis is part of the sphere; recall our comment about a second set of solutions to
the Legendre equation if it is not). They satisfy numerous important and useful
conditions:

I Conjugation:

Y`(−m)(θ, φ) = (−1)mY ∗`m(θ, φ) (3.157)

I Orthonormality:

∫ 2π

0
dφ

∫ π

0
sin θ dθY ∗`′m′ (θ, φ)Y`m(θ, φ) = δ``′δmm′ (3.158)
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I Completeness (cos θ is the argument because the differential is
sin θ dθ = −d(cos θ)):

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) = δ(φ− φ ′) δ(cos θ − cos θ ′) (3.159)

I m = 0 devolves to Legendre polynomials:

Y` 0(θ, φ) =

√
2 `+ 1

4π
P`(cos θ) (3.160)

This should be obvious from Equation 3.154, the relation between the Legendre
and the associated Legendre polynomials.

I The θ = 0 behavior is simple given Equation 3.154 (the (1− x2) factor):

Pm 6=0
` (±1) = 0 =⇒ Y`m 6=0(θ = 0, φ) = Y`m 6=0(θ = π, φ) = 0 (3.161)

This condition ensures the Y`m 6=0 are single-valued at the poles.

(Single-valuedness is automatic for m = 0 because e i(0)φ = 1.) Recall that we
also stated P`(1) = 1, P`(−1) = (−1)`, which implies

Y` 0(θ = 0, φ) =

√
2 `+ 1

4π
Y` 0(θ = π, φ) = (−1)`

√
2 `+ 1

4π
(3.162)
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I The above implies that any expansion in terms of Y`m simplifies at θ = 0, π:

given g(θ, φ) =
∞∑
`=0

∑̀
m=−`

A`mY`m(θ, φ) (3.163)

then g(θ = 0, φ) =
∞∑
`=0

√
2 `+ 1

4π
A` 0 (3.164)

and g(θ = π, φ) =
∞∑
`=0

(−1)`
√

2 `+ 1

4π
A` 0 (3.165)

I The Addition Theorem for Spherical Harmonics: Given r̂ and r̂ ′ pointing in the
directions (θ, φ) and (θ ′, φ ′), respectively, then

P`(r̂ · r̂ ′) =
4π

2 `+ 1

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.166)

where r̂ · r̂ ′ = cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ− φ ′). The proof of this
can be found in Jackson §3.6.
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I An important corollary of the Addition Theorem can be obtained by combining
the above with Equation 3.147, the formula for the inverse of the relative
distance between two points in terms of the Legendre polynomials:

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ)

Plugging in the Addition Theorem gives us

1

|~r − ~r ′| = 4π
∞∑
`=0

∑̀
m=−`

1

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) (3.167)

The utility of this relation is even more obvious than that of Equation 3.147,
especially for doing integrals over charge distributions with the relative distance
function (i.e., calculating the potential due to Coulomb’s Law): decompose the
charge distribution in terms of spherical harmonics and integrate the charge
distribution in a particular spherical harmonic Y`m over r ′ with weighting by
(r ′)` to obtain the component of the potential at a distance r from the origin
with spatial dependence Y`m(θ, φ)/r`+1.
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The Full Solution of Laplace’s Equation in Spherical Coordinates

Putting it all together, we see that the most general solution to Laplace’s Equation in
spherical coordinates is r

V (r , θ, φ) =
∞∑
`=0

∑̀
m=−`

(
A`m r` +

B`m

r`+1

)
Y`m(θ, φ) (3.168)

Again, the coefficients {A`m} and {B`m} are set by the volume under consideration
and one or the other entire set may vanish. As well, application of the boundary
conditions will require the orthonormality relations for the spherical harmonics.

As with the case of azimuthal symmetry, we note that, in the process of doing
separation of variables, we have proven that the angular solution satisfies the
eigenvalue-eigenfunction equation

∇2Y`m(θ, φ) = − `(`+ 1)

r2
Y`m(θ, φ) (3.169)

As before, the appearance of r2 on the right side is not surprising. Note also that m
does not appear in the angular equation. This is because Laplace’s Equation itself is
spherically (and therefore azimuthally) symmetric. The charge distribution and
boundary conditions are what may break the spherical symmetry.
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Expansion of the Green Function in Spherical Coordinates in Terms of the
Spherical Harmonics

The fact that the spherical harmonics combined with the usual power laws in radius
solve Laplace’s Equation for problems that are separable in spherical coordinates can
be used to show that the Green Function for such problems will have a convenient
expansion in terms of the radial solutions and spherical harmonics, like
Equation 3.168. It is convenient to recall at this point that a Green Function is
specified (is unique) once one specifies the geometry and the type of boundary
condition; the value of the boundary condition does not affect the Green Function.
So, once we have specified a geometry and type of boundary condition, the expansion
can be determined and is unique. Alternatively, one can think of this expansion as a
generalization of the corollary of the Addition Theorem, Equation 3.167. It is shown
by using the completeness property of the spherical harmonics and the
eigenvalue-eigenfunction equation for the angular solution. But let’s see that this is
true explicitly for a couple example geometries first:

I Free space
The corollary of the Addition Theorem above is the desired expansion of the
Green Function for charge in free space with no finite radius boundaries and
with the condition V → 0 as r →∞.
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I Point charge near a grounded, conducting sphere
For this geometry, we saw that the Green Function can be written as sum of the
Coulomb potential of two point charges, the original one at r ′ ẑ and the image
charge q′ = −q R/r ′ at ẑ R2/r ′:

G(~r , ~r ′) =
1

4π εo

 1

|~r − ~r ′| −
R/r ′∣∣∣∣~r − ~r ′ ( R

r ′

)2
∣∣∣∣
 (3.170)

Using the same corollary of the Addition Theorem, we can immediately write
(using the fact r ′ (R/r ′)2 < r ′ always because the the image charge is always
at radius < R while the true charge is at r ′ > R):

G(~r , ~r ′) =
1

εo

∞∑
`=0

∑̀
m=−`

 r`<

r`+1
>

− R

r ′

[
r ′
(

R
r ′

)2
]`

r`+1

 Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1

(3.171)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`<

r`+1
>

− 1

R

(
R2

r r ′

)`+1
]

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1

(3.172)

Note also the symmetry in ~r and ~r ′ is manifest.
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In both cases, we finally have forms for the Green Function that could plausibly come
from separation of variables. Note, however, that we did not use separation of
variables to obtain it; we used the method of images combined with the corollary of
the Addition Theorem.

Earlier, we solved for the potential of the latter configuration using separation of
variables with azimuthal symmetry, Equations 3.145 and 3.146 reproduced here but
rewritten using the r<, r> notation:

V (r , θ) =
q

4π εo

∞∑
`=0

 r`<

r`+1
>

−
R
a

(
R2

a

)`
r`+1

P`(cos θ)

with r< = min(r , a) r> = max(r , a) (3.173)

Why was this not enough to give us the full Green Function? Because this solution for
the potential in terms of Legendre polynomials assumed the point charge was along
the z-axis.

What we can do is generalize this solution by replacing cos θ with cos γ = r̂ · r̂ ′ and a
with r ′ followed by application of the Addition Theorem. Then the solution would be
in a form where we could read off the Green Function expansion in spherical
coordinate not assuming azimuthal symmetry. But that is not the same as obtaining
the solution directly, and clearly the above approach does not generalize to a system
that does not respect azimuthal symmetry.
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The general approach to the problem of finding the Green Function for an arbitrary
(spherical) geometry is to go back to the definition of the Green Function:

−εo∇2
~r G(~r , ~r ′) = δ(~r − ~r ′) (3.174)

and decompose both sides in terms of spherical harmonics. We do not know the Green
Function yet, so its expansion is the arbitrary general form, which here we write

G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

A`m(r |~r ′) Y`m(θ, φ) (3.175)

where the coefficients in the expansion A`m depend on r , as usual, and they also
depend parametrically on ~r ′ because it is a parameter in the differential equation.
(We do not know the solutions for the radial dependence of the A`m yet for the
general case we are trying to solve (which is not Laplace’s Equation!), so we cannot
assume they are the power laws we saw for solutions to Laplace’s Equation.)
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The right side can be rewritten using the breakdown of the delta function into delta
functions in each spherical coordinate followed by completeness of the spherical
harmonics. The breakdown of the delta function is:

δ(~r − ~r ′) =
δ(r − r ′)

r2
δ(φ− φ ′) δ(cos θ − cos θ ′) (3.176)

The 1/r2 on the radial component is required to cancel the r2 in the volume element
in spherical coordinates. The fact that the delta function in θ is a function of cos θ
and cos θ ′ is because the volume element contains sin θ dθ = d(cos θ). One could
have instead written δ(θ − θ ′)/ sin θ as we did when rewriting the point charge near
the grounded, conducting sphere as a surface charge density σ(θ), Equation 3.127.
Using completeness of the spherical harmonics, we have

δ(~r − ~r ′) =
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.177)
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Thus, our differential equation for the Green Function becomes

−εo∇2
~r

∞∑
`=0

∑̀
m=−`

A`m(r |~r ′) Y`m(θ, φ) =
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

(3.178)

Note that the Laplacian acts on the unprimed coordinates only. When we evaluate the
action of the Laplacian, a cross term ~∇~r A`m(r |~r ′) · ~∇~r Y`m(θ, φ) appears, but it

vanishes because the first term points along r̂ while the second is along θ̂ and φ̂,
leaving only ∇2

~r acting on each factor in the product individually. We wrote down
earlier Equation 3.169, the eigenvalue-eigenfunction equation satisfied by the angular
solutions of Laplace’s Equation, which we use here to evaluate ∇2

~r Y`m(θ, φ):

− εo

∞∑
`=0

∑̀
m=−`

[(
∇2
~r −

`(`+ 1)

r2

)
A`m(r |~r ′)

]
Y`m(θ, φ) (3.179)

=
δ(r − r ′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

Note that the Laplacian on the left side is now acting with its radial derivatives only
on A`m; its action on the spherical harmonics has yielded the `(`+ 1)/r2 term.
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The coefficients of the individual Y`m(θ, φ) on the two sides must be equal because of
the orthonormality relation for the spherical harmonics, implying

−εo

[(
∇2
~r −

`(`+ 1)

r2

)
A`m(r |~r ′)

]
=
δ(r − r ′)

r2
Y ∗`m(θ ′, φ ′) (3.180)

Now, given that we have Y ∗`m(θ ′, φ ′) on the right side (from applying completeness),
and again the spherical harmonics are orthonormal functions, the dependence of
A`m(r |~r ′) on its ~r ′ angular coordinates must be proportional to Y ∗`m(θ ′, φ ′).
Therefore, we may write (with g`(r , r ′) still to be determined)

A`m(r |r ′, θ ′, φ ′) = g`(r , r ′) Y ∗`m(θ ′, φ ′) (3.181)

Plugging in this form to the above reduced version of Laplace’s Equation and
canceling Y ∗`m(θ ′, φ ′), we get:

−εo

(
∇2
~r −

`(`+ 1)

r2

)
g`(r , r ′) =

δ(r − r ′)

r2
(3.182)

Only the Laplacian’s radial derivatives yield a nonzero contribution here, so we have
(also multiplying both sides by −r2/εo ):

d

dr

[
r2 d

dr
g`(r , r ′)

]
− `(`+ 1) g`(r , r ′) = − δ(r − r ′)

εo
(3.183)
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We see that, when r 6= r ′ (r ′ is a parameter, not a variable, here), g`(r , r ′) satisfies
the radial ODE in r from separation of variables in spherical coordinates,
Equation 3.100. Therefore, in the two separate regions r < r ′ and r > r ′, the
solutions to that ODE are also our solutions here:

g`(r , r ′) =

{
Ain
` (r ′) r` + B in

` (r ′) r−(`+1) r < r ′

Aout
` (r ′) r` + Bout

` (r ′) r−(`+1) r > r ′
(3.184)

Because r ′ is a parameter of the differential equation, the coefficients and therefore
the solutions depend on it parametrically. Therefore, the general form for the
expansion of the Green Function in spherical harmonics is

r < r ′ : G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

[
Ain
` (r ′) r` +

B in
` (r ′)

r`+1

]
Y`m(θ, φ) Y ∗`m(θ ′, φ ′) (3.185)

r > r ′ : G(~r , ~r ′) =
∞∑
`=0

∑̀
m=−`

[
Aout
` (r ′) r` +

Bout
` (r ′)

r`+1

]
Y`m(θ, φ) Y ∗`m(θ ′, φ ′)

(3.186)
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To determine the coefficients, we need to apply boundary conditions. Since we have
not yet specified the geometry and boundary conditions, the only generic boundary
condition we can write down is the one at r = r ′, which we obtain by integrating
Equation 3.183 from r = r ′ − ε to r = r ′ + ε and letting ε→ 0:∫ r ′+ε

r ′−ε
dr

{
d

dr

[
r2 d

dr
g`(r , r ′)

]
− `(`+ 1) g`(r , r ′)

}
= −

∫ r ′+ε

r ′−ε
dr
δ(r − r ′)

εo

(3.187)

The first term is the integral of a total differential, so it is trivially integrated. For the
second term, the form of g`(r , r ′), where it is sum of two terms, each of which
includes a power law in r and some function of r ′ not dependent on r , ensures it
cannot diverge at r = r ′. Therefore, the second term is an integral of a function with
no singularity at ε = 0 (i.e., at r = r ′) and thus, as ε→ 0, that integral vanishes. The
right side gives −1/ε0 when integrated. Therefore, we have

lim
ε→0

[
r2 d

dr
g`(r , r ′)

]∣∣∣∣r=r ′+ε

r=r ′−ε
= − 1

εo

d

dr
gout
` (r , r ′)

∣∣∣∣
r=r ′
− d

dr
g in
` (r , r ′)

∣∣∣∣
r=r ′

= − 1

ε0 (r ′)2
(3.188)

where gout
` (r , r ′) is the r > r ′ solution and g in

` (r , r ′) is the r < r ′ solution. This is a
Neumann-type boundary condition as we had for the examples of the arbitrary charge
density on a sphere σ(R, θ) and for the point charge near the conducting sphere
σ(a, θ) = δ(cos θ)/2π a2.
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We note, as an aside, that we derived the above matching condition Equation 3.188 in
a somewhat different way here than when we considered the above examples. In the
examples, we used the fact that we knew the boundary condition on the normal
derivative of the potential from Gauss’s Law. Here, we effectively rederived that
boundary condition for the special case of a radial boundary because we have only to
determine the radial function g(r , r ′). We could have gone back a step and written
down the boundary condition on the normal derivative of the potential and derived the
same condition above, but it would have required going back to the full potential and
applying orthonormality and completeness again. We circumvented that step by
rederiving the boundary condition considering only the radial function.

Evaluating the above condition explicitly using the r < r ′ and r > r ′ pieces of the
solution, and multiplying both sides by (r ′)2, we obtain

`
[
Ain
` (r ′)− Aout

` (r ′)
]

(r ′)`+1 + (`+ 1)
[
Bout
` (r ′)− B in

` (r ′)
]

(r ′)−` =
1

εo
(3.189)

Since Ain
` , B in

` , Aout
` , and Bout

` all depend on r ′, all the powers of r ′ match up.
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The finite discontinuity in the radial derivative of g`(r , r ′) implies that g`(r , r ′) itself
must be continuous at r = r ′: the derivative would have to have a singularity in order
for there to be a discontinuity in g`(r , r ′). Therefore, we also have the condition

gout
` (r = r ′, r ′)− g in

` (r = r ′, r ′) = 0 (3.190)

Explicitly evaluating this condition, again using the two portions of the solution, yields[
Ain
` (r ′)− Aout

` (r ′)
]

(r ′)2 `+1 +
[
B in
` (r ′)− Bout

` (r ′)
]

= 0 (3.191)

The above two matching conditions, along with application of the boundary conditions
that define Dirichlet or Neumann Green Functions (Equations 3.46 and 3.48), provide
four conditions for the four unknowns Ain

` (r ′), B in
` (r ′), Aout

` (r ′), and Bout
` (r ′), which

should fully specify them. We finally have a completely algorithmic way to obtain the
full Green Function! What a powerful technique! This general approach can be
applied for any coordinate system in which Laplace’s Equation and the boundary
conditions are separable.

We also note that the above two equations imply the solutions Ain
` (r ′), B in

` (r ′),
Aout
` (r ′), and Bout

` (r ′) will be power laws in r ′. This is sensible: because we expect
the Green Function to be symmetric in ~r and ~r ′, the functional dependences on ~r and
~r ′, and thus on r and r ′, must be the same, and, so, because G has power-law
dependence on r , it must also for r ′.
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Example 3.9: Expansion in spherical harmonics for the Green Function for
R < r <∞ with Dirichlet boundary conditions at r = R and r →∞

These boundary conditions impose the requirement GD (~r , ~r ′) = 0 for ~r ∈ S,V,
~r ′ ∈ S. We use the symmetry of the Dirichlet Green Function to convert this to the
requirement GD (~r , ~r ′) = 0 for ~r ∈ S, ~r ′ ∈ S,V because we do not know the
dependence of the coefficients on r ′ and we want to obtain relations between the
coefficients of the expansion that are valid at all r ′, not just values on the boundary,
because those full dependences are needed to use the matching conditions at r = r ′

that we just derived. One can check that applying these conditions at ~r ′ ∈ S does not
result in useful information.

Our condition implies

0 = GD (~r ∈ S, ~r ′ ∈ S,V) =
∞∑
`=0

∑̀
m=−`

g`(r ∈ S, r ′ ∈ S,V) Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

(3.192)

Applying orthonormality of the Y`m(θ ′, φ ′), we obtain

0 = g`(r ∈ S, r ′ ∈ S,V) Y`m(θ, φ) (3.193)

Since Y`m(θ, φ) is in general nonzero, this condition can only hold for all θ, φ if

g`(r ∈ S, r ′ ∈ S,V) = 0 (3.194)
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We will apply the above condition at the boundaries first, then the matching conditions
at r = r ′, because the Dirichlet BC are simpler algebraically (this is the same order of
steps we used when we solved this problem using separation of variables).

First, consider the boundary at r = R. Since r ′ > r = R for all ~r ′ ∈ V, this implies
that we should require g`(r = R, r ′) = 0 for the r < r ′ solution, yielding:

Ain
` (r ′) R` + B in

` (r ′) R−(`+1) = 0 =⇒ B in
` (r ′) = −R2 `+1 Ain

` (r ′) (3.195)

The other Dirichlet boundary condition is that g`(r →∞, r ′ ∈ V) = 0. Here, it is the
r > r ′ solution that applies, which implies Aout

` (r ′) = 0 for all r ′.

Next, we apply the matching conditions at r = r ′. Continuity of g`(r , r ′) at r = r ′

(Equation 3.191) implies

Ain
` (r ′)(r ′)2`+1 +

{[
−Ain

` (r ′) R2`+1
]
− Bout

` (r ′)
}

= 0

=⇒ Bout
` (r ′) = Ain

` (r ′)
[
(r ′)2`+1 − R2`+1

]
(3.196)

The condition on the change in the radial derivative at r = r ′ yielded Equation 3.189,
which we plug into to obtain

`Ain
` (r ′) (r ′)`+1 + (`+ 1)Ain

` (r ′)
[
(r ′)2`+1 − R2`+1 + R2`+1

]
(r ′)−` =

1

εo

=⇒ Ain
` (r ′) =

1

2 `+ 1

1

εo

1

(r ′)`+1
(3.197)
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Putting it all together, we have that the Green Function for this Dirichlet boundary
condition, expanded in terms of spherical harmonics, is

G(~r , ~r ′) =


1
εo

∑∞
`=0

∑`
m=−`

[
r`

(r ′)`+1 − 1
R

(
R2

r r ′

)`+1
]

Y`m(θ,φ) Y∗`m(θ ′,φ ′)
2 `+1

r < r ′

1
εo

∑∞
`=0

∑`
m=−`

[
(r ′)`

r`+1 − 1
R

(
R2

r r ′

)`+1
]

Y`m(θ,φ) Y∗`m(θ ′,φ ′)
2 `+1

r > r ′

(3.198)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`<

r`+1
>

− 1

R

(
R2

r r ′

)`+1
]

Y`m(θ, φ) Y ∗`m(θ ′, φ ′)

2 `+ 1
(3.199)

This solution is of course consistent with Equation 3.172, where we used the Addition
Theorem for Spherical Harmonics to rewrite the Green Function for this geometry and
type of boundary conditions in terms of the spherical harmonics, except now that we
used separation of variables from the start rather than relying on the method of
images and the Addition Theorem.

Note that, as predicted, the solution consists of sums of power laws in r ′ as well as r
and is of course symmetric under exchange of ~r and ~r ′.

Interesting exercises would be to see that the above expression approaches |~r − ~r ′|−1

as ~r → ~r ′ (use the Addition Theorem to recover the method of images solution) and
also to recover the defining differential equation, Equation 3.174.
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Examples of Using the Expansion of the Green Function in Terms of the
Spherical Harmonics

We did a lot of gymnastics to get the expansion of the Green Function in terms of
spherical harmonics. Let’s see how it can be used. For each of the examples we will
consider, it would be possible to solve for the potential without explicitly using our
expansion by splitting the volume into regions on two sides of ~r ′ and using separation
of variables with application of boundary conditions (including matching conditions at
the chosen internal boundary). The advantage of using the Green Function is that it
obviates re-solving the same kind of problem many times by simply providing integrals
that need to be done.
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Another point: in separation of variables, we always end up using orthonormality of
the specific set of solutions to Laplace’s Equation for the geometry to obtain the
solution coefficients from the inhomogeneous boundary condition(s), Dirichlet or
Neumann, and the matching conditions, if any. That general approach will become
codified here in the way the Green Function is integrated with the charge distribution
and boundary conditions in Equations 3.46 and 3.48. In particular, the Green Function
connects particular spherical harmonic modes of the charge distribution and/or the
voltage (Dirichlet) and/or charge (Neumann) boundary conditions to the
corresponding spherical harmonic modes of the potential. This correspondence makes
the structure of the solution much easier to understand. The effect of a spherical
harmonic mode in charge distribution and/or the boundary conditions at one radius r ′

on the potential at another radius r is just a function of the two radii, the g(r , r ′)
function (charge distribution in volume or Neumann boundary condition) or its radial
derivative (Dirichlet boundary condition).

The application of the Green Function is like a propagator in QM, propagating from
the initial condition to later times. We have to do less work to obtain the QM
propagator because the solution to the time piece of Schrödinger’s Equation is trivial
once one has the eigenvalues of the space piece.
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For our examples, we will consider charge distributions inside a conducting sphere. We
quote the general result from Jackson for the Green Function expansion in spherical
harmonics for a geometry consisting of the volume between two spheres at r = a and
r = b with Dirichlet BC on the two surfaces:

GD (~r , ~r ′) (3.200)

=
1

εo

∞∑
`=0

∑̀
m=−`

[
r`< −

1

a

(
a2

r<

)`+1
][

1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)[
1−

(
a
b

)2 `+1
]

(2 `+ 1)

where, as usual, r< = min{r , r ′} and r> = max{r , r ′}. Obtaining this more general
result is a matter of doing the same thing as we did to obtain the result for a spherical
conducting boundary at r = R except that the Aout

` term cannot be assumed to vanish.

Next, taking the limit a→ 0, we get the result we will need for our work below where
we want to solve for the potential inside a sphere at r = b with Dirichlet BC:

GD (~r , ~r ′) =
1

εo

∞∑
`=0

∑̀
m=−`

r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1
(3.201)

You will also be able to read off this simpler result from a method of images problem
you will do in homework. On to our examples!
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Example 3.10: Potential inside a conducting sphere of radius b due to an
arbitrary Dirichlet boundary condition potential at b but no charge in the
volume

With no charge in the volume, we just need to calculate the surface term in
Equation 3.47, for which we need the normal gradient of GD at the surface
(remember, n̂ points out of V):

n̂(~r ′) · ~∇~r ′GD (~r , ~r ′)
∣∣∣
~r ′∈S

=
1

εo

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2 `+ 1
r`

d

dr ′

[
1

(r ′)`+1
− 1

b

(
r ′

b2

)`]∣∣∣∣∣
r ′=b

= − 1

εo

1

b2

∞∑
`=0

∑̀
m=−`

( r

b

)`
Y ∗`m(θ ′, φ ′) Y`m(θ, φ) (3.202)

Therefore, the potential in the volume for the Dirichlet B.C. V (b, θ, φ) is

V (~r) =
∞∑
`=0

∑̀
m=−`

( r

b

)`
Y`m(θ, φ)

∫
dΩ′Y ∗`m(θ ′, φ ′) V (b, θ ′, φ ′) (3.203)

We see that the spherical harmonic component `m of the potential at r is determined
by the spherical harmonic component `m of the potential on the boundary: very
simple and consistent with the QM propagator picture.
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Example 3.11: Potential inside a grounded spherical conductor with a ring of
charge of radius a in the xy plane

This time, we do the volume integral but there is no integral over the surface. The
charge density due to the ring is

ρ(~r ′) =
Q

2π a2
δ(r ′ − a)δ(cos θ ′) (3.204)

Again, one can check that the charge density is correct by integrating it: the a−2

cancels the (r ′)2 factor in the volume element and the argument of the θ ′ delta
function is cos θ ′ because the volume element contains d(cos θ ′).

We use Equation 3.47 as usual, in this case with no surface term because the
boundary has V = 0. The potential is then

V (~r) =

∫
V

dτ ′ρ(~r ′) GD (~r , ~r ′)

=
Q

2π εo a2

∞∑
`=0

∑̀
m=−`

Y`m(θ, φ) (3.205)

×
∫
V

dτ ′δ(r ′ − a) δ(cos θ ′) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′)

2 `+ 1
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Because the charge density has no azimuthal dependence, the φ ′ integral picks out
the m = 0 term. Recall that Y`0 =

√
(2`+ 1)/4πP`, so we may rewrite as

V (~r) =
Q

4π εo a2

∞∑
`=0

P`(cos θ)

∫ 1

−1
d(cos θ ′) δ(cos θ ′) P`(cos θ ′) (3.206)

×
∫ b

0
(r ′)2dr ′δ(r ′ − a) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]

=
Q

4π εo

∞∑
`=0

P`(cos θ) P`(0) r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
(3.207)

where now r< = min{r , a} and r> = max{r , a} because the δ function does the r ′

integral for us, effectively replacing r ′ with a. (The next example will show the case of
a more complex charge distribution for which the radial integral is not done so easily.)
Now, recall P`(0) = 0 for odd ` and P`(0) = [(−1)n (2n− 1)!!]/2n n! for even ` = 2 n,
so we may reduce the above further to (replacing ` with 2 n so n runs over all
nonnegative integers rather than ` running over all nonnegative even integers):

V (~r) =
Q

4π εo

∞∑
n=0

(−1)n (2n − 1)!!

2n n!
r2n
<

[
1

r2n+1
>

− 1

b

( r>

b2

)2n
]

P2n(cos θ) (3.208)

where r< = min(r , a) and r> = max(r , a) again: i.e., not surprisingly, the solution has
a different form depending on whether one wants to know the potential inside the ring
(r < a) or outside the ring (r > a). This is now the complete solution.
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To get some intuition for the solution, let’s calculate the induced surface charge
density at r = b. We obtain it from the normal gradient of V , which, recall, is just ~E ,
and the change in its normal component at a boundary gives the surface charge
density. Since the normal gradient is just d/dr for this particular geometry, it does not
act at all on P2n. In calculating this gradient, r< = a and r> = r since we will in the
end evaluate at r = b > a. Therefore:

σ(~r) = εo
dV

dr

∣∣∣∣
r>=r=b,r<=a

= − Q

4π b2

∞∑
n=0

(4n + 1) (−1)n (2n − 1)!!

2n n!

( a

b

)2n
P2n(cos θ)

= − Q

4π b2

[
1 +

∞∑
n=1

(4n + 1) (−1)n (2n − 1)!!

2n n!

( a

b

)2n
P2n(cos θ)

]
(3.209)

The expression is written in the above suggestive form on the last line so that it is
easy to obtain the total induced surface charge. Since P0(cos θ) = 1, the integral of
the n > 0 terms over cos θ can be viewed as integrating P2n with P0; by
orthonormality of the Legendre polynomials, these terms all yield zero. The first term
yields −Q when integrated over the sphere. This is what we would expect from
Gauss’s Law applied just inside the r = b boundary.
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We have seen in this example how the integration of the charge density with the Green
Function breaks the charge density down into its spherical harmonic components,
calculates the potential due to each component individually (and fairly trivially, just
multiplying by a function of the radius of the source charge and the radius at which
the potential is desired) and then sums up those components. The same kind of
correspondence clearly holds for the induced surface charge density.

Note that the additional 4n + 1 factor implies the θ dependence of the induced surface
charge density is different from that of the original ring charge; i.e., the induced
surface charge is not just a ring.
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To get some intuition about the surface charge distribution, let’s go back to the
potential and rewrite it into a method of images solution. Using Equation 3.147 (the

expansion of |~r − ~r ′|−1 in Legendre polynomials), we can imagine that the first term

arises from the convolution of |~r − ~r ′|−1 with the ring charge distribution (though we
won’t prove it explicitly). What about the second term? Let’s manipulate it a bit:

−r2n
<

1

b

( r>

b2

)2n
∣∣∣∣
r<=a,r>=r

= −a2n r2n

b4n+1
= −b

a

r2na2n+1

b4n+2
= −b

a

r2n

(b2/a)2n+1
(3.210)

= −b

a

r2n
<

r2n+1
>

∣∣∣∣∣
r<=r,r>=b2/a

note: meaning of

r< and r> changed!
(3.211)

Thus, we see the second term has the right form for the potential at r< = r due to an
image charge at radius r> = b2/a and normalization −b/a relative to the true charge.
(Note that the meaning of r< and r> change between the initial and final expression
above.) The ring shape comes from the weighted sum over Legendre polynomials,
which is the same as the corresponding sum for the potential of the true charge, the
first term.

Seeing that the image charge is a ring at radius b2/a explains the induced surface
charge density distribution via its proportionality to the field lines from the true charge
to the image charge at the r = b surface. Drawing a picture using the image charge
configuration should make this clear.
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Example 3.12: Potential inside a grounded spherical conductor with a line
charge density along the z axis

This is done in Jackson Section 3.10. We reproduce it here because it has some
calculational twists.

The first twist is figuring out how to write down the charge density in spherical
coordinates. One could probably rigorously derive the form by writing down the charge
density trivially in Cartesian or cylindrical coordinates and then applying Jacobian
transformation to convert it to spherical coordinates, but there is an easier, more
intuitive way.

It is all present at cos θ = 1 and cos θ = −1, so clearly delta functions for these
positions need to be included. It has azimuthal symmetry, so there will be no φ
dependence, only a factor of 1/2π. The charge is distributed in radius, so there is
some to-be-determined radial dependence f (r). To figure out f (r), let’s write down
the requirement that the integral be the total charge Q:

ρ(~r) =
Q

2π
f (r) [δ(cos θ − 1) + δ(cos θ + 1)] (3.212)

Q =

∫
V

dτ ρ(~r)

=
Q

2π

∫ b

0
dr r2 f (r)

∫ 1

−1
d(cos θ) [δ(cos θ − 1) + δ(cos θ + 1)]

∫ 2π

0
dφ

= 2 Q

∫ b

0
dr r2 f (r)
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If we choose f (r) = c/r2 where c is a constant to be determined, then the remaining
integral becomes trivial and yields b, which we can use to find c:

Q = 2 Q c b =⇒ c =
1

2b
(3.213)

=⇒ ρ(~r) =
Q

4π b r2
[δ(cos θ − 1) + δ(cos θ + 1)] (3.214)

Now, since the sphere is grounded, we just need to do the integral of the charge
density with the Dirichlet Green Function:

V (~r) =
1

εo

∫
V

dτ ′ ρ(~r ′) GD (~r , ~r ′) (3.215)

=
Q

4π εo b

∞∑
`=0

∑̀
m=−`

∫
V

dτ ′
δ(cos θ ′ − 1) + δ(cos θ ′ + 1)

(r ′)2

× r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`] Y ∗`m(θ ′, φ ′) Y`m(θ, φ)

2`+ 1

Section 3.9.5 Examples of Using the Expansion of the Green Function in Terms of the Spherical Harmonics Page 231



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

We apply azimuthal symmetry as we did in the previous example, selecting the m = 0
terms that we can write as Legendre polynomials. The normalization of the spherical
harmonics cancels the factor of 2`+ 1 in the denominator but adds a factor of 4π in
the denominator. The φ integral cancels a factor of 2π in the denominator. The θ ′

integrals can be done trivially, selecting P`(1) and P`(−1). Note also that the (r ′)2

from the dτ ′ cancels the (r ′)2 in the denominator from the charge density. Thus, we
have

V (~r) =
Q

8π ε0 b

∞∑
`=0

P`(cos θ)

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
[P`(1) + P`(−1)]

We know P`(1) = 1 and P`(−1) = (−1)`, so the term containing these two factors
yields 2 for even ` and 0 for odd `. Thus, the above reduces to

V (~r) =
Q

4π ε0 b

∑
` even

P`(cos θ)

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
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The integral over radius must be broken into two pieces, one for r ′ < r and one for
r ′ > r , because the r< and r> variables take on different values for these two regions
(by definition!). Doing so, and doing the integrals (they are straightforward) yields

∫ b

0
dr ′ r`<

[
1

r`+1
>

− 1

b

( r>

b2

)`]
=

2`+ 1

`+ 1

1

`

[
1−

( r

b

)`]
(3.216)

The second portion of the above quantity is well-defined for ` 6= 0, but not for ` = 0.
We need to use L’Hôpital’s rule to evaluate it for ` = 0:

lim
`→0

1

`

[
1−

( r

b

)`]
= lim
`→0

d
d`

[
1−

(
r
b

)`]
d

d`
`

= − lim
`→0

(
r
b

)` (
ln r

b

)
d

d`
`

d
d`
`

= ln
b

r
(3.217)

Therefore, we may write the full solution as, separating out the ` = 0 term and
rewriting in terms of ` = 2 n,

V (~r) =
Q

4π εo b

[
ln

b

r
+
∞∑

n=1

4n + 1

2n (2n + 1)

[
1−

( r

b

)2n
]

P2n(cos θ)

]
(3.218)
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Let’s calculate the induced surface charge density and the total induced charge again:

σ(θ) = εo
∂V

∂r

∣∣∣∣
r=b

= − Q

4π b2

[
1 +

∞∑
n=1

4n + 1

2n + 1
P2n(cos θ)

]
(3.219)

Note again how the surface charge density has a different n-dependent weighting than
the potential. Finally, integrating over the sphere to get the total induced charge, all
n ≥ 1 terms vanish, yielding

Qind =

∫
r=b

b2 dφ d cos θ σ(θ) = −Q (3.220)

as we expect from Gauss’s Law. It would again be interesting to rewrite the solution
in the form of a method of images solution, which you have the tools to do. It clearly
should look like a line charge at the north and south poles. Its density will presumably
fall off as 1/z2 because the true charge density is uniform (in linear units, z) and the
image charge magnitude and position both scale as 1/z.
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Multipole Expansions

Dipoles: Quick Review

Recall from Ph1b the idea of an electric dipole: two charges of equal and opposite
magnitude ±q spaced very close together at ~r+ and ~r−. The net charge cancels
almost perfectly, so, rather than the potential falling off like 1/r at large radius, it falls
off as 1/r2 with functional form

V (~r) =
1

4π εo

~p · r̂
r2

as
r

|~r+|
,

r

|~r−|
,

r

|~r+ − ~r−|
→ ∞ (3.221)

where ~p = q(~r+ − ~r−) is the dipole moment.

This idea generalizes. When one has a charge distribution with vanishing net charge,
but inside of which there is a variation in the charge density, that variation is still
noticeable at large distance as a set of potentials that fall off more quickly than 1/r .
The first additional term is the dipole, falling as 1/r2, the second is the quadrupole,
falling as 1/r3, the third is the octupole, falling as 1/r4, and so on. The nomenclature
comes from the minimum number of different source charges one must have to obtain
that moment: one for monopole, two for dipole, four for quadrupole, etc.
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Multipoles: Full Derivation

We derive the full form by considering the potential due to a charge distribution near
the origin as viewed at a point ~r such that r is much larger than the extent of the
charge distribution. This the key assumption! We begin with

V (~r) =
1

4π εo

∫
V

dτ ′
ρ(~r ′)

|~r − ~r ′| (3.222)

We now use Equation 3.147, taking r< = r ′ and r> = r because r is outside the
charge distribution. Thus,

V (~r) =
1

4π εo

∫
V

dτ ′ ρ(~r ′)
∞∑
`=0

(r ′)`

r`+1
P`(cos γ) (3.223)

where cos γ = r̂ · r̂ ′ is the angle between the two vectors. There is a common 1/r we
can factor out, leaving

V (~r) =
1

4π εo

1

r

∞∑
`=0

1

r`

∫
V

dτ ′ρ(~r ′)
(
r ′
)`

P`(cos γ) (3.224)

This is the multipole expansion of the potential of the charge distribution. One can
see that the successive terms fall off as successively higher powers of 1/r .
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The Monopole, Dipole, and Quadrupole Terms

Let’s write out the first three terms more explicitly to get some physical intuition:

I Monopole term
The first term is

V1(~r) =
1

4π εo

1

r

∫
V

dτ ′ρ(~r ′) =
1

4π εo

Q

r
(3.225)

This is the standard Coulomb’s Law term due to the total charge. Far enough
away, all charge distributions look pointlike. But, if Q = 0, this term vanishes
identically and the higher-order terms must be considered. Even if Q 6= 0, if one
is close enough to the charge distribution to see its non-pointlike nature, the
higher-order terms will be important corrections to the monopole term.
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I Dipole term
The second term is

V2(~r) =
1

4π εo

1

r2

∫
V

dτ ′ρ(~r ′) r ′ cos γ =
1

4π εo

1

r2

∫
V

dτ ′ρ(~r ′) r ′ r̂ ′ · r̂

=
1

4π εo

1

r2
r̂ ·
∫
V

dτ ′ρ(~r ′)~r ′ (3.226)

or V2(~r) =
1

4π εo

1

r2
r̂ · ~p where ~p =

∫
V

dτ ′ρ(~r ′)~r ′ (3.227)

is the dipole moment vector. It is the generalization of ~p = q (~r+ − ~r−). It can
be written in component form (which is how you would actually calculate it) as

pj =

∫
V

dτ ′ ρ(~r ′) r ′j = r̂j · ~p (3.228)
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I Quadrupole term
The third term is

V3(~r) =
1

4π εo

1

r3

∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3 cos2 γ − 1

)
=

1

4π εo

1

r3

∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3
(
r̂ · r̂ ′

) (
r̂ ′ · r̂

)
− 1
)

=
1

4π εo

1

r3
r̂ ·
[∫
V

dτ ′ρ(~r ′) (r ′)2 1

2

(
3 r̂ ′ r̂ ′ − 1

)]
· r̂ (3.229)

or V3(~r) =
1

4π εo

1

r3

1

2
r̂ · Q · r̂ where Q =

∫
V

dτ ′ρ(~r ′)
[
3~r ′~r ′ − (r ′)21

]
(3.230)

is the quadrupole moment and 1 = diag(1, 1, 1) is the identity tensor with ones

along the diagonal. Because it is composed of ~r ′ ~r ′ and 1, Q is a tensor,

implying that one can take a dot product with a vector on each side. Written
out in component form (which is again how you would calculate it):

Qjk =

∫
V

dτ ′ ρ(~r ′)
[
3 r ′j r ′k − (r ′)2δjk

]
= r̂j · Q · r̂k (3.231)

It is now obvious that Qjk is symmetric in its indices.
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Origin Dependence of the Dipole Moment

Suppose we take a charge distribution and shift the origin by a vector ~a such that the
charge distribution is now centered around ~a. Then the new dipole moment is

~p ′ =

∫
dτ ′ρ ′(~r ′)~r ′ =

∫
dτ ρ(~r) (~a + ~r) = ~a Q + ~p (3.232)

where we define the charge distribution in the new coordinate system ρ ′(~r ′) in terms
of the original charge distribution ρ(~r) to be such that ρ ′(~r ′) = ρ(~r = ~r ′ − ~a) when
~r ′ = ~r + ~a. Thus, an origin shift can induce an artificial dipole moment for a charge
distribution that has a monopole moment. This part of the dipole moment is not real:
it is a reflection of the fact that the multipole potentials are written in terms of
distance from the origin under the assumption that the charge distribution is centered
around the origin. When it is not, this is an unnatural coordinate system to use,
requiring corrections to the standard monopole term (∝ Q/r) to handle the fact that
the charge distribution is displaced. The above tells us the correction term has the
same form as a dipole term. Obviously, one should choose the origin wisely to avoid
such complications.

Note also the somewhat counterintuitive implication that, if Q = 0, then the dipole
moment is independent of origin! This happens because of our assumption
r , r ′ � distance to the observation point, which implies that a must also be small so
that no corrections are required.
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Field of an Electric Dipole

This is simply a matter of taking the gradient. If we let ~p = p ẑ, then this is easy:

V2(~r) =
p cos θ

4π εo r2
(3.233)

=⇒ Er (~r) = −∂V2

∂r
= −2 p cos θ

4π εo r3
(3.234)

Eθ(~r) = −1

r

∂V2

∂θ
=

p sin θ

4π εo r3
(3.235)

Eφ(~r) = − 1

r sin θ

∂V2

∂φ
= 0 (3.236)

or ~E(~r) =
p

4π εo r3

(
2 r̂ cos θ + θ̂ sin θ

)
(3.237)
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To generalize this result for an arbitrary orientation of ~p requires some vector algebra.
We have Equation 3.227 for the dipole potential in generic form, which we write out as

V2(~r) =
1

4π εo

1

r3
~r · ~p =

1

4π εo

1

r3

∑
i

ri pi (3.238)

Now, we take the gradient, first noting

∂

∂rj

ri

r3
=

∂

∂rj

ri

(r2)3/2
= −3

2

ri

(r2)5/2

∂ r2

∂rj

+
δij

r3
= −3

2

ri

r5

(
2 rj

)
+
δij

r3
(3.239)

Where we used r3 =
(
r2
)3/2

and r2 =
∑

k r2
k to more easily calculate the partial

derivative. Therefore, with rj and r̂j being the jth Cartesian coordinate and unit vector,

~E2(~r) = −~∇V2(~r) = −
∑

j

r̂j
∂V2

∂rj

=
1

4π εo r5

∑
ij

r̂j pi

[
3 ri rj − δij r2

]
=

1

4π εo r5

∑
j

[
rj r̂j

(
3
∑

i

pi ri

)
− pj r̂j r2

]

=⇒ ~E2(~r) =
1

4π εo r3
[3 (~p · r̂) r̂ − ~p] (3.240)
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Electrostatic Potential Energy of a Multipole Distribution in an External
Potential

The general expression for the potential energy of a charge distribution in an external
potential is

U =

∫
V
ρ(~r ′) V (~r ′) (3.241)

Under the assumption that V (~r ′) varies slowly (but need not be constant!) over the
spatial extent of the charge distribution, we can rewrite this in terms of moments of
the charge distribution and derivatives of the potential. To do so, we need to expand
V (~r) about some point in the distribution. Without loss of generality, assume the
charge distribution is centered on the origin, around which we will expand. We use the
multidimensional Taylor expansion of V (~r):

V (~r ′) = V (~r ′ = ~0) +
3∑

j=1

r ′j
∂V

∂rj

∣∣∣∣∣
~r ′=~0

+
1

2

∑
j,k=1

r ′j r ′k
∂2V

∂rj ∂rk

∣∣∣∣
~r ′=~0

+ · · · (3.242)

We can already foresee how integrating the above form for V (~r ′) with ρ(~r ′) is going
to result in a dipole moment in the first term and quadrupole moment in the second.
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Using Ej = − ∂V
∂rj

, we may simplify

V (~r ′) = V (~0)− ~r ′ · ~E(~0) +
1

6

3∑
j,k=1

3 r ′j r ′k
∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.243)

= V (~0)− ~r ′ · ~E(~0) +
1

6

3∑
j,k=1

(
3 r ′j r ′k − (r ′)2δjk

) ∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.244)

where we were able to add the (r ′)2δjk term because

∑
j,k

(r ′)2δjk
∂2V

∂rj ∂rk

∣∣∣∣
~0

= (r ′)2∇2V (~r ′ = 0) = 0 (3.245)

because the charge distribution sourcing V is not present near the origin. Remember,
ρ(~r) is not the distribution sourcing V ; V is provided to us and is due to some charge
distribution far away from the origin.
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With the above expansion, the electrostatic potential energy is now (note that ~E(~0)
and ∂2V /∂rj∂rk

∣∣
~0

are constant with respect to r ′, so they come outside of the r ′

integral)

U = V (~0)

∫
V

dτ ′ρ(~r ′)− ~E(~0) ·
∫
V

dτ ′ ρ(~r ′)~r ′ (3.246)

+
1

6

3∑
j,k=1

∂2V

∂rj ∂rk

∣∣∣∣
~0

∫
V

dτ ′ρ(~r ′)
[
3 r ′j r ′k − δjk (r ′)2

]
+ · · ·

= Q V (~0)− ~p · ~E(~0) +
1

6

3∑
j,k=1

Qjk
∂2V

∂rj ∂rk

∣∣∣∣
~0

+ · · · (3.247)

or, more generally, if the charge distribution is centered around ~r ,

U(~r) = Q V (~r)− ~p · ~E(~r) +
1

6

3∑
j,k=1

Qjk
∂2V

∂rj ∂rk

∣∣∣∣
~r

+ · · · (3.248)

= Q V (~r)− ~p · ~E(~r) +
1

6
~∇~r · Q · ~∇~r V (~r) + · · · (3.249)

where we have written the last term in tensor dot product form. There are now
contributions to the potential energy from the relative alignment of ~p and ~E and from
the orientation of Q’s principal axes relative to the principal axes of the potential’s

curvature matrix. Note that ~∇~r acts on the spatial dependence of V (~r); ~r ′ has
already been integrated over to obtain Q.
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Force on a Multipole Distribution in an External Field

We can calculate the force on the charge distribution by taking the derivative of U
with respect to the charge distribution’s nominal position ~r , now replacing one
derivative of V with the electric field ~E in the quadrupole term:

~F (~r) = −~∇U(~r) = Q
(
−~∇V (~r)

)
+ ~∇

(
~p · ~E(~r)

)
+

1

6

3∑
j,k,m=1

r̂m Qjk
∂2Ej

∂rm ∂rk
+ · · ·

= Q ~E(~r) +
(
~p · ~∇

)
~E(~r) +

1

6

3∑
j,k,m=1

r̂m Qjk
∂2Ej

∂rm ∂rk
+ · · ·

= Q ~E(~r) +
(
~p · ~∇

)
~E(~r) +

1

6
~∇
[
~∇ ·
(

Q · ~E(~r)
)]

+ · · · (3.250)

In going from the first to the second row, we used the vector identity
~∇
(
~a · ~f (~r)

)
=
(
~a · ~∇

)
~f (~r) when ~a is a constant vector and ~f (~r) has no curl. Note

that all ~∇ are with respect to ~r (since ~r ′ has been integrated over already).

We see that the total force is a sum of contributions from the interaction of the
monopole with the electric field, the dipole with gradients in the electric field and, the
quadrupole with the local curvature (second derivatives) of the electric field.
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Torque on a Multipole in an External Field

Let’s also calculate the torque. To calculate a torque, we need to take the gradient of
the potential energy in spherical coordinates with respect to the orientation of the
charge distribution relative to the electric field.

The monopole term yields no torque because there is no orientation angle involved: Q
and V (~r) are scalars.

Considering the dipole term, we understand that there are only two vectors involved, ~p
and ~E , and the potential energy only depends on the angle between them. So the
torque will be given by the derivative with respect to this angle, which we call θp to

differentiate it from the θ coordinate of the system in which we consider ~E . This angle
will be measured from ~E to ~p. Then,

~Nelec = − ∂

∂θp

(
−~p · ~E(~r)

)
(3.251)

=
∂

∂θp

p
∣∣∣~E(~r)

∣∣∣ cos θp = −p
∣∣∣~E(~r)

∣∣∣ sin θp

= ~p × ~E(~r) (3.252)

This is a result you are familiar with from Ph1b, indicating the torque acts in a
direction to align the dipole moment with the field direction.
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Moving on to the quadrupole term, we recognize from Ph106a that any symmetric
tensor can be diagonalized via a rotation. Let’s write

Q = R(φQ , θQ , ψQ )Q [R(φQ , θQ , ψQ )]T with Q = diag(Q1,Q2,Q3) (3.253)

where the Qi are quadrupole moments along the principal axes of the quadrupole
tensor and R(φQ , θQ , ψQ ) is the rotation matrix that rotates from the frame in which
the coordinate axes align with the quadrupole tensor’s principal axes to the arbitrary
frame we started in, with the three Euler angles (φQ , θQ , ψQ ) defining the orientation
of the principal axes of Q relative to the this arbitrary frame. This kind of

diagonalization should be familiar to you from Ph106a, with R rotating from the
“body” frame (the one fixed to the charge distribution’s quadrupole principal axes) to
the “space” frame. The quadrupole potential energy term is then

U3 = −1

6
~∇~r ·

{
R(φQ , θQ , ψQ )Q [R(φQ , θQ , ψQ )]T

}
· ~E(~r) (3.254)
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To calculate the torque, we need to take the gradient of U3 with respect to the
orientation of the quadrupole. This amounts to taking gradients of R and RT with
respect to this orientation. As you know from the case of the symmetric top, the Euler
angles are particularly useful angles with respect to which these derivatives can be
taken. ∂/∂φQ gives the torque about the z-axis of the space frame. ∂/∂θQ gives the
torque that causes motion in the polar angle direction with respect to the space
frame’s ẑ. And ∂/∂ψQ calculates the torque about one particular principal axis of the
quadrupole, chosen at will. You are familiar with symmetric tops, with I1 = I2. Here,
we can have symmetric quadrupoles, with Q1 = Q2. In this case, the ψQ angle is the
angle about the 3 axis of the quadrupole (the principal axis that aligns with the z-axis
in the body frame). We do not take this further because, as you know from the study
of tops in Ph106a, the phenomenology can be quite rich.
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Polarizability and Polarization

Review of Polarizability of Materials

Griffiths §4.1 does a good job of providing physical motivation for the study of the
polarizability of materials, and also reviews material you saw in Ph1b, so we only
summarize the basics here.

I Atoms and molecules are polarizable, meaning that they can acquire a dipole
moment when an external electric field is applied because of the separation of
the positive and negative charge in response to the applied field. The charge
distribution that results is such that its field is in the opposite direction as the
applied field at the location of the atom or molecule.

I We assume that this polarizability is a linear process, so that the induced dipole
moment is linear in the applied electric field, though the response may be
anisotropic. The polarizability tensor α relates the induced dipole moment to
the applied field:

~p = α · ~E (4.1)
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I As we showed in our discussion of multipoles, dipoles can experience torques
and forces in an electric field. If a dipole is placed in an electric field, it feels a
torque (Equation 3.252)

~N = ~p × ~E (4.2)

If the electric field is nonuniform, the dipole feels a force (Equation 3.250)

~F =
(
~p · ~∇

)
~E (4.3)

I If a medium consists of polarizable atoms or molecules, then that medium can
become polarized under the application of an electric field. The polarization (or
polarization density) of the medium is

~P = n ~p (4.4)

where n is the density of polarizable atoms or molecules and ~p is the induced
dipole per atom or molecule.
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Bound Charges and the Potential of a Polarizable Material

When a medium is polarized and acquires a polarization vector ~P, then it can generate
its own electric field. This comes from the superposition of the dipole fields of the
individual polarized atoms or molecules. In Ph1b, you saw how the polarization could
be interpreted as yielding bound charge densities: when the medium polarizes, the
positive components of some dipoles are cancelled by the negative components of
nearby dipoles, but there can appear a net effective charge: on the boundaries, where
the cancellation fails, and in the bulk if the dipole density is not uniform, also causing
the cancellation to fail. This argument was made in Purcell in Ph1b to derive the
bound charge densities, and Griffiths makes it in §4.2.2. Here we derive the
relationship between the polarization vector and the bound charge density in rigorous
fashion.
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The total electric potential generated by a polarizable medium is found by summing
up the dipole potentials of the individual dipoles:

V (~r) =
1

4π εo

∫
V

dτ ′
~P(~r ′) · (~r − ~r ′)
|~r − ~r ′|3 (4.5)

We use the identity (~r − ~r ′)/|~r − ~r ′|3 = ~∇~r ′ (1/|~r − ~r ′|) (note: no minus sign because

this is ~∇~r ′ , not ~∇~r , and we have ~r −~r ′ in the numerator, not ~r ′−~r) to rewrite this as

V (~r) =
1

4π εo

∫
V

dτ ′ ~P(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
(4.6)
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We can integrate by parts to obtain

V (~r) =
1

4π εo

[∫
V

dτ ′ ~∇~r ′ ·
(

~P(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′
1

|~r − ~r ′|
(
~∇~r ′ · ~P(~r ′)

)]
(4.7)

The first term can be converted to a surface integral via the divergence theorem:

V (~r) =
1

4π εo

[∫
S(V)

da′
n̂(~r ′) · ~P(~r ′)

|~r − ~r ′| −
∫
V

dτ ′
1

|~r − ~r ′|
(
~∇~r ′ · ~P(~r ′)

)]
(4.8)

We thus see that the potential appears to be that of a surface charge density σb(~r ′)
on S(V) and a volume charge density ρb(~r ′) in V with (n̂ is the outward normal from
the polarizable material):

σb(~r ′) = n̂(~r ′) · ~P(~r ′) ρb(~r ′) = −~∇~r ′ · ~P(~r ′) (4.9)

V (~r) =
1

4π εo

[∫
S(V)

da′
σb(~r ′)

|~r − ~r ′| +

∫
V

dτ ′
ρb(~r ′)

|~r − ~r ′|

]
(4.10)

These charges are called “bound charges” because they are bound to the polarizable
medium.

Section 4.1.2 Bound Charges and the Potential of a Polarizable Material Page 257



Section 4.1 Electrostatics in Matter: Polarizability and Polarization

Example 4.1: Potential and Field of a Uniformly Polarized Sphere

This problem from Ph1b is much easier to solve with our knowledge of solutions to
Laplace’s Equation than it was without such techniques. The polarization density is a
constant ~P = P ẑ. The bound volume charge density vanishes because ~P is constant.
The bound surface charge density on the surface at radius R is

σb = n̂(~r) · ~P = r̂ · P ẑ = P cos θ (4.11)

This is a problem Griffiths solves in Example 3.9 for a generic σ(θ), and we talked
through the solution earlier. The generic solution was

V (r < R, θ) =
∞∑
`=0

A`r
`P`(cos θ) V (r > R, θ) =

∞∑
`=0

B`

r`+1
P`(cos θ) (4.12)

with A` =
1

2 εo R`−1

∫ π

0
dθ ′ sin θ ′ σ(θ ′) P`(cos θ ′) B` = A` R2 `+1 (4.13)

Since σ(θ) = P cos θ = P P1(cos θ), the orthonormal functions do their job and we get
(making sure to include the normalization factor 2/(2 `+ 1) = 2/3):

V (r < R, θ) =
P r cos θ

3 εo
V (r > R, θ) =

P R3 cos θ

3 εo r2
(4.14)
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We can write these more simply. We recognize z = r cos θ and that the total dipole
moment of the sphere is ~p = 4π R3P ẑ/3, yielding

V (r < R, θ) =
P z

3 εo
V (r > R, θ) =

~p · r̂
4π εo r2

(4.15)

Thus, the field inside the sphere is uniform, ~E = −~P/3 εo , and the field outside the
sphere is that of a dipole ~p. Note that the field outside the sphere is a perfect dipole
field all the way to r = R; this is not an approximation (until you get so close to the
surface that you can see the discretization of the dipoles).

We remind the reader of the Ph1b technique, where we obtained this same result by
treating the sphere as two spheres of uniform charge density ρ = q/(4π R3/3) with

their centers displaced by ~d = ~p/q. The field inside a uniform sphere of charge is

proportional to the radial vector outward from its center, so the two vectors ~r − ~d/2

and ~r + ~d/2 end up differencing (because the two spheres have opposite charge) to

yield ~d , yielding the uniform internal field. Outside the spheres, they look like point
charges, so the system looks like a point dipole ~p.

One could also use this argument to figure out that the charge density on the surface
is σ = P cos θ and evaluate the potential and field of that charge distribution.
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The Electric Displacement Field

Definition of the Electric Displacement Field

We proved earlier that the potential due to a polarization density ~P(~r) is

V (~r) =
1

4π εo

[∫
S(V)

da′
n̂(~r ′) · ~P(~r ′)

|~r − ~r ′| +

∫
V

dτ ′
−~∇~r ′ · ~P(~r ′)

|~r − ~r ′|

]
(4.16)

These are analogues of Coulomb’s law for ρb, so the potential and field due to the
polarization density satisfy

∇2Vb = − 1

εo
ρb

~∇ · ~Eb =
1

εo
ρb = − 1

εo

~∇ · ~P (4.17)

If there is a free charge density ρf (which will contribute to V and ~E !), then we see
that the total potential and field satisfy

∇2V = − 1

εo
(ρf + ρb) ~∇ · ~E =

1

εo

(
ρf − ~∇ · ~P

)
(4.18)
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We will see later that it will be convenient to have a field that depends only on the
free charge density. Thus, we define the electric displacement field by

~D = εo
~E + ~P (4.19)

We immediately see that Gauss’s Law can be written as

~∇ · ~D = ρf ⇐⇒
∮
S

da n̂ · ~D = Qfree,encl (4.20)

The Helmholtz Theorem tells us that any vector field can be written as the sum of a
curl-free component (sourced by the divergence of the field) and a divergence-free

component (sourced by the curl of the field). Thus, to fully understand ~D, we also
need to determine its curl:

~∇× ~D = εo ~∇× ~E + ~∇× ~P = ~∇× ~P (4.21)

Because the right side may not vanish, the left side may not vanish. This possibly
nonzero curl is an important distinction between ~D and ~E .

While Gauss’s Law does indeed hold for ~D, the possibility that ~∇× ~D 6= 0 implies that
the standard symmetry assumptions we make to apply Gauss’s Law to find the field
may not apply.
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However, if one knows that, due to symmetry or some other consideration,
~∇× ~P = 0, then one can apply the standard techniques for using Gauss’s Law
combined with symmetry to calculate the displacement field. (~∇× ~P = 0 should be

interpreted as also requiring that any boundaries be normal to ~P because we will see
below that, unlike for ~E , the tangential component of ~D is not continuous if ~P has a
tangential component.)

When the above is true, ~D provides a calculational convenience: if a free charge
density ρf and a polarization field ~P are specified, then we should calculate ~D from
the free charge density using Gauss’s Law and then obtain the electric field from
~E = (~D − ~P)/εo . This simplification is possible only because of the particular form of

the bound charge density, ρb = −~∇ · ~P, which parallels the mathematical form of
Gauss’s Law, along with the condition ~∇× ~P = 0.

Note the extra condition ~∇× ~P = 0 that has to be specified; this reflects the fact that
~P has more degrees of freedom than a scalar field ρb, so those extra degrees of
freedom need to be specified (via the curl-free condition) for ρb to tell the whole story

(and thus for ~D to be derivable from ρf ).

The situation will simplify somewhat when we consider linear, uniform dielectrics
where ~P ∝ ~E ; then ~∇× ~P = 0 is guaranteed, though the requirement that ~P be
normal to any boundaries may still create complications.
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Boundary Conditions on the Displacement Field

We derived boundary conditions on ~E earlier, Equations 2.55 and 2.57:

n̂ ·
(
~E2 − ~E1

)
=

1

εo
σ ŝ ·

(
~E2 − ~E1

)
= 0 (4.22)

where n̂ is the normal vector pointing from region 1 into region 2 and ŝ is any
tangential vector (i.e., ŝ · n̂ = 0). We derived the equation for the normal component

using the divergence of ~E . So, here, we can use the fact that ~∇ · ~D = ρf , which yields

n̂ ·
(
~D2 − ~D1

)
= σf (4.23)

Note that, by definition, we have σb = n̂ · ~P where n̂ is the outward normal going from
a region with a polarization density to vacuum. Therefore, by superposition,

n̂ ·
(
~P2 − ~P1

)
= −σb (4.24)

We could also have used ρb = −~∇ · ~P and followed the same type of derivation as
used for ~E and ~D. The sign on the right side of the boundary condition enters because
of the sign in ~∇ · ~P = −ρb.
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In general, we know nothing about ~∇× ~P, so the boundary condition on the
tangential component of ~D just reflects the fact that its curl is the curl of the
polarization field. We obtain this condition by inserting the relation between ~E , ~D,
and ~P into the above tangential condition:

ŝ ·
(
~D2 − ~D1

)
= ŝ ·

(
~P2 − ~P1

)
(4.25)

Note that, even in the case of linear dielectrics, the right side can be nonzero, as we
will see below.
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Linear Dielectrics

So far, we have considered situations where ~P has been specified for us. But, it is
usually caused by an external field, and so what we really want to do is figure out
what observed potential and field arise by summing the externally applied
potential/field and that due to the polarization of the dielectric in response to that
external potential/field. For most substances, at least at low fields, the relation
between the two is linear and there is a simple scalar constant of proportionality:

~P = εo χe
~E (4.26)

where χe is the electric susceptibility. Such materials are called linear dielectrics. An
immediate implication of the above is:

~D = εo
~E + ~P = εo (1 + χe ) ~E ≡ ε ~E (4.27)

where ε ≡ εo (1 + χe ) is the permittivity of the material and εr ≡ 1 + χe is the relative
permittivity or dielectric constant of the material.

A very important point is that ~E above is the total field, not just the externally
applied field. You can think of polarization as an iterative process: an applied field ~E0

causes polarization ~P0, which creates its own field ~E1, which the polarization responds
to by adding a contribution ~P1, which creates its own field ~E2, and so on. The process
converges to the final total electric field ~E and polarization ~P.
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Example 4.2: Conducting sphere with dielectric shell around it

Consider a conducting sphere of radius a with (free) charge Q on it surrounded by a
(thick) shell of dielectric ε with inner and outer radii a and b. Because the system is

spherically symmetric and contains a linear dielectric, we know that ~E , ~D, and ~P all
have the form

~E = E(r) r̂ ~D = D(r) r̂ ~P = P(r) r̂ (4.28)

This ensures that the curl of all three vanish and that, at the boundaries, we have no
tangential components of ~D and ~P. We have now satisfied all the conditions required
for us to be able to derive ~D directly from the free charge by Gauss’s Law, which yields

~D(~r) =
Q

4π r2
r̂ r > a (4.29)

(~D = ~E = ~P = 0 for r < a.) Then we just apply the relation between ~D and ~E :

~E(~r) =
Q

4π ε(r) r2
r̂ =

{ (
Q/4π ε r2

)
r̂ a < r < b(

Q/4π εo r2
)

r̂ b < r
(4.30)

The electric field is screened (reduced) inside the dielectric and unchanged outside.
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Let’s calculate the polarization vector and bound charge density:

~P(~r) = εo χe (r) ~E(~r) = (ε(r)− εo ) ~E(~r) =
ε(r)− εo

ε(r)

Q

4π r2
r̂

=

{ ε−εo
ε

Q
4π r2 r̂ a < r < b

0 b < r
(4.31)

ρb = −~∇ · ~P = 0 (4.32)

σb =

{
−r̂ · ~P(r = a) = − ε−εo

ε
Q

4π a2 r = a

r̂ · ~P(r = b) = ε−εo
ε

Q
4π b2 r = b

(4.33)

Note the ε in the denominator! We see that ~P is radially outward and decreasing with
r like 1/r2 as ~E does. Note that, even though ~P is position-dependent, its divergence
vanishes, so there is no bound charge density. There is surface charge density, negative
at r = a and positive at r = b. This is to be expected, as the dielectric polarizes so
the negative ends of the dipoles are attracted to Q on the conducting sphere and the
positive ends are repelled, leaving uncancelled layers of negative charge on the inner
boundary and positive charge on the outer boundary.

The electric field is reduced inside the dielectric because the negative charge on the
inner boundary screens (generates a field that partially cancels) the field of the free
charge on the conducting sphere: the total surface charge density σf + σb at r = a is
less than Q/4π a2, and it is the total charge that determines ~E .

Page 267



Section 4.3 Electrostatics in Matter: Linear Dielectrics

Note that, because of the neutrality of the dielectric, the total surface charge on the
outer boundary cancels that on the inner boundary, so the net charge enclosed inside a
sphere of radius r > b is just Q: outside the dielectric, no screening effect is present.

It is worth thinking about the above a bit: it occurs both because the dielectric has no
net charge and the problem is spherically symmetric. In contrast, we will see a
dielectric sphere can polarize in an external field and generate a field outside itself in
spite of having no net charge, which is possible because spherical symmetry is broken
in that case. But there is no monopole field, only a dipole field.

Note also that, once you have calculated σb and ρb, you can ignore the presence of
the dielectric: as we stated earlier, the total field is sourced by the sum of the free and
bound charge densities and the dielectric has no further effect, which one can see here
from noticing that ~E in the dielectric is what one would have calculated if one had
been given σf + σb at r = a.
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Finally, let’s calculate the electric potential from ~E (not ~D!):

V (~r) = −
∫ ~r

∞
d~s ′ · ~E(~r ′) = −

∫ r

∞
dr ′E(r ′)

V (r > b) = − Q

4π

[∫ r

∞
dr ′

1

εo r2

]
=

Q

4π

1

εo r
(4.34)

V (a < r < b) = − Q

4π

[∫ b

∞
dr ′

1

εo r2
+

∫ r

b
dr ′

1

ε r2

]
=

Q

4π

[
1

εo r

∣∣∣∣b
∞

+
1

ε r

∣∣∣∣r
b

]
=

Q

4π

[
1

b

(
1

εo
− 1

ε

)
+

1

ε r

]
(4.35)

V (r < a) = V (r = a) =
Q

4π

[
1

b

(
1

εo
− 1

ε

)
+

1

ε a

]
(4.36)

where V is constant for r < a because r < a is occupied by a conductor.

A final comment: if one takes the ε→∞ limit, one can see that one recovers the
behavior one would have if the entire region r < b were filled with conductor. A
conductor can be considered to be an infinitely polarizable dielectric, with ~E = 0
inside, which requires χe →∞.
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Example 4.3: Parallel plate capacitor with dielectric

You all know from Ph1b that filling the volume between the plates of a parallel-plate
capacitor increases the capacitance to C = εr Cvac where Cvac is the capacitance with
vacuum between the plates. We remind you why this is true.

Let the capacitor plates lie parallel to the xy -plane at z = 0 (negative plate) and
z = a (positive plate) so ẑ is the unit vector pointing from the negative plate to the

positive one. In such a geometry, we know from symmetry that ~E , ~D, and ~P are all
parallel to ẑ and independent of xy , assuming we ignore the capacitor edges. Thus, at
the interfaces at z = 0 and z = a, all these vectors are normal to the interface and so
no tangential components are present. These features of the fields imply that we can
apply Gauss’s Law to the free charge density to find ~D.

The free charge density is σf = ±Q/A where Q is the charge on the plates (+Q at
z = a and −Q at z = 0) and A is the plate area. Gauss’s Law for an infinite sheet of
charge (Griffiths Example 2.5) tells us that the field of a single sheet is E = σ/2 εo .
Therefore, we have for this case

~D =

{
−Q

A
ẑ 0 < z < a

0 z < 0, z > a
(4.37)

because the fields of the two plates cancel for z < 0 and z > a but add for 0 < z < a,
and there is no εo because we are calculating ~D, not ~E .

Page 270



Section 4.3 Electrostatics in Matter: Linear Dielectrics

This implies:

~E =

{
− 1
ε

Q
A

ẑ 0 < z < a
0 z < 0, z > a

~P =

{
− ε−εo

ε
Q
A

ẑ 0 < z < a
0 z < 0, z > a

(4.38)

ρb = −~∇ · ~P = 0 (4.39)

σb = n̂ · ~P =

{
ẑ · ~P(z = a) z = a

−ẑ · ~P(z = 0) z = 0
=

{ − ε−εo
ε

Q
A

z = a
ε−εo
ε

Q
A

z = 0
(4.40)

We have negative bound surface charge near the positive plate and positive bound
surface charge near the negative plate. Finally, the voltage is

V (0 < z < a) = −
∫ z

0
d~s ′ · ~E(~r ′) = −

∫ z

0
dz ′
(
−1

ε

Q

A

)
=

1

ε

Q

A
z (4.41)

From this, we can calculate the capacitance, which comes out as expected:

C =
Q

∆V
=

Q

(1/ε) (Q/A) a
= ε

A

a
= εr Cvac (4.42)

C is increased because ∆V is reduced because the surface charge densities screen the
electric field inside the dielectric. The electric field inside the dielectric is the field one
expects from surface charge densities σf + σb = ±(εo/ε) (Q/A).
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Example 4.4: Parallel plate capacitor with two-layer dielectric

Let’s repeat, but now with a capacitor that has two slabs of dielectric with different ε:
ε1 for 0 < z < a and ε2 for a < z < b, where the top plate is now at z = b. Because
the interface is normal to ~P, we can apply Gauss’s Law for ~D as we did before,
yielding no change in ~D, but now the ε quantities in ~E and ~P depend on z.

The volume bound charge density vanishes again. The surface charge density at the
top and bottom has the same expression, but again with ε being evaluated for the
particular value of z. The surface bound charge density at the z = a interface is

σb(z = a) = n̂1 · ~P1 + n̂2 · ~P2 = ẑ · ~P1 − ẑ · ~P2 =
Q

A

(
− ε1 − εo

ε1
+
ε2 − εo

ε2

)
(4.43)

Depending on which dielectric constant is greater, this can be positive or negative. Of
course, it vanishes if ε1 = ε2. The potential and capacitance are

V (0 < z < a) =
1

ε1

Q

A
z V (a < z < b) =

1

ε1

Q

A
a +

1

ε2

Q

A
(z − a) (4.44)

C =
Q

∆V
=

(
a

ε1
+

b − a

ε2

)−1

A = εeff
A

b
= εeff ,r Cvac (4.45)

where 1/εeff = [a/ε1 + (b − a)/ε2]/b is the thickness-weighted inverse mean of the
dielectric constants and εeff ,r = εeff /εo . This is the same as two capacitors in series,
which is not surprising since that problem has the same equipotential surfaces. The
total field is that of three sheets of surface charge σf + σb, with σf = 0 at the
interface between the two dielectrics.
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Example 4.5: Capacitor with two side-by-side (parallel) dielectrics

Now, allow the capacitor to have plate spacing a but with two different dielectrics
side-by-side, with ε1 occupying A1 and V1 and ε2 occupying A2 and V2. It is a
reasonable guess that one should treat this as two capacitors in parallel so that

C = C1 + C2 =
1

a
(ε1A1 + ε2A2) (4.46)

But let’s derive this from scratch, appreciating the subtlety at the interface.

Because the voltage difference between the two plates is independent of ε (they are

equipotentials), it is reasonable to guess that ~E is the same in ε1 and ε2: this is the
key insight! Because the dielectrics are uniform in z, it is also reasonable to assume it
is independent of z as one would have in the single-dielectric case. So, our guess for
the form of the fields is:

~E = −E0 ẑ ~D =

{
−ε1 E0 ẑ in V1

−ε2 E0 ẑ in V2

~P =

{
− (ε1 − εo ) E0 ẑ in V1

− (ε2 − εo ) E0 ẑ in V2
(4.47)

We see this form respects the tangential boundary conditions at the interface between
the two dielectrics, as it has to:

ẑ ·
(
~E2 − ~E1

)
= 0 ẑ ·

(
~D2 − ~D1

)
= (ε1 − ε2) E0 = ẑ ·

(
~P2 − ~P1

)
(4.48)

Section 4.3.0 Page 274



Section 4.3 Electrostatics in Matter: Linear Dielectrics

Because ~D and ~P are different in the two volumes, we must allow the free (and bound)
charge densities to be different. This provides us a set of equations to solve for E0:

ε1 E0 = σf ,1 ε2 E0 = σf ,2 A1 σf ,1 + A2 σf ,2 = Q (4.49)

=⇒ E0 =
1

εeff

Q

A
εeff =

ε1 A1 + ε2 A2

A1 + A2
A = A1 + A2 (4.50)

C =
Q

∆V
=

Q

a E0
= εeff

A

a
= εeff ,r Cvac (4.51)

which matches our parallel-capacitor expectation. The displacement field, polarization
field, and free and bound charge densities are

~D =

{
− ε1
εeff

Q
A

ẑ in V1

− ε2
εeff

Q
A

ẑ in V2

~P =

{
− ε1−εo

εeff

Q
A

ẑ in V1

− ε2−εo
εeff

Q
A

ẑ in V2
ρb = −~∇ · ~P = 0

(4.52)

|σf | =

{
ε1
εeff

Q
A

in V1
ε2
εeff

Q
A

in V2
|σb| =

{
ε1−εo
εeff

Q
A

ẑ in V1
ε2−εo
εeff

Q
A

ẑ in V2
(4.53)

σb always has the opposite sign as σf . For Q > 0, the sign of σf is positive at z = a
and negative at z = 0. Note that, because ~P is different in V1 and V2, so too does σb

differ between the two dielectrics.
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Finally, if one calculates the total charge density σf + σb at z = 0 or z = a, one gets

σt,1 = σf ,1 + σb,1 =

(
ε1

εeff
− ε1 − εo

εeff

)
Q

A
=

εo

εeff

Q

A
(4.54)

σt,2 = σf ,2 + σb,2 =

(
ε2

εeff
− ε2 − εo

εeff

)
Q

A
=

εo

εeff

Q

A
(4.55)

This makes sense: since the electric field is the same in V1 and V2, the total (free +
bound) surface charge density sourcing it should be the same. The total charge
density is a factor εo/εeff smaller than would be present in the absence of dielectrics
because the bound charge density screens the free charge density. The free charge
density is different in the two regions because the opposite-sign bound charge density
is different because of the different dielectric constants. In contrast to our naive
expectation, the free charge density is not uniform on the conductor; rather, it
redistributes itself so the fundamental condition, that the conductors be
equipotentials, is satisfied when one includes the effect of the dielectric. Instead, the
total charge density is uniform, which yields a field independent of (x , y), which is
what ensures the equipotential condition is met.
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Boundary Value Problems with Linear Dielectrics

General Conditions for Linear, Homogeneous Dielectrics

In linear, homogeneous dielectrics,

ρb = −~∇ · ~P = −~∇ ·
(
ε− ε0

ε
~D

)
= −

(
ε− ε0

ε

)
~∇ · ~D = −

(
ε− ε0

ε

)
ρf (4.56)

(Homogeneity is required so the gradient does not act on ε.) Therefore, if there is no
free charge density in a linear, homogeneous dielectric, there is no bound charge
density either. Thus, the dielectric volume satisfies Laplace’s Equation. All our
machinery for solving Laplace’s Equation applies here.
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We always need boundary conditions, though, and we can use the ones we derived
earlier (the tangential ~E and ~D conditions will yield the same condition on V , so we
start with the simpler one):

n̂ ·
[
~D2 − ~D1

]
= σf ŝ ·

[
~E2 − ~E1

]
= 0 (4.57)

Writing this in terms of the potential, we have

n̂ ·
[
ε2
~∇V2 − ε1

~∇V1

]
= −σf ŝ ·

[
~∇V2 − ~∇V1

]
= 0 (4.58)

And, we always require V1 = V2: the potential must be continuous. While we have
three conditions, in general the continuity and tangential gradient conditions will be
redundant: the normal gradient condition must be independent because it depends on
the free surface charge density while the two others do not. The continuity condition
is the simpler and so is the one that should be used.
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Example 4.6: Spherical cavity in a dielectric medium with uniform field applied

Let’s apply the above to a spherical cavity of radius R in a medium with permittivity ε
with a uniform field ~E = E0ẑ applied. There is no free charge anywhere. Our
boundary conditions therefore are

V (r →∞) = −E0 z = −E0 r P1(cos θ) (4.59)

and, with Vin(r) = V (r < R) and Vout (r) = V (r > R),

εo
∂Vin

∂r

∣∣∣∣
r=R

= ε
∂Vout

∂r

∣∣∣∣
r=R

and Vin(r = R) = Vout (r = R) (4.60)

We also choose the zero of the potential to be at z = 0, V (z = 0) = 0, by symmetry
as in the case of the conducting sphere in a uniform electric field.
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As usual, we begin by writing our generic solutions to Laplace’s Equation in spherical
coordinates:

Vin(r) =
∞∑
`=0

Ain
` r`P`(cos θ) Vout (r) =

∞∑
`=0

(
Aout
` r` +

Bout
`

r`+1

)
P`(cos θ) (4.61)

where we have applied the requirement that V be finite at the origin to eliminate the
1/r`+1 terms for Vin. Recall that we cannot eliminate the r` terms for Vout because
the potential does not vanish at infinity.

Let’s first apply the r →∞ condition. We did this before in the case of a metal
sphere in a uniform field, and we found

Aout
1 = −E0 Aout

6̀=1 = 0 (4.62)

Next, we apply the continuity condition at r = R, making use of orthonormality of the
P`:

Ain
1 R = −E0R +

Bout
1

R2
Ain
` 6=1R` =

Bout
6̀=1

R`+1
(4.63)
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Finally, let’s take the radial derivative and apply the matching condition on it, again
using orthonormality:

ε0Ain
1 = −ε

(
E0 +

2

R3
Bout

1

)
ε0Ain

` 6=1 `R`−1 = −ε
Bout
6̀=1

R`+2
(`+ 1) (4.64)

Doing the algebra, we find

Ain
6̀=1 = Bout

6̀=1 = 0 Bout
1 = − ε− εo

2 ε− εo
E0 R3 Ain

1 = − 3 ε

2 ε+ εo
E0 (4.65)

Thus, the potential is

Vin(r) = V (r < R) = − 3 ε

2 ε+ εo
E0 r cos θ = − 3 ε

2 ε+ εo
E0 z (4.66)

Vout (r) = V (r > R) = −E0 r cos θ − ε− εo

2 ε+ εo
E0

R3

r2
cos θ (4.67)

= −E0 z +
~p · r̂

4π εo r2
with ~p = −4π

3
R3 E0

3 εo

2 ε+ εo
(ε− εo ) ẑ
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The potential inside the cavity is that of a uniform electric field in the same direction
as the applied field but multiplied by the factor 3 ε/(2 ε+ εo ) > 1, while the potential
outside is that of the uniform field plus that of a dipole whose orientation is opposite
the uniform field and whose magnitude is given above. It is as if the cavity acquired a
polarization density in the negative z direction, though of course that cannot happen
because χe (r < R) = 0 there and thus ~P(r < R) = εoχe (r < R)~E(r < R) = 0. The
polarization density outside the cavity is just the total (not the applied uniform) field
times ε− εo (which is not particularly illuminating).

The (bound) surface charge density is

σb = n̂ · ~P(r = R) = n̂ · (ε− εo ) ~Eout (r = R)

= (ε− εo )

(
−r̂ · E0 ẑ − ∂

∂r

ε− εo

2 ε+ εo
E0

R3

r2
cos θ

∣∣∣∣
r=R

)
= −3 εo

ε− εo

2 ε+ εo
E0 cos θ

(Notice that n̂ = −r̂ because n̂ is taken to point out of the dielectric medium in the
definition of σb.) We see the boundary of the cavity acquires a surface charge density
with the same magnitude and cosine dependence as the bound charge on the surface
of a uniformly polarized sphere, though with opposite sign (so there is negative charge
at the +z end and positive charge at the −z end). The sign follows naturally from our
arguments about cancellation of dipole charge.

The field is enhanced in the cavity for two reasons: first, there is no polarizable
material to screen the electric field, and, second there is surface charge density on the
cavity’s boundary that creates an additional field in the direction of the uniform field.
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For reference, we note that the solution for a dielectric sphere (Griffiths Example 4.7)
in a uniform field looks very similar:

V (r < R) = − 3 εo

2 εo + ε
E0z V (r > R) = −E0z +

~p · r̂
4π εo r2

(4.68)

with ~p =
4π

3
R3 E0

3 εo

2 εo + ε
(ε− εo ) ẑ ≡ 4π

3
R3 ~P(r < R) (4.69)

σb = 3 εo
ε− εo

2 εo + ε
E0 cos θ (4.70)

Basically, exchange εo and ε everywhere to go between the two results. In this case,
the sphere acquires a polarization density 3 εo (ε− εo )/(2 εo + ε), now in the direction
of the applied field. The surface charge density is also of same form as the cavity case
with the ε↔ εo exchange. That exchange flips the sign so that the +z end acquires a
positive charge, again as expected from the dipole charge cancellation argument. The
field amplitude is reduced (screened) in the dielectric.

From the polarized sphere, one can recover the case of a conducting sphere in an
external uniform field by taking ε→∞ as noted earlier.
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Electrostatic Energy in and Forces on Linear Dielectrics

Electrostatic Potential Energy due to an Assembly of Free Charge in the
Presence of Dielectrics

It turns out that electrostatic potential energy in the presence of dielectrics is a subtle
topic because of the existence of the charges forming the dielectric. There are
different kinds of electrostatic potential energy: that needed to assemble the free and
bound charge distributions versus that needed to assemble the free charge distribution
and polarize the preexisting dielectric. It is generally the latter we are interested in, so
we consider that case.

Suppose we have a system in which an electric field ~E(~r) and its potential V (~r) have
already been set up and we want to bring in additional free charge δρf from infinity
(assuming the potential vanishes at infinity). In this case, the change in potential
energy is

δU =

∫
V

dτ ′
[
δρf (~r ′)

]
V (~r ′) (4.71)

The free charge density is related to the displacement field by ~∇ · ~D = ρf , so a change

δρf corresponds to a change in the divergence of the displacement field δ
(
~∇ · ~D

)
.

Linearity of the divergence lets us rewrite this as δρf = ~∇ · δ ~D.
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Then, we may integrate by parts and apply the divergence theorem:

δU =

∫
V

dτ ′
[
~∇ · δ ~D(~r ′)

]
V (~r ′)

=

∫
V

dτ ′ ~∇ ·
[
V (~r ′) δ ~D(~r ′)

]
−
∫
V

dτ ′
[
δ ~D(~r ′)

]
· ~∇V (~r ′)

=

∮
S(V)

da′ n̂(~r ′) ·
[
V (~r ′) δ ~D(~r ′)

]
+

∫
V

dτ ′
[
δ ~D(~r ′)

]
· ~E(~r ′) (4.72)

Assuming the potential falls off at infinity, the surface term can be taken out to
infinity to vanish. So, we are then left with

U =

∫ ~D

0

∫
V

dτ ′ ~E(~r ′) · d ~D(~r ′) (4.73)

There are two integrals here, one over volume and one over the value of ~D from zero
to its final value. ~E is of course tied to ~D and they vary together.
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For the case of a linear (but perhaps not homogeneous) dielectric, we may use
~D(~r) = ε(~r)~E(~r) and therefore

U =

∫ ~E

0

∫
V

dτ ′ ε(~r ′) ~E(~r ′) · d ~E(~r ′)

=
1

2

∫ ~E

0

∫
V

dτ ′ε(~r ′) d
[
~E(~r ′) · ~E(~r ′)

]
=

1

2

∫
V

dτ ′ ε(~r ′) E 2(~r ′) =
1

2

∫
V

dτ ′ ~E(~r ′) · ~D(~r ′) (4.74)

If the medium is linear and homogeneous, one can pull ε outside the integral at any
point, yielding

U =
ε

2

∫
V

dτ ′
∣∣∣~E(~r ′)

∣∣∣2 =
1

2 ε

∫
V

dτ ′
∣∣∣~D(~r ′)

∣∣∣2 (4.75)

We may infer that the energy density, neglecting the energy density intrinsic to the
creation of the dipoles, is

u(~r) =
ε

2

∣∣∣~E(~r)
∣∣∣2 =

1

2 ε

∣∣∣~D(~r)
∣∣∣2 (4.76)
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By contrast, if we wanted to know the total electrostatic potential energy stored in the
assembly of the free and bound charge, we would just do the usual volume integral of
E 2 with εo instead of ε. That energy is smaller because ε > εo . The reason for this
difference is that assembling the medium in the first place, which consists of bringing
positive and negative charges together, creates a system with negative potential
energy, and thus the total potential energy of the system would be lower if we
accounted for the energy of assembling the medium. But we will never pull the
dielectric apart, so it is natural to treat that component of the potential energy as an
offset that is inaccessible and neglect it in the electrostatic potential energy.
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Energy of a Dielectric in an External Field

A topic naturally related to the above is the electrostatic energy of a polarizable
material in an external field.

Suppose we start with a system with a free charge distribution ρf that sources a field
~E1 in a dielectric medium ε1, yielding a displacement ~D1 = ε1

~E1. The initial energy is

U1 =
1

2

∫
dτ ~E1 · ~D1 (4.77)

Now, with the charges sourcing ~E1 held fixed, let’s introduce a piece of dielectric
occupying the volume V2 and having dielectric constant ε2, replacing the dielectric of
dielectric constant ε1 there. The remainder of space outside V2 is occupied by ε1 in
both configurations. The electric field and displacement field everywhere change to ~E2

and ~D2, where ~D2(~r) = ε(~r) ~E2(~r). Note that ~E1 and ~E2 are not identical outside V2,

and the same is true for ~D1 and ~D2. The dielectric affects the field everywhere, not
just inside V2. The energy is now

U2 =
1

2

∫
dτ ~E2 · ~D2 (4.78)

The difference in energy between the two configurations is therefore

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D2 − ~E1 · ~D1

]
(4.79)
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Let us rewrite the energy difference as

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D1 − ~E1 · ~D2

]
+

1

2

∫
dτ
[
~E2 + ~E1

]
·
[
~D2 − ~D1

]
(4.80)

It holds that ~∇×
[
~E2 + ~E1

]
= 0, so it can be derived from a potential V , so the

second integral becomes

−1

2

∫
dτ
(
~∇V
)
·
[
~D2 − ~D1

]
(4.81)

We integrate by parts (the surface term vanishes because it depends on ~D2 − ~D1,
which should vanish as one goes far from the dielectric) to obtain

1

2

∫
dτ V ~∇ ·

[
~D2 − ~D1

]
(4.82)

This divergence vanishes because the free charge has not changed between the two
configurations (recall, ~∇ · ~D = ρf ).

Section 4.5.2 Energy of a Dielectric in an External Field Page 289



Section 4.5 Electrostatics in Matter: Electrostatic Energy in and Forces on Linear Dielectrics

So the second term in the energy vanishes, leaving

U2 − U1 =
1

2

∫
dτ
[
~E2 · ~D1 − ~E1 · ~D2

]
(4.83)

Now, outside V2, it holds that ~D2 = ε1
~E2 (remember, ε only changed inside V2), and

recall also ~D1 = ε1
~E1 everywhere, so the two terms cancel each other there and the

integrand vanishes outside V2. Therefore, we can restrict the integral to V2:

U2 − U1 = −1

2

∫
V2

dτ (ε2 − ε1) ~E2 · ~E1 (4.84)

This is already interesting — even though the field changes in all of space, we need
only look at the before and after fields in the volume V2 rather than the entire system.
If ε1 = εo (vacuum outside V2 and in V2 before the introduction of ε2), then we can

use ~P = (ε2 − εo ) ~E2 to rewrite as

W = U2 − U1 = −1

2

∫
V2

dτ ~P · ~E1 ⇐⇒ w = −1

2
~P · ~E1 (4.85)

where we recall that ~E1 is the electric field in the absence of the dielectric and ~P is the
polarization density of the dielectric, and w refers to an energy density. This is just
like the energy of a dipole in an external electric field, except that the factor of 1/2
accounts for the integration from zero field to actual field, from the fact that the
dielectric polarizes in response to the applied field. We see that the introduction of
the dielectric into an existing electric field in vacuum, holding the source charges fixed,
reduces the overall electrostatic energy.
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Why is the integrand not ~P · ~E2 or ~D2 · ~E2? Because we are asking what the difference
in energy is between the field configuration without the dielectric present and the
configuration with it present. There was field in V2 before the dielectric was placed
there, so we have to subtract off that original field energy density, and we also need to
consider the field energy density difference between the two configurations outside the
dielectric. It turns out that the above integrand correctly accounts for the differencing
relative to the no-dielectric starting condition. We can see this by trying to evaluate
the potential alternate expressions:

−1

2

∫
V2

dτ ~P · ~E2 = −1

2

∫
V2

dτ
(
~D2 − εo

~E2

)
· ~E2 =

1

2

∫
V2

dτ

[
εo

∣∣∣~E2

∣∣∣2 − ~D2 · ~E2

]
(4.86)

This is some sort of difference between the total electrostatic potential energy in V2

and the electrostatic potential energy neglecting that associated with the assembly of
the dielectric medium. The expression has two problems: there is no differencing with
the initial configuration, and it neglects the energy stored in V1. It is part of the
energy difference we are interested in, but not all of. The use of ~D2 · ~E2 would suffer
the same problems.
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Free Charge Fixed

Let us first consider the force on the dielectric in the case that the free charge is held
fixed. There are no batteries involved, so we need only consider the electrostatic
energy of the field. We take the negative of its gradient with respect to some
generalized displacement ξ to find the generalized force Fξ:

Fξ
∣∣
Q

= −
(
∂W

∂ξ

)
Q

= −
(
∂W

∂C

)
Q

∂C

∂ξ
(4.87)

where we made the second step because, if Q is held fixed, the variation of the system
energy is given entirely by the variation of the capacitance. ξ can be a spatial
displacement coordinate like x , y , or z, or it can be an angular orientation coordinate,
in which case the generalized force is actually a torque.

Any system of conductors can be reduced to a capacitance matrix, so the above can
also be written using Equation 2.77 (recall, D = C−1)

Fξ
∣∣
Q

= − ∂

∂ξ

1

2

N∑
i,j=1

Qi Qj Dij

∣∣∣∣∣∣
Q

= −1

2

N∑
i,j=1

Qi Qj
∂Dij

∂ξ
= −1

2
QT

[
∂

∂ξ
C−1

]
Q

(4.88)

(We have intentionally avoided using the confusing notation C−1
ij , using Dij instead.)

Section 4.5.3 Force and Torque on a Linear, Homogeneous Dielectric in an External Field with Free Charge Fixed Page 293



Section 4.5 Electrostatics in Matter: Electrostatic Energy in and Forces on Linear Dielectrics

Example 4.7: Force on a Dielectric Slab in a Parallel Plate Capacitor, Free
Charge Fixed

Let’s consider a parallel-plate capacitor with plate separation d , plate side dimensions
` and w , and with a slab of linear, homogeneous dielectric partially inserted between
the plates, with vacuum from 0 to x and dielectric from x to ` with 0 < x < `.

Let’s do this by calculating the total energy of the slab in the capacitor, with E
dependent on the position of the slab. The energy is (using the calculation of C from
the earlier example)

W =
1

2

Q2

C
with C =

εo w x + εw (`− x)

d
(4.89)

Therefore,

Fx |Q = −
(
−1

2

Q2

C 2

)
dC

dx
=

1

2

Q2

C 2

(εo − ε) w

d
= −1

2
V 2 (ε− εo )

w

d
(4.90)

which matches Griffiths Equation 4.65 (recall, εoχe = ε− εo ).
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Intuitively, the dielectric is pulled in because it lowers the energy of the configuration:
the field energy density is proportional to ε|~E |2, and |~E | ∝ ε−1, so the field energy
density is ∝ ε−1: larger ε implies lower energy.

Microscopically, what is happening is that the fringing field of the capacitor polarizes
the dielectric, leading to bound charge on the surface. The bound charge on the
surface is attracted to the free charge on the capacitor plates, causing the dielectric to
be pulled in. It’s a runaway effect, with the movement of the dielectric into the
capacitor leading to greater polarization of the fringing field region, increasing the
bound surface charge density and thereby leading to a greater attractive force. The
system only reaches equilibrium when the dielectric is maximally contained in the
capacitor. (It would be interesting to calculate the trajectory, in particular the
harmonic oscillations that would occur around the equilibrium position because the
slab will have been accelerated and thus have some kinetic energy when it gets to the
equilibrium position.)
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Voltages Fixed

In general, we do not encounter the above situation. Rather, we hold the voltages
constant on a set of electrodes while we consider the work done during a virtual
displacement dξ.

Before we get into it, though, let’s ask ourselves what we expect to have happen.
Should the force change depending on whether we hold the voltage or the charge
fixed? No, because the force is due to the arrangement of charges on the conductors
and the dielectric at the current instant in time, not at some point in the future that
is affected by whether the charges or voltages are kept constant.

Let’s model the fixed voltage situation in two steps, first disconnecting the batteries
and holding the charge fixed while we move the dielectric as we did above, then
reconnecting the batteries so that charge flows on to or off of the electrodes and
restores them to their original potentials.
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Since we are now focusing on a situation with voltages on electrodes, it makes sense
to think about a set of electrodes i = 1...N with voltages Vi and charges Qi . The
electrodes have a capacitance matrix C . Let’s first consider the change in electrostatic

energy for the first step with the charges held fixed (again, using D = C−1):

dWfield |Q = d

1

2

N∑
i,j=1

Qi Qj Dij


Q

=
1

2

N∑
i,j=1

Qi Qj dDij (4.91)

The change in the inverse capacitance matrix results in a change in the voltages on
the electrodes given by

dVi |Q =
N∑

j=1

dDij Qj (4.92)
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Now, let’s return the voltages to their original values by allowing charge to flow on/off
the electrodes from batteries while holding the dielectrics fixed (i.e., Dij held
constant). The charge transfer required to undo the above voltage changes is

dQk |V =
N∑

i=1

Cki (−dVi )Q = −
N∑

i,j=1

Cki Qj dDij (4.93)

The change in the electrostatic energy of the configuration (energy flowing out of the
battery into the field) due to this flow of charge is

dW bat
field

∣∣∣
V

=
N∑

k=1

Vk dQk |V = −
N∑

i,j,k=1

Vk Cki Qj dDij = −
N∑

i,j=1

Qi Qj dDij

= −2 dWfield |Q (4.94)

where we used Cki = Cik and
∑N

k=1 Vk Cik = Qi .
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Therefore, the total infinitesimal change in energy is

dWfield |V = dWfield |Q + dW bat
field

∣∣∣
V

= dWfield |Q − 2 dWfield |Q = − dWfield |Q (4.95)

As we explained earlier, the force cannot depend on whether the charge is held fixed or
the voltage is held fixed. To ensure we get the same force in the two cases, we
therefore must conclude

Fξ
∣∣
V

=

(
∂Wfield

∂ξ

)
V

= −
(
∂Wfield

∂ξ

)
Q

= Fξ
∣∣
Q

(4.96)

That is, when the battery is involved, we must consider the energy of the entire
system and take the positive gradient of the field energy, rather than considering only
the energy of the field and taking the negative gradient of that energy. The reason
these two gradients are different, with a sign between them, is because the derivative
is calculationally different depending on whether V or Q is held fixed.
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We can see this works mathematically by trying it:

(
∂Wfield

∂ξ

)
V

=
∂

∂ξ

1

2

N∑
i,j=1

Vi Vj Cij


V

=
1

2

N∑
i,j=1

Vi Vj
∂Cij

∂ξ

=
1

2
V T

[
∂

∂ξ
C

]
V (4.97)

Since ∂C−1/∂ξ = −C−1[∂C/∂ξ]C−1 (one can see this by evaluating

∂[C C−1]/∂ξ = ∂1/∂ξ = 0), this form yields Equation 4.88 for Fξ
∣∣
Q

. Thus,

Fξ
∣∣
V

=

(
∂Wfield

∂ξ

)
V

= −
(
∂Wfield

∂ξ

)
Q

= Fξ
∣∣
Q

(4.98)

One can check this result using the parallel plate capacitor example by starting with
W = C V 2/2 instead of W = Q2/2 C . Taking the positive derivative at fixed V gives
the same result as taking the negative derivative at fixed Q because C is in the
numerator in the first case while C is in the denominator in the second.
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Study Guidelines

As with basic electrostatics, you have seen much of the material in this section before
in Ph1c. As with electrostatics, we will use more rigor here. We will also consider
some more advanced topics such as the multipole expansion of the magnetic vector
potential, off-axis fields for azimuthally symmetric configurations, etc. As with basic
electrostatics, we won’t do any examples in lecture or the notes where they would
duplicate Ph1c. But you should be review the examples in Griffiths Chapter 5 and
make sure you are comfortable with them.
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Lorentz Forces and Current Densities

Force on a Moving Point Charge in a Magnetic Field

The magnetic force on a point charge q moving with velocity ~v in a magnetic field ~B
is given by the Lorentz Force Law:

~Fmag = q
(
~v × ~B

)
(5.1)

If an electric field is present, the total electrostatic and magnetostatic force on q is

~F = q
(
~E + ~v × ~B

)
(5.2)

Note that the electrostatic force on q is not modified by the fact that it is moving.

See the nice examples in Griffiths of cyclotron and cycloid motion (Examples 5.1 and
5.2). These are at the level of Ph1c, so we do not spend time in lecture on them.
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Magnetic Forces Do No Work

Because ~Fmag ∝ ~v × ~B, it holds that ~Fmag ⊥ ~v . Since the differential of work done by

a force is dW = ~F · d ~̀= ~F · ~v dt, we thus see that dW = 0 for magnetic forces. This
may seem counterintuitive. In cases where it appears work is being done, there is
usually a battery involved that is doing the work, while the magnetic force is
redirecting the force doing the work (in the same way that a constraint force in
mechanics does no work).

The one exception to this is the case of intrinsic magnetic moments of fundamental
particles, which emerge from quantum field theory. In such cases, the magnetic
moment is not identified with a current loop, it is just an intrinsic property of the
particle. Since our proof above requires the Lorentz Force Law, and such moments are
not assocated with a current that experiences the Lorentz Force, the proof does not
apply. In cases concerning such moments, work can be done by the field of the
moment or on the magnetic moment by an external magnetic field because no battery
is required to maintain the magnetic moment.
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Line Currents

A current carried by a wire can be modeled as a constant line charge density λ that is
moving at fixed speed v :

I = λ v (5.3)

For the sake of the generalizations we will consider below, let us write this as a
position-dependent vector

~I(~r) = λ(~r) ~v(~r) (5.4)

where ~v(~r) is a function of position and its direction follows the wire. By conservation

of charge, the only position dependence of ~I(~r) can be its direction. This implies that
any position dependence in λ(~r) must be canceled by the position dependence of the
magnitude of ~v(~r). If λ is position-independent, then only the direction of ~v may
change with position.

For magnetostatics, we assume that such a line current, and the surface and volume
current densities that follow below, are time-independent, or steady: they were set up
an infinitely long time ago and have been flowing at their current values since then.
We also ignore the discretization of the charge density (in this case λ) and consider it
to be a continuous quantity. This is called the steady-state assumption or
approximation.
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Force on a Line Current

It is straightforward to calculate the force on a line current by integrating the Lorentz
Force Law over the wire:

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
C

d` λ
[
~v(~r)× ~B(~r)

]
(5.5)

~Fmag =

∫
C

d`
[
~I(~r)× ~B(~r)

]
(5.6)

where we have used the fact that d ~̀, ~v , and ~I are all in the same direction at any
point on the wire because the current flows in the wire. Now, realizing that I is
independent of position along the wire (due to conservation of charge as noted
above), we can pull it out in front of the integral, yielding

~Fmag = I

∫
C

[
d ~̀× ~B(~r)

]
(5.7)

Griffiths Example 5.3 is a nice example of calculating the force on a current loop and
also illustrates the point of the battery supplying the energy to do the work that
appears to be done by the magnetic field. The magnetic field acts like a constraint
force to redirect that work.
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Current Densities

Just as we generalized point charges to line, surface, and volume charge densities, we
can generalize single moving point charges to line, surface, and volume current
densities. We have already made the first generalization, which is straightforward to
understand since one intuitively thinks of a current as an ensemble of point charges
moving through a wire.

A surface current density is a current flowing in a sheet; think of water flowing over
the surface of an object. The surface current density ~K is defined by

d~I(~r) = ~K(~r) d`⊥ =
∣∣∣K̂(~r)× d ~̀

∣∣∣ ~K(~r) (5.8)

where d`⊥ is an infinitesimal length perpendicular to ~K and d ~̀ is an arbitrary
infinitesimal length. The cross-product takes the projection of d ~̀ perpendicular to ~K .

If one thinks about the surface current density as a moving distribution of a surface
charge density, then

~K(~r) = σ(~r) ~v(~r) (5.9)

where σ(~r) is the surface charge density at ~r and ~v(~r) is the velocity of the surface
charge density at ~r .

Section 5.2.5 Current Densities Page 307



Section 5.2 Magnetostatics: Lorentz Forces and Current Densities

A volume current density is a current flowing in a bulk volume; think of water flowing
in a pipe or in a river. The volume current density ~J is defined by

d~I(~r) = ~J(~r) da⊥ =
∣∣∣Ĵ(~r) · n̂

∣∣∣ da ~J(~r) (5.10)

where n̂ is the normal to the area element da. (If we had defined a normal n̂ to the

line element d ~̀ in the plane of the sheet, we could have used a dot product instead of
a cross product in the definition of the surface current density. But it is conventional
to do it as we have done it.)

If one thinks about the volume current density as a moving distribution of a volume
charge density, then

~J(~r) = ρ(~r) ~v(~r) (5.11)

where ρ(~r) is the volume charge density at ~r and ~v(~r) is the velocity of the volume
charge density at ~r .
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Forces on Current Densities

We can integrate the force over the current densities just as we did for the line current:

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
S

da σ(~r)
[
~v(~r)× ~B(~r)

]
(5.12)

~Fmag =

∫
S

da
[
~K(~r)× ~B(~r)

]
(5.13)

~Fmag =

∫
dq
[
~v(~r)× ~B(~r)

]
=

∫
V

dτ ρ(~r)
[
~v(~r)× ~B(~r)

]
(5.14)

~Fmag =

∫
V

dτ
[
~J(~r)× ~B(~r)

]
(5.15)

It should be clear that we could have considered Equation 5.15 to be the fundamental
statement of the Lorentz Force Law and derived the lower-dimensional versions by
inclusion of appropriate delta functions in the definition of ρ or ~J. Such a reduction
would be cumbersome because the sheet or line carrying the current may not be easy
to parameterize, but the reduction is conceptually straightforward.
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Conservation of Charge and the Continuity Equation

We defined the current densities above in terms of the infinitesimal current passing
through an infinitesimal line element (for a surface current density) or through an
infinitesimal area element (for a volume current density). Let’s integrate the latter
over a surface to obtain the total current passing through that surface:

IS =

∫
S

da n̂(~r) · ~J(~r) (5.16)

If we take S to be a closed surface, we may apply the divergence theorem to the above:∮
S

da n̂(~r) · ~J(~r) =

∫
V(S)

dτ ~∇ · ~J(~r) (5.17)

where V(S) is the volume enclosed by S. By conservation of charge, the current is
just the time derivative of the charge enclosed by S, with the sign such that if a
positive current is exiting S, then the charge enclosed must be decreasing, assuming
that the surface itself is time-independent. With this, we have

IS = − d

dt
QV(S) = − d

dt

∫
V(S)

dτ ρ(~r) = −
∫
V(S)

dτ
∂ρ(~r)

∂t
(5.18)
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Thus, we have ∫
V(S)

dτ ~∇ · ~J(~r) = −
∫
V(S)

dτ
∂ρ(~r)

∂t
(5.19)

Since the surface S is arbitrary, it must hold that the integrands are equal everywhere:

~∇ · ~J(~r) = −∂ρ(~r)

∂t
(5.20)

This is the continuity equation and is effectively the differential version of conservation
of charge.

With this equation, we can define our steady-state assumption more mathematically:
it corresponds to ∂ρ/∂t = 0, which then implies ~∇ · ~J = 0. The interpretation is that
the charge density at any point cannot change with time, which implies that the net
current flow into or out of any point vanishes.
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Fields of and Magnetic Forces between Currents

Biot-Savart Law

For a steady-state current distribution — one in which the current densities are
time-independent — it is an empirical observation, validated by the Lorentz force that
moving charges or currents experience, that the magnetic field at ~r due to the current
distribution is given by

~B(~r) =
µo

4π

∫
d`′

~I(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 =

µo

4π
I

∫
d ~̀′(~r ′)× (~r − ~r ′)

|~r − ~r ′|3 (5.21)

µo = 4π × 10−7 N A−2 is the permeability of free space. The magnetic field carries
units of teslas, T = N/(A ·m). The Biot-Savart Law is the analogue in magnetostatics
of Coulomb’s Law in electrostatics, and it has the same 1/r2 dependence.

You are well aware of the result that the field of a straight wire along the z-axis
carrying current I at a transverse distance s from the wire is

~B(~r) =
µo

2π

I

s
φ̂ (5.22)

where φ̂ is the azimuthal unit vector in cylindrical coordinates. The field forms circles
around the wire with orientation set by the right-hand rule. This is derived in Griffiths
Example 5.5, which we will not repeat here since you saw it in Ph1c.
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Force between Two Current-Carrying Wires

We can combine the Lorentz Force Law and the Biot-Savart Law to calculate the force
between two current-carrying wires; this force is the empirical basis for magnetostatics,
as it is much easier to measure the force between two wires than it is to create ideal
test charges and measure their motion in the magnetic field of a wire. We just plug
the Biot-Savart Law into the Lorentz Force Law for a line current distribution,
Equation 5.6, to find the force on the first wire due to the field of the second wire:

~Fmag = I1

∫
C1

d ~̀× ~B(~r) (5.23)

=
µo

4π
I1I2

∫
C1

∫
C2

d ~̀(~r)×
[
d ~̀′(~r ′)× (~r − ~r ′)

]
|~r − ~r ′|3 (5.24)

Consider the special case of both wires running parallel to the z axis separated by s ŝ
in the xy -plane, with the first wire on the z-axis itself. Then d ~̀= ẑ dz, d ~̀′ = ẑ dz ′,
~r = z ẑ, ~r ′ = s ŝ + z ′ ẑ.
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Therefore,

d ~̀(~r)×
[
d ~̀′(~r ′)× (~r − ~r ′)

]
= dz dz ′ ẑ ×

[
ẑ ×

(
(z − z ′) ẑ − s ŝ

)]
(5.25)

= dz dz ′ s ŝ (5.26)

and |~r − ~r ′|3 =
[
(z − z ′)2 + s2

]3/2
(5.27)

Thus, ~Fmag =
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz

∫ ∞
−∞

dz ′
1

[(z − z ′)2 + s2]3/2
(5.28)

=
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz

[
z ′ − z

s2 [(z − z ′)2 + s2]1/2

]∣∣∣∣∣
∞

−∞

(5.29)

=
µo

4π
I1I2 s ŝ

∫ ∞
−∞

dz
2

s2
=
µo

2π

I1I2

s
ŝ

∫ ∞
−∞

dz (5.30)

where we did the integral using the trigonometric substitution z ′ − z = s tan θ. The
total force is infinite, but we can abstract out of the above expression the force per
unit length on the first wire, which is attractive (pointing towards the second wire) if
the currents flow in the same direction:

~fmag =
µo

2π

I1I2

s
ŝ (5.31)
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General Expressions for Fields due to Current Densities

The obvious generalizations of the Biot-Savart Law are

~B(~r) =
µo

4π

∫
da′

~K(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

~B(~r) =
µo

4π

∫
dτ ′

~J(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

(5.32)

Griffiths notes that a line current distribution is the lowest-dimensional current
distribution one can have because the zero-dimensional version — a point charge
moving with velocity ~v — does not constitute a steady-state current: the charge
passing a given point in space is time-dependent.

As with the Lorentz Force Law, it should also be clear that one could consider the
volume version to be the fundamental statement of the Biot-Savart Law and one can
derive the lower-dimensional versions by including delta functions in the definition of
~J. This does not apply to a reduction to zero dimensionality, as noted above.

There are good examples of the use of the Biot-Savart Law in Griffiths. Again, these
are at the level of Ph1c, so we do not spend time in lecture on them.
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Another Form for the Biot-Savart Law

We begin by using Equation 2.49 to rewrite the Biot-Savart Law expression for the
magnetic field:

~B(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 = − µo

4π

∫
V

dτ ′ ~J(~r ′)× ~∇~r
(

1

|~r − ~r ′|

)
(5.33)

We use one of the product rules for the curl, ~∇× (f ~a) = f (~∇× ~a)− ~a× (~∇f ), and

notice that ~∇~r × ~J(~r ′) = 0 because ~J(~r ′) is a function of ~r ′ while ~∇~r is with respect
to ~r , to obtain

~B(~r) = ~∇× µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.34)

where we have brought ~∇~r outside the integral over ~r ′ because it acts with respect to
~r . We also dropped the ~r subscript since now, being outside the integral, it must act
only on ~r . This form is obviously suggestive of the idea of ~B being derived from a
vector potential, which we will return to shortly.

We note that, while our derivation of this equation did not appear to require any
assumptions about the way the current behaves at infinity, we will see later that the
steady-state assumption does imply the net current through any sphere must vanish.

Section 5.4.4 Another Form for the Biot-Savart Law Page 316



Lecture 15:

Magnetostatics II:
Ampere’s Law

Divergence of B
Vector Potential

Uniqueness Theorem
Magnetostatic Scalar Potential

Date Revised: 2023/02/23 07:00
Date Given: 2023/02/23

Page 317



Section 5.5 Magnetostatics: Curl and Divergence of the Magnetic Field; Ampere’s Law

Curl and Divergence of the Magnetic Field; Ampere’s Law

Curl of the Magnetic Field

From the field of a current-carring wire, Equation 5.22, we get the clear impression
that ~B has curl and that the curl is related to the current sourcing the field. Here, we
explicitly calculate this curl from the Biot-Savart Law. Griffiths Section 5.3.2 provides
one technique for this; we use Jackson’s technique instead to avoid duplication.
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We take the curl of Equation 5.34 and apply the BAC − CAB rule for the triple vector
product, ~∇× (~∇× ~a) = ~∇(~∇ · ~a)−∇2~a, writing the coordinate that ~∇ acts on
explicitly:

~∇~r × ~B(~r) = ~∇~r ×
[
~∇~r ×

µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′|

]
(5.35)

=
µo

4π

[
~∇~r
(
~∇~r ·

∫
V

dτ ′

(
~J(~r ′)

|~r − ~r ′|

))
−∇2

~r

∫
V

dτ ′

(
~J(~r ′)

|~r − ~r ′|

)]
(5.36)

=
µo

4π

[
~∇~r
∫
V

dτ ′ ~∇~r ·
(

~J(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′∇2
~r

(
~J(~r ′)

|~r − ~r ′|

)]
(5.37)

We were able to bring ~∇~r and ∇2
~r inside the integrals because ~∇~r is with respect to ~r

and the integral is over ~r ′. Similarly, because ~∇~r is with respect to ~r and ~J is a
function of ~r ′, ~J passes through the divergence in the first term and the Laplacian in
the second one, preserving the necessary dot product in the first term and the
vectorial nature of the second term:

~∇~r × ~B(~r) =
µo

4π

[
~∇~r
∫
V

dτ ′ ~J(~r ′) · ~∇~r
(

1

|~r − ~r ′|

)
−
∫
V

dτ ′ ~J(~r ′)∇2
~r

(
1

|~r − ~r ′|

)]
(5.38)
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We know from electrostatics that

~∇~r
(

1

|~r − ~r ′|

)
= −~∇~r ′

(
1

|~r − ~r ′|

)
∇2
~r

(
1

|~r − ~r ′|

)
= −4π δ(~r − ~r ′)

The first equation may seem surprising if one considers the exchange ~r ↔ ~r ′, but one
can see it is true by simply evaluating the gradient on both sides or by defining
~s = ~r − ~r ′ and applying the offset and inversion tricks we used in electrostatics. The
second is Equation 3.34 with the exchange ~r ↔ ~r ′ (where here there is no sign flip
because the Laplacian is quadratic in the derivatives and the delta function is
symmetric in its argument). Applying them, we obtain

~∇× ~B(~r) =
µo

4π

[
−~∇~r

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
+ 4π

∫
V

dτ ′ ~J(~r ′) δ(~r − ~r ′)
]

(5.39)

The second term just becomes 4π ~J(~r), yielding

~∇× ~B(~r) =
µo

4π

[
−~∇~r

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)]
+ µo

~J(~r ′) (5.40)
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We can apply the product rule ~∇ · (f ~a) = ~a · ~∇f + f ~∇ · ~a to rewrite the first term:

∫
V

dτ ′ ~J(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
=

∫
V

dτ ′ ~∇~r ′ ·
(

~J(~r ′)

|~r − ~r ′|

)
−
∫
V

dτ ′
~∇~r ′ · ~J(~r ′)

|~r − ~r ′|
(5.41)

=

∮
S(V)

da′ n̂(~r ′) ·
(

~J(~r ′)

|~r − ~r ′|

)
= 0 (5.42)

We used the divergence theorem to transform the first term into a surface integral,
and then we take the surface to infinity. Assuming the currents are localized, the
integrand vanishes on that surface, causing the first term to vanish. The second term
vanishes because ~∇~r ′ · ~J(~r ′) = 0 under the steady-state assumption by the continuity
equation with ∂ρ/∂t = 0. Thus, we obtain, under the steady-state assumption,

~∇× ~B(~r) = µo
~J(~r) (5.43)

This equation is the differential version of Ampere’s Law, which we will return to
shortly.
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Let’s discuss some subtleties in the above derivation connected to the vanishing of the
~∇(~∇ · ~a) term. There are two points to make:

I When we get to the definition of the vector potential ~A, we will be able to
interpret the vanishing of that term as implying ~∇ · ~A = 0 for the form of the
vector potential implied by Equation 5.34. ~∇ · ~A will not vanish for any other
form of the vector potential that yields the same field. Just keep this point in
mind, we’ll provide more explanation later.

I We assumed that the currents are localized (confined to a finite volume) to
make the surface term vanish. This is not the minimal condition required. We
only need the integral to vanish. If we let the surface go off to infinity while
keeping the point ~r at which we want to know the field at finite distance from
the origin, then 1/|~r − ~r ′| → 1/r ′. Thus, we can also make the integral vanish

by simply requiring that the net flux of ~J through a surface of radius r ′

vanishes. Griffiths notes this subtlety in Footnote 14 in §5.3.2. It explains how
Ampere’s Law works for an infinitely long wire: for any sphere at large radius, as
much current flows in as out of that sphere, so the integral vanishes.

Do we have to make this requirement? It may seem that we do not; we would
just get a nonstandard Ampere’s Law if we did not. But we do have to make it
to be self-consistent with our steady-state assumption. If there were a net
current through some sphere, then the charge contained in that volume would
be changing with time, violating our steady-state assumption. This is the point
we made in connection to Equation 5.34.
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Divergence of the Magnetic Field

The vector identity ~∇ · (~∇× ~a) = 0 combined with Equation 5.34 immediately implies

~∇ · ~B(~r) = 0 (5.44)

The magnetic field has no divergence. This immediately implies there are no magnetic
point charges: magnetic fields are sourced by currents only. It should be realized that
this apparent fact is really an assumption inherent in the Biot-Savart Law. If we had
added to the Biot-Savart Law a second term that looks like Coulomb’s Law, due to
magnetic monopoles, then the above divergence would have yielded that density of
magnetic charge on the right side. It is an empirical observation that there are no
magnetic monopoles, and hence we assume that magnetic fields are only sourced by
currents via the Biot-Savart Law. That magnetic fields are sourced by currents at all is
also an empirical observation; the Biot-Savart Law simplify codifies that observation.
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General Thoughts on the Curl and Divergence of the Electric and Magnetic
Field

Considering the corresponding expressions for electrostatics, we recognize that the
electric field has divergence equal to the charge density because of the empirical
observation of Coulomb’s Law describing the electric field. It has a vanishing curl
because of the empirical absence of a current that sources electric fields in the way
that electric currents source magnetic fields; if there were a Biot-Savart-like term that
added to Coulomb’s Law, then the electric field would have curl. We can in fact guess
that, if magnetic monopoles existed, moving magnetic monopoles would generate an
electric field in the same way that moving electric monopoles generate a magnetic
field.

The key point in all of the above is that the nature of the divergence and the curl of
the electric and magnetic fields reflect empirical observations about the way these
fields are generated. These are not derivable results: they are inherent in the formulae
we wrote down for the electric and magnetic fields, which themselves are based on
observations.

We will see later that we can replace the assumption of Coulomb’s Law and the
Biot-Savart Law with an assumption about a potential from which the electric and
magnetic fields can be derived. But, again, we can only make that assumption because
it yields the correct empirical relations, Coulomb’s Law and the Biot-Savart Law.
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Integral form of Ampere’s Law

We obtained the differential version of Ampere’s Law above by taking the curl of the
Biot-Savart Law for the magnetic field. We may obtain the integral form of Ampere’s
Law from it. We begin by integrating over an open surface S with normal n̂(~r):∫

S
da n̂(~r) ·

[
~∇× ~B(~r)

]
= µo

∫
S

da n̂ · ~J(~r) (5.45)

The left side can be transformed using Stokes’ Theorem into a line integral around the
edge of S, which we denote by the closed contour C(S), while the right side is just
total current passing through C(S), Iencl :

∮
C(S)

d ~̀ · ~B(~r) = µoIencl (5.46)

yielding the integral version of Ampere’s Law.

As before, there are a number of examples in Griffiths that are at the level of Ph1c, so
we do not spend time on them here.
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Magnetic Vector Potential

Form for the Magnetic Vector Potential

We saw (Equations 5.43 and 5.44) that the magnetic field has no divergence and has
curl. You know from vector calculus (Griffiths §1.6) that this implies the magnetic
field can be written purely as the curl of a vector potential. Equation 5.34 gave us its
form:

~B(~r) = ~∇× ~A(~r) ~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.47)

But this form, implied by the Biot-Savart Law, is not the only form. We had freedom
with the electrostatic potential to add an offset. Here, we can add any curl-less
function to ~A without affecting ~B. The form above corresponds to the additional
condition

~∇ · ~A(~r) = 0 (5.48)

If one tries to test this requirement on the above form for ~A, one will find oneself
doing the same manipulations needed to derieve Ampere’s Law, Equation 5.43. In
repeating those manipulations, which is possible for this form of ~A only, one sees that
~∇ · ~A = 0 is the representation of the steady-state assumption and that the net
current through a surface of any radius vanishes (and also how the latter implies the

former). For a different choice of ~A (and thus of ~∇ · ~A), the mathematical
manifestation of this physical requirement will be different. In fact, it must be,
because ~∇ · ~A = 0 is unique to this form.

Section 5.6.1 Form for the Magnetic Vector Potential Page 326



Section 5.6 Magnetostatics: Magnetic Vector Potential

Explicit Proof that ~∇ · ~A = 0 Can Always Be Obtained

It is interesting to prove “mechanically” that the choice ~∇ · ~A is possible even if one,
for some reason, started out with a form that did not satisfy this condition. Suppose
one has a vector potential ~A0 that is not divergenceless. We need to add to it a
function that makes the result divergenceless. For reasons we will see below, let’s add
a function ~∇λ(~r):

~A = ~A0 + ~∇λ (5.49)

Then

~∇ · ~A = ~∇ · ~A0 +∇2λ (5.50)

If we require the left side to vanish, then we have a version of Poisson’s Equation:

∇2λ = −~∇ · ~A0 (5.51)

One thus sees one of the motivations for the assumed form ~∇λ.
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Let’s choose boundary conditions that place the boundary at infinity with the field
falling off at infinity. For these boundary conditions, we know from Coulomb’s Law
that the solution to Poisson’s Equation is

λ(~r) =
1

4π

∫
V

dτ ′
~∇ · ~A0(~r ′)

|~r − ~r ′| (5.52)

The vector calculus identity ~∇× ~∇λ = 0 implies that ~∇× ~A = ~∇× ~A0 and thus the
magnetic field is the same for the two vector potentials (our second motivation for the

choice to add ~∇λ). We thus have an explicit formula for the term that has to be

added to ~A0 so that the resulting form ~A is divergenceless while leaving the magnetic
field unchanged.

The above explicit formula may not be valid if we assume different boundary
conditions, but we know Poisson’s Equation always has a solution, so we are
guaranteed that the desired function λ(~r) exists.
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Let us make a final point about how the above relates to the connection between
~∇ · ~A = 0 and the behavior of the currents at infinity. It is not true that starting with
~∇ · ~A0 6= 0 corresponds to a different physical assumption about the currents at
infinity: changing ~∇ · ~A has no effect on the fields and thus can have no effect on the
currents. Our standard formula for ~A is only valid under the assumption ~∇ · ~A = 0,
and so the relation between ~∇ · ~A and the assumption about how the currents behave
is only valid for that form. If one assumes a different form for ~A, one that has
~∇ · ~A 6= 0, then taking its divergence will not necessarily result in the particular
expressions that we encountered before in deriving the differential form of Ampere’s
Law, so the interpretation of ~∇ · ~A = 0 will be different, and the mathematical
manifestation of the currents vanishing at infinity will also change. One benefit of the
choice ~∇ · ~A = 0 is that this mathematical manifestation is simple.
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Alternate Proof of the Form for the Magnetic Vector Potential

We can arrive at Equation 5.47 via a slightly different path, which makes uses of
Ampere’s Law and the same triple vector identity we used to prove Ampere’s Law,
~∇× (~∇× ~a) = ~∇(~∇ · ~a)−∇2~a:

Ampere’s Law: ~∇× (~∇× ~A) = ~∇× ~B = µo
~J (5.53)

use vector identity: ~∇(~∇ · ~A)−∇2 ~A = µo
~J (5.54)

set ~∇ · ~A = 0: ∇2 ~A = −µo
~J (5.55)

Note that the vector components of ~A and ~J line up. Thus, the last equation is a
component-by-component Poisson’s Equation. Again, under the assumption that the
currents are localized and for appropriate boundary conditions (as we assumed in
providing the alternate version of the Biot-Savart Law that we previously used to
define ~A), we know the solution:

∇2 ~A(~r) = −µo
~J(~r)

localized currents⇐⇒ ~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.56)

This is just Equation 5.47 again. Essentially, we can think of the three components of
the current density as sourcing the three components of the vector potential in the
same way that the electric charge density sources the electric potential.
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The Vector Potential for Line and Surface Currents

We can consider the specific cases of line and surface current densities as volume
current densities that include delta functions specifying the localization to a line or
sheet. When one does the volume integral, the delta function reduces the
three-dimensional integral over the volume to one- or two-dimensional integrals over a
line or sheet, yielding:

~A(~r) =
µo

4π

∫
C

d`
~I(~r ′)

|~r − ~r ′|
~A(~r) =

µo

4π

∫
S

da′
~K(~r ′)

|~r − ~r ′| (5.57)

Note that the units of the vector potential are unchanged: the change in the units of
the current densities are canceled by the change in the units of the measure of
integration.
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Example 5.1: Spinning Sphere of Charge (Griffiths Example 5.11)

The calculation of the vector potential for a spinning spherical shell of charge is a
straightforward application of the definition of the vector potential. The only
complication is the vector arithmetic. So please take a look at Griffiths to get some
familiarity with handling the vectorial nature of the integrand.

Example 5.2: Solenoid (Griffiths Example 5.12)

The calculation of the vector potential for a solenoid, which is the equivalent of a
spinning cylinder of charge if one ignores the small axial current contribution, is more
interesting because one cannot do it by brute force application of the definition of ~A.
Instead, one must use some intuition along with the combination of Stokes’ Theorem
and the relation between ~B and ~A:∮

C(S)
d ~̀ · ~A =

∫
S

da n̂ · ~∇× ~A =

∫
S

da n̂ · ~B (5.58)

The intuition part is to recognize that, because ~B is along the z-axis inside the
solenoid and vanishing outside and because ~A “wraps around” ~B, it is natural to
assume ~A is along φ̂. Then one can do the calculation in the same way as one applies
Ampere’s Law, except that instead of current through a surface (“enclosed current”),
we have enclosed magnetic flux, and, instead of a line integral of magnetic field
around the edge of the surface, we have a line integral of vector potential. Please
study the details in Griffiths, as a variant on this problem will be given in homework.
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Uniqueness Theorem for Magnetic Fields

This is Griffiths Problem 5.56.

Just as we did for electric fields, we can show that, given a current distribution and a
well-defined set of boundary conditions, the magnetic field obtained is unique. We
assume that a current distribution ~J(~r) in a volume V is specified. We will see later
how specific we must be about the boundary conditions.

First, we need something analogous to the Green’s Identities we used in the case of
electrostatics. Using the vector identity ~∇ · (~a× ~b) = ~b · ~∇× ~a− ~a · ~∇× ~b, letting ~u
and ~v be two arbitrary vector fields, and applying the identity with ~a = ~u and
~b = ~∇× ~v , we may write∫
V

dτ ~∇ · (~u × (~∇× ~v)) =

∫
V

dτ
[
(~∇× ~v) · (~∇× ~u)− ~u · (~∇× (~∇× ~v))

]
(5.59)

Since the expression on the left-hand side is a divergence, we may turn it into a
surface integral using the divergence theorem:∮
S(V)

da n̂ · (~u × (~∇× ~v)) =

∫
V

dτ
[
(~∇× ~u) · (~∇× ~v)− ~u · (~∇× (~∇× ~v))

]
(5.60)

We will use this below.
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Now, suppose that we have two different magnetic field configurations ~B1 6= ~B2,
derived from two different magnetic vector potentials ~A1 6= ~A2, that both satisify
Ampere’s Law for the same current distribution: ~∇× ~B1 = ~∇× ~B2 = µo

~J. Let
~A3 = ~A2 − ~A1 and ~B3 = ~B2 − ~B1. We apply the above vector identity with
~u = ~v = ~A3:∮
S(V)

da n̂ · (~A3 × (~∇× ~A3)) =

∫
V

dτ
[
(~∇× ~A3) · (~∇× ~A3)− ~A3 · (~∇× (~∇× ~A3))

]
(5.61)

We have that ~∇× (~∇× ~A3) = ~∇× ~B3 = ~∇× ~B2 − ~∇× ~B1 = µo ( ~J − ~J) = 0 by
Ampere’s Law and the assumption that both field configurations are sourced by the
same current distribution, so the second term on the right side vanishes. Exchanging
the two sides, plugging in ~B3 = ~∇× ~A3, and using the cyclic property of the triple
scalar product, ~a · (~b × ~c) = ~c · (~a× ~b) = ~b · (~c × ~a), we have∫

V
dτ
∣∣∣~B3

∣∣∣2 =

∮
S(V)

da n̂ · (~A3 × ~B3) =

∮
S(V)

da ~B3 · (n̂ × ~A3) (5.62)

=

∮
S(V)

da ~A3 · (~B3 × n̂) = −
∮
S(V)

da ~A3 · (n̂ × ~B3) (5.63)
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From the above equation, we can see what (minimal) boundary condition information

we must have to obtain uniqueness of ~B: we must have that, at any given point on
the surface, ~A, ~B, n̂ × ~A, or n̂ × ~B is specified. If this is true, then ~A3 = ~A2 − ~A1 = 0
where ~A is specified, ~B3 = ~B2 − ~B1 = 0 where ~B is specified,
n̂× ~A3 = n̂× (~A2 − ~A1) = 0 where n̂× ~A is specified, and n̂× ~B3 = n̂× (~B2 − ~B1) = 0

where n̂ × ~B is specified. Requiring one of these four conditions at every point on
S(V) ensures the integrand on the right side vanishes at every point on S(V) and thus
the right side vanishes. Since the integrand on the left side is nonnegative, it must
therefore vanish everywhere: ~B3 = 0. Hence, ~B1 = ~B2 and the fields are identical and
the field solution is unique.

Specifying ~A is like a Dirichlet boundary condition where we specify the electrostatic
potential on the boundary, and specifying n̂ × ~B = n̂ × (~∇× ~A) is a lot like a
Neumann boundary condition where we specify the normal gradient of the
electrostatic potential n̂ · ~∇V (which is proportional to the normal component of the

electric field, n̂ · ~E). In fact, we will see via Ampere’s Law that this is equivalent to
specifying the surface current density flowing on the boundary. The other two types of
conditions, specifying n̂ × ~A or specifying ~B, have no obvious analogue.
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Uniqueness of the Vector Potential?

We have already discussed how the ~A that generates a particular ~B is unique up to the
gradient of an additional function if its divergence is left unspecified. The above
theorem for the uniqueness of the magnetic field therefore now tells us that
specification of ~J in the volume and of ~A, ~B, n̂ × ~A, or n̂ × ~B on the boundary gives a
vector potential that is unique up to the gradient of an additional function if its
divergence is unspecified. But what do we need to know to completely determine the
vector potential?

Obtaining a unique vector potential is the equivalent of being able to also know the λ
function (up to an offset). We showed that λ satisfies Poisson’s Equation with ~∇ · ~A
as the source, Equation 5.51. So, clearly, to obtain a unique ~A, we would need to
specify ~∇ · ~A. We also would need appropriate boundary conditions for this Poisson
Equation. We may conclude from our proof of the uniquess of the scalar potential (up

to an offset) that we must either specify λ or n̂ · ~∇λ on the boundary to obtain a

unique λ (again, up to an offset) and thus a unique ~A.

Which of the above conditions provide the necessary boundary condition on λ? Only
specification of ~A on the boundary is certain to be sufficient. This gives ~∇λ and thus
n̂ · ~∇λ, a Neumann boundary condition for λ and thus sufficient to render λ unique.
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We can see specifying n̂ × ~A would only be sufficient in special cases. Doing so
specifies n̂ × ~∇λ, which gives the component of ~∇λ tangent to the boundary. If the
boundary is either at infinity or is a single, closed boundary, it seems likely one could
then construct λ on the boundary by doing the line integral of n̂ × ~∇λ, much like one
constructs the scalar potential from its gradient, the electric field. (It is ok that we

would only know the component of ~∇λ tangent to the boundary, as n̂ · ~∇λ will have
zero dot product with the line element d ~̀ involved in the line integral.) As with the
scalar potential, the offset is not important. However, if the boundary is not simply
connected, then there is no way to connect λ on different pieces of the boundary
without specifying its value on at least one point on each of those pieces. But we do
not specify λ anywhere if we are given n̂ × ~A and thus n̂ × ~∇λ on the boundary. So
specifying n̂ × ~A (and ~∇ · ~A) is sufficient to make ~A unique only if the boundary is
simply connected.

We can be assured that specifying ~B or n̂ × ~B is entirely insufficient: because ~B is
unaffected by λ, providing information about ~B cannot give us any information about
λ.

Lastly, we remind the reader that, even if ~A is specified on the boundary, one also
needs to know ~∇ · ~A in the volume. Providing the former without the latter is
equivalent to having a boundary condition but no differential equation to solve: the
source term in the latter is unspecified.
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The Magnetostatic Scalar Potential

If one considers current-free regions, then we have ~∇× ~B = 0 and the magnetic field
should be derivable from a scalar potential:

~B(~r) = −~∇U(~r) (5.64)

One must take some care, though: in addition to being current-free, the region under
consideration must be simply connected. Griffiths Problem 5.29 shows a situation
where the current in a region may vanish but ~∇× ~B 6= 0 because the region is not
simply connected and the enclosed volume outside the region contains current.

With the above assumptions, and noting ~∇ · ~B = 0, we can infer that U satisfies
Laplace’s Equation:

∇2U(~r) = −~∇ · ~B(~r) = 0 (5.65)

Our usual assumption of simple boundary conditions — everything falls off to zero at
infinity — yields a trivial result here, U(~r) = 0, so we must assume less trivial
boundary conditions to obtain a nonzero U. We will return to the use of the
magnetostatic scalar potential in connection with magnetically polarizable materials.
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Boundary Conditions on Magnetic Field and Vector Potential

We will use techniques similar to those we used in determining the boundary
conditions on the electric field. We will not immediately apply these conditions to
boundary value problems for currents in vacuum because there are no nontrivial
boundary-value problems of this type. That is because there is no way to directly set
the vector potential, unlike for the electostatic potential. There is also no equivalent
to the perfect conductor, which yields equipotential surfaces in electrostatics. One
only has Neumann boundary conditions, with current densities on surfaces, from which
one can calculate the field directly via the Biot-Savart Law rather than solving
Laplace’s or Poisson’s Equation. We will find the boundary conditions more useful in
the context of magnetically polarizable materials.
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Boundary Conditions on the Magnetic Field

Recall that Gauss’s Law, ~∇ · ~E = ρ/εo , implied that the normal component of the
electric field satisfied Equation 2.55

n̂(~r) ·
[
~E2(~r)− ~E1(~r)

]
=

1

εo
σ(~r) (5.66)

Since ~∇ · ~B = 0, we can conclude by analogy that

n̂(~r) ·
[
~B2(~r)− ~B1(~r)

]
= 0 (5.67)

That is, the normal component of the magnetic field is continuous at any boundary.
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For the tangential component, we return to the derivation leading to Equation 2.57.
In that case, we considered a contour C that consisted of two legs C1 and C2 parallel
to the interface and to each other and two legs normal to the interface whose length
would be shrunk to zero. We saw

∮
C

d ~̀ · ~E(~r) = −
∫ ~rb−n̂(~r) dz

2

C1,~ra−n̂(~r) dz
2

~E1(~r) · d ~̀+

∫ ~rb+n̂(~r) dz
2

C2,~ra+n̂(~r) dz
2

~E2(~r) · d ~̀ (5.68)

dz→0−→
∫ ~rb

C2,~ra

[
~E2(~r)− ~E1(~r)

]
· d ~̀ (5.69)

where the ends of the loop are near ~ra and ~rb, n̂ is the normal to the surface (parallel
to the short legs of the loop), t̂ is the normal to the loop area, ŝ = t̂ × n̂ is the unit
vector parallel to the long legs of the loop, and ds is a line element along ŝ. In the
electric field case, the left side of the above expression vanished. In the case of the
magnetic field, Ampere’s Law tells us that it is the current enclosed flowing in the
direction t̂. Therefore, the magnetic field version of the above equation is:

µo

∫
C2

ds t̂(~r) · ~K(~r) =

∫ ~rb

C2,~ra

[
~B2(~r)− ~B1(~r)

]
· d ~̀ (5.70)

where C1 → C2 in the plane of the interface as dz → 0. We neglect any volume
current density passing through the area enclosed by the contour C because the
integral of that volume current density vanishes as dz → 0.

Section 5.7.1 Boundary Conditions on the Magnetic Field Page 342



Section 5.7 Magnetostatics: Boundary Conditions on Magnetic Field and Vector Potential

Since the contour C2 is arbitrary, the integrands must be equal[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo t̂(~r) · ~K(~r) (5.71)

Next, we use t̂ = n̂ × ŝ:[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo

[
n̂(~r)× ŝ(~r)

]
· ~K(~r) (5.72)

Finally, using the cyclic nature of triple vector products ,
~a · (~b × ~c) = ~c · (~a× ~b) = ~b · (~c × ~a):

[
~B2(~r)− ~B1(~r)

]
· ŝ(~r) = µo

[
~K(~r)× n̂(~r)

]
· ŝ(~r) (5.73)

Note that this condition holds for any ŝ tangential to the interface. To give some
intuition, n̂ × ~K has the magnitude of ~K (because n̂ ⊥ ~K always) but points in a

direction perpendicular to ~K while still tangent to the interface. The sign is set by the
cross-product right-hand rule.
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We can combine the conditions on the normal and tangential components of ~B to
obtain one compact expression for the boundary condition on the magnetic field. By
the definition of the cross product, ~K × n̂ is always perpendicular to n̂ and thus has no
component along n̂. Therefore, the expression

~B2(~r)− ~B1(~r) = µo
~K(~r)× n̂(~r) (5.74)

captures both boundary conditions: the projection of ~B normal to the interface (along
n̂) is continuous because the projection of the right side along that direction vanishes,

and the projection of ~B along any ŝ parallel to the interface can be discontinuous by
the projection of µo

~K × n̂ along that direction. This is a very nice relation: given ~K ,
it provides a way to calculate the change in the entire magnetic field across the
interface, not just the change of a component.
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We can rewrite the above in another way. Take the cross product of both sides with
n̂(~r) from the left. The right side becomes a triple vector product, which we can

rewrite using the BAC − CAB rule, ~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b). The second term

has n̂ · ~K , which vanishes, while the first term has n̂ · n̂ = 1. Thus, we have

n̂(~r)×
[
~B2(~r)− ~B1(~r)

]
= µo

~K(~r) (5.75)

The earlier form is more useful when ~K is specified, and the second form would more
easily yield ~K if the fields are specified. Note, however, that this form does not
preserve the information about the normal component of ~B because the contribution
of that component to the left side vanishes.
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Boundary Conditions on the Vector Potential

As one might expect by analogy to the electrostatic case, the vector potential itself
has to be continuous across a boundary:

~A2(~r)− ~A1(~r) = 0 (5.76)

This is seen easily:

I We have chosen the divergence of ~A to vanish, so the normal component of ~A
must be continuous, just as we found the normal component of ~B is continuous
for the same reason.

I The curl of ~A does not vanish, ~∇× ~A = ~B. This implies the line integral of ~A
around the contour C used above is nonzero and equals ΦS(C) =

∫
S(C) da n̂ · ~B,

the magnetic flux of ~B through the surface S(C) defined by C. But, as the area
of the contour is shrunk to zero, the magnetic flux vanishes via an argument
similar to the one we used to show that the flux of the electric field always goes
to zero as the area through which it is calculated goes to zero: while the field
can be quite singular (1/r2), there are always cancellations that cause the flux

to vanish. Therefore, the tangential component of ~A is also continuous.
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While the vector potential itself is continuous, its derivatives are not necessarily
continuous because its derivatives are related to ~B, which is not necessarily continuous.
Evaluating these discontinuities is a bit harder than in the case of the electric potential
because the derivatives are not related in a trivial component-by-component way to
the field. We need an expression involving second derivatives of ~A if we want to obtain
boundary conditions on the first derivatives of ~A. Let’s use Equation 5.56:

∇2 ~A(~r) = −µo
~J(~r) (5.77)

Consider a projection of this equation in Cartesian coordinates by taking the dot
product with a Cartesian unit vector on the left and then passing it through the
Laplacian, rewritten so the divergence is clear:

~∇ · ~∇
(

x̂ · ~A(~r)
)

= −µo x̂ · ~J(~r) (5.78)

We have used Cartesian coordinates rather than a coordinate system using n̂, t̂, and ŝ
because the latter vary in direction depending on where one is on the surface; their
derivatives do not vanish, so we would not have been able to pull them inside the
Laplacian as we did with x̂ .
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Given the above, we now apply the same kind of geometry we used to derive the
boundary condition on the normal component of ~E . That yields

n̂ ·
[
~∇
(

x̂ · ~A2(~r)
)
− ~∇

(
x̂ · ~A1(~r)

)]
= −µo x̂ · ~K(~r) (5.79)

n̂ · ~∇
[
x̂ · ~A2(~r)− x̂ · ~A1(~r)

]
= (5.80)

where x̂ · ~K is what is left of x̂ · ~J as the Gaussian volume used in that proof shrinks to
zero thickness in the direction normal to the interface, just as ρ reduced to σ in the
case of the electric field.

The above argument holds for the ŷ and ẑ projections of ~A and ~K also, so we may
combine them to obtain

n̂ · ~∇
[
~A2(~r)− ~A1(~r)

]
= −µo

~K(~r) (5.81)

Thus, we see that the normal derivative of each component of the vector potential has
a discontinuity set by the surface current density in the direction of that component of
the vector potential. This is a lot like the discontinuity in the normal component of
the electric potential being determined by the surface charge density at the boundary.
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We may derive, from the above, conditions in the normal and tangential directions by
recognizing that (

n̂ · ~∇
)

n̂ = 0
(

n̂ · ~∇
)

ŝ = 0 (5.82)

These relations should be intuitively obvious: the direction of n̂, ŝ, and t̂ change as
one moves transversely along the surface (along ŝ or t̂), but they simply are not
defined off the surface and thus they can have no derivative in that direction. This
implies that the normal derivative of the normal component of ~A has no discontinuity
since there can be no surface current in that direction:

n̂ · ~∇
{

n̂ ·
[
~A2(~r)− ~A1(~r)

]}
= 0 (5.83)

It also implies that the normal gradient of the vector potential in a particular direction
parallel to the interface changes by the surface current density in that direction:

n̂ · ~∇
{

ŝ ·
[
~A2(~r)− ~A1(~r)

]}
= −µo ŝ · ~K(~r) (5.84)
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Next, let’s consider the tangential derivatives of the vector potential. Here, we use the
vector identity

~∇× ~∇~A(~r) = 0 (5.85)

where again we consider each component of ~A as a scalar function and the above
equation holds for all three components. If we again project by Cartesian components;
e.g.

~∇× ~∇
(

x̂ · ~A(~r)
)

= 0 (5.86)

then we can apply the same type of argument as we applied for calculating the
boundary condition on the tangential components of ~E , which in this case yields

ŝ ·
[
~∇
(

x̂ · ~A2(~r)
)
− ~∇

(
x̂ · ~A1(~r)

)]
= 0 (5.87)

ŝ · ~∇
[
x̂ · ~A2(~r)− x̂ · ~A1(~r)

]
= (5.88)
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Since the argument again generalizes to any Cartesian component, we may combine
the three expressions to obtain

ŝ · ~∇
[
~A2(~r)− ~A1(~r)

]
= 0 (5.89)

for any ŝ parallel to the interface: the tangential derivatives of ~A are continuous across
an interface.
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Magnetic Multipoles

Derivation of Magnetic Multipole Expansion

Since the vector potential is sourced by the current distribution in a manner similar to
the way the charge distribution sources the electric potential, it is natural to develop
the same multipole expansion. We follow Jackson for the sake of generality and
variety; you can of course read the derivation in Griffiths, too. We continue to make
the steady-state assumption, and now we also make the assumption the currents are
localized. We start with the equation for the vector potential in terms of the current
distribution:

~A(~r) =
µo

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (5.90)

We recall Equation 3.147:

1

|~r − ~r ′| =
∞∑
`=0

r`<

r`+1
>

P`(cos γ) (5.91)

where r< and r> and the smaller and larger of r and r ′.

Section 5.8.1 Derivation of Magnetic Multipole Expansion Page 352



Section 5.8 Magnetostatics: Magnetic Multipoles

As with the multipole expansion for the electrostatic potential, we will take r � r ′:
we want to know what the potential looks like far away from the current distribution.
Therefore, r< = r ′ and r> = r :

~A(~r) =
µo

4π

∫
V

dτ ′ ~J(~r ′)
∞∑
`=0

(r ′)`

r`+1
P`(cos γ) (5.92)

where cos γ = r̂ · r̂ ′ is the angle between the two vectors.

There is a common 1/r we can factor out, leaving

~A(~r) =
µo

4π

1

r

∞∑
`=0

1

r`

∫
V

dτ ′ ~J(~r ′)
(
r ′
)`

P`(cos γ) (5.93)
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Now, consider the first term, which is just the volume integral of the current density.
Under the steady-state assumption, it is intuitively clear this integral must vanish. To
prove this explicitly, we first use the vector identity ~∇ · (f ~a) = f ~∇ · ~a + ~a~∇f with

~a = ~J and f = ri any of the Cartesian coordinates:

~∇ · (ri
~J) = ri

~∇ · ~J + ~J · ~∇ri = 0 +
3∑

j=1

Jj
∂

∂rj

ri =
3∑

j=1

Jjδij = Ji (5.94)

where the first term vanishes because of the steady-state assumption and so continuity
implies ~∇ · ~J = 0. With this, we can compute the integral using the divergence
theorem:∫

V
dτ ′ Ji (~r

′) =

∫
V

dτ ′ ~∇′ ·
[
r ′i
~J(~r ′)

]
=

∮
S(V)

da′ n̂(~r ′) ·
[
r ′i
~J(~r ′)

]
= 0 (5.95)

where the surface integral in the last term vanishes because the current distribution is
localized.
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So, we are left with

~A(~r) =
µo

4π

1

r

∞∑
`=1

1

r`

∫
V

dτ ′ ~J(~r ′)
(
r ′
)`

P`(cos γ) (5.96)

This is the multipole expansion of the vector potential of the current distribution. As
with the multipole expansion of the electric potential, one can see that the successive
terms fall off as successively higher powers of 1/r .

It makes sense that there is no monopole term because ~∇ · ~B = 0: if there were a way
to make a current distribution look like a monopole from far away, then one would
have a field configuration with a nonzero Gauss’s law integral of magnetic flux through
a closed surface containing the current distribution, which is not allowed by ~∇ · ~B = 0.

Section 5.8.1 Derivation of Magnetic Multipole Expansion Page 355



Section 5.8 Magnetostatics: Magnetic Multipoles

The Magnetic Dipole Term

Let’s consider the first nonzero term in more detail, which we subscript with a 2

because it will look like the electric dipole potential, and let’s expand ~J in terms of its
components so it is easier to work with:

~A2(~r) =
µo

4π

1

r2

∫
V

dτ ′ ~J(~r ′) r ′ P2(cos γ) =
µo

4π

1

r3

∫
V

dτ ′ ~J(~r ′)~r · ~r ′ (5.97)

=
µo

4π

1

r3

3∑
i,j=1

r̂i

∫
V

dτ ′ Ji (~r
′) rj r ′j (5.98)

We must first prove an identity. We start with the same vector identity as before, now
with f = ri rj and ~a = ~J:

~∇ · (ri rj
~J) = ri rj

~∇ · ~J + ~J · ~∇(ri rj ) = 0 + rj
~J · ~∇ri + ri

~J · ~∇rj (5.99)

= rj Ji + ri Jj (5.100)

where we have again used ~∇ · ~J = 0. We apply the same technique of integrating over
volume and turning the left side into a surface term that vanishes, so we are left with∫

V
dτ ′

[
r ′i Jj (~r

′) + r ′j Ji (~r
′)
]

= 0 (5.101)
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We can use this identity to rewrite the ~A2 term as:

~A2(~r) =
µo

4π

1

r3

3∑
i,j=1

r̂i rj

∫
V

dτ ′
1

2

[
Ji (~r

′) r ′j − Jj (~r
′) r ′i

]
(5.102)

where we split out half of the Ji r ′j factor and used the identity to exchange the
indices. You have learned in Ph106a and hopefully elsewhere that the cross-product
can be written

(~a× ~b)k =
3∑

m,n=1

εkmn am bn with εkmn =

 1 for cyclic index permutations
−1 for anticyclic index permutations

0 when any two indices are identical

(5.103)

where εkmn is the Levi-Civita symbol. Multiplying this definition by εijk and summing
over k gives

3∑
k=1

εijk (~a× ~b)k =
3∑

k,m,n=1

εijk εkmn am bn =
3∑

k,m,n=1

εkij εkmn am bn (5.104)
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There is an identity for the Levi-Civita symbol

3∑
k=1

εkij εkmn = δim δjn − δin δjm (5.105)

(this is the identity that produces the BAC − CAB rule,

~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b)) which lets us rewrite the above as

3∑
k=1

εijk (~a× ~b)k =
3∑

m,n=1

am bn
(
δim δjn − δin δjm

)
= ai bj − aj bi (5.106)

This is exactly the expression we have inside the integral above.

Using the above identity, we may rewrite the ~A2 term as

~A2(~r) =
µo

4π

1

r3

3∑
i,j,k=1

r̂i rj

∫
V

dτ ′
1

2
εijk

[
J(~r ′)× ~r ′

]
k

(5.107)

= − µo

4π

1

r3

1

2

3∑
i

r̂i

{
~r ×

∫
V

dτ ′
[
~r ′ × J(~r ′)

]}
i

(5.108)

= − µo

4π

1

r3

1

2
~r ×

∫
V

dτ ′
[
~r ′ × J(~r ′)

]
(5.109)
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If we define the magnetization density ~M(~r) and the magnetic dipole moment ~m by

~M(~r) =
1

2
~r × ~J(~r) and ~m =

∫
V

dτ ′ ~M(~r ′) (5.110)

then the 2 term is the magnetic dipole vector potential

~A2(~r) =
µo

4π

~m × ~r
r3

(5.111)

Interestingly, this form has the same radial dependence as that of the electrostatic
potential of a dipole, but the cross-product in the numerator differs from the dot
product in the numerator of the electric dipole potential. However, because the
magnetic field is obtained from the curl of the vector potential, while the electric field
is obtained from the gradient of the electric potential, we will see that the two forms
result in the same field configuration (up to normalization)!
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Specialization of Magnetic Dipole Potential to a Current Loop

Now, let us consider a current loop. The only assumption we make is that the current
throughout the loop is the same so that we can extract it from the integral. The
volume integral reduces to a line integral over the loop contour:

~A2(~r) = − µo

4π

1

r3

1

2
~r ×

∮
C
~r ′ × I d ~̀′(~r ′) = − µo

4π

1

r3
~r × I

∮
C

~r ′ × d ~̀′(~r ′)

2
(5.112)

The integral is now just a geometric quantity that has units of area. Separating out
the magnetic moment, we have

~A loop
2 (~r) =

µo

4π

~mloop × ~r
r3

~mloop = I

∮
C

~r ′ × d ~̀′(~r ′)

2
(5.113)
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For the case of a loop confined to a plane that contains the origin, the quantity
~r ′ × d ~̀′/2 is the differential area element for the loop: it is the area of the triangle

formed by ~r ′, the vector from the origin to a point on the loop, and d ~̀′, the line
element tangent to the loop at ~r ′ and in the direction of the current, and this cross
product has the standard right-hand-rule orientation. The integral thus calculates the
area of the loop! Thus, for a planar loop, the above reduces to

~A2(~r) = − µo

4π

1

r3
~r × I n̂ a (5.114)

where a is the loop area and n̂ is the normal to the loop with orientation defined by
the current via the right-hand rule. Therefore, for this case, we have

~A flat loop
2 (~r) =

µo

4π

~mflat loop × ~r
r3

~mflat loop = I n̂ a (5.115)
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Field of a Magnetic Dipole

If we let ~m = m ẑ, then the dipole vector potential is

~A2(~r) =
µo

4π

m sin θ

r2
φ̂ ≡ A2,φ φ̂ (5.116)

This form offers some intuition about how ~A2(~r) behaves. In general, ~A2 “circulates”

around ~m using the right-hand rule in the same way that ~A “circulates” around ~B or
~B “circulates” around ~J using the right-hand rule. Since we are considering the
distribution from far enough away that it is indistinguishable from a simple circular
current loop in the xy -plane, the direction of ~A2 just results from the fact that ~A is
the convolution of ~J with a scalar function: the direction of ~A always follows that of ~J.

If we take the curl of this in spherical coordinates, we obtain

B2,r (~r) =
1

r sin θ

∂

∂θ
(sin θA2,φ) = 2

µo

4π

m cos θ

r3
(5.117)

B2,θ(~r) = −1

r

∂

∂r
(r A2,φ) =

µo

4π

m sin θ

r3
(5.118)

B2,φ(~r) = 0 (5.119)

or ~B2(~r) =
µo

4π

m

r3

(
2 r̂ cos θ + θ̂ sin θ

)
(5.120)

which matches the form of Equation 3.237 for an electric dipole.
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Let’s derive the more generic result by releasing the condition ~m = m ẑ:

~B2(~r) = ~∇× ~A =
3∑

i,j,k=1

εijk r̂i
∂Ak

∂rj

=
µo

4π

3∑
i,j,k,`,m=1

εijk r̂i
∂

∂rj

εk`m

(m`rm

r3

)
(5.121)

=
µo

4π

3∑
i,j,k,`,m=1

εijkεk`m r̂i

[
m`δjm

r3
− 3

2

m`rm

r5

(
2rj

)]
(5.122)

We use the cyclicity of the Levi-Civita symbol in its indices and the identities∑3
k=1 εkij εk`m = δi`δjm − δimδj` and

∑3
j,k=1 εjki εjk` = 2δi` to rewrite the above in a

form identical to that of the electric dipole, Equation 3.240:

~B2(~r) =
µo

4π

3∑
i=1

r̂i

2mi

r3
− 3

r5

mi

3∑
j=1

rj rj − ri

3∑
j=1

mj rj

 (5.123)

=
µo

4π

3∑
i=1

r̂i
3 ri ( ~m · ~r)−mi (~r · ~r)

r5
(5.124)

=⇒ ~B2(~r) =
µo

4π

3 ( ~m · r̂) r̂ − ~m

r3
(5.125)
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Force on a Magnetic Dipole (à la Jackson)

As we did for electric multipoles, let’s consider the problem of the force and torque on
a magnetic dipole. However, because there is no magnetic potential energy function,
we must begin from the Lorentz Force on the current distribution, which is given by

~Fmag =

∫
V

dτ ~J(~r)× ~B(~r) (5.126)

As we did in the case of the force on an electric multipole, we Taylor expand ~B(~r).
Again, as we did for electrostatics, we place the multipole at the origin and will
generalize the result later. The expansion is

Bk (~r) = Bk (~r = ~0) +
3∑

m=1

rm
∂Bk

∂rm

∣∣∣∣
~r=~0

+ · · · (5.127)
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Thus, the Lorentz Force is

~Fmag =
3∑

i,j,k=1

εijk r̂i

∫
V

dτ Jj (~r) Bk (~r) (5.128)

=
3∑

i,j,k=1

εijk r̂i

[
Bk (~0)

∫
V

dτ Jj (~r) +
3∑

m=1

(
∂Bk

∂rm

∣∣∣∣
~0

)∫
V

dτ Jj rm + · · ·
]

(5.129)

We have done both these integrals before. The first one contains the monopole of the
current distribution, which vanishes as in Equation 5.95. Since we will see that the
second term is in general nonzero and is proportional to the magnetic dipole moment,
let’s call it ~Fdip and focus on it, dropping the higher-order terms. It is very similar in
structure to what we encountered in calculating the dipole term in Equation 5.98.
Applying the same tricks we used there to obtain Equation 5.107, we may rewrite it as

~Fdip =
3∑

i,j,k,m,n=1

εijk r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)∫
V

dτ
1

2
εjmn

[
~J(~r)× ~r

]
n

(5.130)

= −
3∑

i,j,k,m,n=1

εijkεjmn r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)
mn with ~m =

1

2

∫
V

dτ
[
~r × ~J(~r)

]
(5.131)
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We use the vector identity Equation 5.105,
∑3

j=1 εjikεjmn = δimδkn − δinδkm, and also
use εijk = −εjik to adjust the indices to match this expression, yielding

~Fdip =
3∑

i,k,m,n=1

(δimδkn − δinδkm) r̂i

(
∂Bk

∂rm

∣∣∣∣
~0

)
mn (5.132)

=
3∑

i,k=1

r̂i

[(
∂Bk

∂ri

∣∣∣∣∣
~0

)
mk −

(
∂Bk

∂rk

∣∣∣∣∣
~0

)
mi

]
(5.133)

= ~∇
(
~m · ~B

)∣∣∣
~0
− ~m

(
~∇ · ~B

)∣∣∣
~0

(5.134)

The second term vanishes. Generalizing the first term to a dipole at an arbitrary
position, we have

~Fdip = ~∇
[
~m · ~B(~r)

]
with ~m =

1

2

∫
V

dτ
[
~r ′ × ~J(~r ′)

]
(5.135)

The force causes the magnetic dipole to move to a local maximum of ~m · ~B. Note how
it is identical to the force on an electric dipole in an electric field, Equation 3.250.
We’ll address below the implication that the magnetic field can do work on the dipole.
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Torque on a Magnetic Dipole (à la Jackson)

We may obtain from the Lorentz Force Law on a current distribution the
corresponding torque:

~Nmag =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~r)

]
(5.136)

where we have just added up the torque volume element by volume element in the
same way we summed the force. When we Taylor expand the magnetic field, we have

~Nmag =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~0)

]
+ · · · (5.137)

Because of the ~r × inside the integrand, the zeroth-order term no longer vanishes and
so we do not need to consider the next order term in the Taylor expansion. We will
write the zeroth-order term as ~Ndip below for reasons that will become clear.
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To get the above expression into a familiar form, we need to repeat the same kinds of
vector arithmetic tricks we have used before. First, we apply the BAC − CAB rule,
~a× (~b × ~c) = ~b(~a · ~c)− ~c(~a · ~b), which we can do without having to write things in
terms of indices because there are no derivatives floating around:

~Ndip =

∫
V

dτ ~r ×
[
~J(~r)× ~B(~0)

]
=

∫
V

dτ ~J(~r)
[
~r · ~B(~0)

]
−
∫
V

dτ ~B(~0)
[
~r · ~J(~r)

]
(5.138)

We can make the second term vanish by the same kinds of tricks we used earlier
during the vector potential multipole expansion:

~r · ~J(~r) =
[
r ~∇r

]
· ~J(~r) =

1

2

[
~∇r2

]
· ~J(~r) =

1

2

{
~∇ ·
[
r2 ~J(~r)

]
− r2 ~∇ · ~J(~r)

}
(5.139)

In this expression, the second term vanishes under the steady-state assumption, and
the first term can be turned into a surface integral with integrand r2 ~J(~r). Since we
are considering a localized current distribution, the surface can be taken far enough
out that ~J(~r) vanishes on the surface.
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The first term looks again like the expression we have encountered in Equation 5.98,
which becomes apparent when we write it out in component form:

~Ndip =
3∑

i,j=1

r̂i Bj (~0)

∫
V

dτ Ji (~r) rj (5.140)

We again apply the same tricks used to arrive at Equation 5.107:

~Ndip =
3∑

i,j=1

r̂i Bj (~0)

∫
V

dτ
1

2
εijk

[
~J(~r)× ~r

]
k

= −1

2
~B(~0)×

∫
V

dτ ~r × ~J(~r) (5.141)

= −~B(~0)× ~m with ~m =
1

2

∫
V

dτ
[
~r × ~J(~r)

]
(5.142)

Generalizing to a multipole distribution centered on an arbitrary point, the
zeroth-order term in the torque is (and hence the dip subscript)

~Ndip = ~m × ~B(~r) with ~m =
1

2

∫
V

dτ ′
[
~r ′ × ~J(~r ′)

]
(5.143)

The magnetic dipole feels a torque that tends to align it with the magnetic field (the

torque vanishes when ~m is aligned with ~B), again like the situation for an electric
dipole in an electric field.
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Potential Energy of a Magnetic Dipole

We can do the line integral of the force or the angular integral of the torque to
determine that we can write a potential energy

U(~r) = − ~m · ~B(~r) (5.144)

This form for the potential energy expresses two features of magnetic dipoles: they like
to be aligned with the local magnetic field, and they seek the region of largest ~m · ~B.

The thing that should be concerning about this expression is that we argued earlier
that magnetic fields can do no work, yet here we have the possibility of such work.
That is because we are assuming ~m is held fixed. For a finite current loop, there must
be a battery doing work to keep the current fixed as ~m moves or turns relative to ~B:
such motion yields changing magnetic fields, which, as you know from Ph1c, generate
voltages around the loop in which the current for ~m flows. The battery will be the
thing doing the work to counter these voltages and keep the current flowing. If ~m is a
property of a fundamental particle, then there is no explicit battery: it is simply an
empirical fact that | ~m| cannot change, and one that we must incorporate as a
postulate.
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Paramagnetism and Diamagnetism

See Griffiths Sections 6.1.1 and 6.1.3 and Purcell Sections 11.1 and 11.5 for
discussions of paramagnetism and diamagnetism. This will be discussed in class
briefly, but there is little to add to their discussions.
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The Field of a Magnetized Object

Bound Currents

Suppose we have an object with a position-dependent macroscopic density of
magnetic moments, or macroscopic magnetization density ~M(~r), where the magnetic
moment of an infinitesimal volume dτ is

d ~m = ~M(~r) dτ (6.1)

~M is not to be confused with the magnetization density M(~r); the latter can be for
some arbitrary current distribution, while the former is specifically to be considered to
be a density of magnetic dipole moments. M(~r) should give ~M(~r) for this special case
of pure dipoles. We will, confusingly, drop “macroscopic” from here on out. Assuming
we are looking at the dipoles from a macroscopic enough scale that the dipole
approximation is valid, we may use our expression for the vector potential of a
magnetic dipole, Equation 5.111, to calculate the contribution to the vector potential
at ~r due to the above infinitesimal volume at ~r ′:

d ~A(~r) =
µo

4π

d ~m(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 =

µo

4π

dτ ′ ~M(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 (6.2)
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Integrating over the volume containing the magnetization density, we have

~A(~r) =
µo

4π

∫
V

dτ ′
~M(~r ′)× (~r − ~r ′)
|~r − ~r ′|3 (6.3)

Now, we use (~r − ~r ′)/|~r − ~r ′|3 = ~∇~r ′ |~r − ~r ′|−1 (note that the gradient is with
respect to ~r ′, not ~r !), which allows us to apply the product rule for curl,
~∇× (f ~a) = f ~∇× ~a− ~a× ~∇f :

~A(~r) =
µo

4π

∫
V

dτ ′ ~M(~r ′)× ~∇~r ′
(

1

|~r − ~r ′|

)
(6.4)

=
µo

4π

∫
V

dτ ′
~∇~r ′ × ~M(~r ′)

|~r − ~r ′| − µo

4π

∫
V

dτ ′ ~∇~r ′ ×
(

~M(~r ′)

|~r − ~r ′|

)
(6.5)

=
µo

4π

∫
V

dτ ′
~∇~r ′ × ~M(~r ′)

|~r − ~r ′| +
µo

4π

∫
S(V)

da′
~M(~r ′)× n̂(~r ′)

|~r − ~r ′| (6.6)

where, in the last step, we have used a vector identity that we will prove on the
following slide.
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Let’s prove the vector identity we just used, which is a corollary of the divergence
theorem for the curl. Let ~a(~r) be an arbitrary vector field and let ~c be an arbitrary
constant vector. Then the divergence theorem tells us∫

V
dτ ~∇ · [~a(~r)× ~c] =

∮
S(V)

da n̂(~r) · [~a(~r)× ~c] (6.7)

Now, apply the cyclicity of triple scalar products (along with the fact that ~c is

constant and can thus it can be moved past ~∇) and bring ~c outside the integrals
(since it is a constant vector):

~c ·
∫
V

dτ
[
~∇× ~a(~r)

]
= ~c ·

∮
S(V)

da [n̂(~r)× ~a(~r)] (6.8)

Since ~c is arbitrary, the expression must hold for any ~c and thus:∫
V

dτ
[
~∇× ~a(~r)

]
=

∮
S(V)

da [n̂(~r)× ~a(~r)] (6.9)

which is what we wanted to prove.
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Making some definitions, we recognize that the vector potential can be considered to
be sourced by a bound volume current density ~Jb(~r) and a bound surface current

density ~Kb(~r):

~Jb(~r) = ~∇× ~M(~r) ~Kb(~r) = ~M(~r)× n̂(~r) (6.10)

~A(~r) =
µo

4π

∫
V

dτ ′
~Jb(~r ′)

|~r − ~r ′| +
µo

4π

∮
S(V)

da′
~Kb(~r ′)

|~r − ~r ′| (6.11)

The way in which these current densities source ~A is identical to the way in which free
current densities do. Moreover, we can see the clear analogy to bound volume and
surface charges in the case of polarized materials.

Griffiths Section 6.2.2 gives a nice discussion of the physical interpretation of bound
currrents that will be presented in class, but there is not much to add here.
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Example 6.1: Uniformly Magnetized Sphere

Center the sphere of radius R at the origin. Let ~M = M ẑ. Then

~Jb(~r) = ~∇×M ẑ = 0 ~Kb(~r) = M ẑ × n̂ = M ẑ × r̂ = M sin θ φ̂ (6.12)

We need to calculate

~A(~r) =
µo

4π
R2
∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

M sin θ ′ φ̂

|~r − ~r ′| (6.13)

=
µo

4π
R2
∫ 2π

0
dφ ′

∫ π

0
dθ ′ sin θ ′

M sin θ ′ (−x̂ sinφ ′ + ŷ cosφ ′)

|~r − ~r ′| (6.14)

(The R2 out front is because an area integral, not just a solid angle integral, needs to
be done.) This is done in Griffiths Example 5.11 via explicit integration. For the sake
of variety, let’s use a different technique. We use Equation 3.167, the Spherical
Harmonic Addition Theorem Corollary, which expands |~r − ~r ′|−1 in terms of spherical
harmonics, recognizing |~r ′| = R because the integral is over the sphere of radius R:

1

|~r − ~r ′| = 4π
∞∑
`=0

∑̀
m=−`

1

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ) (6.15)
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Let’s consider the x̂ piece of the above angular integral; the other term will be similar
in spirit. We will write the numerator in terms of spherical harmonics and use the
expansion. We abbreviate

∫ 2π
0 dφ ′

∫ π
0 dθ ′ sin θ ′ =

∫
dΩ′ and recall

Y`,−m = (−1)mY ∗`,m. Applying these facts yields

∫
dΩ′

sin θ ′ (− sinφ ′)

|~r − ~r ′| = (6.16)

∫
dΩ′

√
8π

3

Y1,1(θ ′, φ ′) + Y1,−1(θ ′, φ ′)

2 i
4π

∞∑
`=0

∑̀
m=−`

1

2 `+ 1

r`<

r`+1
>

Y ∗`m(θ ′, φ ′)Y`m(θ, φ)

The integral over Ω′ gives δ`,1δm,1 and δ`,1δm,−1, eliminating the sum and yielding

∫
dΩ′

sin θ ′ (− sinφ ′)

|~r − ~r ′| =
4π

2 i

√
8π

3

1

3

r`<

r`+1
>

[Y1,1(θ, φ) + Y1,−1(θ, φ)] (6.17)

= −4π

3

r<

r2
>

sin θ sinφ (6.18)

where the 1/3 came from 1/(2 `+ 1). We get back the same type of angular
dependence, but with the 1/|~r − ~r ′| turned into the prefactor shown, which has the
correct dimensions.
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We can repeat the same kind of manipulation for the ŷ term, yielding∫
dΩ′

sin θ ′ (cosφ ′)

|~r − ~r ′| =
4π

3

r<

r2
>

sin θ cosφ (6.19)

Therefore,

~A(~r) =
µo

4π
R2M

4π

3

r<

r2
>

sin θ [−x̂ sinφ+ ŷ cosφ] =
µo

4π
R2M

4π

3

r<

r2
>

sin θ φ̂ (6.20)

Recall that |~r ′| = R because the surface integral was over the sphere of radius R, so
r> (r<) is replaced by R in the first (second) expression above.

Either way you do it, the result is

~A(r ≤ R, θ, φ) =
µo

3
M r sin θ φ̂ ~A(r ≥ R, θ, φ) =

µo

4π

(
4π

3
R3M

)
sin θ

r2
φ̂ (6.21)

Note that ~A(~r) is continuous at r = R, as we expect.
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Evaluating the curl of the first term to obtain the magnetic field, we have inside the
sphere

~B(r ≤ R) = ~∇× ~A(r ≤ R) =
1

3
µo M

[
2 r̂ cos θ − θ̂ sin θ

]
=

2

3
µo

~M (6.22)

which is a uniform field pointing in the same direction as the magnetization.

For r ≥ R, we have

~A(r ≥ R) =
µo

4π

~m × r̂

r2
~m =

4π

3
R3 ~M (6.23)

which is the vector potential (thus yielding the field of) a pure dipole with magnetic
moment given by integrating the uniform magnetization density over the sphere. This
form is exact for all r ≥ R.
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Let’s compare to the case of a uniformly polarized dielectric sphere:

r ≤ R ~E(~r) = − 1

3 εo

~P ~B(~r) =
2

3
µo

~M (6.24)

r ≥ R V (~r) =
1

4π εo

~p · r̂
r2

~A(~r) =
µo

4π

~m × r̂

r2
(6.25)

~p =
4π

3
R3 ~P ~m =

4π

3
R3 ~M (6.26)

Inside the sphere, the difference is a factor of −2 and the exchange of 1/εo for µo .
Outside the sphere, the two potentials result in fields identical up to the replacement
of ~P by ~M and again 1/εo by µo . The difference in the r ≤ R expressions reflects the

fact that the magnetic field of the bound surface current (i.e., of ~M) is aligned with ~M

while the electric field of the surface bound charge density (i.e., of ~P) is opposite to
~P. This sign difference is a generic phenomenon, resulting in the very different
behavior of electrostatic and magnetostatic fields in matter.
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The Auxiliary Field ~H and Magnetic Permeability

Definition of the Auxiliary Field

We saw that ~A is sourced by the bound current density ~Jb = ~∇× ~M in the same way
it would be sourced by a free current density ~Jf . Therefore, Ampere’s Law is satisfied
with the sum of the two currents:

1

µo

~∇× ~B = ~Jf + ~Jb = ~Jf + ~∇× ~M (6.27)

If we want to write an Ampere’s Law in terms of the free currents only, in the same
way that we wanted to write Gauss’s Law in terms of the free charges only, then we
can define the auxiliary field

~H ≡
~B

µo
− ~M (6.28)

In contrast to electrostatics, where the displacement field was the sum of the electric
field and the polarization density, here the auxiliary field is the difference of the
magnetic field and the magnetization density. The sign flip comes from the differing
signs in the definition of the bound charge and current densities: ρb = −~∇ · ~P while
~Jb = ~∇× ~M, which itself comes from the commutative vs. anticommutative natures
of the dot and cross product.
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With this definition of ~H, we then have

~∇× ~H =
1

µo

~∇× ~B − ~∇× ~M = ~Jf + ~Jb − ~Jb = ~Jf (6.29)

Therefore, we have a modified Ampere’s Law

~∇× ~H = ~Jf ⇐⇒
∮
C

d ~̀ · ~H(~r) =

∫
S(C)

da n̂(~r) · ~Jf (~r) = If ,enc (6.30)

Thus, as intended, we have an Ampere’s Law in terms of the free currents only, which
(partially) source ~H. The fact that ~H satisfies Ampere’s Law in the free current leads
some to use the name applied field for it. That may be misleading, though, because
the free current does not tell one everything one must know to determine ~H (in the

same way that ρf does not completely determine the displacement field ~D).

To fully specify ~H, we need to know its divergence, which is given by applying
~∇ · ~B = 0:

~∇ · ~H = −~∇ · ~M (6.31)

This nonvanishing of ~∇· ~H is analogous to the nonvanishing of ~∇× ~D in electrostatics.

There is an example of how to calculate ~H using the above Ampere’s Law in Griffiths
Example 6.2.
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What Sources ~H? When Does It Vanish?

Considering the uniformly magnetized sphere example we just looked at, we see

~H(r ≤ R) =
~B(r ≤ R)

µo
− ~M =

2

3
~M − ~M = −1

3
~M (6.32)

~H(r ≥ R) =
~B(r ≥ R)

µo
=

field of the magnetic dipole ~m = 4π
3

R3 ~M

µo
(6.33)

This example highlights the importance of the nonvanishing of ~∇ · ~H. There is no free
current in this problem, so one might be inclined to think ~H vanishes by analogy to
the fact ~B would vanish if there were no total current. But the nonzero nature of
~∇ · ~H means that ~H has another sourcing term that is not captured by Ampere’s Law
alone. In this case, this sourcing term manifests as a discontinuity of the normal
component of ~M at r = R. This is analogous to the way that, even if there is no free
charge, there may be a displacement field ~D, sourced by ~∇× ~P and/or a discontinuity

in the tangential component of ~P. An example was the spherical cavity in a dielectric
with uniform field applied, Example 4.6. To have ~H vanish identically, one needs to
have ~∇ · ~M = 0 and also trivial boundary conditions on ~M (no change in n̂ · ~M).
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This all makes sense given the Helmholtz theorem: since ~∇ · ~H does not vanish, ~H is
not just the curl of a vector potential, but must be the sum of the gradient of a scalar
potential and the curl of a vector potential. Ampere’s Law for ~H tells us that the free
current density sources the vector potential, while −~∇ · ~M sources the scalar potential.
We will see later that the latter point allows us to use our electrostatic boundary value
problem techniques.

In particular, in the example of the uniformly magnetized sphere, we see that ~H is
identical in form to ~E from the uniformly polarized sphere up to the replacement
~P/εo → ~M, so the scalar potential that yields ~M will have the same form, up to this

replacement, as the scalar potential that yields ~E . We’ll pursue this analogy in detail
when we discuss boundary value problems for magnetostatic systems.

We can make the same point about ρf not being the only source of ~D; when ~∇× ~P is
nonzero, then ~D receives an additional sourcing term. It was not convenient to make
this point when we discussed ~D initially because we had not yet learned about vector
potentials and how to discuss sourcing of ~D by a vector field, ~∇× ~P. But now we do,
and so it should be clear that ~D received a contribution that is sourced by ~∇× ~P in
the same way that ~H receives a contribution that is sourced by ~∇× ~H = ~Jf .

In particular, in Example 4.5, the capacitor with two side-by-side dielectrics, we saw
such a situation, manifested by the discontinuity in the tangential component of ~P at
the interface between the two dielectrics.
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Who Cares About ~H?

Is ~H any more useful than ~D was?

The thing that limits the utility of ~D is that, in practice, one rarely controls free
charge, the most obvious source for ~D. In practice, one sets potentials using batteries
or other voltage sources. Potentials specify ~E , not ~D. Consider the example of the
parallel-plate capacitor with side-by-side dielectrics: σf ended being an output of the
calculation after calculating ~E rather than an input that yielded ~D.

On the other hand, ~H is sourced by the free currents, which is the thing one explicitly
controls in the lab. For that reason alone, we expect ~H is of greater utility than ~D.
We will see this more clearly when we consider specific types of permeable materials.

The other reason we will find ~H more useful is that, in reality, we frequently come
across ferromagnets, where ~M is provided and thus we are given the ~∇ · ~M source for
~H, but we rarely encounter ferroelectrics, where ~P and thus the ~∇× ~P source for ~D
are provided. We would find ~D useful as a calculation tool if we were given a system
in which ~∇× ~P were nonzero or, more likely, ~P were tangent to boundaries between a
ferroelectric and vacuum or between different ferroelectrics. Then ~∇× ~P and any
discontinuity in n̂ × ~P would source ~D in the same way that ~J and a boundary ~K
source ~B.
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Boundary Conditions on ~H

From the boundary conditions on ~B at an interface, we can derive boundary
conditions on ~H. The continuity of the normal component of the magnetic field
(Equation 5.67) along with Equation 6.28 implies

n̂(~r) ·
[
~H2(~r)− ~H1(~r)

]
= −n̂(~r) ·

[
~M2(~r)− ~M1(~r)

]
(6.34)

Applying the same arguments using Ampere’s Law for ~H as we did using Ampere’s
Law for ~B, we can also conclude the analogy of Equation 5.73:

[
~H2(~r)− ~H1(~r)

]
· ŝ(~r) =

[
~Kf (~r)× n̂(~r)

]
· ŝ(~r) (6.35)

where ~Kf is the free surface current density at the interface.

Section 6.3.4 Boundary Conditions on ~H Page 389



Section 6.3 Magnetostatics in Matter: The Auxiliary Field ~H and Magnetic Permeability

Recall that we found alternative forms of the corresponding boundary conditions for
~B, Equations 5.74 and 5.75:

~B2(~r)− ~B1(~r) = µo
~K(~r)× n̂(~r)

n̂(~r)×
[
~B2(~r)− ~B1(~r)

]
= µo

~K(~r)

There is no trivial analogue of the first one because it relied on the normal component
of ~B being continuous. However, we can obtain the analogue of the second equation,
though we have to do it in a different way because, for ~B, we used the first equation
above to obtain the second one.
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We start by using ŝ = t̂ × n̂ and then applying the cyclicity of the triple scalar product
on both sides: [

~H2 − ~H1

]
·
[
t̂ × n̂

]
= [n̂ × ŝ] · ~Kf (6.36)

t̂ ·
(

n̂ ×
[
~H2 − ~H1

])
= t̂ · ~Kf (6.37)

The same equation holds trivially with t̂ replaced by n̂: the left side vanishes because
n̂ is perpendicular to any cross product involving n̂ and the right side vanishes because
~Kf is always perpendicular to n̂. This, combined with the fact that t̂ in the above can
be any vector in the plane of the boundary, implies the more general statement

n̂(~r)×
[
~H2(~r)− ~H1(~r)

]
= ~Kf (~r) (6.38)

which is the analogue of the second equation on the previous slide. But note that this
equation provides no information about the normal component of ~H because it is
related to the normal component of ~M.
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Magnetic Permeability in Linear Materials

Many magnetic materials we will consider have a linear relationship between the field
and the magnetization. The magnetic susceptibility of a material is defined to be the
constant of proportionality between ~M and ~H:

~M = χm
~H (6.39)

(One can see why ~H is sometimes called the applied field!) Since ~B = µo

(
~H + ~M

)
,

we have

~B = µo

(
~H + ~M

)
= µo (1 + χm) ~H ≡ µ ~H (6.40)

where we have defined the magnetic permeability µ = µo (1 + χm). The quantity
µr = 1 + χm is the relative permeability. The definition of χm and µ follows a
different convention than the definition of χe and ε. This is for the reason we
discussed above: we experimentally control the free current and thus ~H, whereas in
electrostatics we control the voltages and thus ~E . We define the permittivity and the
permeability to be the constant of proportionality relating the thing we do control to
the thing we do not control.
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Paramagnetic materials have χm > 0 because the magnetization is in the same
direction as the field and so the field due to the free currents is added to by the field
from the magnetization.

Diamagnetic materials have χm < 0 because the magnetization is in the direction
opposite the field and so the field due to the free currents is partially canceled by the
field from the magnetization.

For electrostatics in matter, we were concerned entirely with dielectric materials:
because every atom has some polarizability, every material is dielectric to some extent.
In that case, the “di” prefix went with χe > 0 (in contrast to χm < 0 here) because of

the different convention for the relation between ~E and ~D.

Diamagnetic materials exist via the same kind of classical argument, now involving the
response of currents in materials to applied fields.

The analogous paraelectric materials (χe < 0) do not exist for the most part — it is
hard to understand how one can get an electrically polarizable material to have χe < 0.
Metals can have negative permittivity at high frequencies (optical), but not DC.

Paramagnetic materials exist only because of quantum mechanics — the existence of
magnetic moments not caused by an applied field. There are no such
quantum-mechanics-caused electric dipole moments, mainly because such moments
violate time-reversal symmetry while magnetic moments do not. They work differently
because the “current” sourcing a magnetic dipole moment reverses sign under time
reversal while the charges sourcing an electric dipole moment do not.
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Boundary Conditions for Linear Magnetic Materials

With the linear relationship between ~H, ~M, and ~B, we can rewrite the boundary
conditions we derived earlier in a somewhat simpler form.

The continuity of the normal component of ~B implies

n̂(~r) ·
[
µ1
~H1(~r)− µ2

~H2(~r)
]

= 0 (6.41)

n̂(~r) ·
[
µ1

χm,1

~M1(~r)− µ2

χm,2

~M2(~r)

]
= 0 (6.42)
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We saw earlier that the tangential component of ~H changes by the free surface current
density (Equations 6.35 and 6.38). That implies

[
~B2(~r)

µ2
−
~B1(~r)

µ1

]
· ŝ(~r) =

[
~Kf (~r)× n̂(~r)

]
· ŝ(~r) (6.43)

or n̂(~r)×
[
~B2(~r)

µ2
−
~B1(~r)

µ1

]
= ~Kf (~r) (6.44)

and

[
~M2(~r)

χm,2
−

~M1(~r)

χm,1

]
· ŝ(~r) =

[
~Kf (~r)× n̂(~r)

]
· ŝ(~r) (6.45)

or n̂(~r)×
[
~M2(~r)

χm,2
−

~M1(~r)

χm,1

]
= ~Kf (~r) (6.46)

Vanishing of Kf will of course simplify these expressions, yielding the continuity of the
tangential component of ~B/µ and ~M/χm.
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Example 6.2: Magnetizable Rod with Uniform Current

Let’s consider a rod of radius R whose axis is in the z direction and which carries a
current I distributed uniformly across its cross section. Assume the material is linear
with magnetic susceptibility χm. Let’s find ~H, ~M, and ~B.

Let’s first see how far we can get without using χm. Ampere’s Law for ~H tells us∮
C
~H · d ~̀=

∫
S(C)

da n̂ · ~Jf (6.47)

This system has azimuthal symmetry as well as translational symmetry in z, so we can
guess ~H = ~H(s) where s is the radial coordinate in cylindrical coordinates. By the

right-hand rule and the z translational symmetry, we expect ~H = H(s) φ̂. This

eliminates any concern about ~∇ · ~M or n̂ · ~M: we know ~M = χm
~H ∝ ~H, therefore we

know, for the assumed form of ~H, ~∇ · ~M = 0 inside the cylinder and n̂ · ~M = 0 at the
surface of the cylinder. ( ~M = 0 outside the cylinder.) Adding in that we know
~Jf = ẑ I/π R2, Ampere’s Law in ~Jf and ~H tells us

s ≤ R : 2π s H(s) = π s2 I

π R2
⇐⇒ ~H(s) =

I

2π s

s2

R2
φ̂ (6.48)

s ≥ R : 2π s H(s) = π R2 I

π R2
⇐⇒ ~H(s) =

I

2π s
φ̂ (6.49)
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If we do not know χm, we do not know ~M inside the material and so we cannot
calculate ~B for s ≤ R. For s ≥ R, we have vacuum and so ~M = 0 and ~B = µo

~H:

~B(s ≥ R) = µo
~H(s ≥ R) =

µo I

2π s
φ̂ (6.50)

Note that ~B(s ≥ R) is unaffected by the presence of the magnetizable material. We
will see why below.

Next, if we use the linearity of the material with susceptibility χm, we have

~M(s ≤ R) = χm
~H(s ≤ R) = χm

I

2π s

s2

R2
φ̂ =

µ− µo

µo

I

2π s

s2

R2
φ̂ (6.51)

and therefore

~B(s ≤ R) = µ ~H(s ≤ R) =
µ I

2π s

s2

R2
φ̂ (6.52)

All three fields are azimuthal inside and outside R. For paramagnetic materials,
χm ≥ 0 (µ ≥ µo ), so ~M is parallel to ~H and |~B| > µo | ~H| inside R. For diamagnetic

materials, χm < 0 (µ ≤ µo ), so ~M is antiparallel to ~H and |~B| ≤ µo | ~H| inside R.
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Let’s check the boundary conditions. All the fields are tangential at the boundary, so
the normal conditions — continuity of the normal components of ~B, µ ~H, and
µ ~M/χm — are trivially satisfied. There is no free surface current density, so we

expect the tangential components of ~H, ~B/µ, and ~M/χm to be continuous. We see
this indeed holds, with them taking on the values

φ̂ · ~H(s = R) = φ̂ ·
~B(s = R)

µ
= φ̂ ·

~M(s = R)

χm
=

I

2π R
(6.53)

The last one is a bit tricky because both the numerator ~M and the denominator χm

vanish for s > R, but L’Hopital’s rule allows evaluation of the ratio in the limit
χm → 0. The ẑ tangential components are trivially continuous since they all vanish.
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For the sake of completeness, let’s calculate the bound surface current and check that
the boundary conditions on ~B are correct. The bound surface current is ~Kb = ~M × n̂
(Equation 6.10). In this case, n̂ = ŝ, the radial unit vector in cylindrical coordinates, so

~Kb(s = R) = M(s = R) φ̂× ŝ = −χm
I

2π R
ẑ (6.54)

For a paramagnetic materials (χm > 0), the surface current points along −ẑ while, for
diamagnetic materials (χm < 0), it points along +ẑ. One can see this physically by
considering the direction of alignment of the dipoles and which direction the
uncancelled current on the boundary flows. From the direction of this surface current,
one can then see that the field of this surface current adds to the field of the free
current for the paramagnetic case and partially cancels it for the diamagnetic case.
Finally, let’s check the boundary conditions on ~B. It has no normal component in
either region, so continuity of the normal component is trivially satisified. The
discontinuity in the tangential component matches Equation 5.75:

n̂ ×
[
~B2 − ~B1

]
= ŝ × [µo − µ]

I

2π R
φ̂ = −µoχm

I

2π R
ẑ = µo

~Kb (6.55)
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Let’s also calculate the bound volume current density, ~Jb = ~∇× ~M from
Equation 6.10. It is

~Jb(~r) = ~∇× ~M = χm ~∇× ~H = χm
~Jf = χm

I

πR2
ẑ (6.56)

For paramagnetic materials, ~Jb is parallel to ~Jf and thus its field adds to the field of
the free current, while, for diamagnetic materials, it is antiparallel and it partially
cancels the free current’s field.

Note that the integral of ~Jb over the cross section and the integral of ~Kb over the
circumference are equal in magnitude and opposite in sign, canceling perfectly. This is
why the magnetic field outside the wire is only that due to the free current.

A modest extension to this problem would be to include a free surface current in the ẑ
direction, which would then cause a discontinuity in the φ̂ component of ~H, ~B/µ and
~M/χm. You should try this on your own.
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Boundary Value Problems in Magnetic Materials

Griffiths does not really consider boundary value problems in magnetostatics, so we
follow Jackson §5.9–5.12.

General Conditions for Linear, Homogeneous Magnetic Materials

In linear, homogeneous dielectrics, we showed ρb ∝ ρf . We just saw that a similar
relation holds for linear, homogeneous magnetic materials, which we can derive
generally:

~Jb = ~∇× ~M = ~∇×
(
µ− µo

µo

~H

)
=

(
µ− µo

µo

)
~∇× ~H =

(
µ− µo

µo

)
~Jf (6.57)

In particular, if there is no free current in a linear, homogeneous magnetic material,
then there is no bound current either. In such situations, the magnetic field is
derivable from a scalar potential and Laplace’s Equation holds everywhere there is no
free current! Boundary conditions, and matching conditions between regions, will
determine ~H. We’ll explore such situations shortly.
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The General Technique

In general, it always holds that

~B = ~∇× ~A ~H = ~H(~B) ~∇× ~H = ~Jf (6.58)

Therefore, one can always write the differential equation

~∇× ~H(~∇× ~A) = ~Jf (6.59)

If the relation between ~H and ~B is not simple, the above equation may be difficult to
solve.
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For linear magnetic materials, though, the above reduces to

~∇×
(

1

µ
~∇× ~A

)
= ~Jf (6.60)

If we further specify that µ is constant over some region, then in that region we have

~∇×
(
~∇× ~A

)
= ~∇

(
~∇ · ~A

)
−∇2 ~A = µ ~Jf (6.61)

Finally, if we specify ~∇ · ~A = 0, this simplifies to a component-by-component Poisson
Equation:

∇2 ~A = −µ ~Jf (6.62)

In principle, one can apply the same techniques as we used for solving Poisson’s
Equation in electrostatics to solve this component by component. Boundary
conditions must be specified either directly (recall that we proved that if any one of ~A,
~B, n̂ × ~A, or n̂ × ~B is specified at every point on the boundary, then the resulting field
(though not necessarily the vector potential) is unique) or by matching using the
conditions on the normal and tangential components at boundaries.
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Another technical challenge associated with the above equation is that it only
separates cleanly into component-by-component Poisson Equations in Cartesian
coordinates. If the current distribution it not naturally represented in Cartesian
coordinates (e.g., even a simple circular current loop), then separation of variables
may not be feasible. Method of images may work, or one may have to resort to other
techniques or numerical solution. None of this technical complication takes away from
the fact that there will be a unique solution for each component independently. The
technical complication just makes it hard to actually obtain that solution.
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Hard Ferromagnets ( ~M fixed and ~Jf = 0): Magnetostatic Scalar Potential

If there are no free currents, then ~∇× ~H = 0 and we are assured that ~H can be

derived from a magnetostatic scalar potential. Here, we use ~B = µo

(
~H + ~M

)
with

~M fixed. Then ~∇ · ~B = 0 gives

~∇ · µo

(
~H + ~M

)
= 0 (6.63)

−∇2VM + ~∇ · ~M = 0 (6.64)

∇2VM = −ρM with ρM = −~∇ · ~M (6.65)

(note the canceling minus signs in the definitions!) where ρM is termed the
magnetostatic charge density. Note the close similarity to the definition of the bound
charge density ρb = −~∇ · ~P for dielectrics. This equation can be solved by the
standard techniques for solving Poisson’s Equation.
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In particular, if the boundary is at infinity and we require the fields to fall off to zero
there, we know the Green Function for the above equation, which yields

VM (~r) = − 1

4π

∫
V

dτ ′
~∇~r ′ · ~M(~r ′)

|~r − ~r ′| (6.66)

Assuming ~M is well behaved (has no discontinuities or infinite derivatives except at
well-defined boundaries) and using similar techniques as we have used before, we use
the product rule for the divergence to do an integration by parts of the above
expression, which yields the integral of a divergence and the complementary
expression. The integral of the divergence can be turned into a surface integral and
the surface can be taken to infinity. With our assumption that ~M falls off at infinity,
the surface term vanishes, leaving us only the complementary term

VM (~r) =
1

4π

∫
V

dτ ′ ~M(~r ′) · ~∇~r ′
(

1

|~r − ~r ′|

)
(6.67)

We change variables on the gradient from ~r ′ to ~r in the usual way, picking up a sign:

VM (~r) = − 1

4π

∫
V

dτ ′ ~M(~r ′) · ~∇~r
(

1

|~r − ~r ′|

)
(6.68)
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We then apply the product rule again, which allows us to bring ~∇~r outside the integral
since it does not act on ~M(~r ′):

VM (~r) = − 1

4π
~∇~r ·

∫
V

dτ ′
~M(~r ′)

|~r − ~r ′| (6.69)

If we want to know the potential and field far from the region that is magnetized, and
we can assume the magnetization ~M is confined to a finite region (localized), we can
make the approximation |~r − ~r ′|−1 ≈ r−1 and pull this factor outside the integral,
which gives

VM (~r) = − 1

4π
~∇~r ·

[
1

r

∫
V

dτ ′ ~M(~r ′)

]
(6.70)

=
1

4π

~m · ~r
r3

with ~m =

∫
V

dτ ′ ~M(~r ′) (6.71)

That is, the scalar potential is equal to that of an electric dipole with ~p = εo ~m,
implying the field is equal to that of a magnetic dipole ~m. (The factor of µo will

reappear when one calculates ~B instead of ~H). Any magnetized object looks like a
dipole from far enough away, which is not surprising.
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If we consider a case where there is a boundary — such as the boundary of the
magnetized region, with ~M = 0 outside — then we know that the solution to
Poisson’s Equation has a surface term due to the charge density on the boundary. By
analogy to our consideration of surface charge densities at boundaries in electrostatics,
we see that we need to add a surface term:

VM (~r) = − 1

4π

∫
V

dτ ′
~∇~r ′ · ~M(~r ′)

|~r − ~r ′| +
1

4π

∮
S(V)

da′
n̂(~r ′) · ~M(~r ′)

|~r − ~r ′| (6.72)

This second term looks like the bound surface charge density term in the corresponding
expression in electrostatics, so we define a magnetostatic surface charge density

σM (~r) = n̂(~r) · ~M(~r) (6.73)

and see that it sources the magnetostatic scalar potential in the same way that ρM

does. Together, both terms look identical to Equation 4.8. One must take some care
about the sign of the surface term. n̂ is defined to be the outwardly directed normal
from the magnetized region out into vacuum. This is why σM has the sign definition
that it does. This convention is consistent with the definition of σb, which also used
the outwardly directed normal.
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Example 6.3: Uniformly Magnetized Sphere, Again

Let’s apply the above kind of formalism for the uniformly magnetized sphere, which
satisfies the hard ferromagnet condition. Again, ~M = M ẑ. This implies
ρM = −~∇ · ~M = 0 and σM = n̂ · ~M = M cos θ. We solved this same problem before for
the uniformly polarized dielectric sphere via separation of variables in spherical
coordinates, which yielded Equation 4.15. Making the replacement P → M and noting
that εo is not present in Equation 6.72, we obtain

VM (r ≤ R) =
M z

3
VM (r ≥ R) =

~m · r̂
4π r2

with ~m =
4π

3
π R3 ~M (6.74)

~H = −~∇VM =

{
− ~M

3
r ≤ R

~H field of a magnetic dipole ~m r ≥ R
(6.75)

~B = µo

(
~H + ~M

)
=⇒ ~B(r ≤ R) = µo

(
−1

3
~M + ~M

)
=

2

3
µo

~M (6.76)

~B(r ≥ R) = µo
~H = ~B field of a magnetic dipole ~m

(6.77)

This matches our previous solution for the magnetic field of this system that we
obtained by calculating the vector potential of the bound surface current.
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Hard Ferromagnets ( ~M fixed and ~Jf = 0) via Vector Potential

We have already done this analysis, yielding Equations 6.10 and 6.11:

~Jb(~r) = ~∇× ~M(~r) ~Kb(~r) = ~M(~r)× n̂(~r)

~A(~r) =
µo

4π

∫
V

dτ ′
~Jb(~r ′)

|~r − ~r ′| +
µo

4π

∮
S(V)

da′
~Kb(~r ′)

|~r − ~r ′|

We can, in fact, directly calculate the field from the bound currents using the
Biot-Savart Law. The approach described above of using the magnetostatic scalar
potential for such cases will in general be calculationally easier if the problem is
amenable to the techniques for solving Poisson’s Equation, but the Biot-Savart Law is
certainly always guaranteed to work.

Example 6.4: Uniformly Magnetized Sphere, Again

We don’t need to do this again: the above vector potential based on the bound current
density (in this case, only a bound surface current density) is exactly how we solved
this system before. We used the spherical harmonics technique to do the integral,
which is different from what Griffiths did, but the starting point was the same.
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No Free Currents, Linear Materials via Scalar Potential

If there are no free currents, then ~∇× ~H = 0 and again we are assured that ~H can be
derived from a magnetostatic scalar potential

~H = −~∇VM (~r) (6.78)

Again, if we know the relationship ~B = ~B( ~H), then we can use the divergence
equation:

~∇ · ~B
(
−~∇VM

)
= 0 (6.79)

Again, if the relation between ~H and ~B is not simple, the above equation may be
difficult to solve.
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Again, though, for the case of linear magnetic materials, we have

~∇ ·
(
µ ~∇VM

)
= 0 (6.80)

In a region where µ is constant, it can be passed through the divergence and we can
reduce this to

∇2VM = 0 (6.81)

We now have Laplace’s Equation. Again, boundary conditions and/or matching
conditions will allow one to solve for VM . In a region where µ is constant, we could
equally well write ~B = −~∇Um and solve ∇2Um = 0 with appropriate boundary
conditions. Which one should be used should be determined by which has the simpler
boundary and matching conditions; in general, it will be VM because its boundary
conditions depend only on free currents, which are externally specified, while knowing
the bound currents requires knowing the full solution.

The importance of boundary conditions should be even more clear in such cases: since
there is no source term in the equation, the boundary conditions entirely determine
the solution.
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Example 6.5: Magnetically Permeable Sphere in External Field

This is now a “soft,” linear material, where we cannot take ~M to be fixed. But it is a
situation with no free currents, so Laplace’s Equation holds (except at the r = R
boundary, but we develop matching conditions there).

Fortunately, we do not need to solve the boundary value problem from scratch because
this problem is directly analogous the case of a dielectrically polarizable sphere in an
external electric field. We have the following correspondence:

εo
~E = −εo ~∇V ~H = −~∇VM (6.82)

εo∇2V = 0 ∇2VM = 0 (6.83)

~P =
ε− εo

εo

~E ~M =
µ− µo

µo

~H (6.84)

~D = εo
~E + ~P ~B/µo = ~H + ~M (6.85)

εo
~E

r→∞−→ εo
~E0

~H
r→∞−→ ~B0/µo (6.86)

~D
r→∞−→ εo

~E0
~B/µo

r→∞−→ ~B0/µo (6.87)

We have carefully avoided making correspondences in the above between ρb and ρM

and between σb and σM because, in both cases, these quantities are not specified
ahead of time: there is not permanent polarization, there is only polarization in
response to applied field.
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Let’s also compare the matching conditions. We want to use the matching conditions
that incorporate only the free charge densities because we do not know the bound
charge densities ahead of time. For the electrostatic case, we used

n̂ ·
[
~D>(R)− ~D<(R)

]
= σf = 0 (6.88)

ŝ ·
[
εo
~E>(R)− εo

~E<(R)
]

= 0 (6.89)

The corresponding matching conditions for the magnetic case are

n̂ ·
[
~B>(R)

µo
−
~B<(R)

µo

]
=

1

µo
n̂ ·
[
~B>(R)− ~B<(R)

]
= 0 (6.90)

ŝ ·
[
~H>(R)− ~H<(R)

]
= ŝ ·

[
~Kf × n̂

]
= 0 (6.91)

Thus, not only is there a perfect correspondence between fields, potentials, and
r →∞ boundary conditions in the two problems, there is also a correspondence
between matching conditions at r = R. Thus, we can just apply the solution to the
electrostatic problem with the substitutions εo

~E → ~H, εo V → VM , ~P → ~M, and
~D → ~B/µo .
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Applying this correpondence to Equations 4.68 and 4.69 gives us

VM (r < R) = − 3µo

2µo + µ
H0 z = − 3µo

2µo + µ

B0

µo
z (6.92)

VM (r > R) = −H0 z +
~m · r̂

4π r2
= −B0

µo
z +

~m · r̂
4π r2

(6.93)

~m ≡ 4π

3
R3 ~M(r < R) =

4π

3
R3 H0

3 (µ− µo )

2µo + µ
ẑ =

4π

3
R3 B0

µo

3 (µ− µo )

2µo + µ
ẑ

(6.94)

From the above, we calculate the fields and the magnetostatic surface charge density
(ρM = 0 because ~M is uniform):

~H(r < R) =
3µo

2µo + µ

~B0

µo
=

~B0

µo
−

~M(r < R)

3
(6.95)

~M(r < R) = 3
µ− µo

2µo + µ

~B0

µo
σM = 3

µ− µo

2µo + µ

B0

µo
cos θ (6.96)

~B(r < R) = µo

[
~H(r < R) + ~M(r < R)

]
= µo

[
~B0

µo
−

~M(r < R)

3
+ ~M(r < R)

]

= ~B0 +
2

3
µo

~M(r < R) =

(
3µ

2µo + µ

)
~B0 (6.97)
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Explicitly, we find that:

I Like ~E , ~H is uniform inside the sphere and points in the direction of the uniform
field. For χm > 0, like for χe > 0, it is smaller in magnitude than the uniform
field at infinity.

I The magnetization density is in the direction of the uniform field for χm > 0 as
it was for ~P and χe > 0.

I The magnetostatic surface charge density has a cos θ dependence and is positive
at the north pole for χm > 0, as it was for the electrostatic surface charge
density and χe > 0.

I ~B is enhanced relative to the uniform field for χm > 0. We did not calculate ~D
in the electrostatic case, but we would have found that it, too, was enhanced
relative to the uniform field.

We again see the fact that ~H corresponds to ~E and ~B to ~D. In the electrostatic case,
we noted how the field of the polarization counters the uniform field so that the total
field inside the sphere is smaller in magnitude than the uniform field. That is true here
too, but for ~H, not for ~B. ~B itself is enhanced inside the sphere! This difference in the
behavior of the “true” fields arises directly from the above somewhat unexpected
correspondence of ~H rather than ~B to ~E .

Section 6.4.5 No Free Currents, Linear Materials via Scalar Potential Page 416



Section 6.4 Magnetostatics in Matter: Boundary Value Problems in Magnetic Materials

There is a shortcut method that is much faster, so good to know from the point of
view of technique. It makes the ansatz that the sphere magnetizes uniformly so then
the total field is the superposition of a uniform field and a uniformly magnetized
sphere (Equation 6.22). This assumption is made initially without relating ~M and ~H.

It then uses the relation ~M = χm
~H (equivalently, ~B = µ ~H) to relate the two and

solve for the fields.

The ansatz based on superposition gives

~B(r < R) = ~Buniform + ~Bsphere = ~B0 +
2

3
µo

~M (6.98)

~H(r < R) = ~Huniform + ~Hsphere = ~Huniform +

(
~Bsphere

µo
− ~Msphere

)

=
~B0

µo
− 1

3
~M (6.99)

Then we apply ~B(r < R) = µ ~H(r < R) to relate the above two equations and solve

for ~M. One finds one gets the same result. One can then calculate the field at r ≥ R
from superposition. Admittedly, this technique is somewhat backhanded; when trying
to understand things for the first time, reapplying the scalar potential to the full
problem is more straightforward.
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Example 6.6: Magnetically Permeable Spherical Shell

Consider a spherical shell of inner radius a and outer radius b consisting of a highly
permeable (µ/µo � 1) material placed in a uniform external field ~B0. We shall see
that this shell shields its inner volume from the external field by a factor µ/µo . This
technique is of great importance for magnetically sensitive experiments and equipment.

There are no free currents, so we may use the magnetostatic scalar potential
technique. Furthemore, ~∇ · ~H = 0 in each region since µ is constant in each region.
So the scalar potential VM satisfies Laplace’s Equation, allowing us to apply our
techniques for the solution of Laplace’s Equation from electrostatics.

In particular, given the azimuthal symmetry, we may assume the solution in each of
the three regions is of the form given in Equation 3.113:

VM (r < a, θ) ≡ V1(r , θ) =
∞∑
`=0

A` r`P`(cos θ) (6.100)

VM (a < r < b, θ) ≡ V2(r , θ) =
∞∑
`=0

(
C` r` +

D`

r`+1

)
P`(cos θ) (6.101)

VM (r > b, θ) ≡ V3(r , θ) = −H0 r cos θ +
∞∑
`=0

E`

r`+1
P`(cos θ) (6.102)

where we have already applied the requirements that VM be finite as r → 0 and that
it yield the uniform field as r →∞ with H0 = B0/µo . We have also assumed that VM

has no constant offset as r →∞.
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There are no free currents, so our matching conditions are (as for the magnetically

permeable sphere, Equations 6.90 and 6.91) that the normal component of ~B and the

tangential component of ~H be continuous. Using ~H = −~∇VM , we thus have the four
conditions

µo
∂V1

∂r

∣∣∣∣
a

= µ
∂V2

∂r

∣∣∣∣
a

µ
∂V2

∂r

∣∣∣∣
b

= µo
∂V3

∂r

∣∣∣∣
b

(6.103)

∂V1

∂θ

∣∣∣∣
a

=
∂V2

∂θ

∣∣∣∣
a

∂V2

∂θ

∣∣∣∣
b

=
∂V3

∂θ

∣∣∣∣
b

(6.104)

Note that we do not impose continuity on VM . In the electrostatic case, we imposed
continuity of V and the boundary condition on the normal derivative, ignoring
continuity of the tangential derivative. In electrostatics, continuity of V comes from
constructing it as the line integral of the electric field, which we in turn were motivated
to write down in order to calculate the work done by the electric field on a point
charge. Since ~H does not do such work, writing down the line integral is not physically
motivated, though it is mathematically reasonable to do so because ~H = −~∇VM . So,
here, we instead use continuity of the radial and tangential derivatives. This is an
arbitrary choice driven by our physical intuition. We will see below that continuity of
VM would yield information redundant with tangential derivative continuity.
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Before we dive into a lot of calculation, let’s see what we can figure out without doing
much work. The radial derivative equations only connect terms on the two sides of the
equations with the same ` because they do not modify the orthonormal P`(cos θ).
What about the angular derivative equations? Recall Equation 3.154:

Pm
` (x) = (−1)m(1− x2)m/2 dm

dxm
P`(x) (6.105)

Let’s write ∂P`(cos θ)
∂θ

using this:

∂P`(cos θ)

∂θ
=

dP`(cos θ)

d cos θ

d cos θ

dθ
=

P1
` (cos θ)

(−1)1(1− cos2 θ)1/2
(− sin θ) (6.106)

= P1
` (cos θ) (6.107)

where we note that, since 0 < θ < π, there is no sign ambiguity and thus
sin θ = (1− cos2 θ)1/2. The P1

` (cos θ) are also orthonormal polynomials (the Pm
` over

all ` at fixed m form an orthonormal set in order for the Y`m to form an orthonormal
set), so the same point we made above about the equations connecting terms at the
same ` holds for these equations also. Note however that, for ` = 0, the ∂/∂θ
matching condition yields zero.

Note also that, for ` ≥ 1, these equations are the same as one would have obtained by
requiring continuity of VM since ∂/∂θ doesn’t modify the radial factor of each term.
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Taking the necessary derivatives for the radial derivative equations and then equating
the two sides of all six equations (four for ` > 0, only two for ` = 0) term-by-term
gives us:

` > 0 : µo `A`a
`−1 = µ `C` a`−1 − µ (`+ 1)

D`

a`+2
(6.108)

µ `C` b`−1 − µ (`+ 1)
D`

b`+2
= −µo H0 δ`1 − µo (`+ 1)

E`

b`+2
(6.109)

A` a` = C` a` +
D`

a`+1
(6.110)

C` b` +
D`

b`+1
= −H0b δ`1 +

E`

b`+1
(6.111)

` = 0 : 0 = −µ D0

a2
−µ D0

b2
= −µo

E0

b2
(6.112)

We explicitly write out the ` = 0 equations because they yield qualitatively different
conditions than the ` > 0 terms.
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For ` > 1, solving for C` and D` results in both vanishing, so then A` and E` vanish
for ` > 1.

For ` = 0, the radial derivative matching equations imply D0 = E0 = 0. We expect
E0 = 0 because it would yield a magnetic monopole potential for r > b, which we
know is physically disallowed.

There are no equations that explicitly determine A0 and C0, which correspond to
offsets of VM for r < a and a < r < b. We actually don’t need to find them, since
they do not affect ~H when the gradient is taken. (Recall, there is no issue of this
potential being related to work or a potential energy, so we do not need to worry
about discontinuities due to offsets.) But we can specify them by applying a restricted
version of continuity of VM , which is that we require VM have the same offset in all
regions. The lack of an offset for r > b then implies A0 = 0 and C0 = 0.
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For ` = 1, we can do a lot of algebra to find explicit formulae for all the coefficients
(you can find these in Jackson §5.12). These formulae are not particularly
illuminating, but they become more intuitive when we take the limit µ/µo � 1.
Inserting those coefficients into the solutions, we obtain

V1(r , θ)

µ
µo
�1

= A1 r cos θ = − 9

2 µ
µo

(
1− a3

b3

) H0 r cos θ (6.113)

V2(r , θ)

µ
µo
�1

=

(
C1 r +

D1

r2

)
cos θ = − 3

µ
µo

(
1− a3

b3

) H0

(
r +

1

2

a3

r2

)
cos θ (6.114)

V3(r , θ)

µ
µo
�1

=

(
−H0 r +

E1

r2

)
cos θ = H0

−r +
b3

r2

1−
3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

)
 cos θ

(6.115)

Note that we include the term of order µo/µ in the r > b solution so we can see that
the matching condition on the tangential derivative at r = b (equivalent to matching
of VM itself) is explicitly satisfied even in the limit µ/µo � 1.
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Here are the resulting fields in the three regions:

~H1(r , θ)

µ
µo
�1

= −9

2

H0 ẑ

µ
µo

(
1− a3

b3

) ~B1(r , θ) = µo
~H1(r , θ) (6.116)

~H2(r , θ)

µ
µo
�1

=
3 H0 ẑ

µ
µo

(
1− a3

b3

) +
3 ( ~ma · r̂) r̂ − ~ma

4π r3
~B2(r , θ) = µ ~H2(r , θ) (6.117)

~H3(r , θ)

µ
µo
�1

= H0 ẑ +
3 ( ~mb · r̂) r̂ − ~mb

4π r3
~B3(r , θ) = µo

~H3(r , θ) (6.118)

with ~ma = −9

2

H0

µ
µo

(
1− a3

b3

) (4π

3
a3

)
ẑ (6.119)

~mb = 3

1−
3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

)
H0

(
4π

3
b3

)
ẑ (6.120)

It is not obvious but it is true that ~mb incorporates ~ma, which is why there is no
explicit contribution from ~ma to the field at r > b. We will see this more clearly below.
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The following features can be pointed out:

I Inside r < a, we have a uniform field weakened by a factor of µ/µo (for both B
and H).

I In the permeable material, we have a uniform H field as well as a dipole field,
but both are of order (µo/µ) H0 (i.e., attenuated) with the dipole moment
pointed to −ẑ. The dipole field cancels the uniform field at the poles at r = a
and adds to it at the equator.

I In the permeable material, the B field receives a factor of µ, so the B field
receives uniform field and dipole contributions of order B0 in the permeable
material, though the vanishing at the poles at r = a remains.

I One caveat to the above two statements is due to the (1− a3/b3) factor in the
denominator of both terms (explicitly in the first term, hiding in ~ma in the
second term). If the shell is quite thin, then a/b is close to unity and this factor
is much smaller than unity, resulting in an enhancement in both H2 and B2 by
the geometric factor (1− a3/b3)−1. This factor accounts for the fact that
magnetic field lines cannot be broken, and so the vast majority of the field lines
that would have threaded through the r < b region (a fraction 1− µo/µ of
them) now must flow entirely through the a < r < b region: the factor is the
ratio of the volume of the sphere of radius b to the volume of the shell.

I Finally, the field outside is the uniform field (for H and B) plus that of a dipole
in the +ẑ direction. The dominant part of the dipole field cancels the uniform
field at the equator at r = b, leaving a small residual field of order µo/µ smaller.
At the poles, the dipole field adds to the uniform field, increasing the fields to
3 H0 and 3 B0 there.
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Here is a picture from Jackson of ~B. Note the concentration of field lines in the
permeable material and their absence in the empty central region.

c© 1999 Jackson, Classical Electrodynamics
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Let’s now consider the analogy to electrostatic shielding. Electrostatic shielding is
easily provided by conductors, and perfect conductors (ε/εo →∞) provide perfect
electrostatic shielding. They do this by setting up surface charge that perfectly cancels
the externally applied field.

The magnetostatic shielding effect is very similar, though it occurs for completely
different reasons. In this case, the high magnetic permeability of the materials causes
magnetic dipoles to be set up to almost perfectly cancel the externally applied
magnetic field (a residual field of order µo/µ times the externally applied field reaches
the interior). This occurs because the oriented dipoles yield a large bound surface
current whose magnetic field cancels the externally applied magnetic field. If one had
the equivalent of an electric conductor, with µ/µo →∞, the shielding would be

perfect, as for an electric conductor. In such a material, H → 0 and ~M = ~B/µo , just

as in a perfect conductor one has E → 0 (and ~P = ~D).

That said, one could calculate the magnetostatic surface charge density σM from the
discontinuity in ~M and one would see that σM would look very much like σb for the
case of a spherical shell of high dielectric susceptibility (ε/εo � 1) and, in the limit
µ/µo →∞, σM would mimic the surface charge density of the electrical conductor
limit (which is the same as ε/εo →∞).

Either way one does it, this calculation has important practical implications: such
highly permeable materials are in widespread use for magnetic shielding from,
especially, Earth’s field in magnetically sensitive experiments and equipment such as
SQUIDs (very sensitive magnetometers) and photomultiplier tubes (where the
electrons’ paths can be substantially bent and thus the gain modified by magnetic
fields).
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While we have benefited from our boundary-value problem techniques to get directly
to the fields without having to calculate the bound surface currents, it would be nice
to see how the bound surface currents give the observed fields. Recall Equation 5.75,
which gives the bound surface current density from the change in the tangential
component of the magnetic field:

~K(~r) =
1

µo
n̂(~r)×

[
~B>(~r)− ~B<(~r)

]
(6.121)

where n̂ points from the < region to the > region. In our case, ~K = ~Kb because there
are no free currents. Since n̂ = r̂ for our spherical surfaces and ~B only has
components in the r̂ and θ̂ directions, this reduces to

Kb(r) φ̂ =
1

µo

[
B>,θ − B<,θ

]
φ̂ =

1

µo

[
−µ>

r

∂VM

∂θ

∣∣∣∣
r>

+
µ<

r

∂VM

∂θ

∣∣∣∣
r<

]
φ̂ (6.122)

=
µ< − µ>

µo

1

r

∂VM

∂θ

∣∣∣∣
r

φ̂ (6.123)

where < and > indicate the two sides of the particular boundary at r and we use the
fact that the tangential component of ~H, which is given by −(1/r) ∂VM/∂θ here, is
continuous and thus has the same value on both sides of the interface at r . So it is
straightforward to calculate the surface currents given VM .
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We also know how to calculate ~B given surface currents derived from a uniform
magnetization: we did it in our first calculation of the magnetic field of the
permanently magnetized sphere (Equation 6.22) and saw (valid only for ~Kb ∝ φ̂ sin θ!)

~B ~M
(r < R) =

2

3
µo

~M =
2

3
µo

~Kb · φ̂
sin θ

ẑ

~B ~M
(r > R) =

µo

4π

3 ( ~m · r̂) r̂ − ~m

r3
~m =

4

3
π R3 ~M =

4

3
π R3

~Kb · φ̂
sin θ

ẑ

where the relation between ~M and ~Kb comes from the definition of the bound surface
current, ~Kb = ~M × n̂ = M ẑ × r̂ = φ̂M sin θ. This applies here because the directions
of the magnetizations and surface currents are the same as we have here. (The fact

that we have permeable materials present is irrelevant for the calculation of ~B: once
one has all the bound currents, one can calculate ~B directly from them.) So, we
expect that, in this case, we can just add the field of the above form due to the bound
currents to the uniform applied field to get the total field in the three regions.
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That is, we expect (again, valid only for ~Ka, ~Kb ∝ φ̂ sin θ!)

~B1(r , θ) = ~B0 +
2

3
µo

~Kb(a) · φ̂+ ~Kb(b) · φ̂
sin θ

ẑ (6.124)

~B2(r , θ) = ~B0 +
2

3
µo

~Kb(b) · φ̂
sin θ

ẑ +
µo

4π

3 ( ~ma · r̂) r̂ − ~ma

r3
(6.125)

~B3(r , θ) = ~B0 +
µo

4π

3 ( ~mb · r̂) r̂ − ~mb

r3
(6.126)

~ma =
4

3
π a3

~Kb(a) · φ̂
sin θ

ẑ ~mb = ~ma +
4

3
π b3

~Kb(b) · φ̂
sin θ

ẑ (6.127)

and then we can obtain ~H from the usual relation ~H(~r) = ~B(~r)/µ(~r). Note that we
now see explicitly that ~mb incorporates ~ma as we had stated without proof above.
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There is an important subtletly in trying to do this calculation of surface currents
using the approximate forms for the fields we have written down (valid for µo/µ� 1).

We expect the magnetic field for r < a to be of order (µo/µ) B0. But ~B0 is in the

expression for ~B1, so that implies the second term in that expression due to the surface
currents will carry one term of order B0 to cancel B0 and then a second term of order
(µo/µ) B0 to give the residual field. As we explained above, our expressions for the
contribution of the surface current to the field are of the following form for r . b:

BK ∼ µo K ∼ ±µo
µ− µo

µo

1

r

∂VM

∂θ
∼ µo

(
µ

µo
− 1

)
Hθ (6.128)

∼ µo

(
O
(
µ

µo

)1

+O
(
µo

µ

)0
)
O
(
µo

µ

)1

H0 (6.129)

∼
[
O
(
µo

µ

)0

+O
(
µo

µ

)1
]

B0 (6.130)

(In the second line, we used H ∼ O(µo/µ)1H0, which one can see from the

expressions for ~H1 and ~H2. It is not so obvious that this is true for ~H3 at r ∼ b, but it
must be true because Hθ is continuous. It turns out to be true because the dipole
field cancels the applied field to first order in H0 (i.e., zeroth order in µo/µ) at the
equator, leaving a residual field of order O(µo/µ)1H0. The cancellation does not
happen at the poles, but Hθ = 0 at the poles.)
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We now see the problem. The term that is O(µo/µ)0 will cancel the ~B0 term. So then
the O(µo/µ)1B0 term is all that is left and is our full field, as expected. But we have
not done the approximation self-consistently. We would have obtained a term of the
same order by including terms O(µo/µ)2 in the expression for H because they would
yield O(µo/µ)1 terms when multiplied by the O(µ/µo )1 term from the (µ/µo − 1)
prefactor. Without including that term, we will get the incorrect coefficient for the
residual field.

We could have included that higher order term, but then we would run into the same
problem at the next order: our calculation of the field using the surface currents would
be correct to O(µo/µ)1, but our expression for the fields would have terms of order
O(µo/µ)2 that we would not be able to fully reproduce. Given that it would be
algebraically challenging to do this even to O(µo/µ)1 correctly, we punt on trying to
calculate the residual field.
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However, we can self-consistently check our results (Equations 6.116-6.120) to
O(µo/µ)0, so let’s do that because it will show us that the zeroth order field does
vanish at r < a and it will tell us interesting things for other regions. The explicit
results for the bound surface currents are

~Kb(a, θ) =
µ< − µ>

µo

1

a

∂VM

∂θ

∣∣∣∣
a

φ̂ = −φ̂
(
µ

µo
− 1

)
9

2 µ
µo

(
1− a3

b3

) B0

µo
sin θ

O(µo/µ)0

≈ −φ̂ 9

2
(

1− a3

b3

) B0

µo
sin θ (6.131)

~Kb(b, θ) =
µ< − µ>

µo

1

b

∂VM

∂θ

∣∣∣∣
b

φ̂ = φ̂

(
µ

µo
− 1

) 3
(

1 + 1
2

a3

b3

)
µ
µo

(
1− a3

b3

) B0

µo
sin θ

O(µo/µ)0

≈ φ̂
3
(

1 + 1
2

a3

b3

)
(

1− a3

b3

) B0

µo
sin θ (6.132)
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First, for r < a, we have, to zeroth order in µo/µ,

ẑ · ~B1(r , θ)
O(µo/µ)0

≈ B0 +
2

3

B0

1− a3

b3

[
−9

2
+ 3

(
1 +

1

2

a3

b3

)]
= 0 (6.133)

ẑ · ~H1(r , θ) =
~B1(r , θ)

µo

O(µo/µ)0

≈ 0 (6.134)

As expected, both the magnetic and auxiliary fields vanish to zeroth order in µo/µ
inside the cavity.
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For a < r < b, we have

ẑ · ~B2(r , θ)
O(µo/µ)0

≈ B0 +
2

3

B0

1− a3

b3

(3)

(
1 +

1

2

a3

b3

)
+
µo

4π

3 ( ~ma · r̂) cos θ −ma

r3

=
3 B0

1− a3

b3

+
µo

4π
ma

3 cos2 θ − 1

r3
(6.135)

ẑ · ~H2(r , θ) =
~B2(r , θ)

µ

O(µo/µ)0

≈ 0 (6.136)

with ~ma
O(µo/µ)0

≈ − 4π

3
a3

(
9

2

)
1

1− a3

b3

B0

µo
ẑ (6.137)

The total magnetic field in the permeable material is of order B0 because both terms
shown are of order B0. In the limit a� b, one recovers 3 B0 as we expect from the
case of the permeable sphere (Equation 6.97 with µo/µ→ 0). The auxiliary field
vanishes in the permeable material to order (µo/µ)0 because one must divide the
entire expression by µ to get H from B, which combines with the µo in the expression
for B to give a prefactor of µo/µ that vanishes at the level of approximation we are
considering.
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Finally, let’s look at r > b, for which we obtain

ẑ · ~B3(r , θ)
O(µo/µ)0

≈ B0 +
µo

4π

3 ( ~mb · r̂) cos θ −mb

r3
(6.138)

with ~mb

O(µo/µ)0

≈ 4π

3

1

1− a3

b3

B0

µo

[
−9

2
a3 + b3 (3)

(
1 +

1

2

a3

b3

)]
ẑ

= 3

(
4π

3
b3

)
B0

µo
ẑ (6.139)

ẑ · ~H3(r , θ) =
~B3(r , θ)

µo
(6.140)

One can see that the expressions for ~B0 and ~mb match to zeroth order in µo/µ the
results we obtained via the boundary value problem technique, Equations 6.116-6.120.
The expression for H has the same form with B0 replaced by H0 and it also matches
the expressions we obtained earlier, again to zeroth order in µo/µ.

So, in the end, we see that, to the level of approximation for which we can
self-consistently do calculations, the fields we calculate from the surface currents
match the fields that we used to calculate those surface currents.
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Nonlinear Materials and Ferromagnetism

There are materials whose magnetic response is nonlinear. In such materials, in
addition to the tendency of magnetic dipoles due to unpaired electrons to align with
the applied magnetic field, these dipoles interact with each other in such a way as to
prefer aligning with each other, too. This extra preference for magnetization causes
the magnetization to depend nonlinearly on ~H.

Beyond nonlinearity, there is the phenomenon of ferromagnetism, in which there are
additional interactions that cause the magnetization to be preserved even after the
applied field is reduced.

Both phenomena are caused by unpaired electrons as paramagnetism is; one might
have guessed this by the fact that all three phenomena involve the alignment of
magnetic dipoles with the applied field. The additional dipole-dipole interaction that
causes nonlinearity is due to the exchange effect in quantum mechanics. We will
explain this in the following.
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The Exchange Effect in a Single Atom: Hund’s Rules

As you know, electrons in atoms occupy shells corresponding to different energies for
the electron-nucleus Coulomb interaction. Only a certain number of states are allowed
for each shell (n2 for shell n), and electrons can be put in a shell with spin “up” or
spin “down” (multiplying by 2 the number of allowed states).

When a shell is partially filled, the electrons prefer to be unpaired, meaning that they
have different orbital wavefunctions (probability distributions) and the same spin
direction (i.e., aligned spins) rather than the same orbital wavefunction and different
spin directions. This behavior, where electrons prefer to be in different orbitals but
have the same spin, is frequently termed Hund’s Rules.

The reason for this preference against having the same orbital wavefunction is that the
electrostatic repulsive energy of two electrons in the same orbital state is high: in
quantum mechanics, that energy is determined by the integral of the product of their
wavefunctions weighted by 1/|~r − ~r ′| where ~r and ~r ′ are their positions, so the less
similar their wavefunctions are, the lower the (positive) electrostatic repulsive energy is.
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Next, considering the Pauli exclusion principle, the overall state (spatial wavefunction
and spin) must be antisymmetric under exchange of the two electrons. One could
achieve this by taking the spatial wavefunction to be antisymmetric and the spin state
to be symmetric under exchange or vice versa. It turns out that, when one calculates
the Coulomb repulsion energy integral, there is a second term that arises due to the
extra terms created by requiring the overall state to be symmetric or antisymmetric
under exchange. Moreover, because of the symmetry constraints on the overall state,
this exchange term is negative when the spin state is symmetric and positive when it
is antisymmetric. Thus, the exchange term ensures that, not only must the overall
state be antisymmetric with the two electrons in different spatial wavefunctions, but
also that the antisymmetry must be in the spatial wavefunction, not the spin state.

With the above, it would still be possible for the electrons to either have the same spin
projection or for them to have opposite spin projections and the spin state to be the
symmetric combination of the two possible anti-aligned states. It turns out that
spin-orbit coupling causes the latter state to be higher energy, so the case in which the
two electrons are aligned is preferred. Thus, we are able to explain Hund’s Rules.
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The Exchange Effect Among Atoms: Nonlinearity

In addition, though, one needs a mechanism for unpaired electrons in nearby atoms to
align with each other; alignment of the unpaired electrons in a single atom is not
enough. A similar exchange interaction is required, of which there are many types that
depend on the details of the material and how the electrons in nearby atoms interact.
The key requirement for such exchange effects to occur, though, is delocalization —
the electron wavefunctions must be large enough that they spread to nearby atoms —
so that there can be exchange interactions between electrons in adjacent atoms. This
explains why nonlinearity occurs only in atoms with d- and f -shell electrons — the
electrons in these orbitals are more weakly bound than s- and p-shell electrons,
providing the necessary delocalization.

The exchange interaction leads to a nonlinear magnetic permeability, where these
interactions cause the magnetic dipoles to prefer to align with each other
macroscopically when they have been nudged into alignment by an applied field. This
would yield a relationship of the form ~B = ~F ( ~H), which cannot be summarized by a
simple constant of proportionality, but the relation is at least well-defined.
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Interactions with the Crystal: Ferromagnetism

Ferromagnets have domains, which are regions of coaligned magnetic dipoles, caused
by the aforementioned nonlinearity: it is energetically favorable for the magnetic
moments of unpaired electrons in nearby atoms to align. By default, these domains
are macroscopic in size (fractions of a mm, perhaps), but they do not align with each
other because alignment would create a large magnetic field outside the material,
which is not a low-energy state (which we will see when we talk about magnetic
energy). When a large field is applied, though, the energy cost of not aligning with the

magnetic field ( ~m · ~Bapplied ) is larger than the energy savings of not having a large field

energy (|~Bmaterial |), and so the domains align with the applied field.

We then must consider the phenomenon of saturation, whereby, at large fields, one
gets to the point where all the unpaired electrons’ dipole moments are aligned with
the field and there are no more magnetic dipoles left to align. The magnetization
density stops increasing and saturates. The applied field ~H may continue to be
increased, but ~B = µo ( ~H + ~Msat ), where ~Msat is the saturated magnetization density.

Thus, ~B increases due to the first term only. (At lower fields, ~M increases with ~H,

leading to a large amplification of ~H to yield ~B.)
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After bringing a nonlinear paramagnetic material into saturation, what happens when
one turns off the applied field? The large exchange interaction energy makes it
favorable for the moments to remain aligned with the direction of the applied
magnetic field that has been removed. It is not that full alignment is the
lowest-energy state, but that there is an energy barrier between the fully aligned state
and the lower-energy state with randomly aligned domains. In fact, to reduce ~M and
~B to zero requires a significant ~H in the direction opposite to ~B. After ~B goes
through zero, it can then begin to align with ~H again and one can reach saturation in
the other direction. And so on.

This phenomenon of the magnetization (and thus ~B) being dependent on past history

is called hysteresis: not only is ~B a nonlinear function of ~H, but, in addition, ~B
depends on the history of ~H. Hysteresis curves are shown in Griffiths Figures 6.28 and
6.29.

The exchange phenomenon explains why ferromagnetics becomes less magnetized if
they are dropped. The mechanical shock of dropping provides enough vibrational
energy to exceed the barrier between the fully aligned state and the random domain
state, allowing the domains to randomize in direction again.
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We note that ferromagnets have a Curie or transition temperature, Tc . This
temperature corresponds to roughly the exchange energy of nearby dipoles. When the
temperature is larger than Tc , the thermal energy available overcomes the exchange
energy, causing magnetic ordering to go away. If a saturated ferromagnetic is raised
above Tc , the ordering will dissipate. Then, when recooled in zero applied field,
randomly oriented domains will appear but there will be no overall ordering of the
magnetic dipoles. Cooling in a high enough applied field, by contrast, will result in
magnetic ordering and a permanent ~M.

There is not much more we can say about ferromagnetism without considering specific
cases.
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Currents and Ohm’s Law

Ohm’s Law and Joule Heating: Differential Version

We state the very nonobvious point that the current due to an ensemble of flowing
charges is proportional to the force on a single charge ~f acting on them:

~J ∝ ~f (7.1)

Since current is proportional to velocity, and force is proportional to acceleration, why
is this true? In an ideal conductor, it would not be true, we would expect current to
be proportional to the integral of the force over time. But in all real conductors, there
are two important effects that change this picture:

I The first is the random thermal motion of the charge carriers. The forces we
can apply yield velocities that are small perturbations to this random thermal
motion. So the mean speed of the carriers is dominated by the thermal speed
vthermal . This thermal motion is even larger than would be obtained from
thermal equipartition, mv2

thermal/2 = 3kB T/2, because Fermi exclusion causes
the electrons active in electrical conduction to have quite high energies (the
Fermi energy). In Cu, for example, they have TF = 80, 000 K and
vthermal = vF = 1600 km/s in Cu.

I The second is scattering, which is the cause of the randomness of the thermal
motion. The charge carriers scatter off of impurities, defects, and thermal
vibrations present in the material. This scattering is elastic in general, resulting
in no loss of energy but in a redirection of velocity.
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In the presence of such effects, our picture should not be of a charge carrier smoothly
accelerating under the influence of an external force, but rather of a carrier with a
large randomly directed velocity, scattering frequently, and with acceleration by the
force between scatters resulting in a net motion in the direction of the electric force.
The scattering randomly redirects the velocity, so the velocity due to the externally
applied force is, on average, reset to zero after each collision. If the thermal speed is
vthermal and the typical distance traveled between scatters is λ, then the time available
for the externally applied force to accelerate a carrier between scatters is

t =
λ

vthermal
(7.2)

The average velocity acquired from the applied force during this time is

~vave =
1

2
~a t =

1

2

~f

m

λ

vthermal
(7.3)

This velocity is the average overall velocity because of the zeroing of the
instantaneous velocity after each collision.
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If we then use ~J = n q ~vave where n is the number density of charge carriers and q is
the charge per carrier, and we use ~f = q ~E , we then can write

~J =

(
n q2 λ

2 m vthermal

)
~E =⇒ ~J = σ ~E σ =

n q2 λ

2 m vthermal
(7.4)

Thus, we see our earlier expression is justified. This is Ohm’s Law.

There is power dissipated in this process — the work done on the charge carriers by
the electric field is lost to random motion when they scatter. The inifinitesimal
amount of energy lost per unit time dP in an infinitesimal volume dτ is equal to the
work done by the electric field on the charge carriers:

dP = number density · velocity · force

carrier
dτ = n ~vave · ~f dτ = n

~J

n q
· q ~E dτ = ~J · ~E dτ

(7.5)

This is known as Joule Dissipation or Joule Heating.

We note that the possibility of ~E 6= 0 does not contradict our earlier discussions of
conductors in electrostatics; here, we have non-stationary charges, where in that case
we considered the final static situation after any currents had flowed.
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Integral Version of Ohm’s Law and Joule Heating

We integrate the above to obtain a more familiar version of Ohm’s Law. We start with:

I =

∫
S

da n̂ · ~J =

∫
S

da σ n̂ · ~E (7.6)

Let’s assume the cross-sectional area of the conductor is constant and the conductor is
uniform. This lets us do the area integral trivially, yielding I = σ A n̂ · ~E . If we then do
a line integral directed along the wire, such that d ~̀∝ n̂, we have

I` =

∫
d` I = σ A

∫
d` n̂ · ~E = σA

∫
d ~̀ · ~E = σA V (7.7)

=⇒ V = IR with R =
`

A

1

σ
≡ `

A
ρ and ρ =

1

σ
(7.8)

which is the familiar version of Ohm’s law in terms of current, voltage, and resistance.
This is the integral version of Ohm’s Law while ~J = σ ~E is the differential (or local)
version. We also define the resistivity ρ as the reciprocal of the conductivity σ. We
can also integrate the Joule heating expression to get the usual integral expression for
Joule heating:

P =

∫
V

dP =

∫
V

dτ ~J · ~E =

∫
S

da

∫
d`

I

A
n̂ · ~E = IV = I 2R =

V 2

R
(7.9)
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Steady-State Assumption and Uniform Conductivity =⇒ Zero Charge Density

Do we need to worry about charge accumulation in conductors? Let’s calculate the
divergence of ~E to find the charge density, assuming uniform conductivity:

~∇ · ~E =
1

σ
~∇ · ~J = 0 (7.10)

where the first step was possible by Ohm’s Law and the assumed uniformity of the
conductivity and the second step by the steady-state assumption on macroscopic
scales. So the answer is no, as long as the conductivity is uniform and the system is
steady-state, no charge density accumulates. Note that this is not a circular argument:
the steady-state assumption corresponded to ∂ρ/∂t = 0, not ρ = 0. Now, with the
combination of ∂ρ/∂t = 0 and Ohm’s Law, we conclude ρ = 0.

Later, we will see how it is possible for charge to accumulate when we consider
non-steady-state systems (in particular, with sinusoidal currents).

Note that our microscopic picture is not consistent with the steady-state assumption,
but, averaged over time, our macroscopic picture is.
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Uniformity of Electric Field in a Uniform Wire

We implicitly assumed in proving the integral version of Ohm’s Law above that the
uniformity of the conductor implied that the field and thus the current were uniform
over the cross-sectional area. We can prove this. We did not explicitly require that the
electric field also be uniform with position along the wire, but we can prove that, too.

We define a uniform conductor to be one with uniform conductivity and uniform
cross-sectional area.

We proved above that the charge density vanishes in a uniform conductor with steady
currents. Therefore, the conductor satisfies Laplace’s Equation. Dirichlet boundary
conditions are set at the two ends of the conductor by the potential difference ∆V .
We assume these equipotentials are (by connections to a battery) transverse to the

wire axis at z = 0 and z = `. On the outer surface of the wire, ~J · n̂ = 0 because no
current flows out of the wire, which implies that ~E · n̂ = 0, which provides a boundary
condition on the normal gradient of the potential (a Neumann boundary condition).
(Equivalently, this implies the charge density vanishes at the surface.)
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We guess a solution that satisfies these boundary conditions,

V (~r) =
∆V

`
z =⇒ ~E = −~∇V = −∆V

`
ẑ (7.11)

Note that we do not need the sinusoidal solutions from separation of variables here —
we only need the linear solution (which we ignored in our discussion of separation of
variables in linear coordinates). This will be of relevance for the homework, too!

This linear solution satisfies the boundary conditions — equipotential surfaces at
z = 0 and z = ` and vanishing normal derivative at the outer surface (whose normal is
always perpendicular to ẑ) — and therefore it must be the solution.

Therefore, it is valid to assume that the field is uniform over the cross-sectional area
of the wire and along the length of the wire if the wire is of fixed cross-sectional area,
the conductivity is uniform, and the currents are steady-state. The latter two
conditions told us Laplace’s Equation is satisfied, while the former one provided the
z-translation symmetry needed to guess the solution.

What happens to this argument if the wire changes in some way along its length; e.g.,
the conductivity changes, or the wire diameter changes?
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Motional Electromotive Force

We deviate from Griffiths somewhat in the introduction of electromotive forces; his
§7.1.2 just seems confusing.

Moving Rectangular Loop

Consider a rectangular loop with a resistor in it with part of the loop’s area
intersecting a region of uniform magnetic field perpendicular to the loop into the page,
as shown in the figure.

~B
⊗

c© 2013 Griffiths, Introduction to Electrodynamics
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Let’s consider the force on a charge carrier in the portion of the wire that intersects the
field. If ~v = v x̂ and ~B = −B ẑ (into the page), then these charges feel a Lorentz force

~Fmag = (q v x̂)× (−B ẑ) = q v B ŷ (7.12)

Since this force is aligned with the vertical portion of the wire, the carriers in that
section can move. Assuming for the moment the charge carriers are positive (the
argument can be reversed if they are negative), they would start to collect at b at the
top end of the vertical portion and a deficit would appear at a at the bottom end. The
local electrostatic repulsion between like charges would cause the charge carriers to
start flowing through the rest of the circuit and would prevent this clumping of
carriers. In this way, a current is generated around the loop without the influence of a
large-scale electric field in the circuit. If the loop is pulled at constant speed, one
satisfies the steady-state assumption, with no charge buildup.
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There is work done on a charge carrier during its movement up the vertical portion of
the wire

Wab =

∫ b

a
d ~̀ · ~Fmag = q v B h (7.13)

We will see below that this work is not done by the Lorentz force as suggested above
(recall, the Lorentz force can do no work because ~Fmag ⊥ ~v), but it is nevertheless
done. The energy gained by the charge carriers via this work is dissipated as Joule
heating in the resistor because the carriers quickly reach some steady-state velocity
and a steady-state current flows.

We define the work done per unit charge on the charges as they move from a to b as
the motional electromotive force or motional emf:

E =
Wab

q
= v B h (7.14)
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Let’s think about how we can interpret E. Let I be the current that flows. I is q times
the number of charges that flow per unit time past a given point. Therefore I E is the
power being supplied to the ensemble of charges, the work done on them per unit
time. By conservation of energy, it is also the power being dissipated in Joule heating
in R. But we know that latter quantity is also I2R. Equating the two, we see

E = IR (7.15)

That is, E plays the role of voltage in Ohm’s Law for the resistor. E has the right units
for this purpose. In fact, if one attaches a voltmeter across the resistor R, it will
report a voltage V = E: a voltmeter works essentially by measuring the current in a
very large resistor R′ � R placed in parallel with R, and the current that will flow
through R′ is identical to what would flow if a battery E were placed across R with R′

in parallel. So, what appeared to just be a work done on a unit charge now can be
interpreted as equivalent to a voltage! But be sure to remember that the current is
generated by movement of the circuit in a magnetic field; it is not due to an electric
field! We will return to the distinction between E and a voltage later when we consider
electromagnetic induction and Faraday’s Law.
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Let’s now think about what force is doing the work. As we discussed some time ago,
the Lorentz force does no work because ~F ⊥ ~v . However, a force must pull the loop.
There is a force counteracting this force that the pulling force must match to keep the
loop at constant speed: the Lorentz force due to the velocity the carriers have
acquired in the ŷ direction, which we will denote by ~u = u ŷ . This force is

−~Fpull = ~F ′mag = q u ŷ ×−B ẑ = −q u B x̂ (7.16)

The total velocity of the charge carriers is

~w = ~v + ~u = v x̂ + u ŷ (7.17)

The pulling force must cancel ~F ′mag , so the work done per unit time by the pulling
force is

dWpull

dt
= ~Fpull · ~w = q u B x̂ · (v x̂ + u ŷ) = q u B v (7.18)
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Note that the charge carriers move on a diagonal line relative to the lab frame as they
move from point a to point b on the wire, with this line partly in the direction of ~Fpull .
It takes the charge carriers a time t = h/u to move on this trajectory since their ŷ

direction speed is u. Therefore, the work done by ~Fpull during the movement of a
charge from a to b is:

Wpull =
dWpull

dt

h

u
= q B v h (7.19)

=⇒ Wpull

q
= B v h = E (7.20)

That is, the work done by the pulling force, per unit charge, matches the motional
emf. The pulling force provides the energy that is eventually dissipated as heat as the
carriers flow through the resistor.

Section 7.2.1 Moving Rectangular Loop Page 459



Section 7.2 Electrodynamics: Motional Electromotive Force

Mechanically, how does this work? A magnetic field does no work, so it should only
change the direction of the velocity of the charge carriers. So, initially, when the
pulling force begins to act and the carriers start to move in the x direction and feel a
Lorentz force in the y direction, their x velocity starts to be transformed into y
velocity. But the loop is being pulled at constant speed v x̂ , so the walls of the wire
exert a force so the carriers’ x velocity remains equal to v x̂ as the magnetic force
acts. Similarly, as the carriers acquire a velocity in the y direction, they feel ~F ′mag in
the −x̂ direction, and the walls of the wire must exert a force to keep them moving at
v x̂ in the x direction. By Newton’s third law, the charge carriers exert a reaction force
on the walls of the wire, which would slow down the loop if there were not a force
pulling it. Thus, we see it is the force pulling the loop that ultimately provides the
work to drive the current.

And note: All this motion is accomplished without a large-scale electric field. Of
course, it relies on the microscopic Coulomb repulsion between like charge carriers and
the Coulomb binding to the wire that keeps the charge carriers from flying out of the
wire.
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Returning to the emf itself, we can rewrite it in a useful form. We define the magnetic
flux to be the integral of ~B dotted into the normal to a surface over the surface:

Φ =

∫
S

da n̂ · ~B(~r) (7.21)

Using the definition of x in the figure, we have in this case

Φ = B h x (7.22)

The time derivative is

dΦ

dt
= B h

dx

dt
= −B h v (7.23)

(x decreases with time for v > 0) which is just the negative of the motional emf. That
is, we have

E = −dΦ

dt
(7.24)
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Moving Arbitrary Loop

Let’s prove rigorously that this rule holds more generally for any shape of loop with
any type of motion through an arbitrary magnetic field. Consider the motion of a
closed loop of arbitrary shape over a time dt. The loop is defined by a contour C(t)
that depends on t. Each point on the loop has a velocity ~v that may depend on the
position on the loop. Regardless, each piece of the loop moves by the vector ~v dt
during this time where ~v is position-dependent. The charges in that piece of the loop
acquire a velocity ~u along the direction of the loop due to the action of the Lorentz
force during that time.

c© 2013 Griffiths, Introduction to Electrodynamics
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We can see, through some work, that the motion ~v also describes the change in the
area of and flux through the loop. The flux changes by

dΦ =

∫
S(C(t+dt))

da n̂C · ~B −
∫
S(C(t))

da n̂C · ~B (7.25)

We subscript n̂ with C to distinguish it from a different n̂ we define below. Let’s
rewrite this expression in a more usable form. Consider a closed surface that consists
of the surfaces defined by C(t) and C(t + dt) as well as the ribbon-like surface
connecting the two contours. (If the two contours were circular loops, the ribbon-like

surface would be the wall of the cylinder formed by the two contours.) ~∇ · ~B = 0 tells

us the surface integral of n̂S · ~B (where n̂S is the outward surface normal, identical to
n̂C for only some parts of the surface) through this surface vanishes. That surface
integral is related to the above integrals by

0 =

∮
closed S

da n̂S · ~B = −
∫
S(C(t+dt))

da n̂C · ~B +

∫
S(C(t))

da n̂C · ~B +

∫
ribbon

da n̂S · ~B

(7.26)

where we have used the fact that n̂S = −n̂C on the S(C(t + dt)) surface and n̂S = n̂C
on the S(C(t)) surface. (The direction of n̂C is set by the direction of d ~̀ in the figure
and the right-hand rule.) The negative sign is present in the former because the
orientation of n̂C that maintains its direction as the contour moves has n̂C(t + dt) on
this surface pointing into the enclosed volume rather than outward.
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The first two terms give −dΦ, so

dΦ =

∫
ribbon

da n̂S · ~B (7.27)

The area element on the ribbon (with outwardly directed normal as in the above
integral) is given by

n̂S da = d~r × d ~̀ (7.28)

where: d ~̀ is the line element along C(t) with orientation set by consistency with n̂C
for S(C(t)) and the right-hand rule; and d~r is the change in the vector position of
that line element between t and t + dt. The difference between these two positions is
related to ~v , d~r = ~v dt, so:

n̂S da = ~v dt × d ~̀ (7.29)

Therefore, dΦ =

∮
C(t)

(
~v dt × d ~̀

)
· ~B (7.30)

We turned an area integral into a line integral, but it still calculates magnetic flux.
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Since ~u ‖ d ~̀, we can add ~u to ~v to obtain ~w without affecting the integral:

dΦ =

∮
C(t)

(
~w dt × d ~̀

)
· ~B (7.31)

Using the cyclic property of the triple vector product, reversing the resulting cross
product ~B × ~w , and moving dt to the left side, we obtain

dΦ

dt
= −

∮
C(t)

d ~̀ ·
(
~w × ~B

)
(7.32)

The quantity ~w × ~B is just the Lorentz force per unit charge:

dΦ

dt
= −

∮
C(t)

d ~̀ ·
~Fmag

q
(7.33)

Section 7.2.2 Moving Arbitrary Loop Page 465



Section 7.2 Electrodynamics: Motional Electromotive Force

The integral of the Lorentz force per unit charge integrated around the loop is the
generalization for arbitrary loops of our earlier expression for the motional emf for the
rectangular loop (earlier, we integrated over only the section of length h from a to b

of the rectangular loop for which ~Fmag was nonzero), so

E =

∮
C(t)

d ~̀ ·
~Fmag

q
= −dΦ

dt
moving circuit (7.34)

The motional emf, as defined by the line integral of the Lorentz force per unit charge
around the loop, is given by the negative of the rate of change of the magnetic flux
through the loop. The signs of the line integral and the flux are set by requiring that
the orientation of the line integral (via d ~̀) be consistent via the right-hand rule with
the orientation of the surface normal n̂C used for the flux calculation.
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Example 7.1: Alternating Current Generator (Griffiths 7.10)

The classic and pervasive use of the above relationship is the alternating current
generator. Consider a square loop placed in a uniform magnetic field and rotated
about a midline at constant angular speed ω. That is, the rotation is such that, at one
point of the motion, the magnetic field is normal to the loop while, one fourth of the
period before or after this time, the magnetic field is in the plane of the loop. What is
the motional emf around the loop generated by this motion?

c© 2013 Griffiths, Introduction to Elec-

trodynamics

The magnetic field is constant, so the flux is
just given by B times the area of the loop pro-
jected onto the direction of ~B:

Φ(t) = a2 ~B · n̂(t) = A B cosωt (7.35)

where we have chosen n̂ ‖ ~B at t = 0 and
written a2 = A. Thus, the motional emf is

E(t) = −dΦ

dt
= A B ω sinωt (7.36)

This is of course how 60-Hz AC voltage is gen-
erated.
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It is instructive to think again about the Lorentz force experienced by the charge
carriers in the loop and see how it generates the motional emf. Let the magnetic field
be ~B = B ẑ and let the axis of rotation be +ŷ . Suppose the loop is just moving past
having n̂ = −x̂ , as shown in the figure. Then the carriers all have a velocity parallel to
±x̂ due to the motion of the loop (this is ~v). (They also have motion in the ẑ

direction, but this is parallel to ~B and thus no Lorentz force is generated.) The
carriers in the sections of the loop parallel to ẑ (perpendicular to the axis of rotation,
parallel to the field) cannot move in response to this force because they feel a force in
the ŷ direction, transverse to the section of wire they are in. Those in the parts of the
loop parallel to ±ŷ (parallel to axis of rotation) also feel a force along ŷ , and they can
move along ŷ . As the loop turns away from this orientation, the arm at +ẑ a/2 has
velocity in the +x̂ direction and vice versa for the arm at −ẑ a/2. Positive charge
carriers in these arms feel forces in the −ŷ and +ŷ directions, respectively. This forces
a current to flow in direction defined by the −n̂ = +x̂ orientation by right-hand rule,
generating a field through the loop in the −n̂ = +x̂ direction.

As the loop passes through this orientation, the flux is zero and is changing from
negative (n̂ · ~B < 0) to positive (n̂ · ~B > 0). One can see that the driven current is in
the direction needed for its field to counter the change in magnetic flux. This is a
manifestation of Lenz’s Law, which we will return to later.
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If one taps the loop as is typical for such a generator, as shown in the figure, the tap
connected to the +ẑ a/2 arm will have positive voltage and the tap connected to the
−ẑ a/2 arm will have negative voltage because they need to drive a current in an
external circuit that carries current in the direction consistent with that argued above,
from the +ẑ a/2 arm to the −ẑ a/2 arm.

Note the polarity of the above statement: we decide the sign of the voltage at the
taps not by what is needed to drive the current in the loop (which is driven by the
Lorentz force, not by this voltage) but rather by the sign needed to drive the current
in the external load (the resistor) so that current exits the loop, goes through the
load, and returns to the loop where it is needed to conserve charge.
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Electromagnetic Induction

Faraday’s Law

We are going to consider three different physical situations:

I Moving loops: As we considered above, the magnetic field is stationary but the
loop is moving.

I Moving magnetic fields: The loop is held fixed but the magnetic field is
changing because the currents sourcing the field are being translated.

I Changing magnetic fields: Both the loop and the sources of the field are
stationary, but the currents sourcing the field are changing.

We just proved using the Lorentz Force Law that the first situation results in a
motional emf: a force that causes the flow of a current around the loop, given by
Equation 7.34:

E =

∮
C(t)

d ~̀ ·
~Fmag

q
= −dΦ

dt
moving circuit (7.37)
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Faraday’s Law consists of the empirical observation that the same rule applies for the
second and third situations. The subtlety is this: this law could not have been derived
using the Lorentz Force applied to the situation described above of a fixed loop and a
moving and/or changing magnetic field: there is no magnetic force if the charge
carriers are not moving. A natural and important corollary is that the emf that
appears is not due to a magnetic force. Rather, since the loop is at rest in the second
and third situations, the force that appears arises from a true electric field.
Mathematically, we write Faraday’s Law as

E =

∮
C(t)

d ~̀ ·
~Felec

q
= −dΦ

dt
moving or changing magnetic field (7.38)

We see that it is identical in form to the Lorentz Force law applied to a moving loop
with the replacement of ~Fmag by ~Felec .
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Combining the two forms, and defining ~Eind = ~Felec/q where ind indicates that the
electric field here is not an electrostatic one due to Coulomb’s Law but rather an
“induced” field due to the changing magnetic flux, we then may write a common law
that applies in any situation:

E =

∮
C(t)

d ~̀ ·
[
~Eind +

~Fmag

q

]
= −dΦ

dt
= − d

dt

∫
S(C(t))

da n̂(~r , t) · ~B(~r , t) (7.39)

If there is any ambiguity in the sign, one should apply Lenz’s Law: the emf has a sign
such that the polarity of the current it would drive produces a magnetic field that
counters the change in magnetic field. We will prove Lenz’s Law explicitly later.
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Quasistatic Assumption

Note that we have implicitly assumed in our derivations that the current everywhere in
the loop responds instantaneously to the total emf on the left side, that there is no
time delay between a buildup of charge at one point in the circuit and the driving of a
current around the loop. We made the same assumption in deriving Ohm’s Law. This
is the “quasistatic assumption,” that all fields and currents everywhere change
instantaneously and that information is propagated infinitely quickly. Formally, this
assumption consists of saying that, given a typical physical scale for a system ` and a
typical timescale for variation t, we have

t � `/c (7.40)

where c is the speed of light that will be defined later.

We will release this assumption when we discuss electromagnetic waves and radiation.
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Motional EMF, Faraday’s Law, Galilean Relativity, and Galilean Field
Transformations

When first proposed, Faraday’s Law was an empirical observation. However, it could
have been justified using the principle of Galilean relativity: physics is the same in all
inertial reference frames, those moving at constant velocity.

Consider the problem of the magnetic field moving at fixed velocity. One could go to
the rest frame of the magnetic field and consider the loop to be moving at fixed
velocity as in our moving loop cases. The magnetic force implied by the motional emf
appears. In Galilean relativity, forces are invariant upon change of inertial (fixed
velocity) frame. This would imply that the magnetic force in the field-fixed frame is
still present in the loop-fixed frame, but now we interpret it as an electric force
because the loop is not moving.

In the case of changing magnetic fields, we simply have to invoke the expectation that
the loop has no way of knowing whether it experiences a changing field because the
current sourcing the field is moving or because it is changing: it only knows about the
field that results, not the source of the field.

This Galilean relativity argument was, however, not recognized until after Faraday’s
observation.
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We can make use of this argument to understand how electric and magnetic fields mix
with each other under such Galilean (nonrelativistic) transformations. Let’s assume we
have written down our law, Equation 7.39, in both the rest frame of the loop and in
the lab frame in which the loop is moving. The fields and position vectors in the loop
rest frame are given ′ symbols, the ones in the lab frame have no primes. The total
emf can be determined explicitly using a voltmeter to measure the voltage across the
resistor in the loop, and it is a scalar that is independent of frame (the reading on the
voltmeter doesn’t change if you see the voltmeter moving with the loop!). So we can
equate the lab and rest frame expressions through E:

∮
C′

d ~̀′ · ~E ′ind =

∮
C(t)

d ~̀ ·
[
~Eind +

~Fmag

q

]
(7.41)

(C′ = C(t = 0) can be assumed by appropriate choice of when the lab and loop rest
frame coordinate systems coincide). Now, let’s use our expression for the magnetic
force term from our derivation of Equation 7.34, dropping the ~u contribution that we
had added in: ∮

C′
d ~̀′ · ~E ′ind =

∮
C(t)

d ~̀ ·
[
~Eind + ~v × ~B

]
(7.42)
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Since the circuit is arbitrary, we may thus conclude

~E ′ind = ~Eind + ~v × ~B (7.43)

The equation can be taken to be completely general because adding a standard
electrostatic field to both sides would leave the statement true while accounting for
such electrostatic fields:

~E ′ = ~E + ~v × ~B ~E = ~ECoul + ~Eind (7.44)

Therefore, this is a rule for how electric fields transform from one frame to another
under Galilean relativity, regardless of the source of the field. Electric fields are not the
same in a fixed and a moving frame if magnetic fields are present, even before special
relativity is considered! Special relativity then only adds correction coefficients to the
above equation.

It is important to note that the expectation that the electrostatic fields do not depend
on frame has been an assertion so far, based on the assumption that Coulomb’s Law is
unaffected by whether the charges are moving or not. We will return to this point
later in connection to Maxwell’s Equations, as it will lead to a symmetrization of the
above equation between ~E and ~B.

Galilean relativity is consistent with the quasistatic assumption. We need only consider
special relativity when the nonzero travel time of light becomes important because
special relativity says the speed of light is the same in all frames.
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Example 7.2: A Stationary Alternating Current Generator

Recall the previous example of an AC generator that used a rotating square loop in a
constant magnetic field. Instead, hold the loop fixed but assume that the magnetic
field is being varied sinusoidally, ~B(t) = ~B0 cos ωt. Then the flux is

Φ(t) = A ~B(t) · n̂ = A B0 cosωt (7.45)

Therefore, the emf generated is

E(t) = −dΦ

dt
= A B0 ω sinωt (7.46)

just as before.

Note, again, the polarity of the emf! As before, the emf’s polarity is such that it
causes current to flow in an external resistor attached to the two ends of the circuit in
a direction consistent with the current that flows in the loop.

Section 7.3.3 Motional EMF, Faraday’s Law, Galilean Relativity, and Galilean Field Transformations Page 478



Section 7.3 Electrodynamics: Electromagnetic Induction

Something one has to be careful about is incorrectly believing that, because of the
emf’s sign, it should also drive a current in the zero-resistance loop in the direction
implied by the emf. That erroneous belief arises because one is assuming the electric
field is conservative, that the integral of ~E around a loop vanishes. No: that sign of
emf would drive current in the wrong direction! For the current flowing in the loop,
the emf measures the work per unit charge done by ~Eind + ~Fmag/q as they push the
current around the loop, but they are not pushing the charges down an electrostatic
potential! The effect of having this current flow is that the same current flows
through the resistor, creating an apparent potential drop across the resistor that we
can measure with a voltmeter. But the voltmeter is just measuring the current flowing
through a known resistance, which, by Ohm’s Law, is proportional to the line integral
of the electric field through the resistor. The voltmeter’s ability to measure something
that looks like a voltage does not imply that an electrostatic potential can be defined
everywhere in the loop and resistor!

In thinking about what causes the current to flow, it is better to visualize the electric
field: one recognizes that the changing magnetic field generates an electric field that
pushes current in the direction it needs to flow to counter the change in magnetic
field. This electric field has nonzero loop integral around the circuit! Therefore, the
existence of the emf E at the ends of the circuit does not imply the same emf is
experienced by the current flowing in the loop itelf; the nonzero loop integral of the
electric field invalidates the rule that the total voltage drop around a loop must
vanish, which is the source of the misconception that E, appearing at the ends of the
circuit, is also the driver of the current in the loop.
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Differential Version of Faraday’s Law

Consider the special case of an arbitrary closed contour C fixed in space.
Equation 7.39 tells us ∮

C
d ~̀ · ~E = − d

dt

∫
S(C)

da n̂(~r) · ~B(~r , t) (7.47)

Let’s use Stokes’ Theorem on the left side, and, since the contour is time-independent,
we can move the time derivative inside the integral on the right side. We turn it into a
partial derivative to make it clear that we do not need to worry about any possible
time-dependence of ~r (of which there is none here). This yields∮

S(C)
da n̂(~r) ·

[
~∇× ~E(~r)

]
= −

∫
S(C)

da n̂(~r) · ∂
~B(~r , t)

∂t
(7.48)

Since the loop is arbitrary, the integrands must be equal:

~∇× ~E(~r) = −∂
~B(~r , t)

∂t
(7.49)

This differential version of Faraday’s Law is the generalization of ~∇× ~E = 0 for
time-dependent situations. We now explicitly see what was said in the previous
example: a changing ~B creates a nonconservative electric field!

Section 7.3.4 Differential Version of Faraday’s Law Page 480



Section 7.3 Electrodynamics: Electromagnetic Induction

Biot-Savart and Ampere’s Law for the Induced Electric Field in the Absence of
Charges

If we consider the special case of no charge density, then we have

~∇ · ~E = 0 ~∇× ~E = −∂
~B

∂t
(7.50)

This is mathematically identical to the equations of magnetostatics,

~∇ · ~B = 0 ~∇× ~B = µo
~J (7.51)

In magnetostatics, we saw that the above two equations, combined with the
assumption ~∇ · ~A = 0, yielded Poisson’s Equation for ~A with µo

~J as the source
(Equation 5.56). By correspondence, we can thus state

~E = ~∇× ~AE ∇2 ~AE =
∂ ~B

∂t
~∇ · ~AE = 0 (7.52)

This is of course very interesting: we see that ~E receives a contribution from a vector
potential that satisfies Poisson’s Equation with ∂ ~B/∂t as the source!
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Now, if we assume appropriate boundary conditions — fields falling off at infinity, no
other surfaces on which the vector potential or field are specified — then we know
from Equation 5.56 that the solution to the Poisson’s Equation for ~AE is

~AE (~r) = − 1

4π

∫
V

dτ ′
∂ ~B(~r ′)
∂t

|~r − ~r ′| (7.53)

Finally, we may take the curl of the above expression to recover the analogue of the
Biot-Savart Law. We did this backwards in the case of magnetostatics: we started
with the empirical Biot-Savart Law and derived that the field could be written as the
curl of the form of the vector potential corresponding to the above. Nevertheless, that
proof could be reversed, so we may conclude that the analogous Biot-Savart Law
holds (compare to Equation 5.32)

~E(~r) = − 1

4π

∫
V

dτ ′
∂ ~B(~r ′)
∂t

× (~r − ~r ′)
|~r − ~r ′|3 = − 1

4π

∂

∂t

∫
V

dτ ′
~B(~r ′)× (~r − ~r ′)
|~r − ~r ′|3

(7.54)

where we pulled the time derivative outside the integral under the assumption that the
volume itself is time-independent.
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We also note that, because ~E satisfies the analogue of Ampere’s Law, one can apply

standard Ampere’s Law techniques for finding ~E when ∂ ~B
∂t

is given.

Caution: We have made the quasistatic assumption, that all time derivatives are small
enough that the propagation time for disturbances in the magnetic fields is much less
than the timescales on which the field vary. This is what allows us to use the
magnetostatic formulae in time-varying situations. If the time derivatives become
large, then one needs the full formalism of electromagnetic waves, which we will
develop later.
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Poisson’s Equation for Induced Electric Field, Proof of Lenz’s Law

Further pursuing the analogy to magnetostatics, let’s see what we get if take the curl
of the curl of the induced electric field:

~∇×
(
~∇× ~Eind

)
= ~∇×

(
−∂

~B

∂t

)
= − ∂

∂t

(
~∇× ~B

)
= −µo

∂ ~J

∂t
(7.55)

We may rewrite the left side using the vector identity for the curl of the curl as we did
when deriving Poisson’s Equation for ~A in terms of ~J (Equation 5.56):

~∇
(
~∇ · ~Eind

)
−∇2 ~Eind = −µo

∂ ~J

∂t
(7.56)

If we again assume no charge density (valid since we are considering only the induced

electric field ~Eind ) and that the currents are localized so the fields fall off appropriately

at infinity, we have a Poisson’s Equation for ~Eind , whose solution we know:

∇2 ~Eind = µo
∂ ~J

∂t

localized currents⇐⇒ ~Eind (~r) = − µo

4π

∫
V

dτ ′
∂ ~J(~r ′)
∂t

|~r − ~r ′| (7.57)

Because of the vector alignment of ~Eind and −∂ ~J/∂t, we thus have Lenz’s Law : the
induced electric field is in the direction needed to drive a current to counter the
change in the current that is causing the changing magnetic field.
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Example 7.3: Induced Electric Field for Coaxial Conductors (Griffiths 7.16)

An alternating current I = I0 cosωt flows down a long straight wire of negligible radius
and returns along a coaxial conducting tube of radius a and negligible thickness. Both
conductors are assumed to be perfect (infinite conductivity). We want to find the
induced electric field as a function of the transverse radius s in cylindrical coordinates.

For reasons that we will be able to explain later when we discuss EM waves in the
presence of conductors, the currents flow in sheets at the surfaces of the conductors
because they have infinite conductivity.

In the region between the wire and the outer conductor, the field of the wire is the
usual ~B(s, t) = φ̂ µo I(t)/2π s. The magnetic field of the return-current cylinder is
zero inside (consider an Amperian loop in the xy -plane with radius s < a: none of the
return current flows through the surface enclosed by that loop). Outside the
return-current sheet, its magnetic field is that of a wire carrying the total return
current, which has the same magnitude but opposite sign of the field of the inner wire.
Thus, the total magnetic field is the inner conductor’s magnetic field between the
conductors and is zero outside the outer conductor.

The system has azimuthal and z-translation symmetry, so the induced electric field
must have the form ~E = Es (s) ŝ + Eφ(s) φ̂+ Ez (s) ẑ.
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If we think about what kind of Amperian loop has a nonzero flux of ∂ ~B/∂t (not ~J!), it

is a loop in the sz plane with normal in the φ̂ direction. Let’s first consider a loop of
this kind with one z leg at infinity and the other at s > a. The contributions to the
loop integral of the electric field along the two radial legs cancel, and the contribution
from the leg at infinity vanishes assuming the fields fall off as s →∞, so this loop
only gets a contribution from the z leg at finite radius, which picks out Ez (s > a).

The enclosed flux of ∂ ~B/∂t vanishes, so we can conclude Ez (s > a) = 0.

Now, repeat with one z leg at s between 0 and a and one z leg outside the outer
conductor. The radial legs cancel and the z leg outside the outer conductor
contributes nothing. When calculating the enclosed flux of ∂ ~B/∂t, a similar thing
holds: there is no magnetic field outside a, so the area integral only goes from s to a.
If the loop’s z dimension is `, we have

Ez (s < a) ` = −
∫ `

0
dz

∫ a

s
ds′

∂Bφ(s′, t)

∂t
= − µo

2π

∂ I

∂t
`

∫ a

s

ds′

s′
(7.58)

=
µo

2π
ω I0 ` sinωt ln

a

s
(7.59)

=⇒ Ez (s < a) =
µo

2π
ω I0 sinωt ln

a

s
(7.60)

Note the sign: taking the loop normal to be φ̂ implies that the z leg with the nonzero
contribution yields a positive contribution. Then the usual minus sign enters, which is
cancelled by the sign of the derivative of cosωt.
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We can see Eφ(s) vanishes by using a loop in the sφ plane that has radial legs (φ
constant) and azimuthal legs (s constant). One azimuthal leg can be taken to infinity
so it yields no contribution, and the radial legs’ contributions cancel, leaving only the
contribution from the azimuthal leg at finite radius. But, unlike the Ez case, this loop
has no magnetic flux and thus no ∂ ~B/∂t through it, so Eφ(s) = 0.

Finally, consider Es , which we can show to vanish by both a conceptual and a
mechanical argument. As we argued above, Es can be a function of s only and must
be independent of z. Suppose Es points outward along ŝ at a particular s and consider
Es (s, z = 0). If we rotate the system about this direction by 180◦, then the current
changes direction. But Es (s, z = 0) cannot change direction (sign) — it is tied to the
current distribution. Yet the reversal of the direction of the current changes the sign
of ~B and thus ∂ ~B/∂t. Then, by the Biot-Savart Law for ~E , ~E should change sign. We
have a contradiction unless Es (s, z = 0) = 0. Because of z-translation symmetry, the
same must hold at any z.

More mechanically, consider the Biot-Savart integral for ~E . Given that ~B and ∂ ~B/∂t

are both proportional to φ̂, the vector ~r − ~r ′ must have a piece proportional to ẑ to
yield a contribution to the ŝ component of ~E . But ~B is independent of z, while the ẑ
component of ~r − ~r ′ is odd about z = z ′. So the integrand is odd about z = z ′,
causing the integral to vanish.
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Thus,

~E(s < a, t) = ẑ
µo

2π
ω I0 sinωt ln

a

s
~E(s > a, t) = 0 (7.61)

One can easily see the sign makes sense. This ~E tries to drive a current parallel or
antiparallel to the current already flowing in the wire. When the current is decreasing,
the electric field is increasing to try to drive a current in the same direction in which
current is being lost by the decreasing current. It tries to generates a magnetic field
that would compensate for the magnetic field that is being removed by the decreasing
central conductor current. And vice versa for an increasing current.

Note how, when we can calculate the induced electric field directly, there is no
ambiguity about which direction the driven current would flow, unlike when we talk
about E.
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Mutual Inductance

We have so far considered magnetic fields and fluxes in the abstract, without any
concern about where they come from. But they are generated by currents, so it is
natural to want to connect the Faraday’s Law emf to changing currents. We do that
through mutual inductance.

Consider two circuits C1 and C2. Suppose a current I1 is flowing in C1. The magnetic
flux at C2 is

Φ21 =

∫
S(C2)

da2 n̂2 · ~B1(~r2) =

∫
S(C2)

da2 n̂ ·
[
~∇× ~A1(~r2)

]
=

∮
C2

d ~̀2 · ~A1(~r2) (7.62)

where we used the fact that ~B is derived from a vector potential followed by Stokes’
Theorem. Now, let’s use the relation between ~A1 and the current in C1 using the usual
solution of the Poisson’s Equation for ~A1 (assuming appropriate boundary conditions):

Φ21 =
µo

4π

∮
C2

d ~̀2 ·
∮
C1

I1d ~̀1

|~r2 − ~r1|
=
µo

4π
I1

∮
C2

∮
C1

d ~̀2 · d ~̀1

|~r2 − ~r1|
(7.63)
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We rewrite this as follows:

Φ21 = M21 I1 M21 =
µo

4π

∮
C2

∮
C1

d ~̀2 · d ~̀1

|~r2 − ~r1|
Neumann Formula (7.64)

where M21 is the mutual inductance between C1 and C2 and has units of Henries
(volt-second/amp). Two important characteristics:

I M21 = M12 because the definition is symmetric.

I M21 is a completely geometric quantity: it does not care about the amount of
current flowing, just on the relative positions of the two contours. It is like the
capacitance matrix in this respect.

We may now take the time derivative to calculate the emf at C2 due to a change in I1:

E2 = −dΦ21

dt
= −M21

dI1

dt
(7.65)

If unclear, the sign should be chosen to satisfy Lenz’s Law.
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Self-Inductance

The above derivation works even when C1 and C2 are identical: a current loop induces
an emf on itself. In practice, calculating the integral can be difficult because of the
singularity at ~r1 = ~r2, but one can be assured that self-inductance exists and is not
infinite. The symbol used is L and the corresponding equations are

Φ = L I L =
µo

4π

∮
C

∮
C

d ~̀2 · d ~̀1

|~r2 − ~r1|
E = −L

dI

dt
(7.66)

In both the cases of mutual inductance and self-inductance, one rarely does the
integral directly. Instead, one tries to find the field using Ampere’s Law, then calculate
the flux, and finally get M or L from Φ/I. This eliminates the need to deal directly
with the singularity in the above integral.
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Generalization to Volume Currents

It is straightforward to generalize the above to volume currents by using the usual
relation between the vector potential and the volume current density (assuming
appropriate boundary conditions)

~A(~r) =
1

4π

∫
V

dτ ′
~J(~r ′)

|~r − ~r ′| (7.67)

=⇒ Mij =
µo

4π

1

Ii Ij

∫
Vi

dτ

∫
Vj

dτ ′
~J(~r) · ~J(~r ′)

|~r − ~r ′| (7.68)

L =
µo

4π

1

I2

∫
V

dτ

∫
V

dτ ′
~J(~r) · ~J(~r ′)

|~r − ~r ′| (7.69)

where Vi is the volume of the ith inductor. We notice that the currents do not drop
out as cleanly, but, assuming linear behavior of the current flow (the current does not

flow differently as the overall magnitude of the current is changed), we expect ~J ∝ I
and indeed, once the functional dependence of the current density on position has
been established, the inductances are purely geometrical quantities as for the case of
line currents.

This is not a rigorous proof. We will return to this when we discuss magnetic energy.
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Example 7.4: Self and Mutual Inductances of Solenoids

Let’s first calculate the self-inductance of a solenoid of radius a. Recall that the field
of a solenoid is only nonzero inside it and has value

~B = µo n I ẑ (7.70)

where n is the number of turns per unit length, the solenoid axis is along ẑ, and the
current flows along the φ̂ direction. The magnetic flux threading the solenoid and the
self-inductance are therefore

Φ = n ` π a2 B = µo n2 ` π a2 I =⇒ L = µo n2 ` π a2 (7.71)

If we have two interpenetrating solenoids with turn densities n1 and n2, radii a1 < a2,
and lengths `1 < `2, then the flux into solenoid 1 of the field from solenoid 2 and the
mutual inductance are

Φ12 = n1 `1 π a2
1 B2 = µo n1 n2 `1 π a2

1 I2 =⇒ M = µo n1 n2 `1 π a2
1 (7.72)

It is interesting and useful to note that we may also calculate Φ21 using M given the
symmetry of M. This is very convenient, as calculating the contribution to Φ21 from
the portion of solenoid 1’s field past its ends would be nontrivial. It is also interesting
to see that the mutual inductance is not manifestly symmetric under index exchange
1↔ 2. This reflects the asymmetry of the setup between solenoids 1 and 2.
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Magnetic Energy and Forces

Magnetic Energy in Terms of Currents

Let’s consider the work that has be done to drive current against the emf in an
inductive object (e.g., a simple loop or a solenoid). The emf is sometimes called the
“back emf” because it is the line integral of a force that tries to drive a current that is
intended to counter the changing field due to the current one is varying and so the
current one is varying must be driven against the emf.

That is, when a varying current is driven through an inductive object, it has to be
driven against a force per unit charge whose line integral (note that we did not say
potential!) along the current’s path is E. (The force is due to an induced electric field
for this case of a stationary loop that is experiencing a dΦ/dt due to its own current
varying.) The force that must be exerted, and the work that must be done, is above
and beyond the force needed to overcome the inertia of the charge carriers (i.e., the
Newton’s Law force F = m a).

The rate at which this work is being done is given by the same expression we derived
before for the work done by the pulling force in the case that the field was fixed but
the loop was moving: it is the work done per unit charge by the battery to push the
current against the back emf, −E, times the charge flowing past a given point per unit
time, I:

dW

dt
= Power = −I E = L I

dI

dt
(7.73)
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We can integrate this over time to get the total work done and the magnetic energy
created:

W =
1

2
L I2 (7.74)

It is natural to ask why, when we considered the situation with the loop being pulled
through a magnetic field, we did not worry about this magnetic energy: we said that
the work done by the pulling force was completely dissipated in the Joule heating of
the resistor. Or, put another way, why did we not need to include a resistor in the
calculation here? When we include the resistor, some of the work done by the pulling
force as the loop was accelerated from rest to ~v goes into this magnetic energy, the
L I2/2 energy. Once at fixed velocity, however, the current and thus this energy stay
constant. The pulling force continues to do work, however. Since we specifically made
the steady-state assumption — that the loop had been moving at fixed ~v for all time
and would stay moving for all time — this transient process of creating L I2/2 was not
relevant, and our conservation of energy argument was valid; we just neglected noting
the path that the energy took through the magnetic energy in the steady state. Now,
without the resistor, we are focused entirely on the transient portion of the process,
hence the importance of the magnetic energy.
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Let’s generalize the above result. Consider a system of N inductive elements with
inductance matrix Mij (Mii ≡ Li , Mij = Mji ). We turn on the currents in the order
i = 1, 2, · · · ,N. We first have to maintain the current Ii against the emf on inductor i
felt due to its changing current. Once it has reached its final value, we also have to
maintain it as the currents in the inductors j > i are increased from 0 to their final
values (note: j > i , not j < i as we had in electrostatics). The required power is:

dW

dt
=

N∑
i=1

dWi

dt
=

N∑
i=1

(−Ii Ei ) =
N∑

i=1

Ii Mii
dIi

dt
+ Ii

N∑
j>i

Mij
dIj

dt


=⇒ W =

N∑
i=1

1

2
Mii I

2
i + Ii

N∑
j>i

Mij Ij

 =
1

2

N∑
i,j=1

Mij Ii Ij (7.75)

where we have symmetrized the sum over j by including a factor of 1/2, and then we
combined the cross-terms with the self-terms. If we rewrite all our relations using
matrix notation, with I being a column vector of currents, Φ being a column vector of
fluxes, and M being the matrix of mutual inductances, we have

Φ = M I W =
1

2
ΦT I =

1

2
IT M I (7.76)

Note: we could have calculated the above somewhat differently, considering the work
done to maintain the loops j < i at their final current values, plus the work done in
loop i itself, while loop i is begin ramped to its final value. The result would be the
same.
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Magnetic Energy in Terms of Magnetic Field

Let’s manipulate our circuit equations above to try to get the energy in terms of the
magnetic field. First, we can rewrite the circuit expressions using the vector potential:

L I = Φ =

∫
S(C)

da n̂ · ~B =

∮
C

d ~̀ · ~A (7.77)

=⇒ W =
1

2
L I2 =

I

2

∮
C

d ~̀ · ~A =
1

2

∮
C

d`~I · ~A (7.78)

We can obviously generalize this for volume currents to

W =
1

2

∫
V

dτ ~J · ~A (7.79)

Aside: The above equation now justifies Equation 7.69: if one uses Equation 5.56 to
write ~A in terms of ~J and then calculates L = 2 W /I 2, one recovers Equation 7.69. By
considering two separate volume current distributions, one can recover Equation 7.68
also.
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We can use Ampere’s Law to obtain

W =
1

2µo

∫
V

dτ ~A ·
(
~∇× ~B

)
(7.80)

We use the product rule for the divergence of a cross-product,
~∇ · (~a× ~b) = ~b · (~∇× ~a)− ~a · (~∇× ~b) to rewrite this as

W =
1

2µo

∫
V

dτ
[
~B ·
(
~∇× ~A

)
− ~∇ ·

(
~A× ~B

)]
(7.81)

=
1

2µo

∫
V

dτ |~B|2 − 1

2µo

∮
S(V)

da n̂ ·
(
~A× ~B

)
(7.82)

Now, the original volume integral was over only the region containing the current, but
the volume integral could be extended to a larger region since there would be no
additional contribution. So we do the usual thing and expand the volume to include
all of space and take the bounding surface to infinity.
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We assume that ~A× ~B falls off more quickly than 1/r2 (true for finite current
distributions) so that the surface term goes to zero, or that the particulars of the
configuration ensure the integral vanishes even if the current distribution is not finite
and we expect a finite energy. Therefore,

W =
1

2µo

∫
dτ |~B|2 (7.83)

Thus we see that the magnetic energy is just given by the integral of the square of the
field. We now see that the magnetic energy created as the currents are ramped from
zero to their final values is stored in the field. (We specifically avoided saying earlier
where it was stored!)

It is interesting to think about how it is possible to store energy in a magnetic field
given that the field can do no work. One has to think of this as the work done to drive
against the induced electric field as the field was increased from zero to its final value.
As usual, this work is supplied by a battery, not the magnetic field.

Section 7.5.2 Magnetic Energy in Terms of Magnetic Field Page 500



Section 7.5 Electrodynamics: Magnetic Energy and Forces

On the point about the surface term in the case of configurations for which the fields
do not fall of at infinity:

I For an infinite solenoid, the surface term only includes the endcaps of the
solenoid, since ~B vanishes outside the solenoid. The contributions of the two
endcaps vanish because ~A× ~B points along ŝ in cylindrical coordinates, but the
endcap’s normal is along ẑ. While the surface term vanishes, the energy is still
infinite because the volume integral is over an infinite volume with a constant
energy density.

I For an infinite wire, even when calculated per unit length, all the terms are
logarithmically infinite. This is because the current and the fields do not die off
quickly enough at infinity. The calculation fails even if one does the calculation
using ~J · ~A, and even for a finite diameter wire (if one accounts for the fact that
~J becomes a surface current in the perfect conductor case).
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Example 7.5: Magnetic Energy in a Solenoid

A solenoid of radius a with n turns per unit length and current I has a field
B = µo n I. Therefore, the magnetic energy in such a solenoid of length ` is

W = π a2 `
1

2µo
B2 =

1

2
µo n2I2π a2 ` (7.84)

Note that we can extract from this the self-inductance using W = L I2/2, yielding
L = µo n2 π a2 ` as we obtained by calculating the flux. To put some numbers on this,
the LHC CMS experiment (http://home.web.cern.ch/about/experiments/cms) has
a solenoid with a field of 4 T with radius a = 3 m and length 13 m. The stored energy
is therefore about 2.5 gigajoules, an enormous number.

Example 7.6: Magnetic Energy in a Coaxial Cable

This is Griffiths Example 7.13. For a coaxial cable of length ` with inner and outer
conductor radii a and b, the energy and resulting self-inductance are

W =
µo

4π
I2 ` ln

b

a
L =

µo

2π
` ln

b

a
(7.85)
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An Alternate Logical Path

We followed Griffiths in first developing concepts for inductance and energy using
current loops and then generalizing both to volume current distributions in a fairly
obvious way. That said, there is a more rigorous way to do all of this by first
considering the work done in maintaining current densities in the presence of the
electric field generated by changes in those current densities. This then leads to the
idea of ~J · ~A being the energy density in the magnetic field. Then one can define
inductances by writing the field energy in terms of the total currents that normalize
the current distributions. It can then be shown that these inductances relate currents
to fluxes and thus rates of change of currents to emfs. This alternative logical path is
followed in Jackson §5.16–5.17.
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Magnetic Energy of an Assembly of Free Currents in the Presence of
Magnetizable Materials

This is done similarly to the electrostatic case and follows Jackson §5.16. Recall that
we discussed the distinction between the total energy needed to assemble the final
configuration, including the construction of the bound dipoles, and the energy needed
to bring the free charges in assuming the bound dipoles already exist and neglecting
the potential energy of creating them. In this case, we assume the bound magnetic
dipoles are created and maintained by someone else — someone else has built them
and raised their currents to their full values for us and also maintains those currents in
the presence of back emf generated when the free currents change — and we need
only consider the work that has to be done to turn on some free currents in the
presence of these bound magnetic dipoles.

This separation is not academic: all naturally occurring magnetic materials rely on the
magnetic dipole moments of fundamental particles. Those magnetic dipoles are
unchangeable, and thus the energy stored in them is effectively a constant offset that
we have no experimental access to. It therefore makes sense to want to ignore it in
calculations of magnetic energy.
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Consider the differential of work the battery must do to maintain the free currents ~Jf

during a change in the magnetic field δ ~B. (We need not specify whether this change is

due to a change in ~Jf and/or the location of the magnetizable materials — all that

matters is δ ~B.) Equation 7.78 implies that the change in energy would be (holding the
geometry fixed)

δW = −I E δt = I
dΦ

dt
δt = I δΦ = I δ

[∫
S(C)

da n̂ · ~B
]

= I δ

[∮
C

d ~̀ · ~A
]

= I

∮
C

d ~̀ · δ ~A

(7.86)

for which the volume generalization would be

δW =

∫
V

dτ ~Jf · δ ~A =

∫
V

dτ
(
~∇× ~H

)
· δ ~A (7.87)

Apply the same algebra and the same discarding of the surface term as in free space:

δW =

∫
V

dτ ~H ·
(
~∇× δ ~A

)
=

∫
V

dτ ~H · δ ~B (7.88)

For nonlinear materials, we would need to apply the specific ~B( ~H) function go further.

For linear materials, we use δ ~B = µδ ~H to do the integral and obtain the expected
analogue to the free-space result:

W =
1

2µ

∫
V

dτ |~B|2 =
µ

2

∫
V

dτ | ~H|2 =
1

2

∫
V

dτ ~H · ~B (7.89)
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Magnetic Energy of a Magnetizable Material in an External Field

We can calculate this along the lines of the derivation we did for polarizable materials,
following Jackson §5.16. Let’s assume that we have a configuration of currents that
generates fields ~B1 and ~H1 in a volume containing a permeable material µ1. Now,
bring in a material of permeability µ2 such that it occupies a volume V2 contained in
V while holding the free source currents fixed. The fields (everywhere) change to ~B2

and ~H2.

The energy difference we want to calculate is

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H2 − ~B1 · ~H1

]
(7.90)
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We can apply similar manipulations as we did for the electrostatic case. First, we
rewrite the above as

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H1 − ~B1 · ~H2

]
+

1

2

∫
dτ
[
~B1 + ~B2

]
·
[
~H2 − ~H1

]
(7.91)

Since ~∇ ·
[
~B1 + ~B2

]
= 0, it can be derived from a vector potential ~A, allowing us to

rewrite the second term as

1

2

∫
dτ
[
~H2 − ~H1

]
·
(
~∇× ~A

)
(7.92)

We use again the vector identity ~∇ · (~a× ~b) = ~b · (~∇× ~a)− ~a · (~∇× ~b) to integrate by
parts, and we turn the divergence into a surface term that we can discard because
~H2 − ~H1 should vanish as we go far from the permeable material, yielding for the
second term

1

2

∫
dτ ~A · ~∇×

(
~H2 − ~H1

)
(7.93)

The curl in the integrand vanishes because ~H2 and ~H1 are sourced by the same free
currents.
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We are thus left with the first term from the equation we started with

U2 − U1 =
1

2

∫
dτ
[
~B2 · ~H1 − ~B1 · ~H2

]
(7.94)

Applying linearity, ~B = µ ~H, we then obtain

U2 − U1 =
1

2

∫
dτ (µ2 − µ1) ~H2 · ~H1 (7.95)

Finally, we recognize µ2 − µ1 = 0 except in V2, so

U2 − U1 =
1

2

∫
V2

dτ (µ2 − µ1) ~H2 · ~H1 =
1

2

∫
V2

dτ

(
1

µ1
− 1

µ2

)
~B2 · ~B1 (7.96)

This is the analogue of Equation 4.84 aside from a sign flip, which mechanically is due
to the fact that ~B = µ ~H (rather than ~H = µ ~B). If we take µ1 = µ0 and µ2 = µ, we

can use ~M2 = (µ2/µ0 − 1) ~H2 = (µ/µ0 − 1) ~H2 to rewrite this as

W = U2 − U1 =
1

2

∫
V2

dτ ~M · ~B1 ⇐⇒ w =
1

2
~M · ~B1 (7.97)

where now we replace ~M2 by ~M since ~M1 = ~0 if µ1 = µo . So ~M is the magnetization
density of the volume occupied by µ and ~B1 is the magnetic field in the absence of the
permeable material. There is a sign flip relative to the electrostatic case
(Equation 4.85) that, mechanically, came from the sign flip in Equation 7.96.
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How do we understand this sign flip conceptually? Trying to track the sign through
the derivation is not illuminating. But it can be understood by comparing to our
calculation of the energy of magnetic dipole in an external field, Equation 5.144,
where we assumed that the magnetic dipole moment and field were given and held
fixed without our having to account for how this was done. In that case, the potential
energy of the configuration was U = − ~m · ~B. (The factor of 1/2 here comes from the

linear relationship between ~m and ~B and the integration from zero field to ~B, which is
not important for this discussion). We see that we have a sign flip relative to that
situation. It is sensible, then, to attribute the sign flip to the fact that, in deriving the
expression w = |~B|2/2µ that was the starting point for this derivation, we accounted
for the work done by the batteries to maintain the free currents as the permeable
material was brought in. No such work was required in the previously considered case
of a fixed dipole moment ~m and fixed field ~B.

Note that, importantly, we do not account for how the magnetization density ~M is
maintained. This is to be distinguished from not considering how ~M is created, which
we argued was just an unchangeable offset. We may ignore this additional
consideration here because, again, the magnetization density is, in naturally occurring
systems, due to fundamental magnetic dipoles that require no batteries to maintain
their magnetic moments.

When we compare to the electrostatic analogy, Equation 4.85, we recognize a sign flip,
too. The rationale is the same: in the electrostatic case, we do not have to do any
work to maintain the free charges sourcing the applied field ~E at their nominal
positions, while here we do have to do work with a battery to maintain currents at the
nominal values and positions due to the back emf from the changing ~M.
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Magnetic Forces from Magnetic Energy with Fluxes Fixed

To evaluate magnetic forces, we need to consider what happens if we have an
infinitesimal generalized displacement of one of our inductors. Because it is more
straightforward, let’s first consider the fixed fluxes case, which is analogous to holding
charges fixed in electrostatics. If dΦ/dt = 0, then there are no emfs and there is no
need for a battery to do work to drive currents against those emfs. So we only need to
consider dWfield |Φ. We can directly calculate the generalized force from the energy
holding the fluxes fixed:

Fξ

∣∣∣∣∣
Φ

= −
(
∂Wfield

∂ξ

)
Φ

= −1

2

N∑
i,j=1

Φi Φj

∂M−1
ij

∂ξ

∣∣∣∣∣
Φ

= −1

2
ΦT

[
∂

∂ξ
M−1

]
Φ

∣∣∣∣∣
Φ

(7.98)

which is the analogue of Equation 4.88.

It’s not entirely clear at a microscopic level (i.e., what has to happen to the currents)
how one maintains fixed fluxes as inductors are moved around. But, certainly, one is
assured that, if one sets up a system of inductors with currents and then disconnects
them from their batteries, any movement of the loops must keep the fluxes fixed and
change the currents accordingly since there are no batteries to work against the emfs
and maintain the currents. This issue will be revisited in homework and is discussed in
Griffiths Section 8.3 (4th edition).
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Magnetic Forces from Magnetic Energy with Currents Fixed

We follow Jackson §5.16. Let’s approach this case like we did in electrostatics, first
fixing the fluxes (charges), allowing the currents (voltages) to change, and then
returning the currents (voltages) to their original values. The contribution to the
change in energy from the fluxes-fixed portion is

dWfield

∣∣∣
Φ

=
1

2

N∑
i,j=1

Φi Φj d
[
M−1

]
ij

(7.99)

This causes changes in the currents (at fixed flux)

dIi

∣∣∣
Φ

=
N∑

j=1

d
[
M−1

]
ij

Φj (7.100)

If we add back current to return to a fixed-current situation, then changes in fluxes
result:

dΦk

∣∣∣
I

=
N∑

i=1

Mki (−dIi )Φ = −
N∑

i,j=1

Mki d
[
M−1

]
ij

Φj (7.101)
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The above infinitesimal flux changes cause emfs. The currents Ii must be maintained
by batteries in the presence of these emfs. The work done by the batteries over the
infinitesimal time dt needed to make the flux changes is

dW bat
field

∣∣∣
I

= dt
dW bat

field

dt

∣∣∣∣∣
I

= dt
n∑

k=1

(−Ik Ek ) = dt
n∑

k=1

Ik
dΦk

dt

∣∣∣∣∣
I

(7.102)

=
n∑

k=1

Ik dΦk

∣∣∣
I

= −
n∑

i,j,k=1

Ik Mki d
[
M−1

]
ij

Φj (7.103)

= −
n∑

i,j=1

Φi Φj d
[
M−1

]
ij

= −2 dWfield

∣∣∣
Φ

(7.104)

Note that we did not need to worry about the work done by the battery to make the
canceling change in current dIk because this current change would be multiplied
against dt Ek = −dΦk , which is already infinitesimal. We need only consider the
above term consisting of the nominal currents Ik multiplied against dt Ek . We had the
same situation in electrostatics, where we did not consider the dVk dQk terms, only
the Vk dQk terms.
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The total change in the field energy is then obtained by adding the two contributions
to the field energy, the field energy change at fixed flux followed by the energy added
to the field by the batteries as they return the currents to their initial values:

dWfield

∣∣∣
I

= dWfield

∣∣∣
Φ

+ dW bat
field

∣∣∣
I

= dWfield

∣∣∣
Φ
− 2 dWfield

∣∣∣
Φ

= −dWfield

∣∣∣
Φ

(7.105)

We thus find a perfect analogy to the electrostatic case, where we found
dWfield |V = −dWfield |Q . We may thus use the same guidance: the force cannot
depend on whether the situation used is fixed flux or fixed current, and so the forces
calculated at fixed flux and fixed current must be the same. Thus, we must conclude

Fξ
∣∣
I

=

(
∂Wfield

∂ξ

)
I

= −
(
∂Wfield

∂ξ

)
Φ

= Fξ
∣∣
Φ

(7.106)

That is, just like in the electrostatic case, when the battery is involved and we
consider the energy of the entire system, we see we must take the positive gradient of
the field energy at fixed current, rather than considering only the energy of the field
and taking the negative gradient of the field energy at fixed current. The reason these
two gradients are different, with a sign between them, is because the derivative is
calculationally different depending on whether I or Φ is held fixed.
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We can see this works mathematically by trying it:

(
∂Wfield

∂ξ

)
I

=
∂

∂ξ

1

2

N∑
i,j=1

Ii Ij Mij


I

=
1

2
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i,j=1

Ii Ij
∂Mij
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=
1

2
IT

[
∂

∂ξ
M

]
I (7.107)

Since ∂M−1/∂ξ = −M−1[∂M/∂ξ]M−1 (one can see this in the same way we proved

the analogous relationship for C), this form yields Equation 7.98 for Fξ
∣∣
Φ

. Thus,

Fξ
∣∣
I

=

(
∂Wfield

∂ξ

)
I

= −
(
∂Wfield

∂ξ

)
Φ

= Fξ
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Φ

(7.108)
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Maxwell’s Equations

The Inconsistency in our Equations

Let’s write the full set of equations we have come to:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 (7.109)

~∇× ~E = −∂
~B

∂t
~∇× ~B = µo

~J (7.110)

Now, we know that the divergence of a curl vanishes: it’s a vector identity. We should
check that it holds! For the electric field, we have

~∇ · ~∇× ~E = ~∇ · −∂
~B

∂t
= − ∂

∂t
~∇ · ~B = 0 (7.111)

If we repeat with ~B, we obtain

~∇ · ~∇× ~B = µo ~∇ · ~J = −µo
∂ρ

∂t
6= 0 in general (7.112)
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There is a more physical way to see this by applying Ampere’s Law to a circuit
containing a parallel-plate capacitor. Construct an Ampere’s Law loop around the wire
carrying the current. Ampere’s Law is satisfied because there is magnetic field in an
azimuthal direction around the wire (giving a nonzero line integral of ~B) and there is
current passing through the disk-like surface whose boundary is the contour.

Now pick another surface that passes between the capacitor plates. This is an equally
valid surface; nothing about our proof of Ampere’s Law from the Biot-Savart Law
assumed a particular choice of surface for the Ampere’s Law surface integral. But this
surface has no current intersecting it because it passes through the capacitor!

The reason this problem happens and we never noticed it before is because we have a
non-steady-state case here: charge piles up on the capacitor plates giving ∂ρ/∂t 6= 0;
we had assumed all along during magnetostatics and during our discussion of
induction that ∂ρ/∂t = 0.

While charge cannot jump across the capacitor plates so that there can be a current to
keep Ampere’s Law satisfied, we do recognize that, as charge enters one plate of the
capacitor, an equal amount of charge leaves the other plate, ensuring that dQ/dt = 0
for the capacitor as a whole. This is suggestive of the idea that perhaps there is some
sort of current flowing across the capacitor gap, just not the physical movement of
charges we are used to. This new current will be called the displacement current.
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The Displacement Current

In order to solve the above problem, we need something that will cancel

µo ~∇ · ~J = −µo
∂ρ

∂t
= −µo

∂

∂t

(
εo ~∇ · ~E

)
= −µo ~∇ ·

(
εo
∂ ~E

∂t

)
(7.113)

Let’s just add the necessary term to Ampere’s Law:

~∇× ~B = µo
~J + µo εo

∂ ~E

∂t
(7.114)

Physically, what we have done is defined a second current density so that the
divergence of the total current density ~J + εo ∂ ~E/∂t vanishes. This vanishing is
equivalent to the vanishing of the flux of the total current through any surface, which
is what is needed to solve the problem we pointed out: now the surface integral of the
enclosed current does not depend on the surface chosen.

Was it ok to do this? Does it violate any of our previous conclusions? The only
equation we have modified is the ~∇× ~B equation, so we only need to consider our
study of magnetostatics, where we applied this equation. The addition preserves the
usual behavior of ~∇× ~B for magnetostatics because ∂ ~E/∂t = 0 in magnetostatics.

Why? Two things can result in time dependence of ~E . The first is time dependence in
ρ. But in magnetostatics, we make the steady-state assumption, explicitly requiring no
buildup of charge and hence ∂ρ/∂t = 0. The second is time dependence of ~B, which

can yield time dependence of ~E via Faraday’s Law. But magnetostatics assumes ~B is
constant in time, so there is no worry there.
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The added term is called the displacement current density,

~Jd ≡ εo
∂ ~E

∂t
(7.115)

This is the “current” we foresaw we needed. It is not a physical current carried by
charges, but it represents the fact that, when charge builds up in some point in a
circuit because of a gap that prevents physical current from flowing, it causes a
changing electric field that then pushes charge away from that point, causing current
to flow. One needs a changing electric field because otherwise one would quickly
reach a steady state in which no new charge would move and thus there would be no
source for current. (Maintaining fixed charge on a capacitor does not require current
to flow.) Effectively, the displacement current carries the current across physical gaps
in the circuit. It is therefore justified, both on the basis of units and on physical
intuition, to call it a current. One could even argue that the name is suitable: the
“displacement” current causes the displacement of charges on the two sides of a gap
across which true current cannot flow. (This argument is in disagreement with
Griffiths’ statement that the displacement current has nothing to do with current.)

More importantly, we also now see for the first time that a changing electric field
sources a magnetic field. Unlike with Faraday’s Law, however, there is no negative
sign and the induced magnetic field does not act in such a way as to try to cancel the
changing electric field.
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By construction, ~Jd solves the problem with ~∇ · ~∇× ~B, and we already intuitively
expect it will sove the problem with the integral version of Ampere’s Law, but let’s see
that explicitly. The electric field in the capacitor is

~E =
σ

εo
n̂ =

1

εo

Q

A
n̂ (7.116)

where n̂ is the normal from the positive plate to the negative plate. Therefore, the
displacement current is

~Jd = εo
∂ ~E

∂t
=

1

A

dQ

dt
n̂ =

I

A
n̂ (7.117)

The integral form of Ampere’s Law with the displacement current is therefore∮
C

d ~̀ · ~B = µo Iencl + µo

∫
S(C)

da n̂ · ~Jd (7.118)

If we choose the first surface we discussed earlier, the flat surface in the plane of the
contour C, we get the first term but the second term vanishes, yielding µo I. If we
choose the second surface, the one between the capacitor plates, the first term
vanishes but the second term gives µo I. Thus, the inconsistency seen earlier has been
eliminated.
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Example 7.7: Displacement Current for Coaxial Conductors (Griffiths 7.36)

This is a continuation of the example from earlier. We want to calculate the
displacement current density and the total displacement current and to compare
quantitatively I and Id .

The displacement current density is ~Jd = εo ∂ ~E/∂t:

~Jd (s < a) = εo
∂

∂t
ẑ
µo

2π
ω I0 sinωt ln

a

s
= ẑ µo εo

ω2 I0

2π
cosωt ln

a

s
(7.119)

Let’s integrate over the (s, φ) plane to get the total displacement current:

Id =

∫
S(C)

n̂ · ~JD =

∫ 2π

0
dφµo εo

ω2 I0

2π
cosωt

∫ a

0
s ds ln

a

s

= µo εo ω
2 I0 cosωt

(
a2

[
x2

2

(
ln x − 1

2

)]∣∣∣∣0
x=1

)

= µo εo ω
2 I0

a2

4
cosωt (7.120)

where the indeterminate form x2 ln x as x → 0 must be evaluated by L’Hopital’s rule
(write it as (ln x)/(1/x2)) to be seen to vanish.
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We did not include the displacement current in the calculation of the magnetic field in
the system. Is that a problem?

Well, the problem is, in principle, even worse: we ought to include the displacement
current in the calculation of ~B, but then our calculation of ~E via Faraday’s Law needs
to also be corrected for the ~B due to the displacement current, yielding a correction to
~E , which itself will yield a correction to ~Jd , and so on. The proper way to handle this
is to develop the formalism for electromagnetic waves, where we self-consistently solve
all of Maxwell’s Equations.

For now, it is instructive to look at the relative size of ~Jd and ~J so we can understand
why these corrections are small and thus why our previous results, while not precisely
correct, are an excellent approximation.
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The ratio of the amplitudes of the displacement current and the true current, up to
factors of order unity, is

Id (t)

I(t)
=
µo εo ω2 a2 I0 cosωt

I0 cosωt
=
ω2 a2

c2
=

(a/c)2

1/ω2
(7.121)

The numerator of the final expression is the square of the light travel time over the
length scale of the problem, a. The denominator is, up to a factor (2π)2, the square
of the oscillation period. Thus, this quantity is a measure of how quasistatic the
system is. We have mentioned before that, if a/c � 1/ω is not satisfied, then our
quasistatic approximation is invalid. This corroborates that: if the oscillation period
becomes comparable to the light travel time so the system is no longer quasistatic,
then the displacement current will approach the real current in magnitude and our
prior calculation of ~B ignoring the displacement current will be a bad approximation.

The ratio of the displacement current to the true current scales as ω2, so one must go
to high frequency to notice it. Quantitatively, if we ask how high in frequency one
must go to obtain Id/I = 0.01 if we take a = 2 mm as the dimension of the coaxial
conductor, we obtain

ν =
ω

2π
=

1

2π

c

a

√
Id

I
=

1

2π

3 × 1011 mm/s

2 mm

√
0.01 ≈ 2 GHz (7.122)

GHz oscillators were not available in Faraday’s time, so the fact that he did not
observe the effects of the displacement current is not surprising.
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Maxwell’s Equations in Vacuum

Putting it all together, we obtain Maxwell’s Equations:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 ~∇× ~E = −∂
~B

∂t
~∇× ~B = µo

~J + εo µo
∂ ~E

∂t

(7.123)

These, combined with the force law and continuity:

~F = q
(
~E + ~v × ~B

)
~∇ · ~J = −∂ρ

∂t
(7.124)

summarize classical electrodynamics in vacuum. (The above explains why the ~v × ~B
term is not needed explicitly in the differential version of Faraday’s Law: it is a
consequence of the force law, not of Faraday’s Law.) We may rewrite the first set of
equations in a way that emphasizes better the source terms:

~∇ · ~E =
ρ

εo

~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − εo µo

∂ ~E

∂t
= µo

~J

(7.125)
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Maxwell’s Equations in Matter

Just as we found it convenient to rewrite the individual equations of electrostatics and
magnetostatics using only the free charges and currents, it makes sense to do the
same for Maxwell’s Equations. The new twists we must take into account are the
time-dependence of ~P and ~M. (We have already considered time dependence of ρ, ~J,
~E , and ~B for quasistatic situations, corresponding to all length scales in the system
small compared to c/ν.)

How to treat ~P is motivated by the expression

ρb = −~∇ · ~P (7.126)

If ~P is time-varying, we expect there to be a current ~Jp associated with the resulting

changes in ρb. In fact, the above expression suggests a good definition of ~Jp :

~Jp =
∂ ~P

∂t
⇐⇒ ~∇ · ~Jp = −~∇ · ∂

~P

∂t
= − ∂

∂t
~∇ · ~P = −∂ρb

∂t
(7.127)

That is, the definition on the left naturally gives the continuity relation between ~Jp

and ρb one would like.
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Intuitively, think of ~Jp as follows. Suppose one has a cylinder of polarizable material of

length dz and cross-sectional area da and with polarization vector ~P = P ẑ. The
definition ρb = −~∇ · ~P implies that there is a bound surface charge
Q = σ da = n̂ · ~P da = ±P da at each end. If, for example, we allow ~P to vary
sinusoidally, ~P = ~P0 sin ωt, which corresponds to the surface charge obeying
Q(t) = P0 da sinωt, then the current is

Ip = ~Jp · n̂ da = P0 daω cosωt =
dQ

dt
(7.128)

as would be necessary to transfer charge back and forth between the two ends of the
cylinder to yield the corresponding time-dependent surface charge. This current is,
literally, the motion of the charges that make up the dipoles as they flip back and
forth sinuisodally.

Do we have to worry about time dependence of ~M? Recall that ~M yields a bound
current density

~Jb = ~∇× ~M (7.129)

Time dependence of ~M yields time dependence of ~Jb, which produces time
dependence of ~B and ~H. These time dependences are now fully accounted for by
Maxwell’s Equations.
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Let’s use all this to rewrite Maxwell’s Equations in terms of free charges and currents.
The charge and current densities have the following parts:

ρ = ρf + ρb = ρf − ~∇ · ~P ~J = ~Jf + ~Jb + ~Jp = ~Jf + ~∇× ~M +
∂ ~P

∂t
(7.130)

Using Gauss’s law, εo ~∇ · ~E = ρf − ~∇ · ~P, and the definition of the displacement field,
~D = εo

~E + ~P, we obtain

~∇ · ~D = ρf (7.131)

Ampere’s Law with the displacement current term is

~∇× ~B = µo

(
~Jf + ~∇× ~M +

∂ ~P

∂t

)
+ εo µo

∂ ~E

∂t
(7.132)

We use ~B = µo

(
~H + ~M

)
as well as ~D = εo

~E + ~P to obtain

~∇× ~H = ~Jf +
∂ ~D

∂t
(7.133)

Now it is clear why the last term is called the displacement current — it is the
apparent current due to the time variation of the displacement vector ~D!
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Faraday’s Law and ~∇ · ~B = 0 are not affected since they do not depend on the free
and bound currents. Thus, Maxwell’s Equations in matter are (again, putting all the
fields on the left sides and the sources on the right):

~∇ · ~D = ρf
~∇ · ~B = 0 (7.134)

~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~H − ∂ ~D

∂t
= ~Jf (7.135)

Note: the vacuum Maxwell’s Equations (Equations 7.123 and 7.125) remain valid, but
the above are more practically useful. Similarly, Equations 7.124, the Lorentz Force
Law and the continuity equation, remain valid but it is more practically useful to have
a version of the continuity equation involving only free currents (note that
~∇ · ~Jb = ~∇ · ~∇× ~M = 0 by mathematical identity):

~F = q
(
~E + ~v × ~B

)
~∇ · ~Jf = −∂ρf

∂t
(7.136)

These equations must be supplemented by specific constitutive relations between ~E
and ~D and between ~B and ~H to completely specify the behavior (and, of course,
boundary conditions must be provided). For linear media, these relations are:

linear media: ~P = χeεo
~E ~M = χm

~H ~D = ε ~E ~B = µ ~H (7.137)
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Boundary Conditions for Maxwell’s Equations

For both Maxwell’s Equations in vacuum and in matter, we need to review how the
fields change between regions that may be separated by surface charge and current
densities and which may have different polarization and magnetization.

We recall from our prior calculations of this type that the discontinuity in the normal
component of a field is determined by its divergence and the discontinuity in the
tangential component by its curl. We also recall charge and current densities can
become δ-function singular on a boundary but fields cannot. Thus:

I An integral of charge density over a volume containing a boundary reduces, as
the height of the volume normal to the boundary is shrunk to zero, to the
surface charge density integrated over the intersection of the volume with the
boundary. The volume component of the charge density yields zero contribution.

I An integral of a current density through an area reduces, as the width of the
area normal to the boundary shrinks to zero, to the surface current density
passing through the area. The area component of the current density yields zero
contribution.
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Fields themselves never have singularities like this, so any integral of a field vanishes
as the volume or area is shrunk to zero. Hence, the addition of the displacement
current does not modify the boundary conditions we have calculated in the past! For
Maxwell’s Equations in matter, ~Jp has been introduced but it also cannot have

δ-function singularity because it is based on ~P, which we have defined to be a volume
density of dipoles, and so its contribution to ∂ ~D/∂t is consistent with the above.

Individual electric or magnetic dipoles, or a line or sheet of them, which could in
principle yield δ-function contributions to ~P or ~M and thus to ~D or ~H, cannot be
handled using our macroscopic picture of polarizable and magnetizable materials
because the fields are δ-function like on the dipoles only (e.g., Griffiths Problems 3.48
and 5.61) and our macroscopic picture assumes that it is valid to average over
infinitesimally small volumes. They affect how the field changes at a boundary over an
infinitesimally small area, and so we should not even consider their effect. If we want
to consider their impact on the fields in such regions, they would need to be treated as
free charges and currents and would again not affect the above statements about
fields.
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Motivation and Analogy: Conservation of Charge

Back when we first discussed the Lorentz Force, we discussed conservation of charge
and the continuity equation:

~∇ · ~J(~r) = −∂ρ(~r)

∂t
(8.1)

This is an interesting equation because it enforces local conservation of charge: not
only is there no creation or destruction of charge over the whole universe, there is also
no creation or destruction of charge at a given point. Charge cannot jump from one
place to another without a current flowing to move that charge.

In electrodynamics, we want to ask the same question for energy and momentum
because we want to understand whether the fields we have constructed have true
physical meaning or are just mathematical constructs. Determining whether they carry
energy and momentum is one way to answer that question, and such a consideration
leads to the question of conservation of these quantities.

We will do all this in vacuum. It of course applies to polarizable and magnetizable
materials, too, since our study of them is just a rewriting of our vacuum equations in a
more convenient form.
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Poynting’s Theorem: Conservation of Energy

We have shown that the work required to set up distributions of charge or current is

We =
εo

2

∫
dτ |~E |2 Wm =

1

2µo

∫
dτ |~B|2 (8.2)

Recall that this is the work needed to move new charge in from infinity due to the
repulsion from the charge already there or the work that needs to be done to raise a
current from zero to its final value against a back emf (induced electric field). It is thus
natural to expect that the total energy density in the electric and magnetic fields is

ufield =
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
(8.3)

Will show this is valid by considering the exchange of energy between the fields and
charges/currents. We use the term electromagnetic field to reflect the fact that the
fields influence each other and their energies are on the same footing.
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Given a single particle of charge q acted on by the electromagnetic field, the work
done on it as it moves by d ~̀ is

dW = ~F · d ~̀= q
(
~E + ~v × ~B

)
dt = q ~E · ~v dt (8.4)

Now, if we consider a continuous distribution of charge and current, we may replace
q = ρ dτ and ρ ~v = ~J, giving that the power is (as we saw from Ohm’s Law)

dW

dt
=

∫
dτ ~E · ~J (8.5)

Let’s manipulate the integrand using Ampere’s Law:

~E · ~J =
1

µo

~E ·
(
~∇× ~B

)
− εo

~E · ∂
~E

∂t
(8.6)

One subtlety here: we started off talking about ~J being acted upon by an
electromagnetic field, and now it seems like we are treating ~J as the source of that
field. It is not the sole source of the field because, now with the displacement current
term combined with Faraday’s Law, there can be electric and magnetic fields that are
sourced by each other’s time variation rather than by physical currents. The above
substitution is nevertheless valid because the second term subtracts off the
displacement current term that is due to changing fields rather than physical current:
one should not be able to do work on the displacement current!
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Another subtlety is the issue of whether ~J can create fields that do work on itself.
This is entirely possible, as we saw in the example of the time-varying current in the
coaxial conductor: a time-varying current generated a time-varying magnetic field that
generated a time-varying electric field aligned with the original current. If there were
no battery driving the current, then the work being done by the field on the current
should reduce the energy in the current in exactly the way that would be needed to
conserve energy. Of course, if a battery is involved, then it can supply energy and we
do not expect the energy of the currents and fields alone to be conserved.
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Returning to our expression for ~E · ~J, we can use the product rule
~∇ · (~a× ~b) = ~a · (~∇× ~b)− ~b · (~∇× ~a) to rewrite it and then use Faraday’s Law:

~E · ~J =
1

µo

~B ·
(
~∇× ~E

)
− 1

µo

~∇ ·
(
~E × ~B

)
− εo

~E · ∂
~E

∂t
(8.7)

= − 1

µo

~B · ∂
~B

∂t
− εo

~E · ∂
~E

∂t
− 1

µo

~∇ ·
(
~E × ~B

)
(8.8)

= − ∂

∂t

1

2

(
εo |~E |2 +

1

µo
|~B|2

)
− 1

µo

~∇ ·
(
~E × ~B

)
(8.9)

Incorporating the above and applying the divergence theorem to the last term, we thus
obtain Poynting’s Theorem:

dW

dt
= −

[
d

dt

∫
V

dτ
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
+

∮
S(V)

da n̂ · ~S
]

(8.10)

with the Poynting vector defined to be ~S =
1

µo

(
~E × ~B

)
(8.11)

Poynting’s Theorem says that the work per unit time done on the charges and
currents in a volume V by electromagnetic forces is equal to negative of the sum of
the change per unit time of the energy in the fields and the energy flowing outward
through the surface of V. ~S has units of energy per unit time per unit area and is
considered the energy flux density.
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Another useful form is given by putting the field energy density term on the left side:

dW

dt
+

d

dt

∫
V

dτ
1

2

(
εo |~E |2 +

1

µo
|~B|2

)
= − 1

µo

∮
S(V)

da n̂ · ~S (8.12)

d

dt
(Emech + Efield ) = −

∮
S(V)

da n̂ · ~S (8.13)

The rate of change of the total energy in the volume is given by the flux of the
Poynting vector through the boundary of the volume — this much more explicitly puts
mechanical and field energy on the same footing and shows that both can be
transported by the Poynting flux.

Note that this allays our fears about a current doing work on itself: while it may do
so, energy remains conserved as long as one takes into account the field energy.
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We may write both versions in a local form by recognizing that the volume being
integrated over is arbitrary. If we define umech(~r) to be the density of mechanical
energy (W =

∫
V dτ umech) as a function of position and

ufield =
1

2

(
εo |~E(~r)|2 +

1

µo
|~B(~r)|2

)
(8.14)

to be the energy density of the electromagnetic field, then our two versions of
Poynting’s theorem yield the local relations (after converting the surface integral of ~S
back to a volume integral using the divergence theorem):

∂umech(~r)

∂t
= −∂ufield (~r)

∂t
− ~∇ · ~S(~r) ⇐⇒ ∂

∂t
[umech(~r) + ufield (~r)] = −~∇ · ~S(~r)

(8.15)

This is the kind of local conservation theorem we wanted, relating the rate of change
of a density (here the energy density) to the divergence of a current density (here the
Poynting vector).

When there is no change in mechanical energy — e.g., in empty space — then we can
specialize the above to obtain the continuity equation for the energy of the
electromagnetic field:

umech = 0 :
dEfield

dt
= −

∮
S(V)

da n̂ · ~S ⇐⇒ ~∇ · ~S(~r) = −∂ufield (~r)

∂t
(8.16)
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Example 8.1: Power Transported Down a Coaxial Cable (Griffiths Problem 8.1)

Consider a coaxial cable with central conductor of diameter a and outer conductor of
radius b and zero thickness. A static current flows along +ẑ on the central conductor
and back along −ẑ on the outer shell. We used a similar geometry in a previous
example, but with a time-varying current in that case. The inner conductor is held at
voltage V and the outer conductor at V = 0 (ground) at one end of the cylinder, and
there is a resistive sheet of sheet conductivity σ� (definition to be provided) capping
the other end.

Because the inner conductor is assumed to have infinite conductivity, there can be no
electric field inside and thus all the current must flow on the surface (consequence of

Ohm’s Law: ~J = 0 because ~E = 0). The calculation of the magnetic field is thus the
same as the prior example in the same geometry with time-varying current. The
magnetic field between the conductors is

~B(s) =
µo I

2π s
φ̂ (8.17)

where I is the current due to V (value to be determined). In the prior example, we did
not explicitly have a voltage on the inner conductor (effectively, the conductivity of
the sheet at the end was infinite).
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Here, since we have such a voltage, there is a line charge density on the inner
conductor and a radial electric field. You are no doubt familiar with the Gauss’ Law
calculation of this configuration, which yields

~E(s) =
λ

2π εo s
ŝ (8.18)

Let’s find λ by matching to the applied voltage. The potential and field are

V (s) ∝ ln s V = V (a)− V (b) =
λ

2π εo
ln

b

a
=⇒ ~E(s) =

V

s ln b
a

ŝ (8.19)

The Poynting vector is

~S =
1

µo

~E × ~B =
IV

2π s2 ln b
a

ẑ (8.20)

The energy and energy current are between the conductors, not in them! The power
flowing down the cable is found by integrating the Poynting vector over the
cross-sectional area where the fields are:

P =

∫
S

da n̂ · ~S(s) =

∫ b

a
s ds

∫ 2π

0
dφ

IV

2π s2 ln b
a

=
IV

ln b
a

∫ b

a

ds

s
= IV (8.21)
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Let’s calculate the power dissipated in the resistive sheet at the end. The sheet does
not disturb the potential because the sheet continues to satisfy Laplace’s equation
with the same boundary conditions in s: V (a) = V , V (b) = 0. Therefore, our electric
field above is valid in the conducting sheet, and the surface current density and total
current are

~K(s) = σ� ~E(s) =
σ� V

s ln b
a

ŝ (8.22)

where σ� is the conductivity per square, which can be thought of as σ� = limt→0 σ/t
where σ is the usual conductivity and t is the thickness of the sheet. The total current
is

I =

∫ 2π

0
s dφK(s) = 2π s K(s) =

2π σ� V

ln b
a

(8.23)
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We do not need it, but it is interesting to note that the resistance is

R =
V

I
=

ln b
a

2π σ�
(8.24)

The power dissipated in the resistor is

P =

∫
S

da ~K(s) · ~E(s) =

∫ b

a
s ds

∫ 2π

0
dφσ�

(
V

s ln b
a

)2

(8.25)

= 2π σ�

(
V

ln b
a

)2 ∫ b

a

ds

s
=

2π σ�V 2

ln b
a

= IV = I2R =
V 2

R
(8.26)

as expected since this is the power coming down the central conductor and it cannot
go beyond the resistive sheet since the fields go to zero out there (no current or
charge density beyond the sheet).
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The Maxwell Stress Tensor: Conservation of Linear Momentum
(Skip)

We showed in the previous section that fields carry energy and that one must account
for that energy in order for conservation of energy to hold. The natural next question
to ask is whether the electromagnetic fields carry momentum. The matter and fields
are related by the fields exerting forces on the matter, so let’s use these forces to
connect the momentum of the matter and fields. The Lorentz Force Law is

d ~Pmech

dt
= ~F = q

(
~E + ~v × ~B

)
(8.27)

Integrating this over a charge and current density gives

d ~Pmech

dt
=

∫
V

dτ
(
ρ ~E + ~J × ~B

)
(8.28)

Using Maxwell’s Equations, we can write this purely in terms of the fields:

d ~Pmech

dt
=

∫
V

dτ

(
εo

[
~∇ · ~E

]
~E +

[
1

µo

~∇× ~B − εo
∂ ~E

∂t

]
× ~B

)
(8.29)

We recall the same subtleties as for energy: ρ and ~J now being taken as source of
fields, and the last term subtracts off the displacement current since the magnetic field
exerts no force on it.
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After a remarkable amount of manipulation that we will not reproduce here—see
Griffiths §8.2.2 or Jackson §6.8—one arrives at

d ~Pmech

dt
=

∫
V

dτ

[
~∇ · T − εo µo

∂ ~S

∂t

]
(8.30)

where T is the Maxwell Stress Tensor

T (~r) =
3∑

i,j=1

Tij (~r) r̂i r̂j Tij (~r) = εo

[
Ei Ej −

1

2
δij E 2

]
+

1

µo

[
Bi Bj −

1

2
δij B2

]
(8.31)

(we do not show the fields’ dependence on position for brevity) and where the vector
dot products and divergence of T are given by

~a · T =
3∑

i=1

ai Tij r̂j T · ~a =
3∑

j=1

r̂i Tij aj
~∇ · T =

3∑
i=1

r̂j
∂

∂ri

Tij (8.32)

Note that Tij is symmetric in its indices. We are not terribly concerned in this course
with the transformation properties of scalars, vectors, and tensors under coordinate
system rotations, so we will not comment further on what a tensor is. Recall we
encountered the quadrupole moment tensor earlier.
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Using the divergence theorem on the first term and moving the time derivative in the
second term outside the integral, we obtain

d ~Pmech

dt
=

∮
S(V)

da n̂(~r) · T (~r)− εo µo
d

dt

∫
V

dτ ~S(~r) (8.33)

This equation states that the rate of change of the mechanical momentum in a
volume V is equal to the integral over the surface of the volume of the stress tensor’s
flux through that surface minus the rate of change of the volume integral of the
Poynting vector.

Let us consider a situation in which the second term vanishes and we are left with the
flux of T over the surface. This justifies the naming of T : it gives the force per unit
area due to the electromagnetic fields, or the stress. Tij is the force per unit area
acting in the ith direction on an area element who normal is in the jth direction. The
diagonal elements are pressures and the off-diagonal forces are shears. More generally,
the force per unit area in the n̂1 direction on an area element whose normal is in the
n̂2 direction (not necessarily parallel or perpendicular to n̂1), or vice versa, is

F (~r , n̂1, n̂2)

A
= n̂1 · T (~r) · n̂2 (8.34)
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We may abstract out mechanical momentum and force densities ~pmech(~r) and ~f (~r);
i.e., per unit volume expressions:

~pmech(~r) ≡ ρm(~r)~v(~r) ~f (~r) ≡ ~∇ · T (~r)− εo µo
∂ ~S(~r)

∂t
(8.35)

where ρm(~r) is the mass density
~v(~r) is the velocity field of the mass density

We may conclude that these quantities are related locally because of the arbitrariness
of the volume over which we are integrating:

∫
V

dτ
∂~pmech

∂t
=

d

dt

∫
V

dτ ~pmech =
d ~Pmech

dt
=

∫
V

dτ ~f (8.36)

=⇒ ∂~pmech(~r)

∂t
= ~f (~r) = ~∇ · T (~r)− εo µo

∂ ~S(~r)

∂t
(8.37)

This is the kind of conservation law we wanted to get to, a local one that relates the
rate of change of the local momentum density to the divergence of the local stress
tensor and the rate of change of the Poynting vector. It can also be viewed as a local
force law, the generalization of Newton’s Second Law.
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As we did with the energy, and motivated by the appearance of a time derivative on
the right side, we may rewrite the above as

d

dt

(
~Pmech + εo µo

∫
V

dτ ~S

)
=

∮
S(V)

da n̂ · T (8.38)

We are thus motivated to define the linear momentum density and linear momentum
of the electromagnetic field as

~pfield (~r) ≡ ~g(~r) ≡ εo µo
~S(~r) = εo

~E(~r)× ~B(~r) ~Pfield =

∫
V

dτ ~g (8.39)
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With that definition, we obtain

d

dt

(
~Pmech + ~Pfield

)
=

∮
S(V)

da n̂ · T ⇐⇒ ∂

∂t
[~pmech(~r) + ~g(~r)] = ~∇ · T (~r)

(8.40)

We thus see that the rate of change of the total (mechanical + field) linear
momentum in a volume is given by the integral of the stress tensor over the surface, or
that the rate of change of the total momentum density at a point is given by the
divergence of the stress tensor at that point. The stress tensor is thus seen to be the
momentum current density in the same way that ~J is the electric current density and
~S is the energy current density (up to a sign): all satisfy local continuity equations.

The second equation can also be considered a generalized force law, where now we
consider the rate of change of the momentum of both the particles and the fields, with
~∇ · T being the “force” that acts on both.

When there is no change in mechanical momentum—e.g., in empty space—we obtain
the continuity equation for the linear momentum of the electromagnetic field:

~pmech = 0 :
d ~Pfield

dt
=

∮
S(V)

da n̂ · T ⇐⇒ ~∇ · T (~r) =
∂~g(~r)

∂t
(8.41)
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It is interesting to note that both ~S and T play two roles:

I ~S is the power per unit area transported by the electromagnetic field, while
~g = εo µo

~S is the linear momentum per unit volume stored in the field. This
intimate connection between energy and momentum for the electromagnetic
field reflects the photon’s masslessness in quantum field theory.

I Similarly, T plays two roles; both as a force per unit area (the stress) applied by
the electromagnetic field as well as the momentum current density carried by
the electromagnetic field (with a minus sign; units of momentum per unit area
per unit time). This makes sense: for the electromagnetic field to exert a force,
it must provide momentum.

Note this issue of the sign. If we wanted T to have a continuity equation like current
and energy, where the rate of change of the conserved quantity is equal to the
negative of the divergence of the current (loss of conserved quantity corresponds to
outflow of current), we would have had to define T with the opposite sign. But the
sign given ensures that T can be used to calculate forces without a sign flip. This
makes sense: T pointing into a volume should have a positive surface integral so that
it indicates it is adding momentum to the volume. The only way out of this choice
would be if we wanted to flip the sign and interpret T as the force that the

mechanical system exerts on the field (and then the continuity equation would behave
the way we want), but that would be nonintuitive since we generally want to calculate
the forces the field exerts on the mechanical system.
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Example 8.2: Magnetic Force Between Two Spinning Charged Hemispheres
(Griffiths Problem 8.3)

Given two hemispherical shells of radius R and uniform surface charge density σ
spinning at angular frequency ω about the z axis, what is the magnetic force between
the north and south hemispheres? (Griffiths Example 8.2 calculates the electrostatic
force for a similar situation.)

We have calculated the magnetic field for a similar configuration when we calculated
the field of the uniformly magnetized sphere, which was

~B(r ≤ R) =
2

3
µo M ẑ (8.42)

~B(r ≥ R) =
µo

4π

3 ( ~m · r̂)r̂ − ~m

r3
with ~m =

4

3
π R3M ẑ (8.43)

The surface current was ~K = φ̂M sin θ. In the new problem, the surface current is
~K = φ̂ σ ω R sin θ, so we just need to replace M with σ ω R, giving

~B(r ≤ R) =
2

3
µo σ ω R ẑ (8.44)

~B(r ≥ R) =
µo

4π

3 ( ~m · r̂)r̂ − ~m

r3
with ~m =

4

3
π R4σ ω ẑ (8.45)
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To calculate the force, we would nominally expect to calculate the flux of the stress
tensor over the hemisphere (the plane at z = 0 for r < R and the hemispherical shell
r = R at z > 0). However, the derivation implies that any volume containing the
matter on which we would like to calculate the force suffices for the calculation. So
let’s do the calculation more easily by setting the surface to be the z = 0 plane. The
force will only be in the z direction by symmetry, so we need only the T3i components.
Moreover, because the plane we want to do the calculation for has a surface normal
only in the z direction, we can restrict to the T33 component:

T33 =
1

2µo
B2

z =⇒ T33(r < R, z = 0) =
2

9
µo σ

2ω2 R2 (8.46)

T33(r > R, z = 0) =
µo σ2 ω2 R8

18 r6
(8.47)

We can do the area integral easily (n̂ = −ẑ because we want the force on the upper
half space and −ẑ is the outward surface normal):

Fz = −
∫ 2π

0
dφ

[∫ R

0
r dr T33(r < R, z = 0) +

∫ ∞
R

r dr T33(r > R, z = 0)

]
(8.48)

= −2π

[
R2

2

2

9
µo σ

2ω2 R2 +
µo σ2 ω2 R8

72 R4

]
= −π

4
µo σ

2 R4 ω2 (8.49)
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Conservation of Angular Momentum (Skip)

One can go back and write analogues of everything we did for linear momentum for
the case of angular momentum. The key point is that the manipulations that led us to
Equation 8.30 did not rely on any transformations of integrals; we just needed to
manipulate the integrand. Those manipulations remain valid, but now with a ~r × in
front inside the integral. That is, we start with

d~Lmech

dt
= ~N = ~r × ~F = ~r × q

(
~E + ~v × ~B

)
(8.50)

Again, we integrate over the charge and current density to obtain

d~Lmech

dt
=

∫
V

dτ ~r ×
(
ρ ~E + ~J × ~B

)
(8.51)

Then we perform the same manipulations of the expression in parentheses as before,
obtaining

d~Lmech

dt
=

∫
V

dτ

[
~r ×

(
~∇ · T

)
− εo µo

∂

∂t

(
~r × ~S

)]
(8.52)

Page 553



Section 8.4 Conservation Laws: Conservation of Angular Momentum (Skip)

Let’s manipulate the expression ~r ×
(
~∇ · T

)
: we would obviously like to turn it into a

pure divergence. Using Equation 8.32,

~r ×
(
~∇ · T (~r)

)
= ~r ×

3∑
i,j=1

r̂j
∂Tij

∂ri

=
3∑

i,j,k=1

r̂k × r̂j rk
∂Tij

∂ri

(8.53)

=
3∑

i,j,k=1

r̂k × r̂j

(
∂

∂ri

rk Tij

)
−

3∑
i,j,k=1

r̂k × r̂j Tij
∂ rk

∂ri

(8.54)

=
3∑

i,j,k=1

∂

∂ri

(
rk r̂k × Tij r̂j

)
−

3∑
i,j,k=1

r̂k × r̂j Tij δik (8.55)

= −
3∑

i,j,k=1

∂

∂ri

(
Tij r̂j × rk r̂k

)
−

3∑
i,j,k=1

r̂k × r̂j Tkj (8.56)

= ~∇ ·
(
−T (~r)× ~r

)
= ~∇ ·M(~r) with M(~r) = −T (~r)× ~r

(8.57)

(we did not show the explicit ~r dependence for the intermediate steps for brevity)
where the second term in the penultimate line vanishes because it is the product of
quantities that are antisymmetric in j and k (r̂k × r̂j ) and symmetric in j and k (Tkj ).
M is the analogue of the stress tensor, but now for torque, which we will call the
torque tensor. We reordered ~r and T to obtain −T × ~r rather than ~r × T so the
coordinate index of the divergence matches up with the first coordinate index of M.
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Explicitly (undoing the reordering of T and ~r so we get ~r×, not ×~r , below, and not

showing explicitly the position dependence for brevity):

M = −T × ~r = −
3∑

i,j,k=1

Tij r̂i r̂j × rk r̂k = −
3∑

i,j,k,m=1

r̂i r̂m εmjk Tij rk (8.58)

=
3∑

i,j,k,m=1

r̂m r̂i rk εmkj

(
εo

[
Ej Ei −

1

2
δji E 2

]
+

1

µo

[
Bj Bi −

1

2
δji B2

])
(8.59)

= εo

[
~r × ~E

]
~E +

1

µo

[
~r × ~B

]
~B − 1

2

3∑
i,k,m=1

r̂m r̂i rk εmki

[
εo E 2 +

1

µo
B2

]
(8.60)

= εo

[
~r × ~E

]
~E +

1

µo

[
~r × ~B

]
~B +

1

2

[
εo E 2 +

1

µo
B2

] 0 z −y
−z 0 x

y −x 0


(8.61)

Aside: In Ph106a, one shows that angular momentum is more rigorously written as an
antisymmetric second-rank (pseudo)tensor, but, because such an object has only 3
independent quantities, it can be reduced to a (pseudo)vector (first-rank tensor) using

cross-product notation. That applies here to both ~Lmech and to ~r × ~S . By
extrapolation, M may be written as an a completely antisymmetric third-rank

(pseudo)tensor. Since we do not use any of the transformation properties of these
objects under rotations in this course, there is no need to use these higher-rank
objects and so we stick with the less sophisticated vector notation for cross products.
But this concept will return when we consider the relativistic generalization of M
because the reduction to a second-rank tensor is only possible in three dimensions.
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With our expression in terms of the divergence of M, we may write the analogue of
Equation 8.30 for torque:

d~Lmech

dt
=

∫
V

dτ

[
~∇ ·M− εo µo

∂

∂t

(
~r × ~S

)]
(8.62)

Using the divergence theorem, we may rewrite as we did the force equation

d~Lmech

dt
=

∮
S(V)

da n̂(~r) · M(~r)− εo µo
d

dt

∫
V

dτ ~r × ~S(~r) (8.63)

We thus have a relation between the rate of change of mechanical angular momentum
and the flux of the torque tensor M into/out of the volume and the rate of the
change of integral of the funny quantity containing the Poynting vector.
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Section 8.4 Conservation Laws: Conservation of Angular Momentum (Skip)

Let’s turn this into a differential version. We need to define the mechanical
momentum density and the torque density:

~̀
mech(~r) ≡ ~r × ~pmech(~r) = ~r × ρm(~r)~v(~r) ~ntorque (~r) ≡ ~∇ ·M(~r)− εo µo

∂

∂t

(
~r × ~S(~r)

)
(8.64)

Then we have∫
V

dτ
∂~̀mech

∂t
=

d

dt

∫
V

dτ ~̀mech =
d~Lmech

dt
=

∫
V

dτ ~ntorque (8.65)

=⇒ ∂~̀mech(~r)

∂t
= ~ntorque (~r) = ~∇ ·M(~r)− εo µo

∂

∂t

(
~r × ~S(~r)

)
(8.66)

We thus obtain a local conservation law that relates the rate of change of the local
angular momentum density to the divergence of the local torque tensor and the rate of
change of the rate of the change of the funny quantity containing the Poynting vector.
It can also be viewed as a local torque version of Newton’s Second Law.
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As before, it is natural to define a field angular momentum density and move it to the
left side of the above equations:

~̀
field (~r) = ~r × ~g(~r) = εo µo ~r × ~S(~r) = εo ~r × (~E(~r)× ~B(~r)) ~Lfield =

∫
V

dτ ~̀field

(8.67)
With that definition, we obtain

d

dt

(
~Lmech + ~Lfield

)
=

∮
S(V)

da n̂ · M ⇐⇒ ∂

∂t

(
~̀

mech(~r) + ~̀
field (~r)

)
= ~∇ ·M(~r)

(8.68)

Again, we obtain an integral conservation equation relating the rate of change of the
total angular momentum in a volume to the integral of the torque tensor over the
surface and a local conservation equation relating the rate of change of the total
angular momentum density to the divergence of a current density, here now the
angular momentum current density (which has units of angular momentum per unit
area per unit time). The second equation is a generalized local “torque” equation.

Note the choice of sign for M follows the same convention as for the stress tensor: it
gives a continuity equation with a sign flip but is the correct sign for torque. Be aware
that this sign convention is the opposite of Jackson’s (his Problem 6.9).

Note that field angular momentum is not the same as photon spin or circular
polarization; we will come back to this later when we discuss polarization of EM waves.
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Section 9.1 Electromagnetic Waves: Introduction and Study Guidelines

Introduction and Study Guidelines

Maxwell’s Equations have in them the seeds of self-propagating disturbances in the
electromagnetic field: though time-varying charges and currents must generate the
waves, they can propagate on their own once initiated. So, in this section, we will
develop the theory of such waves propagating in either free space or linear dielectric
media, without any free charges. Later on, we will discuss radiation, the process by
which time-varying charges and currents generate electromagnetic waves.

We deviate from Griffiths’ ordering of topics because you have seen the wave equation
three times before, in Ph1c, Ph2/12a, and Ph106a, so we do not need to reintroduce
it from scratch. Let’s just launch into it and bring the formalism of waves in as we go.
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Section 9.2 Electromagnetic Waves: Electromagnetic Waves in Vacuum

Electromagnetic Waves in Vacuum

From Maxwell’s Equations to the Wave Equation

As noted earlier, we will consider Maxwell’s Equations in free space with no sources:

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − εo µo

∂ ~E

∂t
= 0 (9.1)

These equations couple ~E and ~B, so let’s try to find uncoupled equations by
eliminating ~B from the ~∇× ~E equation and ~E from the ~∇× ~B equation by taking the
curl again and using one of our standard vector identities:

~∇×
(
~∇× ~E

)
= ~∇×

(
−∂

~B

∂t

)
~∇×

(
~∇× ~B

)
= εo µo ~∇×

(
−∂

~E

∂t

)
~∇
(
~∇ · ~E

)
−∇2 ~E = −εo µo

∂

∂t
~∇× ~B ~∇(~∇ · ~B)−∇2 ~B = −εo µo

∂

∂t
~∇× ~E

∇2 ~E = εo µo
∂2 ~E

∂t2
∇2 ~B = εo µo

∂2 ~B

∂t2

where ~∇ · ~E = 0 because there is no charge density. These are copies of the wave
equation.
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Specifically, these are component-by-component versions of the equation

∇2f (~r , t) =
1

v2

∂2

∂t2
f (~r , t) (9.2)

One can see by substitution that any function of the form

f (~r , t) = g(w) with w = ~k · ~r − ω t (9.3)

satisfies the wave equation. First, we need to calculate the derivatives:

∇2f (~r , t) =
3∑

i=1

∂2f

∂r2
i

=
3∑

i=1

∂

∂ri

dg

dw

∂w

∂ri

=
3∑

i=1

∂

∂ri

dg

dw
ki (9.4)

=
3∑

i=1

ki
d2g

dw2

∂w

∂ri

=
3∑

i=1

k2
i

d2g

dw2
= |~k|2 d2g

dw2
(9.5)

∂2

∂t2
f (~r , t) =

∂

∂t

dg

dw

∂w

∂t
=

∂

∂t

dg

dw
(−ω) = −ω d2g

dw2

∂w

∂t
= ω2 d2g

dw2
(9.6)

The wave equation is satisfied by the assumed form if

|~k|2 =
ω2

v2
(9.7)
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The above condition says we can rewrite the argument, eliminating either ω or |~k|, as

w = ±~k · ~r − |~k| v t =
ω

v

(
±k̂ · ~r − v t

)
(9.8)

where we have chosen ω and v to be always nonnegative while ~k is allowed to take on
any sign and direction. We can see that surfaces of constant w are given by

δw = 0 =⇒ ω
(
±k̂ · δ~r − v δt

)
= 0 =⇒ ±k̂ · δ~r

δt
= v (9.9)

That is, the surfaces of constant w propagate in space along the direction ±k̂ at
speed v . This implies that the “shape function” g(w) propagates at this speed.
Returning to our electromagnetic wave equations, we thus see that these waves in the
electric and magnetic fields propagate at speed v = 1/

√
εo µo which is now, by

definition, the speed of light, denoted by c.

The interpretation of ω and k = |~k| are not clear yet, and in fact they are no longer
strictly necessary (the factor ω/v = k could be absorbed into g(w) now that we know
ω and k are not independent), but they will become so below when we consider
sinusoidal waves.
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Section 9.2 Electromagnetic Waves: Electromagnetic Waves in Vacuum

General Properties of Solutions to the EM Wave Equations

We can use Maxwell’s Equations to derive some general properties about
electromagnetic waves. Many of these connect to the fact that ~E and ~B are vector
quantities. We will begin by assuming the waves are sinusoidal solutions of the most
general form allowed so far

~E(~r , t) = ~E0 cos
(
~kE · ~r − ωE t + δE

)
(9.10)

~B(~r , t) = ~B0 cos
(
~kB · ~r − ωB t + δB

)
(9.11)

where we have allowed different ω, propagation directions k̂, and phase shifts δ
because nothing has restricted that freedom yet. (The sign freedom on k̂ has been

absorbed into k̂.) We have assumed sinusoidal solutions because they form a complete
basis for solution of the wave equation, so any solution can be decomposed in terms of
them.

This sinusoidal assumption now allows us to provide an interpretation of ω and k. The
time dependence at a given point in space has angular frequency ω, frequency
ν = ω/2π, and period T = 1/ν. The quantity k is the propagation constant, and the
spatial dependence implies a wavelength λ = 2π/k = v/ν. When we consider more
general solutions that are the sums of sinusoids, these interpretations fail again
because the sum does not correspond to single ω and k values.
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With the sinusoidal assumption, we can demonstrate the following:

I Transversality
We can rewrite the divergence equations:

0 = ~∇ · ~E =
d ~E

dw
· ~∇w = −ωE

c
k̂E · ~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.12)

0 = ~∇ · ~B =
d ~B

dw
· ~∇w = −ωB

c
k̂B · ~B0 sin

(
~kB · ~r − ωB t + δB

)
(9.13)

For the above equations to hold at all points in space, it is necessary for ~E0 and
~B0 to be perpendicular to their respective propagation directions. EM waves are
thus transverse waves: the field disturbance is in the direction perpendicular to
propagation.
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I Orthogonality and Equality of ~k, ω, and δ
Let’s write the curl equations. First, we take the necessary derivatives:

~∇× ~E =
3∑

i,j,k=1

εijk r̂i
∂Ek

∂rj

=
3∑

i,j,k=1

εijk r̂i
dEk

dw

∂w

∂rj

=
3∑

i,j,k=1

εijk r̂i
dEk

dw
kE ,j = ~kE ×

d ~E

dw
=
ωE

c
k̂E ×

d ~E

dw

= −ωE

c
k̂E × ~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.14)

∂ ~E

∂t
=

d ~E

dw

∂w

∂t
= −ωE

d ~E

dw
= ωE

~E0 sin
(
~kE · ~r − ωE t + δE

)
(9.15)

~B has similar derivatives. Plugging the above into Faraday’s Law and Ampere’s
Law:

−ωE

c
k̂E × ~E0 sin

(
~kE · ~r − ωE t + δE

)
= −ωB

~B0 sin
(
~kB · ~r − ωB t + δB

)
(9.16)

ωB

c
k̂B × ~B0 sin

(
~kB · ~r − ωB t + δB

)
= −ωE

c2
~E0 sin

(
~kE · ~r − ωE t + δE

)
(9.17)
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We can conclude two things from these equations:

I In order for the equality to hold at all points in space and at all times, the
arguments of the sin functions on the two sides must be the same,
~kE = ~kB , ωE = ωB , and δE = δB

I ~k, ~E0, and ~B0 form a mutually orthogonal set of vectors

In the end, we therefore have the following relation between ~E and ~B:

~E(~r , t) = ~E0 cos
(
~k · ~r − ω t + δ

)
(9.18)

~B(~r , t) = ~B0 cos
(
~k · ~r − ω t + δ

)
(9.19)

~B0 =
1

c
k̂ × ~E0 ⇐⇒ ~E0 = −c k̂ × ~B0 (9.20)
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One note on the behavior of independent polarizations. Given a propagation direction
k̂, we can pick two directions, n̂1 and n̂2, to form a basis for ~E . A natural choice is to
require n̂1 × n̂2 = k̂, which also implies k̂ × n̂1 = n̂2. Then ~E0 = E1 n̂1 + E2 n̂2 and
~B0 = B1 n̂1 + B2 n̂2. E1 and E2 are the two possible polarizations of the electric field.
(Of course, we can pick any n̂1 we want; once n̂1 has been picked, then the

polarization directions are set.) The curl of ~E relation then implies

B2 = ~B0 · n̂2 =
1

c
~E0 · n̂1 =

E1

c
B1 = ~B0 · n̂1 = − 1

c
~E0 · n̂2 = −E2

c
(9.21)

We thus see that, aside from picking consistent k̂, n̂1, and n̂2, there is no connection
between the (E1,B2) pair and the (E2,B1) pair. The waves in the two complementary
polarizations can have different ω and thus different k. They are two completely
independent waves. There is no fixed relationship between the waves in the two
polarizations, and they can get out of phase with each other as they propagate if they
have different ω.

If we consider two waves that have the same ω, then the two waves propagate
together — their relative phase does not change with time or position. But there
remains no condition connecting E1 and E2, or B1 and B2, so there is no requirement
that the complementary polarizations have matching amplitude or phase (δ). We will
see later that this independence of the two polarization amplitudes and phases can be
used to generate a diverse set of possible polarizations: linear, circular, and elliptical.
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Rewriting EM Waves using the Auxiliary Field

It is interesting to note at this point that ~B is not the most natural field quantity to
work with: it is smaller than ~E by a factor c, which is large. If we instead use
~H = ~B/µo , then we obtain

~H0 =
1

Z0
k̂ × ~E0 Z0 =

√
µo

εo
(9.22)

The quantity Z0 ≈ 377 Ω is known as the impedance of free space and has units of
resistance (impedance). We see that ~H is now only a factor of 377 smaller than ~E .

We also recall that ~H has units of surface current density. This foreshadows the way ~H
will be related to the surface currents that the electric field drives in
polarizable/magnetizable media and in conductors.
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Energy and Momentum in Electromagnetic Waves

The energy density in an electromagnetic wave, now using |~B| = |~E |/c = |~E |√εo µo , is

u =
1

2

(
εo E 2 +

1

µo
B2

)
=

1

2

(
εo E 2 +

εo µo

µo
E 2

)
= εo E 2 (9.23)

The energy flux per unit area is the Poynting vector:

~S =
1

µo

~E × ~B =
E 2

c µo
k̂ = c εo E 2 k̂ = c u k̂ (9.24)

Thus, we see that the energy transported by the electromagnetic wave travels at the
speed of light, just as the wave does. The momentum density vector is

~g = εo µo
~S =

u

c
k̂ =

εo E 2

c
k̂ (9.25)

Note that the energy flux and momentum density differ by a factor of c2, not just c
(as we would expect for a relation between energy and momentum) because one is a
flux (energy/area/time) and the other is a density (momentum/volume); the difference
in spatial and temporal units introduces another factor of velocity between the two.
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We can also write down the stress tensor. First, consider the special case k̂ = k ẑ so
n̂1 = x̂ and n̂2 = ŷ . Consider a wave polarized along x̂ . Then the fields are

~E = E x̂ ~B = B ŷ =
E

c
ŷ =
√
µo εo E ŷ (9.26)

The stress tensor is

T11 = εo

(
E 2 − 1

2
E 2

)
+

1

µo

(
−1

2
B2

)
= 0 (9.27)

T22 = εo

(
−1

2
E 2

)
+

1

µo

(
B2 − 1

2
B2

)
= 0 (9.28)

T33 = εo

(
−1

2
E 2

)
+

1

µo

(
−1

2
B2

)
= −u (9.29)

T12 = T13 = T23 = 0 (9.30)

=⇒ T = −u ẑ ẑ (9.31)

The stress tensor for the complementary polarization is the same.
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It is reasonable to extrapolate from the above that the generic stress tensor (now
making the time dependence explicit) is

T = − k̂ k̂ εo E 2
0 cos2

(
~k · ~r − ω t + δ

)
(9.32)

One explanation of the reason for the negative sign is that T is the negative of the
momentum current density.

From the stress tensor, we can calculate the radiation pressure, the force per unit area
that would be applied to an object that absorbs the electromagnetic wave. Recall that
n̂1 · T · n̂2 gives the force acting in the n̂1 direction on a surface element whose normal

is in the n̂2 direction. Since T ∝ −k̂ k̂, the force is only nonzero (and positive) in the

k̂ direction on an area element whose outward normal is in the −k̂ direction. (Recall
how, in our example of using the stress tensor to calculate the force between the two
spinning charged hemispheres, the surface normal was in the −ẑ direction for
calculating the force on the hemisphere in the upper half-space.) The radiation

pressure in the k̂ direction is then

Pressure = k̂ · T · −k̂ = E 2
0 cos2

(
~k · ~r − ω t + δ

)
= u (9.33)

We will see later that, if the wave is not absorbed but reflected, the wave maintains its
amplitude |~E | but its k̂ reverses sign, implying that the momentum transfer and thus
the pressure are increased by a factor of 2.
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It is not particularly useful to write down the angular momentum density and the
angular momentum tensor for a plane wave. They are position dependent, reflecting
the fact that, if a charged particle absorbs energy and momentum from a plane wave
at some nonzero distance from the origin, it acquires a linear momentum ~p and thus
an angular momentum ~r × ~p. The latter carries no information beyond that of the
former. Only if the wave has a nontrivial dependence of ~E and ~B on position — for
example, ~E × ~B ∝ φ̂ — is the angular momentum of the wave interesting. Such waves
are beyond the scope of our current discussion of plane waves.
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Time Averaging for Plane Waves

For sinusoidally oscillating plane waves, it is standard to take time averages of
quantities. Obviously, the fields themselves time-average to zero. But energy and
momentum do not:

〈u(~r0)〉=
〈
εo E 2

0 cos2
(
~k · ~r0 − ω t + δ

)〉
=

1

2
εo E 2

0 (9.34)〈
~S(~r0)

〉
=

1

2
c εo E 2

0 k̂ 〈~g(~r0)〉= 1

2

εo E 2
0

c
k̂

〈
T (~r0)

〉
= −1

2
εo E 2

0 k̂ k̂ (9.35)

The average power per unit area transported by the wave is the intensity

I =
〈
|~S |
〉

=
1

2
c εo E 2

0 (9.36)

Note that the magnitude refers to the vector magnitude. Starting with the next slide,
when we consider complex notation for fields, we will always define ~S in such a way as
to be real, so the magnitude will continue to refer to vector magnitude even for
complex fields.
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Complex Notation for Plane Waves

For the sake of convenience in manipulation, we will from now on use complex
notation for plane waves,

~E(~r , t) = n̂R
[

Ẽ0 e i(~k·~r−ω t)
]

~B(~r , t) =
k̂ × n̂

c
R
[

Ẽ0 e i(~k·~r−ω t)
]

(9.37)

Ẽ0 = E0 e iδ (9.38)

where Ẽ0 is now a complex number into which we have absorbed the phase factor e iδ

and R means “take the real part.” We will not carry along tildes on the vectors ~E and
~E0 because it would be too cumbersome for the notation. It will be clear from context
whether we mean the complex or real fields.

To calculate quadratic quantities like u, ~S , ~g , and T with full space- and
time-dependence requires that one first take the real part and then apply the
previously provided formulae for these quadratic quantities.
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Fortunately, if one is only interested in time averages, there is a simple extension to
the prescription for time averages involving complex conjugation:

〈u(~r0)〉= 1

4

(
εo
~E∗ · ~E +

1

µo

~B∗ · ~B
)

pw vac
=

1

2
εo E 2

0 (9.39)〈
~S(~r0)

〉
= c2 〈~g(~r0)〉= 1

2µo
R
(
~E∗ × ~B

)
pw vac

=
1

2
c εo E 2

0 k̂ (9.40)〈(
T
)

ij
(~r0)

〉
=

1

2

[
εo

(
R
[
E∗i Ej

]
− 1

2
δij
~E∗ · ~E

)
+

1

µo

(
R
[
B∗i Bj

]
− 1

2
δij
~B∗ · ~B

)]
(9.41)

= −1

2
εo E 2

0 k̂ · r̂i k̂ · r̂j (9.42)

where the first expression for each quantity is always valid (even later for conductors

when ~E and ~B can be out of phase) while the final evaluation is only valid for the

plane waves in vacuum we have been considering (indicated by the
pw vac

= notation).
The factors of 1/2 in front come from time-averaging. Note that there may be spatial
dependence remaining in the result if the wave amplitude has a dependence on
position outside of the sinusoidal wave-propagation factor (not possible for plane EM
waves, but it will happen for radiation). It is not necessary to take the real part for u
and certain pieces of T because they are manifestly real.
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Types of Polarization

So far, we have only discussed linear polarization, wherein the direction of ~E at a
particular point in space stays constant over time (aside from sign flips). However, by
combining two orthogonal linear polarizations with appropriate complex coefficients,
one can obtain more “complex” behavior.

The simplest extension is to consider what happens when you add two orthogonal
polarizations of the same amplitude but with a possible phase shift:

~E(~r , t) =
Ẽ0√

2

(
n̂1 + n̂2 e iδ

)
e i(~k·~r−ω t) (9.43)

If δ = 0 or δ = π, then one just obtains a linear polarization in the direction
(n̂1 ± n̂2) /

√
2.
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But, if δ = ±π/2, then the wave polarized along n̂2 is π/2 out of phase with the wave
polarized along n̂1: when the n̂1 mode has zero amplitude, the n̂2 mode has maximum
amplitude and vice versa. If we take the real part, it is clear what is going on:

R
[
~E(~r , t)

]
=

E0√
2

[
n̂1 cos

(
~k · ~r − ω t + δ0

)
+ n̂2 cos

(
~k · ~r − ω t + δ0 ±

π

2

)]
(9.44)

=
E0√

2

[
n̂1 cos

(
~k · ~r − ω t + δ0

)
∓ n̂2 sin

(
~k · ~r − ω t + δ0

)]
(9.45)

The polarization vector maintains an amplitude E0/
√

2 but it sweeps around in a circle
with period T = 2π/ω: this is circular polarization. To understand which direction

the polarization vector rotates, let’s look into the wave (toward −k̂) while sitting at a
fixed point in space (fixed ~r). The time-varying component of the arguments of the
sinusoids is −ω t, and thus, as time evolves positively, the arguments of the sinusoids
evolve negatively. For δ = +π/2, the sign on the second term is negative, the rotation
is counterclockwise, and the wave is called left circularly polarized. Conversely,
δ = −π/2 yields clockwise rotation and is called right circularly polarized. One also
speaks in terms of helicity, in which case one considers the rotation of the polarization
relative to the direction of motion using the right-hand rule. The left circularly
polarized wave has positive helicity because the polarization vector rotates around +k̂
according to the right-hand rule (thumb along +k̂). The right circularly polarized
wave has negative helicity because it obeys the left-hand rule.
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The next possibility is to allow unequal coefficients:

~E(~r , t) = Ẽ0

(
α n̂1 + β n̂2 e iδ

)
e i(~k·~r−ω t) α2 + β2 = 1 (9.46)

When δ = 0 or δ = π, we again obtain linear polarization, but now making an angle
θ = tan−1(±β/α) with the n̂1 axis (sign is the same as sign of e iδ = ±1).

If we now consider δ = ±π/2 and α 6= β, we obtain an elliptically polarized wave: at a
fixed point, the polarization vector sweeps out an ellipse whose semimajor and
semiminor axes are along n̂1 and n̂2. If δ is an arbitrary value, then the semimajor and
semiminor axes are rotated from the n̂1–n̂2 system by an angle related to δ.

It turns out that elliptically polarized waves are easier to analyze if they are rewritten
in terms of the two helicities (or circular polarizations). That is, if we take as our
polarization basis and field decomposition

n̂± =
1√
2

(
n̂1 ± e i π/2 n̂2

)
~E(~r , t) =

(
Ẽ+ n̂+ + Ẽ− n̂−

)
e i(~k·~r−ω t) (9.47)

then the parameters of the ellipse traced out by the polarization vector are:

r e i θ =
Ẽ−

Ẽ+

semiminor axis

semimajor axis
=

∣∣∣∣1− r

1 + r

∣∣∣∣ angle wrt n̂1 =
θ

2
(9.48)

where the angle is measured looking into the wave (i.e., looking in the −k̂ direction).
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It is interesting to note that a circularly polarized plane wave is, in terms of angular
momentum, no different from a linearly polarized plane wave according to the
definition of the angular momentum density, Equation 8.67:

~̀
field = εo ~r ×

(
~E × ~B

)
=
εo E 2

0

c
~r × k̂ (9.49)

One can see that the angular momentum has to do with the relative orientation of the
propagation direction and the position vector, not with the nature of the polarization.
This reflects the fact that, in quantum mechanics, the helicity of the wave becomes
the intrinsic spin angular momentum of the photon, while the quantity calculated
above is the orbital angular momentum of the photon and has to do with the spatial
distribution of the EM wave, in much the same way that orbital angular momentum in
quantum mechanics is determined by the spatial distribution of the wavefunction and
is unassociated with the particle’s spin.
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Electromagnetic Waves in Perfectly Nonconducting, Linear,
Isotropic Matter

Propagation in Linear, Isotropic Media

Maxwell’s Equations in matter in the absence of free charges and currents are

~∇ · ~D = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~H − ∂ ~D

∂t
= 0 (9.50)

As noted earlier, we need relations between ~D and ~E and between ~H and ~B to make
use of these. If we assume linear, isotropic media (ε and µ scalars, not tensors)

~D = ε ~E ~B = µ ~H (9.51)

then the equations reduce to

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − ε µ ∂

~E

∂t
= 0 (9.52)

These are the same as our equations in vacuum, leading to the same kinds of waves,
but with the modification

v =
1
√
ε µ

=
c

n
with n =

√
ε µ

εo µo
= index of refraction (9.53)
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This mathematical transformation reflects a remarkable fact: the complicated
polarization and magnetization of the medium occurring as the wave passes through it
do nothing except change its speed and, we shall see, affect the wave amplitude. This
is a consequence of the linearity of the medium we assume.

Most materials in which waves can propagate (as we will see, this means materials

that do not have high conductivities) have µ ≈ µo , so n ≈
√
ε/εo =

√
εr . Since εr > 1

in general (there are very few paraelectric materials that enhance the field rather than
act to decrease it), light generally goes more slowly in dielectrics. Though, creation of
metamaterials in which the effective index of refraction is less than unity (over a
limited frequency range via use of resonant structures) is an area of active research!

The relation between ~B and ~E , Equation 9.20, is modified in the obvious manner:

~B(~r , t) =
1

v
k̂ × ~E(~r , t) (9.54)

As we did for free space, we also have that ~H and ~E are related by an impedance,
Z =

√
µ/ε, which we now call the wave impedance. With it, we have

~H(~r , t) =
~B(~r , t)

µ
=

1

Z
k̂ × ~E(~r , t) (9.55)

Recall that ~H carries units of surface current density.
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Energy density, the Poynting vector, the momentum vector, and the stress tensor take
on unsurprising forms given the above modification:

u =
1

2

(
εE 2 +

1

µ
B2

)
= εE 2 ~S =

1

µ
~E∗ × ~B = v εE 2 k̂ = v u k̂ (9.56)

~g = ε µ ~S =
εE 2

v
k̂ =

u

v
k̂ T = −εE 2 k̂ k̂ = −u k̂ k̂ (9.57)

The time averages for a sinusoidal wave of (real) amplitude E0 are (now including
intensity):

〈u〉= 1

2
εE 2

0

〈
~S
〉

=
1

2µ

〈
~E∗ × ~B

〉
=

1

2
v εE 2

0 k̂ = v 〈u〉 k̂ (9.58)

I =
〈
|~S |
〉

=
1

2
v εE 2

0 = v 〈u〉 (9.59)

〈~g〉= ε µ
〈
~S
〉

=
1

2

εE 2
0

v
k̂ =
〈u〉
v

k̂
〈
T
〉

= −1

2
εE 2

0 k̂ k̂ = −〈u〉 k̂ k̂ (9.60)

Since v > c is possible, we cannot so easily interpret the above equations as implying
that energy propagates at speed v . You know from Ph2/12 that energy in a wave
propagates with the group velocity vg = dω/dk and so it becomes important to know
v(ω). We will build an approximate physical model for v(ω) in §5.
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Boundary Conditions

Recalling our boundary conditions for linear media (Equations 2.57, 4.23, 6.41, 6.43)
and applying our assumption of no free currents, we have (n̂ = normal from 1 to 2, ŝ
= any tangential vector at interface):

n̂ · ε1
~E1 = n̂ · ε2

~E2 n̂ · ~B1 = n̂ · ~B2 ŝ · ~E1 = ŝ · ~E2 ŝ ·
~B1

µ1
= ŝ ·

~B2

µ2
(9.61)

We will apply these to calculate the reflection and refraction of EM waves at the
interface between different linear media. We will write the magnetic field boundary
condition in terms of ~H because it makes them look like the electric field boundary
conditions, which will be convenient during our discussion of reflection and refraction:

n̂ · µ1
~H1 = n̂ · µ2

~H2 ŝ · ~H1 = ŝ · ~H2 (9.62)
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Reflection and Refraction: General Considerations

We will skip past the case of normal incidence, which you studied in Ph1c, but we will
consider it as a special case of our generic results.

Assume we have a wave with propagation vector ~ki propagating in medium 1 and
incident on an interface with normal n̂. We expect there to be reflected and
transmitted waves. We write these all as

~Ei (~r , t) = ~E0,i e i(~ki ·~r−ωt) ~Hi (~r , t) =
1

Z1
k̂i × ~Ei (9.63)

~Er (~r , t) = ~E0,r e i(~kr ·~r−ωt) ~Hr (~r , t) =
1

Z1
k̂r × ~Er (9.64)

~Et (~r , t) = ~E0,t e i(~kt ·~r−ωt) ~Ht (~r , t) =
1

Z2
k̂t × ~Et (9.65)

We use ~H instead of ~B because the boundary conditions are more easily written in
terms of ~H. We have already applied the condition that the frequencies of the three
waves are identical. This is necessary for any boundary conditions connecting them to
be applicable at all time. Then

ki v1 = kr v1 = kt v2 = ω =⇒ kr = ki kt =
v1

v2
ki =

n2

n1
ki (9.66)

Since k = 2π/λ, this implies the wavelength differs by n2/n1 in the two media!
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Now, consider the kinds of matching conditions we will write down. They must always
hold over all ~r in the interface. In particular, if we take the interface to be the z = 0
plane, with n̂ = ẑ, then the matching conditions that must hold at all x and y are of
the form

( ) e i(~ki ·(xx̂+yŷ)−ωt) + ( ) e i(~kr ·(xx̂+yŷ)−ωt) = ( ) e i(~kt ·(xx̂+yŷ)−ωt) (9.67)

In order for these to hold at arbitrary x and y , it must be that

x̂ · ~ki = x̂ · ~kr = x̂ · ~kt (9.68)

ŷ · ~ki = ŷ · ~kr = ŷ · ~kt (9.69)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
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bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
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bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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�ki

These conditions imply that if you project all three propagation vectors into the plane
of the interface (whose normal is n̂), then their projections in that plane are equal.
Furthermore, there is a plane formed by this common xy projection of the propagation
vectors and the normal n̂ (which is normal to the projection plane), and all three
vectors lie in this plane.
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Each propagation vector makes an angle with the interface normal, n̂. We label them
θi , θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|~k| cos θ while the projection perpendicular to the normal (in the plane of the

interface) is |~k| sin θ. Since we have argued that these projections into the plane of the
interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (9.70)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (9.71)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (9.72)

Snell’s Law tells us that, if n2 > n1, the light ray bends toward the normal, and it
bends away from the normal if n2 < n1.

Total internal reflection occurs when n2 < n1 and sin θi > n2/n1: in this case,
sin θt > 1 and there is no solution for kt . This happens because, when n2 < n1, then
the magnitude kt < ki , so then the projection ki sin θi can be (but doesn’t have to be,
depending on the value of sin θi ) too large for kt to match. We will study this case in
more detail in a homework problem.

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc. They result only from matching time
and space dependences at the boundary.
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Reflected and Transmitted Field Relations

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new unit vectors:

û ∝ n̂ × k̂i = n̂ × k̂r = n̂ × k̂t

ŵ = û × n̂ (9.73)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.

Section 1.2 Electromagnetic Waves: Electromagnetic Waves in Perfect Matter Page 26

It doesn’t matter which k̂ we use to define û because we argued earlier that all of
them lie in the same plane with n̂, so the direction normal to the plane containing
them and n̂ is independent of which one is used. (The equality of the three
cross-products follows from Equations 9.68 and 9.69.) Clearly, then, û is perpendicular
to this plane in which n̂ and the propagation vectors lie. ŵ is then the obvious third
direction, and it and n̂ define the plane that the k̂ live in.
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With these definitions, our boundary conditions can be written as

n̂ · ε1

(
~E0,i + ~E0,r

)
= n̂ · ε2

~E0,t

[
û
ŵ

]
·
(
~E0,i + ~E0,r

)
=

[
û
ŵ

]
· ~E0,t (9.74)

n̂ · µ1

(
~H0,i + ~H0,r

)
= n̂ · µ2

~H0,t

[
û
ŵ

]
·
(
~H0,i + ~H0,r

)
=

[
û
ŵ

]
· ~H0,t (9.75)

where the stacking of û and ŵ is just meant to indicate that those equations apply
with either û on both sides or ŵ on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in
(parallel to) the plane of incidence or perpendicular to the plane of incidence, also
termed transverse magnetic (TM) and transverse electric (TE) for obvious reasons:

in (parallel to) the
plane of incidence

or transverse magnetic (TM)

~E0,i · û = 0 ~H0,i ·
[

n̂
ŵ

]
= 0 (9.76)

perpendicular to the
plane of incidence

or transverse electric (TE)

~E0,i ·
[

n̂
ŵ

]
= 0 ~H0,i · û = 0 (9.77)
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In (parallel to) the plane of incidence (TM):

When ~E0,i is in the plane of incidence, we can decompose it into pieces along ŵ and
along n̂. There is freedom on the sign convention, and we choose

~E0,i = Ẽ0,i (ŵ cos θi − n̂ sin θi ) (9.78)

We pick the conventions for ~E0,r and ~E0,t so that all three electric field vectors align

for normal incidence. (The ~H orientations are then defined by this choice and the

direction of the corresponding k̂ vectors.) With these choices, we then have

(remember, ~H = k̂ × ~E/Z):

~E0,r = Ẽ0,r (ŵ cos θr + n̂ sin θr ) (9.79)

~E0,t = Ẽ0,t (ŵ cos θt − n̂ sin θt ) (9.80)

~H0,i =
Ẽ0,i

Z1
û (9.81)

~H0,r = − Ẽ0,r

Z1
û (9.82)

~H0,t =
Ẽ0,t

Z2
û (9.83)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.61)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r
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= bn · �2 �E0,r

»
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bw
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=

»
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–
· �E0,t (1.61)
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“
�B0,i + �B0,r
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=
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bw

–
· 1

µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.61)

bn ·
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�B0,i + �B0,r

”
= bn · �B0,r

»
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· 1

µ1

“
�B0,i + �B0,r
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=
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µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
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bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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So, restricting to the boundary conditions with information, we obtain

n̂ : ε1

(
−Ẽ0,i sin θi + Ẽ0,r sin θr

)
= −ε2Ẽ0,t sin θt (9.84)

ŵ : Ẽ0,i cos θi + Ẽ0,r cos θr = Ẽ0,t cos θt (9.85)

û :
1

Z1

(
Ẽ0,i − Ẽ0,r

)
=

1

Z2
Ẽ0,t (9.86)

Since the incident wave amplitude must be allowed to be arbitrary, we expect to only
be able to determine the ratios Ẽr,0/Ẽi,0 and Ẽt,0/Ẽi,0. Only two of the above
equations can therefore be independent. (One can easily see that the n̂ and û
equations are equivalent via Snell’s Law.) Picking the last two because they are
easiest to work with, we obtain Fresnel’s Equations in (parallel to) the plane of
incidence (for TM waves):

α =
cos θt

cos θi
β =

Z1

Z2
(9.87)

Ẽ0,r

Ẽ0,i

=

(
α− β
α+ β

)
Ẽ0,t

Ẽ0,i

=

(
2

α+ β

) Fresnel’s
Equations
in (parallel to)
the plane of
incidence (TM)

(9.88)
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Perpendicular to the plane of incidence (TE):

When ~E0,i is perpendicular to the plane of incidence, it must be parallel to û because

û defines the normal to that plane (again, up to a sign choice.) Now ~H0,i is in the
plane of incidence. We have

~E0,i = Ẽ0,i û (9.89)

We again pick the convention so that all three electric field vectors align for normal
incidence. With these choices, we then have (again, ~H = k̂ × ~E/Z):

~E0,r = Ẽ0,r û (9.90)

~E0,t = Ẽ0,t û (9.91)

~H0,i =
Ẽ0,i

Z1
(−ŵ cos θi + n̂ sin θi ) (9.92)

~H0,r =
Ẽ0,r

Z1
(ŵ cos θr + n̂ sin θr ) (9.93)

~H0,t =
Ẽ0,t

Z2
(−ŵ cos θt + n̂ sin θt ) (9.94)

Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:

bu =
�ki × bn
|�ki × bn|

=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.59)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.60)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Section 1.2 Electromagnetic Waves: Electromagnetic Waves in Perfect Matter Page 27

Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
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|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.
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Electromagnetic Waves in Perfect Matter (cont.)

Now, let’s apply our electromagnetic boundary conditions to figure out how the
amplitudes and energies are related. We may drop all the exponential factors because
we have established that they are identical at the interface. We need to define two
new vectors:
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=
�kr × bn
|�kr × bn|

=
�kt × bn
|�kt × bn|

bw = bn × bu (1.58)

It doesn’t matter which bk we use to define bu because we argued earlier that all of them
have the same projection in the plane of the interface, which is the piece that matters
for the above cross product. bu is also normal to all the �k, so it is perpendicular to the
plane in which the propagation vectors lie. bw is then the obvious third direction and it
defines the plane that the �k live in. Thus, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r
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= bn · �2 �E0,r
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Section 1.2 Electromagnetic Waves: Electromagnetic Waves in Perfect Matter Page 27

Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

Each propagation vector makes an angle with the interface normal. We label them θi ,
θr , and θt . The projection of a given wavevector parallel to the normal is therefore
|�k| cos θi while the projection perpendicular to the normal — i.e., in the plane of the

interface — is |�k| sin θi . Since we have argued that these projections into the plane of
the interface are equal, we thus have

ki sin θi = kr sin θr = kt sin θt (1.55)

Now, using our relations kr = ki and kt = n2
n1

ki , we may conclude:

law of reflection: θi = θr (1.56)

law of refraction (Snell’s Law): n1 sin θi = n2 sin θt (1.57)

Note that none of these results depending on knowing anything about Maxwell’s
Equations or boundary conditions: these are generic properties of any waves, which is
why they hold for sound waves, phonons, etc.
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as

bn · �1
“
�E0,i + �E0,r

”
= bn · �2 �E0,r

»
bu
bw

–
·

“
�E0,i + �E0,r

”
=

»
bu
bw

–
· �E0,t (1.61)

bn ·
“
�B0,i + �B0,r

”
= bn · �B0,r

»
bu
bw

–
· 1

µ1

“
�B0,i + �B0,r

”
=

»
bu
bw

–
· 1

µ2

�B0,t

(1.62)

where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Electromagnetic Waves in Perfect Matter (cont.)

With these definitions, our boundary conditions can be written as
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:
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Electromagnetic Waves in Perfect Matter (cont.)
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where the stacking of bu and bw is just meant to indicate that those equations apply
with either bu on both sides or bw on both sides.

Now, we must consider two cases for the polarization of the incoming wave: in the
plane of incidence or normal to the plane of incidence:

in the
plane of incidence

�E0,i · bu = 0 (1.63)

perpendicular to the
plane of incidence

�E0,i ·
»

bn
bw

–
= 0 (1.64)
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Restricting to the boundary conditions with information, we obtain

n̂ :
µ1

Z1

(
Ẽ0,i sin θi + Ẽ0,r sin θr

)
=
µ2

Z2
Ẽ0,t sin θt (9.95)

ŵ :
1

Z1

(
Ẽ0,i cos θi − Ẽ0,r cos θr

)
=

1

Z2
Ẽ0,t cos θt (9.96)

û : Ẽ0,i + Ẽ0,r = Ẽ0,t (9.97)

Again, we only need two of the equations, so we use the latter two because the n̂
equation can be reduced to the û equation via Snell’s Law. We solve to obtain
Fresnel’s Equations perpendicular to the plane of incidence (TE):

Ẽ0,r

Ẽ0,i

=

(
1− αβ
1 + αβ

)
Ẽ0,t

Ẽ0,i

=

(
2

1 + αβ

) Fresnel’s
Equations
perpendicular
to the plane of
incidence (TE)

(9.98)

with α and β as defined earlier.
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Reflected and Transmitted Energy

The energy flux (intensity) at a particular point is

Ij =
〈
|~Sj |
〉

=
1

2
εj vj E 2

j cos θj =
1

2

c

Zj
E 2

j cos θj (9.99)

We can calculate from this the reflected and transmitted energy or power ratios:

R =
Ir

Ii
=

(
Ẽ0,r

Ẽ0,i

)2

=

(
α− β
α+ β

)2

parallel (9.100)

=

(
1− αβ
1 + αβ

)2

perpendicular (9.101)

T =
It

Ii
=

Z1

Z2

(
Ẽ0,t

Ẽ0,i

)2
cos θt

cos θi
= αβ

(
2

α+ β

)2

parallel (9.102)

= αβ

(
2

1 + αβ

)2

perpendicular (9.103)

By calculating R+ T explicitly, one can see that R+ T = 1 always in both cases.
Notice the αβ prefactor for T .
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Normal Incidence

Let’s summarize the results for normal incidence, θi = θr = θt = 0, where things
simplify substantially. This implies α = 1, for which the parallel and perpendicular
cases are equivalent, yielding:

Ẽ0,r

Ẽ0,i

=
1− β
1 + β

=
1− Z1

Z2

1 + Z1
Z2

R =

(
1− β
1 + β

)2

=

1− Z1
Z2

1 + Z1
Z2

2

(9.104)

Ẽ0,t

Ẽ0,i

=
2

1 + β
=

2

1 + Z1
Z2

T = β

(
2

1 + β

)2

=
Z1

Z2

 2

1 + Z1
Z2

2

(9.105)

We will see that we get similar equations for transmission lines and waveguides. For
the case µ1 = µ2 = µ0, β = Z1/Z2 reduces to n2/n1 = v1/v2:

Ẽ0,r

Ẽ0,i

=
n1 − n2

n1 + n2
=

v2 − v1

v2 + v1
R =

(
n2 − n1

n2 + n1

)2

=

(
v2 − v1

v2 + v1

)2

(9.106)

Ẽ0,t

Ẽ0,i

=
2 n1

n1 + n2
=

2 v2

v2 + v1
T =

n2

n1

(
2 n1

n1 + n2

)2

=
v1

v2

(
2 v2

v2 + v1

)2

(9.107)

One recovers the results for a wave on a string you learned about in Ph2/12.
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Typical Behavior

We first show the simpler case µ1/µ2 = 1 and then consider the more general case µ1/µ2 6= 1.

Notice how, for
the n2/n1 < 1
case, the
transmitted field
amplitude exceeds
unity but the
transmitted power
T does not. This
is possible because
of the αβ
pre-factor in T .
Notice also the
nonmonotonic
behavior in R and
T near the
Brewster Angle
(θB , to be defined
later) for the
parallel incidence
case: this is
necessary to yield
a zero in the
reflected electric
field and in R at
θB . The same
behavior is not
present in the field

n2/n1 = 1.4, µ2/µ1 = 1.0, β = 1.4
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amplitudes; for the reflected field because of squaring for R, and for the transmitted field because of the α
prefactor in T . Lastly, note how the transmitted field amplitude appears to diverge but the transmitted energy

vanishes at θTIR = sin−1 n2
n1

; again, the α factor in T explains this.
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In the β = 1.0 case, we have impedance matching and thus unity transmission at normal incidence. Notice how

θTM
B = θTE

B = 0 for this case and how the TE and TM behavior in energy are identical (though not in field).
There is no θTIR because n2/n1 > 1.

n2/n1 = 1.4, µ2/µ1 = 1.4, β = 1.0
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We see our first nontrivial θTE
B here for β = Z1/Z2 < 1, and again we have no θTIR because n2/n1 > 1.

n2/n1 = 1.4, µ2/µ1 = 1.7, β = 0.8
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In this case, we can see how it is not µ2/µ1 that matters but rather it is β = Z1/Z2: the behaviors of these two
cases are very similar even though µ2/µ1 is above unity for the first case and below for the second.

n2/n1 = 1.4, µ2/µ1 = 1.2, β = 1.2
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We now get a θTIR for these and the remaining cases because n2/n1 < 1 for them. We see again

θTM
B = θTE

B = 0 for the β = 1 case.

n2/n1 = 0.7, µ2/µ1 = 1.4, β = 0.5
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Here we see again a θTE
B instead of θTM

B for the β > 1 case.

n2/n1 = 0.7, µ2/µ1 = 1.7, β = 0.4
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n2/n1 = 0.7, µ2/µ1 = 1.2, β = 0.6
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Implications for Signs and Magnitudes of Fields

I Sign of transmitted wave
To understand the sign of the transmitted wave, we just need to notice that α
and β are always positive numbers. α is always positive because θi and θr are
restricted to the first quadrant. Therefore, all the quantities in the expressions
for Ẽ0,t are positive, and thus the transmitted wave always has the same sign
electric field as the incident wave.

Since k̂i · n̂ and k̂t · n̂ have the same sign and ~H ∝ k̂ × ~E , we may also conclude
that the sign of the magnetic field of the transmitted wave is unchanged.
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I Sign of electric field of reflected wave (general case) and Brewster’s Angle
The sign of the reflected wave depends on the sizes of α and β. What general
statements can we make?

We know that, for a given pair of media, either sin θt/ sin θi < 1 or
sin θt/ sin θi > 1 is true for all angles because this ratio is set by Snell’s Law,
sin θt/ sin θi = n1/n2. Since sin and cos are monotonic over the first quadrant,
we can conclude that α = cos θt/ cos θi is also either smaller than or greater
than 1 for all angles, with the case being determined by n1/n2:

n1

n2
> 1 ⇐⇒ sin θt

sin θi
> 1 ⇐⇒ cos θt

cos θi
< 1 ⇐⇒ α < 1 (9.108)

n1

n2
< 1 ⇐⇒ sin θt

sin θi
< 1 ⇐⇒ cos θt

cos θi
> 1 ⇐⇒ α > 1 (9.109)

However, β = Z1/Z2 = (µ1/µ2)(n2/n1), so the size of n2/n1 relative to unity
does not completely determine the size of β relative to unity. No generic
statement can be made about the relative size of α, β, and 1/β.
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That said, we can make conditional statements that depend on whether we are
considering the parallel (TM) or perpendicular (TE) incidence cases and
whether β is smaller or larger than unity. We break this up into two steps: what
is the sign of the reflection at normal incidence, and whether that sign changes
as the angle of incidence changes:

I Sign of reflected wave at normal incidence, θi = θt = 0 (parallel (TM)
and perpendicular (TE) incidence degenerate at this angle)
The sign of the denominator of the expression for the reflected amplitude
is always positive, and α = 1 because θi = θt = 0 at normal incidence, so
the sign of the reflection at normal incidence is set by the sign of the
numerator 1− β, which is set by the ratio of the wave impedances:

if β =
µ1

µ2

n2

n1
=

Z1

Z2
> 1 =⇒ sign

(
Ẽ0,r

Ẽ0,i

)
θi =0

< 0 (9.110)

if β =
µ1

µ2

n2

n1
=

Z1

Z2
< 1 =⇒ sign

(
Ẽ0,r

Ẽ0,i

)
θi =0

> 0 (9.111)

I Does the sign of the reflected wave change with angle of incidence?
We can answer this question by determining whether there is an angle at
which zero reflection occurs. If so, the sign of the reflected wave will
change from its sign at normal incidence to the opposite sign. Whether
there is such an angle depends on the relative sizes of α and β. We will
call this angle Brewster’s Angle, though that nomenclature generally only
applies for the case µ1 = µ2 = µo , which we will consider shortly.
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I Parallel incidence (TM)
The condition for zero reflection is α = β. If we square this
requirement, use a trigonometric identity, and use Snell’s law, we
find

1− n2
1

n2
2

sin2 θB

1− sin2 θB

= β2 ⇐⇒ sin2 θB =
β2 − 1

β2 − n2
1

n2
2

(9.112)

It is clear that the condition is driven by β = Z1/Z2, the ratio of the
wave impedances, and n1/n2, the ratio of the indices of refraction.
We have to consider multiple cases to determine when there is a
solution for θB , which can only happen if the above expression takes
on a value between 0 (numerator and denominator have same sign)
and 1 (numerator smaller in magnitude than denominator):

if β =
µ1

µ2

n2

n1
=

Z1

Z2
> 1 =⇒ need

n1

n2
< 1,

n1

n2
<
µ1

µ2
(9.113)

if β =
µ1

µ2

n2

n1
=

Z1

Z2
< 1 =⇒ need

n1

n2
> 1,

n1

n2
>
µ1

µ2
(9.114)
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I Perpendicular incidence (TE)
The condition for zero reflection is α = 1/β. Repeating the same
process to find a solution, we have

1− n2
1

n2
2

sin2 θB

1− sin2 θB

=
1

β2
⇐⇒ sin2 θB =

1
β2 − 1

1
β2 −

n2
1

n2
2

(9.115)

This is basically just the converse of the TM case, so the same set
of requirements for a solution for θB implies

if β =
µ1

µ2

n2

n1
=

Z1

Z2
> 1 =⇒ need

n1

n2
> 1,

n1

n2
<
µ1

µ2
(9.116)

if β =
µ1

µ2

n2

n1
=

Z1

Z2
< 1 =⇒ need

n1

n2
< 1,

n1

n2
>
µ1

µ2
(9.117)

Note how the pairing of the two n1/n2 conditions changes between the
TM and TE cases! The above behavior was seen in the plots prior to this
section.
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I Sign of electric field of reflected wave, and Brewster’s Angle, for µ1 = µ2

This case is typical for everyday experience; there are few light-transmitting yet
also µ 6= µ0 materials. We can be much more specific in this case because now
β = Z1/Z2 = n2/n1 and there is a clear relationship between α and β, which we
may now rewrite as

n1

n2
> 1 ⇐⇒ β =

n2

n1
< 1 and α =

cos θt

cos θi
< 1 (9.118)

n1

n2
< 1 ⇐⇒ β =

n2

n1
> 1 and α =

cos θt

cos θi
> 1 (9.119)

Considering the two cases separately:

I Parallel incidence (TM), µ1 = µ2

Since α and β are both either < 1 or > 1, it is possible for α = β to be
true and therefore the sign may depend on the angle. At θi = θt = 0, we
have α = 1 identically, so the sign of the reflected wave is 1− β, which is
positive if β < 1 and negative if β > 1. This sets the polarity of the
reflected wave for small θi .

To understand the polarity of the reflected wave for larger θi 6= 0, we then
have to ask whether it is possible for the polarity of α− β to change as α
varies with θi , which would happen if there is a zero in α− β.
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To solve for this angle where α = β (Brewster’s Angle again, θB ), we can
square the ratio of cosines so it can be written in terms of sines, then use
Snell’s Law to obtain:

1− n2
1

n2
2

sin2 θB

1− sin2 θB

=
n2

2

n2
1

⇐⇒ sin2 θB =
n2

2

n2
1 + n2

2

(9.120)

⇐⇒ tan θB =
n2

n1
= β =

Z1

Z2

Brewster’s
Angle for
µ1 = µ2

(9.121)

Note that 0 < θB < π/4 for n2 < n1 and π/4 < θB < π/2 for n2 > n1.
Therefore, we may summarize this case as (using 1− β = (n1 − n2)/n1):

sign of reflected wave for parallel incidence (TM) and µ1 = µ2 :

0 < θi < θB : sign

(
Ẽ0,r

Ẽ0,i

)
= sign

(
n1 − n2

n1

)
(9.122)

θB < θi < θmax : sign

(
Ẽ0,r

Ẽ0,i

)
= sign

(
n2 − n1

n1

)
(9.123)

θmax = sin−1

(
min

(
1,

n2

n1

))
(9.124)
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I Perpendicular incidence (TE), µ1 = µ2

The perpendicular incidence case is easier to analyze. At normal
incidence, α = 1 again and the formulae become identical to the parallel
incidence case, giving us the same behavior: the reflected wave is positive
if β < 1 and negative if β > 1. This common behavior must hold, as the
parallel and perpendicular cases are degenerate for normal incidence.

To see if there is an angle at which the sign of the reflected wave can flip,
we need to know if there is an angle at which the reflected wave vanishes.
It is easy to see there is not: for 1− αβ to vanish, we require α = 1/β.
For the case µ1 = µ2, we thus require α = n1

n2
. But we saw above that,

when 1
β

= n1
n2
> 1 we have α < 1 and when 1

β
= n1

n2
< 1 we have α > 1.

Thus, there is never a zero in the reflected wave, and the sign can never
flip.

Therefore, we may summarize this case as:

sign of reflected wave for perpendicular incidence (TE) and µ1 = µ2 :

0 < θi < θmax : sign

(
Ẽ0,r

Ẽ0,i

)
= sign

(
n1 − n2

n1

)
(9.125)

θmax = sin−1

(
min

(
1,

n2

n1

))
(9.126)

Section 9.3.8 Implications for Signs and Magnitudes of Fields Page 612



Section 9.3 Electromagnetic Waves: Electromagnetic Waves in Perfectly Nonconducting, Linear, Isotropic Matter

I Practical Implications of Brewster’s Angle
Because the reflected amplitude for parallel incidence goes through a zero
at θB , it is small for angles near θB . For the everyday materials water
(n = 1.33) and glass (n ≈ 1.5), this angle is 53◦ and 56◦, which is a
typical viewing angle. This explains why polarized sunglasses reduce glare:
by blocking the reflected polarization that is perpendicular to the plane of
incidence (TE), they block the only component of the reflected wave that
has appreciable amplitude. They are designed to pass the parallel
component because it has no reflection near Brewster’s angle. Be sure to
get the orientation right: if the interface is a horizontal surface, then that
perpendicular plane is actually parallel to the surface for light coming
from above, so the plane of parallel incidence is vertical for the viewer.
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I Relation between sign of reflected wave and possibility of total internal reflection
Both sets of equations imply that total internal reflection occurs only if n2 < n1,
which also implies that the sign of the reflected wave at normal incidence is
equal to the sign of the incident wave. Thus, the two conditions are equivalent:

no sign flip at normal incidence ⇐⇒ total internal reflection possible

I Sign of magnetic field of reflected wave
For any of these cases, we can obtain the sign of the magnetic field of the
reflected wave by applying the rule ~H ∝ k̂ × ~E to the reflected wave. From this,
and from the sign flip of k̂r · n̂ relative to k̂i · n̂, we can conclude that the
magnetic field of the reflected wave has the opposite behavior as the electric
field in both the parallel and perpendicular cases: if the electric field receives a
sign flip, the magnetic field does not, and vice versa.
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Electromagnetic Waves in Conducting Matter

Maxwell’s Equations and the Wave Equation for Conductors; Plane-Wave
Solutions

The primary distinction between a conducting medium and a nonconducting medium
is that Ohm’s Law is now obeyed, ~Jf = σ ~E . Incorporating it into Maxwell’s Equations
for a linear medium gives

~∇ · ~E =
ρf

ε
~∇ · ~B = 0 ~∇× ~E +

∂ ~B

∂t
= 0 ~∇× ~B − µσ ~E − ε µ ∂

~E

∂t
= 0

(9.127)

Do we need to worry about free charge? No. If we combine the continuity equation,
~∇ · ~Jf = −∂ρf /∂t with Gauss’s Law, we obtain

∂ρf

∂t
= −σ

(
~∇ · ~E

)
= −σ

ε
ρf (9.128)

The solution to this equation (with σ/ε > 0) is a decaying exponential in time,
ρf (t) = ρf (t = 0) exp(−t/τ) with τ = ε/σ. Thus, any free charge decays away. The
time constant for the decay as compared to the relevant field variation timescale (the
wave oscillation period T = 2π/ω) is a measure of how good the conductor is at the
frequencies of interest: for a good conductor, one must have τ � T (or, equivalently,
ω τ � 1, neglecting the 2π). Regardless, the appearance of any free charge is
transient, while we will see the wave, though decaying in space, is stable in time.
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Assuming this condition is satisfied, we then have again a homogeneous set of
Maxwell’s Equations:

~∇ · ~E = 0 ~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 ~∇× ~B − µσ ~E − ε µ ∂

~E

∂t
= 0

(9.129)

We may do as before to obtain wave equations:

∇2 ~E = ε µ
∂2 ~E

∂t2
+ σ µ

∂ ~E

∂t
∇2 ~B = ε µ

∂2 ~B

∂t2
+ σ µ

∂ ~B

∂t
(9.130)

As we did for nonconducting matter, we assume plane wave solutions because any
solution can be built from them by linearity:

~E(~r , t) = ~E0 e i(~k·~r−ω t) ~B(~r , t) = ~B0 e i(~k·~r−ω t) (9.131)

We dispense with repeating the proof that ~k and ω are the same for ~E and ~B (the
proof is similar in form) and simply assume it and check it below. We determine later

the relation between ~E0 and ~B0 (including any possible δ, which they absorb when
using complex notation).
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Plugging in, one obtains an equation for ~k:

~k · ~k = ε µω2 + i σ µω (9.132)

We take the square root, yielding

√
~k · ~k ≡ k + i κ vεµ =

1
√
ε µ

kεµ =
ω

vεµ
λεµ =

2π

kεµ
τ =

ε

σ
(9.133)

k = kεµ


√

1 + 1
ω2 τ2 + 1

2


1/2

κ = kεµ


√

1 + 1
ω2 τ2 − 1

2


1/2

≡ 1

δ
(9.134)

The wave thus takes the form

~E(~r , t) = ~E0 e−(k̂·~r/δ)e i(k k̂·~r−ω t) ~B(~r , t) = ~B0 e−(k̂·~r/δ)e i(k k̂·~r−ω t) (9.135)

which is a plane wave propagating in the direction k̂ with propagation constant k,
wavelength λ = 2π/k, speed v = ω/k = λ ν, and index of refraction n = c/v , but
with decaying amplitude. The decay length is the skin depth, δ = 1/κ. Notice that
the time dependence is unchanged and given by ω and ν still while the spatial
dependence has been modified. Note also that, while the wave decays in space, it is
oscillatory (stable in amplitude) in time.
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Let’s consider two limits, the poor conductor limit and the good conductor limit:

I Poor conductor limit
This is the limit ω τ � 1. (Note that we have to wait many wave periods after
the appearance of the wave in order for the free charge to decay away because
ω τ � 1 (τ � T/2π), but we do reach ρf = 0 if we wait this long.) The second
term under the inner square root is small and one can Taylor expand to obtain

k
ωτ�1−→ kεµ√

2

[(
1 +

1

2

1

ω2 τ2

)
+ 1

]1/2

≈ kεµ (9.136)

κ
ωτ�1−→ ω

vεµ
√

2

[(
1 +

1

2

1

ω2 τ2

)
− 1

]1/2

≈ kεµ

2ω τ
=
σ

2

√
µ

ε
=

Zεµ σ

2
(9.137)

δ
ωτ�1−→ 2

σ

√
ε

µ
=

2

Zεµ σ
=

2 ρ

Zεµ
(9.138)

In this case, the wave propagation speed and wavelength are the same as in a
nonconducting medium. The form for the skin depth is particularly interesting
because it involves the ratio of the resistivity and the wave impedance, which
connect to the Ohmic and displacement currents, respectively. We can write the
skin depth another way, now using the wavelength in the medium:

δ
ωτ�1−→ 2ω τ

kεµ
=

2 τ

T
λεµ � λεµ (9.139)

2 τ/T � 1 counts the number of wavelengths over which the amplitude decays:
in a poor conductor, the decay of the wave happens over many wavelengths.
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I Good Conductor Limit
Similarly, we can take the good conductor limit, ω τ � 1, but here without the
caveat on waiting for the free charge density to decay. Here, the 1

ω2 τ2 term
dominates the square root, so k and κ converge to the same value:

k, κ
ωτ�1−→ ω

vεµ

[
1

2

√
1

ω2 τ2

]1/2

=

√
ω

2 v2
εµ τ

=

√
µσ ω

2
(9.140)

δ
ωτ�1−→

√
2

µσ ω
(9.141)

There is no propagating wave because the decay constant and the propagation
constant are the same; put another way, δ = 1/κ = 1/k = λ/2π, indicating the
wave decays in about 1/6 of a wavelength!

Notice how ε becomes irrelevant for a good conductor. We will see that Zεµ is
effectively replaced by Zσ ∼ 1/σ δ so δ ∼ 1/Zσ σ, a form similar to the poor
conductor case. However, Zσ � Zεµ for a good conductor, so H ∼ E/Z is
much larger than it would be for the same E in a poor conductor. This
expresses the fact that, in a good conductor, the Ohmic currents dominate over
the displacement current. We will return to this aspect later.
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General Results

Coming back to our general plane-wave solution, we write (with n̂ defining the

polarization of ~E)

~E(~r , t) = Ẽ0 n̂ e−(k̂·~r/δ) e i(k k̂·~r−ω t) (9.142)

and we use the ~∇× ~E equation to find

~B(~r , t) =
k + i κ

ω
Ẽ0 k̂ × n̂ e−(k̂·~r/δ) e i(k k̂·~r−ω t) (9.143)

We may write

k + i κ = K e i φ K =
√

k2 + κ2 = kεµ

[√
1 +

( σ

ε ω

)2
]1/2

(9.144)

tanφ =
κ

k
=


√

1 +
(
σ
ε ω

)2 − 1√
1 +

(
σ
ε ω

)2
+ 1


1/2

(9.145)

Notice that we are writing 1/ω τ as σ/ε ω so the physical origin of the “good
conductor/poor conductor” distinction is clear.
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With the above definition, we can more simply write the relation between the phases
and amplitudes of ~E and ~B:

B̃0

Ẽ0

=
k + i κ

ω
=

K e i φ

kεµ vεµ
=

e i φ

vεµ

[
1 +

( σ

ε ω

)2
]1/4

(9.146)

It now also makes sense to introduce the relation between ~H and ~E using ~H = ~B/µ:

~H(~r , t) =
~B(~r , t)

µ
=

k + i κ

ω µ
Ẽ0 k̂ × n̂ e−(k̂·~r/δ) e i(k k̂·~r−ω t) (9.147)

H̃0

Ẽ0

=
1

µ

B̃0

Ẽ0

=
e i φ

vεµ µ

[
1 +

( σ

ε ω

)2
]1/4

=
e i φ

Zεµ

[
1 +

( σ

ε ω

)2
]1/4

(9.148)

Thus, we see that there is now a phase shift between electric and magnetic fields, with
the magnetic field lagging behind the electric field. The amplitudes are related in a
somewhat complicated manner that depends on the wave velocity as before but now
with a modification factor that depends on the conductivity. The auxiliary field
behaves in the same way except that it is now the wave impedance with the same
modification factor that relates the electric and auxiliary fields.
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Again, taking some limits:

poor conductor :
1

ω τ
=

σ

ε ω
� 1 =⇒ B̃0

Ẽ0

→ 1

vεµ
,

H̃0

Ẽ0

→ 1

Zεµ
(9.149)

good conductor :
1

ω τ
=

σ

ε ω
� 1 =⇒ B̃0

Ẽ0

→ e iπ/4

vεµ

√
1

ω τ
� 1

vεµ
(9.150)

H̃0

Ẽ0

→ e iπ/4

Zεµ

√
1

ω τ
� 1

Zεµ
(9.151)

In a poor conductor, the relation approaches the nonconducting case (as we expect).

In contrast, in a good conductor, the magnetic and auxiliary fields are enhanced
(because there are free currents to enhance the magnetic field but no free charges to
enhance the electric field) and they lag the electric field by exactly π/4. Why π/4 and
not π/2? The two current densities are Jd = i ε ωE and Jf = σ E . So
|Jd | = ε ω/σ|Jf | � |Jf | in the good conductor limit, and thus the imaginary piece
i σ ω dominates the right side of the wave equations, Equations 9.130, and therefore
~k · ~k ∝ i = e i π/2. But it is (~k · ~k)1/2/ω = (k + i κ)/ω that appears as the coefficient
relating E to B (from Faraday’s Law), so then (k + i κ)/ω ∝ e i π/4 hence the π/4
phase shift.

In a poor conductor, the ohmic term is negligible and so we only get the piece due to
Jd = ε ∂E/∂t. It is in phase in spite of the ∂/∂t because ∂E/∂t is related by Ampere’s
Law to spatial derivatives of B, which introduce a canceling factor of i = e i π/2. This
causes ~k · ~k to be real and positive, so no additional phase is introduced.
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For the good conductor case, we can rewrite the relation between the electric and
auxiliary fields in a more suggestive form if we recognize the skin depth is present:

H̃0

Ẽ0

=
e iπ/4

Zεµ

√
1

ω τ
= e iπ/4

√
ε

µ

√
σ

ε ω
(9.152)

= e iπ/4

√
σ2

2

2

σ µω
=

1 + i

2
σ δ ≡ 1 + i

2

1

Zσ
(9.153)

where Zσ = 1/σ δ. Why does the ratio have this form? In a good conductor, the
fields, and thus the ohmic current density, decay to zero over the distance δ — the
bulk of the current flows in a layer of thickness δ. If we imagine integrating this
current over the skin depth to get an effective surface current density, we would
multiply J ≈ σ E by δ to get K ≈ σ δE and thus K/E ≈ σδ = 1/Zσ . Recall that H
has the same units as K , so it makes perfect sense that H ∼ K and the ratio
H/E ∼ K/E ≈ 1/Zσ . The prefactor is only present to take care of the phase issue,
and it has (almost) unity magnitude. In fact, we can define the surface impedance of
the conductor by

Zs =
2

1 + i
Zσ = (1− i) Zσ

H̃0

Ẽ0

=
1

Zs
(9.154)

We will come back to this in the context of waveguides with good but not perfectly
conducting walls.
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Energy Density, Poynting Vector, and Intensity

We calculate these using our standard formulae, now taking the real part as needed:

〈u〉= 1

4

(
ε
∣∣∣Ẽ0

∣∣∣2 +
1

µ

∣∣∣B̃0

∣∣∣2) e−(2 k̂·~r/δ) (9.155)

=
1

4

(
ε +

1

µ

1

v2
εµ

[( σ

ε ω

)2
+ 1

]1/2
)∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ) (9.156)

=
1

4
ε
∣∣∣Ẽ0

∣∣∣2(1 +

[( σ

ε ω

)2
+ 1

]1/2
)

e−(2 k̂·~r/δ) (9.157)

=
1

2
ε

k2

k2
εµ

∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ) (9.158)

〈
~S
〉

=
1

2µ
R
(〈
~E∗ × ~B

〉)
=

k̂

2µ

∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ)

vεµ

[
1 +

( σ

ε ω

)2
]1/4

cosφ (9.159)

=
k̂

2
vεµ ε

∣∣∣Ẽ0

∣∣∣2 [1 +
( σ

ε ω

)2
]1/4

e−(2 k̂·~r/δ) cosφ (9.160)

=
k̂

2
vεµ ε

K

kεµ

∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ) cosφ = k̂
kεµ

k
vεµ〈u〉 (9.161)

I =
〈∣∣∣~S∣∣∣〉 (9.162)
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Let’s take the poor conductor and good conductor limits:

1/ω τ = σ/ε ω � 1, poor conductor:

〈u〉→ 1

2
ε
∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ) (9.163)〈
~S
〉
→ k̂

2
vεµ ε

∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ) cosφ = vεµ〈u〉 k̂ I→ vεµ〈u〉 (9.164)

The poor conductor expressions match our expressions for a wave in a nonconducting
medium except that they decay with depth as one would expect.
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1/ω τ = σ/ε ω � 1, good conductor:

〈u〉→ 1

4
ε
∣∣∣Ẽ0

∣∣∣2 σ

ε ω
e−(2 k̂·~r/δ) =

1

4

∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣
ω

e−(2 k̂·~r/δ) (9.165)〈
~S
〉
→ k̂

2
vεµ ε

∣∣∣Ẽ0

∣∣∣2 e−(2 k̂·~r/δ)
√

σ

ε ω

1√
2

=
1

4

∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣ e−(2 k̂·~r/δ) δ k̂ (9.166)

= ω δ〈u〉k̂ I→ ω δ〈u〉 (9.167)

From the above, we can calculate the total power dissipated in the conductive medium
per unit area. We just need to know how much power flows in per unit area at the
k̂ · ~r = 0 plane: the wave is propagating along k̂, and there is no power flowing
backward along k̂. This power flow at k̂ · ~r = 0 is I(k̂ · ~r = 0) because the plane we

are considering has surface normal k̂. Therefore, the power dissipated per unit area is

dPdiss

dA
= I(k̂ · ~r = 0) =

1

4

∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣ δ =
1

2

∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣ δ
2

which is as one would expect:
∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣ /2 is the Joule power dissipation per unit

volume (including time-averaging, and note
∣∣∣J̃0

∣∣∣ ∣∣∣Ẽ0

∣∣∣ = ~J0 · ~E0 because the Ohmic

current, which dominates ~J for a good conductor, is in phase with the electric field),
and δ/2 is the energy decay length and so provides the thickness over which that
power is dissipated to give a power dissipation per unit area.
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Reflection at a Conducting Surface

Because free charges and currents are now possible, our boundary conditions differ
from those for an interface between two nonconducting media (using the form that is

symmetric between ~E and ~H):

n̂ ·
[
ε1
~E1 − ε2

~E2

]
= σf n̂ ·

[
µ1

~H1 − µ2
~H2

]
= 0 (9.168)

ŝ ·
[
~E1 − ~E2

]
= 0 ŝ ·

[
~H1 − ~H2

]
=
(
~Kf × n̂

)
· ŝ (9.169)

If we restrict to conductors that obey Ohm’s Law, ~J = σ ~E , then we may conclude
~Kf = 0 because the current singularity of a surface current requires a singularity in the
field, which cannot happen.

The general case is very complicated to analyze; a measure of the difficulty is that not
even Jackson tries to do it! Let’s consider only the case of normal incidence. Since
n̂ · ~E = 0, we have σf = 0 and the situation is similar to analyzing the case of
nonconducting media.
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Recall our vectors ŵ and û in the plane of the interface. Our three expressions for the
fields are

~Ei (~r , t) = Ẽ0,i ŵ e i(ki n̂·~r−ω t) ~Hi (~r , t) =
1

Zεµ,1
Ẽ0,i û e i(ki n̂·~r−ω t) (9.170)

~Er (~r , t) = Ẽ0,r ŵ e i(−ki n̂·~r−ω t) ~Hr (~r , t) = − 1

Zεµ,1
Ẽ0,r û e i(−ki n̂·~r−ω t) (9.171)

~Et (~r , t) = Ẽ0,t ŵ e i(kt n̂·~r−ω t) ~Ht (~r , t) =
kt + i κt

µ2 ω
Ẽ0,t û e i(kt n̂·~r−ω t) (9.172)

× e−(κt n̂·~r) × e−(κt n̂·~r)

where Zεµ,1 =
√
µ1/ε1. Inserting these expressions into the tangential boundary

condition equations (the normal BC vanish because of normal incidence), evaluated
with n̂ = ẑ and at z = 0, we obtain

Ẽ0,i + Ẽ0,r = Ẽ0,t (9.173)

1

Zεµ,1

[
Ẽ0,i − Ẽ0,r

]
=

kt + i κt

µ2 ω
Ẽ0,t (9.174)
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Solving, we obtain

Ẽ0,r

Ẽ0,i

=

(
1− β̃
1 + β̃

)
Ẽ0,t

Ẽ0,i

=

(
2

1 + β̃

)
(9.175)

with β̃ ≡ Zεµ,1

µ2 ω
(kt + i κt ) =

Zεµ,1

Zεµ,2

Kt e i φ

ω/vεµ,2
= β

Kt e i φt

kεµ,2
(9.176)

where Zεµ,1 =
√
µ1/ε1, Zεµ,2 =

√
µ2/ε2, vεµ,2 = 1/

√
ε2µ2, kεµ,2 = ω/vεµ,2,

Kt e i φt = kt + i κt , and β = µ1 n2/µ2 n1 = Zεµ,1/Zεµ,2 was defined in Equation 9.87.
The reflected power is

R =

∣∣∣∣∣ Ẽ0,r

Ẽ0,i

∣∣∣∣∣
2

=

∣∣∣∣∣1− β̃1 + β̃

∣∣∣∣∣
2

(9.177)

The expression for the transmitted power, if calculated directly from the Poynting
vector in the conductor, is rather complicated. Instead, one can just use T = 1−R.

These expressions are very similar in spirit to the normal incidence equations for
nonconducting media, Equations 9.104 and 9.105, except that β is replaced by β̃. Of
course, this causes the reflected and transmitted waves to acquire nontrivial phase
shifts relative to the incident wave.
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As usual, let’s take the poor conductor and good conductor limits:

1

ω τ
=

σ

ε ω
� 1

poor
conductor

1

ω τ
=

σ

ε ω
� 1

good
conductor

(9.178)

β̃ → β β̃ → Zεµ,1

Zσ

1 + i

2
→∞ (9.179)

Ẽ0,r

Ẽ0,i

→
(

1− β
1 + β

)
Ẽ0,r

Ẽ0,i

→ −1 (9.180)

Ẽ0,t

Ẽ0,i

→
(

2

1 + β

)
Ẽ0,t

Ẽ0,i

� 1 (9.181)

R→
(

1− β
1 + β

)2

R→ 1 (9.182)

T → β

(
2

1 + β

)2

T � 1 (9.183)

The poor conductor limit is the normal incidence case for two nonconducting media,
Equations 9.104 and 9.105, and the good conductor limit gives perfect reflection with
a sign flip for the reflected wave.

The case of a wave not at normal incidence becomes more algebraically challenging
because three of the boundary condition equations are required and two of them
involve the angles of incidence and transmission, as we saw in the nonconducting case.
The complex nature of k + i κ further complicates the situation. You will calculate an
approximate solution for this case in homework.
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Electromagnetic Waves in Dispersive Matter

Classical Model for Frequency Dependence of Permittivity — Dispersive Matter

All of the parameters we have been working with — σ, µ, and ε — are generally
frequency-dependent. The one that is usually most obvious is the frequency
dependence of the dielectric constant; this is, for example, how a prism works to
disperse optical light, via the frequency dependence of ε and thus of n ≈

√
ε/εo . This

dependence of the speed of light on frequency is, therefore, called dispersion.

We will build a simple model for dispersion. The key elements of the model are:

I Electrons in a nonconducting medium are bound to their locations and can
move around the minimum of the potential. Any (reasonable) potential looks
quadratic near its minimum because the first nonzero term in a Taylor expansion
of the potential near a minimum (dU/dx = 0) is the quadratic term. So we
assume the electron moves in a quadratic potential and hence feels a binding
force

Fbinding = −mω2
0 x (9.184)

where x is the displacement from the equilibrium position and ω0 is the natural
frequency of the oscillation. The assumed quadratic potential is
U(x) = mω2

0 x2/2.
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I There is some damping force by which the electron can lose energy as it
oscillates about the minimum of the potential. In most materials, this damping
force is from emission and absorption of phonons (quantized crystal acoustic
vibrations). This can also be thought of as “scattering with” phonons, which
will become relevant when we consider the “conductor” limit later. The
damping force is assumed to follow a standard damping force law

Fdamping = −m γ
dx

dt
(9.185)

The m is extracted from the damping coefficient for simplicity later.

I There is an incident electromagnetic wave with electric field polarization such
that it drives the electron in the ±x direction:

Fdriving = q E = q E0 cosωt (9.186)

The wave angular frequency ω and the natural frequency of oscillation ω0 are
not assumed to be the same.
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The resulting equation of motion for the electron is

m
d2x

dt2
= F = Fbinding + Fdamping + Fdriving (9.187)

=⇒ d2x

dt2
+ γ

dx

dt
+ ω2

0x =
q

m
E0 cosωt (9.188)

You’ve seen this equation, the driven, damped simple harmonic oscillator, in Ph1a and
Ph106a. You know that we switch to complex notation so that the right side becomes
Ẽ0 e−i ω t and we assume a harmonic solution x̃(t) = x̃0 e−i ω t . Plugging in this
solution gives an algebraic equation that can be solved for x̃0, which gives the
amplitude and phase of the solution:

x̃0 =
q/m

ω2
0 − ω2 − i γ ω

Ẽ0 (9.189)

From this, we can calculate the dipole moment of the electron, which will lead us to
the polarization density of the medium:

p̃(t) = q x̃(t) =
q2/m

ω2
0 − ω2 − i γ ω

Ẽ0 e−i ω t (9.190)
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We can obtain the polarization density by the usual formula of summing over all the
electrons. Suppose there are multiple electrons per atom or molecule (which we will
term a “site”) with different binding and damping forces. If there are fj electrons per
site with natural frequency ωj and damping γj , and there are N sites per unit volume,
then the polarization density is

~P =
N q2

m

∑
j

fj

ω2
j − ω2 − i γj ω

 ~E (9.191)

where ~E and ~P are complex vectors. Clearly, there is a proportionality between ~E and
~P, and we may define a complex susceptibility, χ̃e , complex permittivity, ε̃, and
complex dielectric constant, ε̃r ,

~P = χ̃e εo
~E =⇒ ε̃r =

ε̃

εo
= 1 + χ̃e = 1 +

N q2

m εo

∑
j

fj

ω2
j − ω2 − i γj ω

(9.192)

We will use this complex permittivity in the wave equation for EM waves.
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Wave Solutions for Dispersive Matter

With the complex permittivity, the wave equation becomes

∇2 ~E = ε̃ µo
∂2 ~E

∂t2
(9.193)

with ε̃ being a complex number. If we assume a plane wave solution, this becomes
very much like the wave equation in conducting matter:

complex permittivity: ~k · ~k ~E0 e i(~k·~r−ω t) = ε̃ µo ω
2 ~E0 e i(~k·~r−ω t) (9.194)

conducting matter: ~k · ~k ~E0 e i(~k·~r−ω t) =
(
ε µω2 + i σ µω

)
~E0 e i(~k·~r−ω t) (9.195)

So, as with conducting matter, we define a complex propagation vector

~k · ~k = ε̃ µo ω
2 ⇐⇒

√
~k · ~k = k + i κ (9.196)

and the wave obeys

~E(~r , t) = ~E0 e−(κ k̂·~r) e i(k k̂·~r−ω t) (9.197)

The wave speed is v = ω/k, the index of refraction is n = c k/ω, and the intensity
(energy, power) attenuation constant is α = 2κ.
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Now, let’s figure out what k and κ are. Let’s specialize to gases where the density and
thus the N-proportional term in ε̃r is small so we can Taylor expand the square root:

k + i κ =
√
ε̃ µo ω2 =

ω

c

√
ε̃r ≈

ω

c

1 +
N q2

2 m εo

∑
j

fj

ω2
j − ω2 − i γj ω

 (9.198)

We separate the real and imaginary parts by making the denominator real to obtain

n =
c k

ω
≈ 1 +

N q2

2 m εo

∑
j

fj

(
ω2

j − ω2
)

(
ω2

j − ω2
)2

+ γ2
j ω

2

(9.199)

α

2
= κ =

ω2

c

N q2

2 m εo

∑
j

γj fj(
ω2

j − ω2
)2

+ γ2
j ω

2

(9.200)

Our assumption of α being small is very similar to the poor conductor case: the wave
propagates into the medium, with B̃0 = Ẽ0/v = Ẽ0 n/c and with the magnetic and
electric fields in phase, and with the wave decaying over a large number of
wavelengths given by the ratio δ/λ = k/(2π κ). (There are no free charges in the
medium because the oscillating electrons are a bound charge density whose effect is
incorporated into ε̃, so the caveat about the validity of this limit is lifted.)

We see how the damping terms γj are the equivalent of Ohmic losses in a conductor:
they lead to loss of energy from the wave. Because the current is a bound current,
Ohmic loss is absorbed into ε̃ rather than provided by an explicit σ.
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Low-Frequency Behavior, ω � ωj

If the frequency is much lower than any of the resonant frequencies, ω � ωj , and the
damping term is also small, γj � ω (weak damping), then we may drop the imaginary
piece in the denominator of Equation 9.198 and Taylor expand the remainder, yielding:

n
ω�ωj−→ 1 +

N q2

2 m εo

∑
j

fj

ω2
j − ω2

= 1 +
N q2

2 m εo

∑
j

fj

ω2
j

(
1− ω2

ω2
j

) (9.201)

≈ 1 +
N q2

2 m εo

∑
j

fj

ω2
j

(
1 +

ω2

ω2
j

)
= 1 +

N q2

2 m εo

∑
j

fj

ω2
j

+ ω2 N q2

2 m εo

∑
j

fj

ω4
j

(9.202)

We see the behavior consists of a frequency-independent offset of n from unity
combined with a quadratic dependence on frequency. This can be rewritten as

n = 1 + A

(
1 +

B

λ2

)
(9.203)

This is Cauchy’s Formula, with A being the coefficient of refraction (the offset from
unity) and B being the coefficient of dispersion (the normalization of the
frequency-dependent, dispersive term). The rising index of refraction with frequency
reflects the increasing ability of the individual electrons to be displaced by the field
and thus the sites to be polarized as the frequency approaches the resonant
frequencies. This formula explains the dispersion of light by a glass prism at visible
wavelengths (see, e.g., https://en.wikipedia.org/wiki/Cauchy%27s_equation).
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The reason that the expression asymptotes to a constant at low frequency is that, in
this limit, the index of refraction is just the square root of the static dielectric
constant, which depends on the effective spring constant for static distortions of the
electron distribution about the sites. We can see this by going back to the dielectric
constant (so no factor of 1/2), dropping the quadratic term, and rewriting in terms of
the spring constants kj = mω2

j :

ε̃r =
ε̃

εo
= 1 +

N q2

εo

∑
j

fj

kj
(9.204)
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Conductor Behavior, ω0 = 0, ω � ωj

If we neglect some of our assumptions and set ω0 = 0 but assume ω � ωj for j > 0,
we obtain (going back to Equation 9.198 and looking at ε̃/εo not n, so no factor of
1/2):

ε̃r =
ε̃

εo
= 1 +

N q2

εo

∑
j

fj

kj
+ i

Ne q2

εo m

1

γ0 − i ω

1

ω
+O(ω2) (9.205)

where Ne = N f0 is the number density of free conduction electrons (no restoring
force, hence ωj = ω0 = 0 for them). Recalling our analogy between dielectrics with
complex permittivity and conductors,

~k · ~k = [R(ε̃) + i I(ε̃)]µo ω
2 ←→ ~k · ~k =

(
ε µω2 + i σ µω

)
(9.206)

=
(
ε+ i

σ

ω

)
µω2 (9.207)

=⇒ σ = ω I
(
ε̃|ω�ωj

)
=

Ne q2

m
R
(

1

γ0 − i ω

)
ω/γ0� 1−→ Ne q2

m

1

γ0
(9.208)

(ω/γ0 � 1 implies the damping time 1/γ0 is much less than the wave period T .)
That is, a conductor can be treated like a dispersive medium with one “resonant
frequency,” ω0 = 0, which corresponds to totally unbound electrons with no restoring
force! Nonconductors have their first resonance at ω1 > 0. Thus, we can view
conductors and nonconductors in a unified way depending on whether there is a
“resonant frequency” at ω = 0.
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The reason our model can accommodate conductors is because it contains the
resistive damping that results in a terminal velocity for the electrons in the same way
that the Drude model results in a linear relationship between field and electron speed.
Recall our definition of the damping force, |Fdamping | = m γ v , which we can rewrite as

1

γ
=

v

|Fdamping/m| (9.209)

which has units of time: 1/γ is a characteristic damping time. Recall also our Drude
model for DC conductivity, with

σ =
Ne q2 λ

2 m vthermal
(9.210)

Using Equation 9.208, which relates the two, we obtain:

v

|Fdamping |/m
=

1

γ0
=

m

Ne q2
σ =

λ

2 vthermal
=
τ

2
(9.211)

where τ is the time between scatters in the Drude model. Recall (Equation 7.3) that
vave = (τ/2) (q E/m) is average drift velocity in the Drude model and thus τ/2 is the
damping timescale for the motion driven by the DC electric field. That is exactly the
definition of γ−1

0 , the damping time for the DC electric field.
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Plasma Behavior, ω � ωj

Again, we can ignore the damping behavior because now ω � ωj (the ω2 − ω2
j term

dominates and we can neglect its ω2
j piece), providing

n
ω�ωj−→ 1− N q2

2 m εo

∑
j

fj

ω2
≡ 1− 1

2

ω2
p

ω2
ω2

p ≡
N q2

m εo

∑
j

fj =
N Z q2

m εo
(9.212)

(Z =
∑

j fj is the number of electrons per site.) This is the same relationship one
would have obtained if one had ignored Fbinding and Fdamping : this behavior arises only
from the force being given by the driving electric field. At these high frequencies, the
oscillation occurs much faster than any binding (ω � ωj ) or damping (ω � γj ) forces
can have effect and the electrons can be considered to be free. The asymptotic return
of the index of refraction back toward unity reflects the fact that, due to the electrons’
inertia, the distance they can move during one cycle of the EM wave, and hence the
polarizability of the medium, decreases as 1/mω2 at high frequency. ωp is called the
plasma frequency because it defines the behavior of a plasma of free electrons.

Notice that n < 1 is possible in the plasma limit, yielding wave speeds that are larger
than c. Griffiths discusses how the group velocity of waves prevents a violation of
special relativity.
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Strangely enough, the plasma behavior can hold at much lower frequencies in tenuous
plasmas where the electrons are free and binding forces are negligible. In these cases,
one has to return to the full permittivity (Equation 9.192) and set ω2

j and γj to zero
because the approximation that the dispersive term in the refractive index is small
compared to unity fails. In such cases, one has a permittivity

ε̃

εo
= 1−

ω2
p

ω2
(9.213)

It is possible for this relation to hold even for ω < ωp , in which case, ε̃ becomes
negative. Note that this is not equivalent to the perfect conductor limit: in that case,
ε̃ acquires a significant imaginary component, as we just saw in the previous section.
The implications of the purely negative ε̃ are that there is reflection at an interface
into such a medium (total internal reflection for all angles) and the field falls off
exponentially into the medium with skin depth and decay constant

1

δ
= κ =

ωp

c
(9.214)

It turns out that this plasma phenomenon, not the perfect conductor limit, explains
the optical reflectivity of metals. There are resonances in the ultraviolet in metals that
then bring ε̃ > 0 and allow metals to be ultraviolet transparent. This phenomenon also
explains how the ionosphere reflects AM (500–1600 kHz) and shortwave
(2.3–26 MHz) radio waves. AM radio reflection off the ionosphere is
conditions-dependent and is better at night than during day.
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Near-Resonance Behavior

The behavior of the refractive index and skin depth near a resonance are shown below.
The decay constant displays a maximum (the skin depth displays a minimum) on
resonance because the system is best able to absorb (and dissipate) energy on
resonance.

The index of refraction takes on its continuum (ω far
from ωj ) value on-resonance but displays a
characteristic negative slope behavior through the
resonance. This negative slope of the refractive index is
termed anomalous dispersion because it deviates from
the smooth behavior seen well below (ω � ωj ) or above
(ω � ωj ) the resonances.

One interesting feature is that, above ωj , n can drop below unity, yielding v > c.
Another interesting feature arises from the anomalous dispersion. Let’s relate the
negative slope in n(ω) to the group velocity to see its implications:

n = c
k

ω
=⇒ dn

dω
=

c

ω

dk

dω
− c

k

ω2
=⇒ vg =

dω

dk
=

v

1 + d ln n
d lnω

(9.215)

Since d ln n/d lnω < 0 in the anomalous dispersion region, it is possible to have
vg > v and thus even to have vg > c! Causality is not violated because, in a region of
anomalous dispersion, the approximations made to model the propagation of a wave
packet and define group velocity fail; see Jackson §7.8 for more details. These strange
behaviors of v and vg are used in AMO physics.
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Rotational Contribution of Permanently Polarized Molecules

One can show (we will not) that the rotational degrees of freedom of liquid or gas
molecules with permanent dipole moments give a contribution to the permittivity

ε̃r,rot = 1 +
χrot

1− i ω τrot
(9.216)

where χrot is the zero-frequency contribution to the susceptibility and τrot is the time
constant for relaxation of an imposed polarization due to thermal fluctuations in the
absence of an electric field. The real part falls off for ω > τ−1

rot while the imaginary

part has a peak at ω = τ−1
rot . The real part yields standard non-conducting matter

behavior while the imaginary part yields conductor-like behavior in terms of the
relative phase of B and E and of dissipation (into the thermal modes that cause
relaxation of polarization). One never arrives, however, at the good conductor limit
because the second term has an upper limit of χrot while the corresponding term for a
conductor (Equation 9.207) is σ/(ε ω), which has no upper limit, and because χrot

itself has an upper limit set by full alignment of the intrinsic dipole moments and ~E .
Another way of saying this is that the electrons that are responding are still bound and
thus can never display the almost-free propagation characteristic of a good conductor.
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Overall Picture of Dispersive Behavior

The generic behavior of the real and imaginary parts of ε̃/εo = ε̃r (usually denoted by
ε′ and ε′′), in the rotational/conduction limits and through the anomalous dispersion
features, is shown here.

Notice how, after each
resonance is passed, the
continuum value of ε′

decreases a bit: this is
because the numerator
of each term in the sum
for n (∼

√
ε′) changes

sign after ω passes
through ωj . Eventually,
ε′ goes to the plasma
limit and then rises back
toward unity as ω →∞.

Figure courtesy of M. Cross
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Introduction and Study Guide: Guided Waves

We are going to undertake a more in-depth treatment of guided waves and
transmission lines than Griffiths because it is an interesting and very useful topic in
modern physics research. Some areas that use guided waves include superconducting
quantum computing platforms and microwave-optical transduction; particle
accelerators; astronomical instrumentation at wavelengths longer than 100 µm that
preserves the coherent (wave) nature of light, even into the optical when one considers
routing of light by fiber optics; and high speed data generation, sampling, and
transmission, from photomultipliers (vacuum and silicon) to radio astronomy
detection. More broadly, almost any experimental apparatus that uses electrical
currents in any way (try to think of one that does not!) can be susceptible to
radiofrequency interference, especially because of pervasive cell phones and WiFi but
even due to radio, computers, and even fluorescent lights. Knowing how this radiation
can get into an apparatus is the first step in stopping it. The systematic trial and error
approach to solving experimental problems only works when one uses physics as a
guide to where susceptibilities might be present.

We will first consider transmission lines from the circuit theory perspective, then
consider Maxwell’s Equations in confined regions and the propagating solutions. The
material on transmission lines can be found in Heald and Marion §7.1. The material
on waveguides is found in Heald and Marion §7.3–7.5 and Jackson §8.1–8.5.
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Transmission Lines

Circuit Transmission Line Theory

Here, we consider a specialized arrangement consisting of two electrodes,
translation-invariant in the z direction, with a voltage between them and currents
flowing on them. We allow for the voltage and current to be position-dependent,
which is a necessity for a propagating wave. We shall see that the critical ingredients
necessary for propagating solutions are having both inductance and capacitance in
much the same way that free-space propagation occurs by having both electric and
magnetic fields that re-excite one another via Faraday’s and Ampere’s Laws.

We start with the figure below, which consists of two wires on which there is a
position-dependent voltage difference and a position-dependent current. We treat the
two wires completely (anti)symmetrically: if there is a voltage V (z) on one wire, there
is a voltage −V (z) on the other wire at the same point. Thus, the voltage difference
between the wires is ∆V (z) = 2 V (z), which is the quantity we will be primarily
concerned with. There is a current flowing on each wire, again antisymmetric, with
values I(z) and −I(z). There will also be a net charge Q(z) and −Q(z) on the wires.
We assume the system has an inductance per unit length for the pair of wires of L
and a capacitance per unit length between the wires of C.
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We write down equations connecting the various quantities. An incremental
accumulation of charge on each wire is related to the capacitance and the voltage
between them

dQ = C dz d(∆V ) (9.217)

Now, if there is an accumulation of charge at a point z, it is because, during a time
interval dt, the current leaving that point z is less than the current entering. This
difference in current between z + dz and z is dI, which can be related to dQ by (get
the polarity correct: if dI < 0, then less current leaves the point z on the top wire
than enters, so there is a net gain of positive charge on the top wire at point z):

−dI dt = dQ = d(∆V ) C dz (9.218)

Dividing by both differentials gives

∂ I

∂z
= −C ∂∆V

∂t
(9.219)

We use partial derivatives because I and ∆V depend on both t and z.
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The voltage drop due to the inductance (we assume zero resistance) is:

d(∆V ) = −L dz
∂ I

∂t
=⇒ dV = −L

2
dz

∂ I

∂t
(9.220)

To understand the sign, think about the loop formed by the four points in the
diagram. For I > 0 and ∂I/∂t > 0, the magnetic flux through the loop is into the
page and increasing in magnitude. So an electric field is induced with polarity such
that it tries to drive current to counter the increasing flux, which means that the
electric field goes counter-clockwise around the loop so the current it would generate
adds flux coming out of the page. (Remember that, because this electric field does
not have to have zero loop integral, the electric field lines can go around in a loop like
this.) The field lines go from the top to the bottom wire at z and from the bottom to
the top wire at z + dz. Voltage is the line integral of electric field, so this direction of
the field lines explains the sign above: the added voltage drop due to the induced field
is positive at z and negative at z + dz when ∂I/∂t is positive. (If it is easier to think
about, consider putting a voltmeter (i.e., a large resistor through which the induced
electric field drives a current) between the electrodes.)

Be careful about applying the same argument to the induced field along each wire,
which might lead you to think the sign is the opposite (field lines go from z + dz to z
in the top wire and the opposite direction in the bottom wire). The change in V
between z and z + dz is not due to the line integral along field lines in the two wires
but rather because the system is not quasistatic — V can be different in different
places just due to time delay, without there being field lines. (Note that the points at
z + dz on the two electrodes should be considered to not be spatially separated from
each other — time delay happens along the z direction, not between the electrodes.)
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To understand the factor of 1/2. we just need to recognize that the full emf affects
∆V , so, when we want to calculate the dV of a single wire, it is ∆V /2.

Moving the dz to the left side gives

∂∆V

∂z
= −L ∂ I

∂t
(9.221)

We can take derivatives of our two equations (Equations 9.219 and 9.221) and
combine them to obtain

∂2I

∂z2
= LC ∂

2I

∂t2

∂2∆V

∂z2
= LC ∂

2∆V

∂t2
(9.222)

We thus have wave equations describing waves in one dimension moving with speed
v = 1/

√
LC.
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In one dimension and for a fixed frequency ω, there are two solutions with velocity +v
and −v and they have the general form (as we derived earlier for EM waves)

I±(z, t) = I±F
(
±ω

v
z − ω t

)
∆V (z, t) = V±(z, t) = Z± I± F

(
±ω

v
z − ω t

)
(9.223)

where ± indicates the direction of propagation and Z± (to be determined) defines the

ratio (∆V )/I. As for ~E and ~B, we assume the same functional form for the current
and voltage because they are tied to each other through derivatives. (In homework,
you will add finite wire conductivity, which will make Z± complex, allowing a phase
shift.) We can determine Z±, which gives their ratio, by plugging into ∂ I

∂z
= −C ∂∆V

∂t
:

±I±
ω

v

∂F

∂u
= C Z± I± ω

∂F

∂u
=⇒ Z± = ± 1

v C = ±
√
L
C ≡ ±ZLC (9.224)

We see that the wave propagating to +z has current flow to the right in the top wire
when the top wire has a positive voltage while the −z mode has current flow to the
left when the top wire has a positive voltage. Rather than allowing the negative
impedance −ZLC , we will consider these two modes to have the same characteristic
impedance, ZLC , remembering that the currents flow in opposite directions. While
ZLC has units of ohms because it is the ratio of a voltage to a current, realize that it
has nothing to do with resistivity in the wires! It is set by the geometry of the
electrodes and the materials (ε and µ) surrounding them, which set L and C.
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Example 9.1: Stripline Transmission Line

This structure consists of two thin metal ribbons of width w and separation h� w .
The capacitance is just that of a parallel plate capacitor. The inductance is easily
obtained by calculating the field between two infinite sheets of current flowing in
opposite directions (B = µK) and then calculating from that the flux per unit length
(Φ/` = µK h) and dividing by the current (I = K w). Thus, we have

C =
εw

h
L =

µ h

w
(9.225)

v =
1√
LC

=
1
√
ε µ

=
c

n
ZLC =

√
L
C =

h

w

√
µ

ε
(9.226)
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Example 9.2: Coaxial Cable Transmission Line

The formalism works even though the system is not symmetric. It will become clear in
the next section why it works.

For coaxial cable with an inner solid conductor of radius a and outer shell conductor of
radius b, we know from prior calculations that the capacitance and inductance per
unit length are

C =
2π ε

ln b
a

L =
µ ln b

a

2π
(9.227)

Therefore, the transmission line properties are:

v =
1√
LC

=
1
√
ε µ

=
c

n
ZLC =

√
L
C =

ln b
a

2π

√
µ

ε
(9.228)

Recall that ε, µ, n, v , and Zεµ characterize the dielectric between the conductors, not

the perfect conductors themselves! For µ ≈ µo , this gives ZLC ≈ (60Ω) ln b
a
/
√
εr .

Teflon and polyethylene are frequently used as the dielectric, having εr = 2.0 for teflon
and εr = 2.3 for high-density polyethylene. Standard coaxial cable impedances are
50 Ω and 75 Ω. 75 Ω is a typical cable impedance for television antennas because it is
a good match to the antenna impedance (which we will discuss later). Not that any of
you are old enough to have seen a television antenna...
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Generalization to Arbitrary Electrode Shapes via Wave Formulation

We derived the above for the case of two wires, but we can extend to two electrodes
of arbitrary shape that are z-translation independent, as indicated below.
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To do this, let’s think about the fields and the charge and current densities rather
than just voltages and currents. We aim to find a solution to Maxwell’s Equations
that takes the form of a wave propagating in the z-direction and that has transverse
fields (consistent with our transmission line picture involving capacitance and

inductance per unit length). We use ~H instead of ~B because the former is more
directly related to the surface current density. Recall k vεµ = ω. We assume:

~E(~r , t) = [x̂ Ex (x , y) + ŷ Ey (x , y)] e i(k z−ω t) ρ(~r , t) = ρ0(x , y) e i(k z−ω t) (9.229)

~H(~r , t) = [x̂ Hx (x , y) + ŷ Hy (x , y)] e i(k z−ω t) ~J(~r , t) = ẑ J0(x , y) e i(k z−ω t) (9.230)

ρ0 and J0 are assumed to be surface charge and current densities, so they have δ
functions in the transverse coordinates in them, but we don’t write them out explicitly
because it is unnecessary for our discussion here.

We will show that, under the assumptions made above, in which the charge and
current densities are the same in form and have a wave dependence on z, then the
propagating wave solution is just a static solution in (x , y) multiplied by the e i(k z−ω t)

dependence, where the static solution is that sourced by ρ0 and J0 = vεµ ρ0.

When we get to waveguides, we will see that this special case yields the TEM
(transverse-electric-magnetic) modes, while more general current distributions yield
other, more complex modes.
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To do this, let’s write out Maxwell’s Equations assuming the above form. The four
equations involving x and y derivatives are

[
~∇× ~E

]
z

= −∂
~B

∂t
· ẑ =⇒ ∂Ey

∂x
− ∂Ex

∂y
= 0 (9.231)[

~∇ · ~E
]

=
ρ

ε
=⇒ ∂Ex

∂x
+
∂Ey

∂y
=
ρ0(x , y)

ε
(9.232)

[
~∇× ~H

]
z

= ~Jf · ẑ + ε
∂ ~E

∂t
· ẑ =⇒ ∂Hy

∂x
− ∂Hx

∂y
= J0(x , y) (9.233)[

~∇ · ~H
]

= 0 =⇒ ∂Hx

∂x
+
∂Hy

∂y
= 0 (9.234)

These four equations are satisfied by the form we have chosen; the exponential factor
multiplies both sides of every equation and thus cancels out. They will yield a static
solution because they are sourced by the charge and current densities ρ0 and J0, which
are not time-dependent.
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The four equations in z and t derivatives are

[
~∇× ~E

]
x

= −∂
~B

∂t
· x̂ =⇒ −i k Ey = i ω µHx (9.235)[

~∇× ~E
]

y
= −∂

~B

∂t
· ŷ =⇒ i k Ex = i ω µHy (9.236)

[
~∇× ~H

]
x

= ~Jf · x̂ + ε
∂ ~E

∂t
· x̂ =⇒ −i k Hy = −i ω εEx (9.237)[

~∇× ~H
]

y
= ~Jf · ŷ + ε

∂ ~E

∂t
· ŷ =⇒ i k Hx = −i ω εEy (9.238)

These equations are satisfied by the exponential factor along with the relation

x̂ Hx + ŷ Hy =
1

Zεµ
(−x̂ Ey + ŷ Ex ) =⇒ ~H =

1

Zεµ
k̂ × ~E (9.239)
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Let’s relate the charge and current densities by applying continuity, ~∇ · ~J + ∂ρ/∂t = 0:

k J0(x , y) = ω ρ0(x , y) =⇒ J0(x , y) = vεµ ρ0(x , y) (9.240)

In addition to relating the two densities, this equation tells us that current in a perfect
conductor flows only on the surfaces: since we know there is no charge density inside a
perfect conductor (the decay constant for the charge density was τ = ε/σ → 0, in the
language of our solutions for EM waves in conductors), the above equation tells us
there is no current density inside the conductor either.

Another way of seeing this would be to recognize that the skin depth δ =
√

2/(σ µω)
vanishes as σ →∞: the fields do not penetrate into the conductors, so neither does
the current density. This happens because a surface current density is driven that
cancels the EM field inside the conductor.

This, along with the fact that x̂ Ex + ŷ Ey and x̂ Hx + ŷ Hy are sourced by the
constant charge density ρ0 and current density J0, shows what we set out to prove,
that a transmission line has propagating wave solutions in z whose transverse field
configuration is identical to that of the two-dimensional static problem sourced by
charge density ρ0 and current density J0 = vεµ ρ0. Note that these are not the only
solutions, as we will show later.
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Connection between Circuit and Wave Formulations of Transmission Lines

Now let’s recover the circuit formulation from the wave formulation. Given the wave
formulation solution, we can calculate the voltage and current via

∆V (z, t) =

∫ ~r−

~r+

d ~̀ · ~E (9.241)

I(z, t) = ±
∮
C±

d` K0 = ±vεµ

∮
C±

d` σ0 = ± 1

Zεµ

∮
C±

d` n̂ · ~E (9.242)

where we used the relation between the surface charge density and the discontinuity in
the normal component of ~D in obtaining the last expression, noting
ε vεµ =

√
ε/µ = 1/Zεµ. K0 is the surface current density, with J0 and K0 related by a

δ function that defines the conductors’ surfaces, and σ0 is the surface charge density,
with σ0 and ρ0 also related by this δ function. The voltage integral is from any point
on the + electrode to any point on the − electrode (since each is an equipotential in
(x , y)) and the current (charge) integral is over the entire + or − electrode.
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We can then determine the characteristic impedance from

ZLC =

∣∣∣∣∆V (z, t)

I(z, t)

∣∣∣∣ = Zεµ

∣∣∣∣∣∣ ∆V (z, t)∮
C±

d` n̂ · ~E

∣∣∣∣∣∣ = Zεµ

∣∣∣∣ ∆V (z, t)

ε−1
∮

d` σ0

∣∣∣∣ (9.243)

= Zεµε

∣∣∣∣∆V (z, t)

λ

∣∣∣∣ =
ε

C Zεµ =
εo

C0
Zεµ (9.244)

where C0 = C εo/ε is the capacitance per unit length if the ε medium is replaced with
εo . We see that the characteristic impedance is proportional to Zεµ with the constant
of proportionality being related to the capacitance per unit length scaled by ε. This is
a purely geometric quantity (not even dependent on ε or µ). Clearly, the above
quantity is determined only by the physical shape of the solutions, implying it is set
purely by the geometry. This is what we found earlier in our coaxial cable and stripline
examples, that the transmission line impedance ZLC was Zεµ times a factor
determined by the geometry alone.

If one retains I in the denominator above but instead recognizes that ~H = k̂ × ~E/Zεµ
and ~H = ~∇× ~A/µ implies ~E = i (µ/Zεµ) ~A, then one can show ZLC = (L0/µo ) Zεµ,
where we have analogously defined L0 = Lµo/µ as the inductance if the µ medium
were replaced by vacuum, again a purely geometric quantity. This proof is less trivial
because it involves relating the line integral of ~E in the numerator to a different line
integral of ~A. In Problem Set 5, you will effectively obtain the necessary relation in the
process of proving

LC = ε µ =⇒ vεµ =
1
√
ε µ

=
1√
LC

= vLC (9.245)
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The above relation then lets one conclude

ZLC =
ε

C Zεµ =
ε µ

C L
L
µ

Zεµ =
L
µ

Zεµ =
L0

µ0
Zεµ (9.246)

Finally, we note that the combination of the above relations tell us that the
geometrical factor in C and L is the same (up to reciprocation):

εo

C0
Zεµ = ZLC =

L0

µo
Zεµ ⇐⇒ L0

µo
=
εo

C0
(9.247)

or LC = ε µ ⇐⇒ L
µ

=
ε

C ⇐⇒ L0

µo
=
εo

C0
(9.248)

Together, these various results — the circuit and wave formulations both have
solutions involving waves propagating in the z direction; the propagation speeds are
equal, vεµ = vLC ; the circuit formulation voltage and current can be written in terms
of the wave formulation fields; and the characteristic impedance ZLC is equal to the
medium’s wave impedance Zεµ times a geometrical factor that can be calculated from
the wave solution — imply that the formulations are equivalent. The wave formulation
is more generic and also gives us the underlying basis for the circuit formulation, while
the circuit formulation abstracts out the key features we need to do calculations in a
less cumbersome manner, as we will see.
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Energy and Power in Transmission Lines

The time-averaged energy flux of the EM wave is given by the Poynting vector:〈
~S
〉

=
1

2
R
(〈
~E∗ × ~H

〉)
= k̂

1

2 Zεµ

∣∣∣~E0

∣∣∣2 = k̂
1

2
vεµ ε

∣∣∣~E0

∣∣∣2 = k̂ vεµ〈u〉 (9.249)

where ~E(~r , t) = ~E0(x , y) e i(k z−ω t) and ~E0(x , y) is an electrostatic solution in two
dimensions. The Poynting vector has units of power/area. Therefore, if we integrate it
over the xy -plane, we get the total time-averaged power flowing past a given point:

〈P〉=
∫
S

da ẑ ·
〈
~S
〉

=
1

2
vεµ

∫
S

da ε
∣∣∣~E0

∣∣∣2 (9.250)

The integral (with the 1/2) is the time-averaged energy per unit length in the electric
field, which can be rewritten using the capacitance per unit length and the voltages
because ~E0(x , y) is an electrostatic solution:

〈P〉= 1

2
vεµ C |V0|2 =

1

2

C√
LC
|V0|2 =

1

2

|V0|2
ZLC

=
1

2
|I0|2 ZLC =

1

2
R (I∗0 V0) (9.251)

where V0 is amplitude of the wave giving ∆V , I0 = V0/ZLC is the amplitude of the
wave giving I, and we take the real part so the result is generalizable (so far, I and
∆V are in phase). We thus have an expression for the (time-averaged) power flowing
down the transmission line in terms of the transmission line parameters instead of the
microscopic fields.
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Reflection and Transmission at a Transmission Line Junction

Now, let’s consider a wave incident on a junction between two transmission lines (at
z = 0) of characteristic impedances Z1 and Z2. We assume a solution consisting of an
incident and reflected wave at z < 0 and a transmitted wave at z > 0. The voltage
must be continuous as always, and the current must be continuous to avoid a buildup
of charge at the boundary. (If we choose to match fields instead: ~E and ~B are
transverse and there are no free charges or currents at the boundary, so their normal
components vanish and their transverse components are continuous, yielding these
conditions on V and I.) We write the waves as (including a reflected wave for z < 0):

z < 0 : V (z, t) = e i(k1z−ω t) + r̃ e i(−k1z−ω t) (9.252)

I(z, t) =
1

Z1
e i(k1z−ω t) − r̃

Z1
e i(−k1z−ω t) (9.253)

z > 0 : V (z, t) = t̃ e i(k2z−ω t) (9.254)

I(z, t) =
t̃

Z2
e i(k2z−ω t) (9.255)

where r̃ and t̃ are to be determined. Note that we know k2 v2 = ω = k1 v1. As usual,
we have assumed the same time dependence because the matching conditions must be
satisfied at all times. Notice the sign on the left-going reflected current term.
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Setting z = 0 and matching the solutions as we described, we obtain

1 + r̃ = t̃
1− r̃

Z1
=

t̃

Z2
=⇒ r̃ =

Z2 − Z1

Z2 + Z1
t̃ =

2 Z2

Z1 + Z2
(9.256)

We see that these equations are identical to Equations 9.104 and 9.105 for the fields
in the case of normal incidence of an EM wave on the interface between two different
perfectly non-conducting materials, except that now the impedances are the
characteristic impedances of the transmission lines ZLC instead of the wave
impedances Zεµ. Of course, the former incorporates the latter, but it also depends on
the transmission line geometry, which does not exist for the free space case.

We may calculate the power reflection and transmission coefficients based on
Equation 9.251:

R =
1
2
|r̃ |2/Z1

1
2
|1|2/Z1

=

(
Z2 − Z1

Z2 + Z1

)2

T =
1
2
|t̃|2/Z2

1
2
|1|2/Z1

=
Z1

Z2

(
2 Z2

Z1 + Z2

)2

(9.257)

One can easily see R+ T = 1 and that these expressions also match what we derived
for an EM wave at normal incidence.

We now see the origin of the term impedance matching: R = 0 if Z1 = Z2.
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Reflection and Transmission at a Load Impedance

If, instead of a second transmission line section, we have a junction to a
lumped-element load with complex impedance ZL (some combination of resistances,
capacitances, and inductances), then we just have

z > 0 : V (t) = t̃ e−i ω t I(t) =
t̃

ZL
e−i ω t (9.258)

This doesn’t change the matching conditions, so we have the same relations as
Equations 9.256 and 9.257 with Z2 replaced by ZL. In particular, there is full
transmission of the power from the transmission line into the load if ZL = Z1: this is
another version of impedance matching. Note that ZL = 0 and ZL =∞ both result in
unity reflection, though with opposite signs for r̃ .
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Input Impedance of a Terminated Transmission Line

Another interesting and frequently considered question is what happens at the
interface between transmission lines when the second line is terminated in a load
impedance after a length `. We can phrase this in terms of an effective impedance
“looking into” (from the point of view of a wave incident on the interface from Z1

into) the loaded transmission line.

Let’s assume that there are left- and right-going waves on this length ` of transmission
line with amplitudes V+ and V− to be determined. (We won’t write the e−i ω t time
dependence for now; think of it as considering everything at t = 0.) Define the
“complex-wave ratio” as the ratio of the left-going and right-going amplitudes:

r(z) =
V−(z)

V+(z)

The voltage and current at any point on the line are

V (z) = V+(z) + V−(z) = V+(z) [1 + r(z)]

I(z) = I+(z)− I−(z) =
V+(z)

ZLC
− V−(z)

ZLC
=

V+(z)

ZLC
[1− r(z)]
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We can then calculate an impedance at any point on the line:

Z(z) =
V (z)

I(z)
= ZLC

1 + r(z)

1− r(z)
(9.259)

We know or can now calculate the functions V+(z), V−(z), r(z), and Z(z):

V+(z) = V+(0) e i k z r(z) = r(0) e−2 i k z (9.260)

V−(z) = V−(0) e−i k z Z(z) = ZLC
1 + r(0) e−2 i k z

1− r(0) e−2 i k z
(9.261)

Now, to find Zi = Z(0), the effective input impedance of the transmission line, we
simply set V (`) = ZL I(`), which implies Z(`) = ZL, find r(0) from the relation
between Z(`) and r(0), and then find Zi = Z(0) from r(0):

Z(`) = ZL =⇒ r(0) = e2 i k `

ZL
ZLC
− 1

ZL
ZLC

+ 1
(9.262)

=⇒ Zi = Z(0) = ZLC
1 + r(0)

1− r(0)
= ZLC

ZL − i ZLC tan k`

ZLC − i ZL tan k`
(9.263)
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Based on this formula, some examples of the behavior are given below. It is crucial to
recognize that the behavior depends on k so is frequency-dependent!

I Short-circuit termination

ZL = 0 =⇒ Zi = −i ZLC tan(k`) (9.264)

The line acts purely reactive (no resistance). It is capacitive or inductive
depending on the length in numbers of quarter-wavelengths:

(2 n)
λ

4
< ` < (2 n + 1)

λ

4
=⇒ I(Zi ) < 0 =⇒ inductive (9.265)

(2 n − 1)
λ

4
< ` < (2 n)

λ

4
=⇒ I(Zi ) > 0 =⇒ capacitive (9.266)

Note that the sign conventions for inductive and capacitive reactances are the
opposite of what is used in Ph1c and in engineering because we use here a
e−i ω t time dependence instead of the usual e i ω t engineering time dependence.

I Open-circuit termination

ZL =∞ =⇒ Zi = i ZLC cot(k`) (9.267)

Again, capacitive or inductive depending on the length.
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I Quarter-wavelength

` =
λ

4
Zi =

Z 2
LC

ZL
(9.268)

Acts like a transformer of the load impedance.

I Half-wavelength

` =
λ

2
Zi = ZL (9.269)

No change in impedance.
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Waveguides

What is a Waveguide?

There are two critical ingredients in the concept of a waveguide:

I First, that an EM wave is propagating along the z direction in a (possibly not
simply connected in the xy -plane) region of nonconducting material that is
bounded by (for now) lossless metal boundaries in the xy -plane. There need not
be an outer boundary of metal (see also our EM field discussion of transmission
lines earlier). A hollow rectangular waveguide is a simply connected example,
while a coaxial cable is not. A transmission line consisting of two straight wires
in vacuum is an example in which there is no outer metal boundary and the
dielectric is not simply connected.

I Second, that voltages appear and currents flow sinusoidally on those walls to
support the propagating wave. The sinusoidal flow eliminates the need for an
explicit return conductor because the time average of the current at a given
point vanishes: at any point, the current goes in the +z direction half the time,
then in the −z direction half the time. We assume that the waveguide goes on
forever or is terminated in an impedance that matches the waveguide impedance
(this will be explained below) so we can neglect the end effects.
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Eigenvector-Eigenvalue Equation for Waveguide Solutions

We will assume that the electric and magnetic fields have propagating wave solutions
in the z direction with e i(k z−ω t) dependences (k positive or negative):

~E(~r , t) = ~E0(~r⊥) e i(k z−ω t) ~H(~r , t) = ~H0(~r⊥) e i(k z−ω t) (9.270)

where ~E0 and ~H0 are, as usual, complex, and ~r⊥ = x x̂ + y ŷ . We again work with ~H
since it is more closely related to the currents and also because the equations become
more symmetric between ~E and ~H. We calculated earlier what happens when you plug
such a solution into Maxwell’s Equations, but now we may not assume that the waves
are transverse, we must allow for z components. Assuming the medium in the
waveguide to has uniform ε and µ, plugging into the two curl equations yields

∂Ey

∂x
− ∂Ex

∂y
= i µωHz

∂Hy

∂x
− ∂Hx

∂y
= −i ε ω Ez (9.271)

∂Ez

∂y
− i k Ey = i µωHx

∂Hz

∂y
− i k Hy = −i ε ω Ex (9.272)

i k Ex −
∂Ez

∂x
= i µωHy i k Hx −

∂Hz

∂x
= −i ε ω Ey (9.273)

We see a clear symmetry between E and H in the equations.
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We may solve these reduced equations for the transverse components in terms of the
z, or longitudinal components. (e.g., plug the equation with Hy on the RHS into the
equation for Ex on the RHS and solve for Ex and one gets an equation for Ex in terms
of Ez and Hz .) Defining any vector with a ⊥ subscript to be the vector’s component

in the xy -plane, and recalling kεµ = ω/vεµ and Zεµ =
√
µ/ε, we obtain

~H0,⊥ =
1

k2
εµ − k2

[
i k ~∇⊥ H0,z + i

kεµ

Zεµ
ẑ × ~∇⊥ E0,z

]
(9.274)

~E0,⊥ =
1

k2
εµ − k2

[
i k ~∇⊥ E0,z − i kεµ Zεµ ẑ × ~∇⊥ H0,z

]
(9.275)

Note that the transverse components end up out of phase with the longitudinal
component by π/2 due to the factor i . Note that one cannot find a generic, simple

relationship between ~E0,⊥ and ~H0,⊥ like we had before for transverse waves. We will
see below that we can obtain such a relationship, but differently for different modes.

For propagation in the −ẑ direction, one can work through the algebra to see that only
the sign on k in the first terms changes. The second terms are unchanged because the
prefactors in the second terms, as well as the sign of ẑ, do not depend on k.

In order for the units on the two sides to match, the factor of 1/k cancels the units of

the ~∇⊥ operator, and there is the usual factor of Zεµ connecting E and H.
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Next, let’s use the Maxwell divergence equations by taking the divergence of the
above. We note that

~∇ ·
(

ẑ × ~∇⊥
)

=

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(

ŷ
∂

∂x
− x̂

∂

∂y

)
= 0 (9.276)

Therefore,

0 = ~∇ · ~E = e i(k z−ω t)
(
~∇⊥ · ~E0,⊥ + i k E0,z

)
(9.277)

=
i k

k2
εµ − k2

∇2
⊥E0,z + i k E0,z (9.278)

Rewriting, and doing the same with ~∇ · ~B, we obtain

∇2
⊥E0,z +

(
k2
εµ − k2

)
E0,z = 0 ∇2

⊥H0,z +
(
k2
εµ − k2

)
H0,z = 0 kεµ =

ω

vεµ

(9.279)

These are clearly eigenvalue-eigenvector equations, where the action of an operator on
the solution is equal to a constant times the solution. Note how there still remains no
relationship between E0,z and H0,z : they remain completely independent, giving rise to
two different kinds of modes in which one or the other vanish.
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If we choose E0,z = 0, then the waves are called transverse electric (TE) modes, and if
we choose H0,z = 0, they are called transverse magnetic (TM) modes. Note that,

because ~E0,⊥ depends on E0,z and H0,z , setting E0,z = 0 still allows for nonzero ~E0,⊥
for TE modes, and similarly for ~H0,⊥ for TM modes. By linearity, any arbitrary sum of
TE and TM modes is still a valid field configuration. Note that the mode wavelength,
set by k, is not necessarily the same as it is in unconfined space or transmission lines,
which would be given by kεµ. Once one has specified TE or TM, a simple relationship
between the transverse fields is obtained (from Equations 9.274 amd 9.275):

TE: ~H0,⊥ =
1

Zεµ

k

kεµ
ẑ × ~E0,⊥ TM: ~H0,⊥ =

1

Zεµ

kεµ

k
ẑ × ~E0,⊥ (9.280)

Note that these relations are k-dependent (⇔ ν-dependent) because the ratio k/kεµ
or kεµ/k appears. So, while they are generic relations, there will be no such simple
relation if one sums modes with different k (⇔ ν) or sums TE and TM modes.

There are also transverse electric and magnetic (TEM) modes. These are not obtained
by setting E0,z = H0,z = 0 in the above wave equations. Rather, one must go back to
the curl equations and set the z components to be zero there, which results in the
simplified equations for ~E0,⊥ and ~H0,⊥ we derived in our wave formulation of
transmission lines (Equations 9.229 and 9.230): static solutions in two dimensions give
the transverse field behavior for the propagating TEM mode (with
~H0,⊥ = ẑ × ~E0,⊥/Zεµ and k = kεµ). In fact, “transmission line” and “TEM mode”
should be considered synonymous, especially given what we will prove soon, which is
that hollow waveguides cannot have TEM modes.
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Generic Boundary Conditions in a Waveguide

We have the partial differential equations for the fields, but we need boundary
conditions to have a fully defined mathematical problem to solve, so let’s consider
those now.

There will be free charges and currents in the walls to generate the fields, so we may
not assume anything about n̂ · ~E and t̂ · ~H at the walls.

For a perfect conductor, the skin depth vanishes. Therefore, there is no magnetic or
electric field in the conductor. This, along with ~∇ · ~B = 0, implies n̂ · ~H = 0 at the
walls.

The vanishing of the fields in the conductor along with Faraday’s Law tells us t̂ · ~E = 0
at the walls. (Remember, fields cannot have a δ-function spatial dependence, so the
right side of Faraday’s Law yields no contribution to the surface integral that is related
to the usual loop integral we do to determine tangential boundary conditions like this.)
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No TEM Mode in Hollow Waveguide

These boundary conditions let us immediately prove that hollow (simply connected in
the xy -plane) waveguides have no TEM modes. Returning to Maxwell’s equations for
the waveguide and using E0,z = 0 = H0,z for the TEM mode, we obtain

~∇ · ~E = 0 =⇒ ∂E0,x

∂x
+
∂E0,y

∂y
= 0

[
~∇× ~E

]
z

= 0 =⇒ ∂E0,y

∂x
− ∂E0,x

∂y
= 0

The other curl equation terms vanish because ~E0(x , y) has no z dependence and E0,z

vanishes. Thus, ~E0 has no curl, so it is the gradient of a scalar potential V0(x , y). The

vanishing of ~∇ · ~E tells us that this potential V0(x , y) satisfies Laplace’s (instead of

Poisson’s) Equation in two dimensions. The boundary condition t̂ · ~E = 0 implies any
connected boundary of the waveguide is an equipotential for V0 (at fixed z). If there
is only one boundary, then we may use the fact that solutions to Laplace’s Equation
have no local minima or maxima to conclude that the potential must be constant
across the (x , y)-plane and thus that ~E0,⊥ = 0. Given the generic relation for TEM

modes, ~H0,⊥ = ẑ × ~E0,⊥/Zεµ, this also implies ~H0,⊥ = 0. (The lack of fields also
implies ρ0(x , y) and J0(x , y) vanish too.)

This argument does not apply for a non-hollow waveguide because there are at least
two boundaries that may not be at the same potential (e.g., coaxial cable).

This result makes sense: transmission lines need two (and exactly two) non-grounded
electrodes with complementary currents and voltages to define L and C.
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Boundary Conditions for TE and TM Modes

We now return to the generic case in which either E0,z 6= 0 or H0,z 6= 0. Since we
have reduced the problem to one of finding these z components of the fields, we need
boundary conditions on E0,z and H0,z on the walls, which we will define by a contour
C (consisting of multiple disconnected pieces when there is more than one conductor).
We may now apply the previously developed generic boundary conditions to these
fields and use Equations 9.274 and 9.275.

Starting with Faraday’s Law, t̂ · ~E = 0 at the walls, one allowed direction of t̂ is t̂ = ẑ,
which gives us one of the boundary conditions we will use, ẑ · ~E = 0 at the walls, or

E0,z |C = 0 (9.281)

Note that this holds even for (especially for!) TM modes, which have nonzero E0,z .
Even though E0,z is nonzero in general for TM modes, it does vanish at the walls, and
the vanishing at the walls does not imply it vanishes everywhere!
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We can also apply Faraday’s law with the orthogonal tangent vector, t̂⊥ = ẑ × n̂. This
vector is tangent to the walls and lies in the xy plane. Using t̂⊥ · ~E = 0 and
Equation 9.275:

0 = t̂⊥ · ~E = t̂⊥ · ~E0,⊥ = t̂⊥ ·
1

k2
εµ − k2

[
i k ~∇⊥E0,z − i Zεµ kεµ ẑ × ~∇⊥H0,z

]
The first term on the right side vanishes because it calculates the gradient of E0,z

along t̂⊥, which vanishes because E0,z vanishes everywhere on the walls. The second

term can be cleaned up using the vector identity ~a · (~b × ~∇) = (~a× ~b) · ~∇ to yield
another boundary condition on the z components of the fields:

0 = t̂⊥ ·
(

ẑ × ~∇⊥
)

H0,z =
(
t̂⊥ × ẑ

)
· ~∇⊥H0,z =⇒ n̂ · ~∇⊥H0,z

∣∣∣
C

= 0 (9.282)

We may also try to use n̂ · ~H = 0 combined with Equation 9.274:

0 = n̂ · ~H = n̂ · ~H0,⊥ = n̂ · 1

k2
εµ − k2

[
i k ~∇⊥H0,z + i

kεµ

Zεµ
ẑ × ~∇⊥E0,z

]

Both terms vanish already: the first term because n̂ · ~∇⊥H0,z = 0, the second because

n̂ · (ẑ × ~∇⊥)E0,z = (n̂ × ẑ) · ~∇⊥E0,z = −t̂⊥ · ~∇⊥E0,z , which vanishes because E0,z

vanishes everywhere on the walls. So no further boundary conditions are available.
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Generic Properties of TM Modes

For a TM mode, we set H0,z = 0 and drop the H0,z wave equation in Equation 9.279
and focus on the E0,z equation. The relevant boundary condition is E0,z |C = 0
because the H0,z condition is useless. Rewriting the E0,z piece of Equation 9.279 in a
generic form gives

∇2
⊥ψ + γ2ψ = 0 γ2 = k2

εµ − k2 ψ|C = 0 (9.283)

This is an eigenvalue-eigenvector problem (like the Schrodinger equation in two
dimensions) with a Dirichlet boundary condition. The boundary condition results in a
discrete set of allowed {γTM

n } and thus solutions {ψTM
n }, just like such a boundary

condition imposes quantization in quantum mechanics or solutions to Laplace’s
Equation. One thus has

TM: E0,z = ψTM
n

~E0,⊥ =
i k(
γTM

n

)2
~∇⊥ ψTM

n
~H0,⊥ =

1

Zεµ

i kεµ(
γTM

n

)2
ẑ × ~∇⊥ψTM

n

(9.284)

The specific solutions depend on the shape of the boundary chosen.
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Generic Properties of TE Modes

For a TE mode, we set E0,z = 0 and drop the E0,z wave equation in Equation 9.279

and focus on the H0,z equation. The relevant boundary condition is n̂ · ~∇⊥H0,z = 0
∣∣∣
C

because the E0,z condition is useless. Rewriting the H0,z piece of Equation 9.279 in a
generic form gives

∇2
⊥ψ + γ2ψ = 0 γ2 = k2

εµ − k2 n̂ · ~∇ψ
∣∣∣
C

= 0 (9.285)

Again, we have an eigenvalue-eigenvector problem with a discrete set of eigenvalues
{γTE

n } due to the boundary condition (now Neumann) and a corresponding set of
eigenvectors {ψTE

n }. These eigenvalues and solutions are different from the TM case
because the boundary condition is different!. The full solution is then

TE: H0,z = ψTE
n

~H0,⊥ =
i k(
γTE

n

)2
~∇⊥ ψTE

n
~E0,⊥ = −Zεµ

i kεµ(
γTE

n

)2
ẑ × ~∇⊥ψTE

n

(9.286)

Again, the specific solutions depend on the shape of the boundary chosen.
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Complementarity and Completeness of TM and TE Modes

It should be clear that the TM and TE solutions are complementary in that they solve
the same eigenvalue-eigenvector equation but with complementary boundary
conditions, Dirichlet and Neumann. These two types of boundary conditions are the
only types of boundary conditions implied by Maxwell’s Equations, so the solutions,
along with the TEM mode solutions if they exist, form a complete set to describe any
propagating field in the waveguide. As noted above, there is no reason for the γn’s of
the TE and TM modes to be the same (though they can be), and certainly the
{ψTM

n } and {ψTE
n } will be different due to the different boundary conditions.
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Propagation Properties: Propagation Constant, Wave Speed, Dispersion
Relations, and Wave Impedance

The TEM modes are simple. There is no eigenvalue-eigenvector equation to be solved,
so the propagation constant is always k = kεµ = ω/vεµ, the wavelength is
λ = 2π/kεµ, the wave speed is vεµ, the wave impedance is Zεµ independent of

frequency, and the full fields are always related to each other by ~H = k̂ × ~E/Zεµ.
Unlike TE and TM modes, there is no cutoff frequency, which makes sense because
the transverse fields solve the static Maxwell’s Equations in two dimensions, so the
solutions approach static, z-independent solutions as kεµ → 0.
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On the other hand, the TE and TM modes satisfy the condition (from γ2 = k2
εµ − k2

and kεµ = ω/vεµ, with γn being γTM
n or γTE

n )

ω2 = v2
εµ

(
k2 + γ2

n

)
(9.287)

Thus, there is a cutoff frequency ωc,n = vεµ γn such that, for ω < ωc,n, we find
k2 < 0, yielding a decaying mode with decay constant

ωc,n = vεµ γn

ω < ωc,n
: κn(ω) = −i kn(ω) =

√
γ2

n −
ω2

v2
εµ

=
ωc,n

vεµ

√
1− ω2

ω2
c,n

(9.288)

Note that the decay constant depends on which type (TM or TE) and number n of
mode one considers! We see that the decay length dn(ω) = 1/κn(ω)→∞ as
ω → ωc,n from below because propagation must become possible for ω > ωc,n.
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For the propagating modes with ω > ωc,n, the propagation constant, wavelength, and
wave speed are

ωc,n = vεµ γn

ω > ωc,n
: kn(ω) =

√
ω2

v2
εµ

− γ2
n =

ω

vεµ

√
1−

ω2
c,n

ω2
= kεµ

√
1−

ω2
c,n

ω2
(9.289)

vn(ω) =
ω

kn(ω)
=

vεµ√
1− ω2

c,n

ω2

λn(ω) =
2π

kn(ω)
=

λεµ√
1− ω2

c,n

ω2

(9.290)

We see that the propagation constant, wavelength, and the wave speed go to the
unguided values kεµ = ω/vεµ, λεµ = 2π/kεµ = vεµ/ν, and vεµ, respectively, as
ω →∞: the system approaches the transmission-line/free-space limit. If one goes
back to Equations 9.274 and 9.275, one sees that ratio of the transverse fields to the
longitudinal field increases as 1/(k2

εµ − k2) as ω →∞ (i.e., k → kεµ), making the
longitudinal component small in this limit, as one would expect. Essentially,
propagation looks like that in free space as the wavelength becomes small compared
to the transverse dimensions: the wave no longer notices the boundaries.

As ω → ωc,n, the propagation constant vanishes, the wavelength becomes infinite, and
the wave speed becomes infinite. (The latter two must become infinite together
because their ratio is ν, which remains finite. Similarly, because kn(ω) vn(ω) = ω,
kn(ω)→ 0 as vn(ω)→∞ so ω can remain constant.)
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We recall from our discussion of EM waves in matter that the wave impedance is
implicitly defined via the relation between ~H and ~E , Equation 9.55. The generalization
in the case of waveguides uses the transverse components of ~H and ~E (following the

relation between the transverse components of ~H and ~E , Equations 9.280):

~H0,⊥ =
1

Z
k̂ × ~E0,⊥ (9.291)

Using our relations between ~H0,⊥ and ~E0,⊥ for the TM and TE modes and the
expression for kn(ω) we just derived, we obtain

Z TM
n (ω) =

kTM
n (ω)

kεµ
Zεµ = Zεµ

√
1−

ω2
c,n

ω2
Z TE

n (ω) =
kεµ

kTE
n (ω)

Zεµ =
Zεµ√

1− ω2
c,n

ω2

(9.292)

The wave impedance behaves differently as ω → ωc,n for the TM and TE modes! This

is explained by the current flow. In the TE mode, ~H⊥ ∝ kTE
n (ω)→ 0 as ω → ωc,n

(while ~E⊥ ∝ kεµ Zεµ). Thus, no current flows longitudinally while the voltage remains
finite, so we need Z TE

n (ω)→∞ to obtain this. On the other hand, in the TM mode,
~E⊥ ∝ kTM

n (ω)→ 0 as ω → ωc,n (while ~H⊥ ∝ kεµ/Zεµ). In this case, current flows
longitudinally but no voltage drop appears, so we need Z TM

n (ω)→ 0 to obtain this.

In the ω →∞ limit, we recover Zεµ for both impedances, just as we obtained the
free-space limits for propagation constant, wave speed, and wavelength in this limit.
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Rectangular Waveguide Modes

Let’s now specialize to a particular geometry, which will let us find the modes that
solve the previously mentioned eigenvector-eigenvalue problem. Our first example will
be rectangular waveguide of height a in x and width b in y . One corner of the
waveguide is at (x , y) = 0 and the diagonal corner is at (x , y) = (a, b).

As one might expect, we try to solve the eigenvalue-eigenvector equation by separation
of variables. Let’s first try the TE mode, so H0,z (x , y) is what we will solve for. We
assume the usual separation of variables form H0,z (x , y) = X (x) Y (y), which yields:

1

X (x)

d2X

dx2
+

1

Y (y)

d2Y

dy2
+
(
k2
εµ − k2

)
= 0 (9.293)

As usual, assume that the first two terms are constants:

1

X (x)

d2X

dx2
= −k2

x
1

Y (y)

d2Y

dy2
= −k2

y k2 = k2
εµ − k2

x − k2
y (9.294)
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The solutions to the differential equations are clearly exponentials, and they have
imaginary arguments for k2

x ≥ 0, which we will find it is most convenient to write as
sinusoids:

X (x) = Ax sin kx x + Bx cos kx x (9.295)

Our boundary coundition is n̂ · ~∇H0,z

∣∣∣
C

= 0. Explicitly,

dX

dx

∣∣∣∣
x=0,a

= 0 =⇒ Ax = 0 kx =
m π

a
X (x) ∝ cos

m π x

a
(9.296)

dY

dy

∣∣∣∣
y=0,b

= 0 =⇒ Ay = 0 ky =
n π

b
Y (y) ∝ cos

n π y

b
(9.297)

=⇒
rectangular
waveguide

TEmn mode
H0,z ∝ cos

m π x

a
cos

n π y

b
γ2

mn = k2
x + k2

y =
m2π2

a2
+

n2π2

b2
(9.298)

This is called the TEmn mode. From H0,z , we can obviously obtain ~H0,⊥ and ~E0,⊥ via
Equations 9.286.

On the next few slides, we show some visualizations of the fields and surface charge
and current densities for the TE10 mode.
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TE10 mode, xz plane. The mode is independent of y .
Lines: ~H; Shading: Ey , σ
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Figure courtesy of M. Cross
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TE10 mode, xz plane. The mode is independent of y .
Lines: ~K ; Shading: Ey , σ
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Figure courtesy of M. Cross
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TE10 mode. The mode is independent of y .
This figure is displaced by λ/4 to the left relative to the cross sections.

Figure courtesy of M. Cross
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TE10 mode. The mode is independent of y .
This figure is displaced by λ/4 to the left relative to the cross sections.

Figure courtesy of M. Cross
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The propagation constant can now be written

k =
√

k2
εµ − k2

x − k2
y =

√
k2
εµ − γ2

mn =

√
k2
εµ −

π2 m2

a2
− π2 n2

b2
(9.299)

and thus the cutoff frequency for the TEmn mode is

rectangular
waveguide

TEmn mode
ωc,mn = vεµ π

√
m2

a2
+

n2

b2
(9.300)

The rest of our generic discussion of dispersion relations applies.

Griffiths has a nice discussion of interpreting these modes as the result of a free EM
wave propagating through the waveguide with an infinite number of reflections off the
walls. It can help to build some intuition for how these modes arise. The actual
calculation clearly can only be applied in the simple case of rectangular waveguide.
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It is straightforward to obtain the TM modes. The same math applies except the
boundary condition is X (x)|x=0,a = 0 and Y (y)|y=0,b = 0, so one obtains sines
instead of cosines (like particle in a box in quantum mechanics):

rectangular
waveguide

TMmn mode
E0,z ∝ sin

m π x

a
sin

n π y

b
ωc,mn = vεµ π

√
m2

a2
+

n2

b2
(9.301)

These sine modes are of course necessary to ensure E0,z vanishes at the walls as

required by our boundary conditions. From E0,z , we can obviously obtain ~H0,⊥ and
~E0,⊥ via Equations 9.284.

In general, the TM modes for any system require less work to determine because the
boundary condition is easier to calculate and enforce. Whenever you do a problem
that asks for both the TE and TM modes, do the TM modes first (in contrast to what
we have done here!).
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TEM Mode in a Coaxial Cable

The simplest example of TEM modes is the coaxial cable, to which our “no TEM
mode in hollow waveguide” theorem does not apply. We learned that the TEM modes
have fields that are the same as the static fields for the configuration with the relation
Equation 9.239 between the electric and magnetic fields:

~H =
1

Zεµ
k̂ × ~E (9.302)

We thus know the electrostatic and magnetostatic fields for this configuration have
the form

coaxial
waveguide

TEM mode

~E0,⊥ =
A

s
ŝ ~H0,⊥ =

A

Zεµ s
φ̂ (9.303)

where the relative normalization has been determined from the aforementioned
relation between the fields.

Note that such cables do also support TE and TM modes; see, for example,
http://www.microwaves101.com/encyclopedias/coax#TE11.
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Energy, Poynting Vector, and Group Velocity

Let’s calculate the Poynting Vector for a waveguide:

〈
~S
〉

=
1

2
R
(〈
~E∗ × ~H

〉)
(9.304)

Let’s evaluate ~E∗ × ~H for a particular mode TM mode n (remember, H0,z = 0!):

~E∗ × ~H = E∗0,z ẑ × ~H0,⊥ + ~E∗0,⊥ × H0,z ẑ + ~E∗0,⊥ × ~H0,⊥

TM,n
= E∗0,z,n ẑ ×

(
1

Zεµ

i kεµ

γ2
n

ẑ × ~∇⊥E0,z,n

)
+

(
i kTM

n (ω)

γ2
n

~∇⊥E0,z,n

)∗
×
(

i kεµ

Zεµγ2
n

ẑ × ~∇⊥E0,z,n

)
The expression is complicated because the fields are not purely transverse and there
are phase shifts among the components.
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Using the BAC − CAB rule for the triple-vector products, and also ẑ · ~∇⊥ = 0, we
obtain (now showing the TE analogue)

~E∗ × ~H
TM,n

= − 1

Zεµ

i kεµ

γ2
n

E∗0,z,n ~∇⊥E0,z,n + ẑ
1

Zεµ

kTM
n (ω) kεµ

γ4
n

∣∣∣~∇⊥E0,z,n

∣∣∣2 (9.305)

~E∗ × ~H
TE,n
= Zεµ

i kεµ

γ2
n

H0,z,n
~∇⊥H∗0,z,n + ẑ Zεµ

kTE
n (ω) kεµ

γ4
n

∣∣∣~∇⊥H0,z,n

∣∣∣2 (9.306)

The first term points transverse to the direction of propagation. Since the walls are
perfectly conducting, there can be no time-averaged, net energy flow in that direction.
So, when we time-average, we neglect it. That leaves us with

〈
~STM

n

〉
=

ẑ

2

ω kTM
n (ω)

γ4
n

ε
∣∣∣~∇⊥E0,z,n

∣∣∣2 〈
~STE

n

〉
=

ẑ

2

ω kTE
n (ω)

γ4
n

µ
∣∣∣~∇⊥H0,z,n

∣∣∣2 (9.307)

Notice how the use of ~H instead of ~B makes the expressions for the two modes very
similar in form.
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Let’s integrate
〈
~S
〉
· ẑ over the waveguide cross-sectional area to get the total power.

Using ψn to represent E0,z,n or H0,z,n as appropriate, we can manipulate the area
integral using the two-dimensional analogue of Green’s First Identity (Equation 3.12):∫

S
da
∣∣∣~∇⊥ψn

∣∣∣2 =

∮
C(S)

d` ψ∗n n̂ · ~∇⊥ψn −
∫
S

daψ∗n ∇2
⊥ψn (9.308)

(We are considering power in a single mode for now. We’ll generalize shortly.)

The first term vanishes due to our boundary conditions: either ψn or n̂ · ~∇⊥ψn always
vanishes on the boundary. The second term can be transformed using the
eigenvector-eigenvalue equation that yields the solutions ψn. Thus,∫

da
∣∣∣~∇⊥ψn

∣∣∣2 = γ2
n

∫
S

da |ψn|2 (9.309)
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Thus, the time-averaged power flow in a single mode is

〈
PTM

n

〉
=

1

2

ω kTM
n (ω)

γ2
n

ε

∫
S

da |E0,z,n|2 =
1

2
vεµ

ω2

ω2
c,n

√
1−

ω2
c,n

ω2
ε

∫
S

da |E0,z,n|2 (9.310)

〈
PTE

n

〉
=

1

2

ω kTE
n (ω)

γ2
n

µ

∫
S

da |H0,z,n|2 =
1

2
vεµ

ω2

ω2
c,n

√
1−

ω2
c,n

ω2
µ

∫
S

da |H0,z,n|2 (9.311)

(Note the symmetry between E and H in the above; the expressions would look more
different if B were used, the µ would be in the denominator.) If we do similar integrals
to calculate the time-averaged energy per unit length in the waveguide, and we obtain

〈
UTM

n

〉
=

1

2

ω2

ω2
c,n

ε

∫
S

da |E0,z,n|2
〈

UTE
n

〉
=

1

2

ω2

ω2
c,n

µ

∫
S

da |H0,z,n|2 (9.312)
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What about when one has a wave with power in multiple modes? Do the above
formulae hold? Yes. Suppose one has power in modes a and b. Then the
time-averaged Poynting vector will be

〈
~S
〉

=
1

2
R
(〈(

ca
~Ea + cb

~Eb

)∗
×
(

ca
~Ha + cb

~Hb

)〉)
(9.313)

where ca and cb are the coefficients of the two modes. Consider one of the cross
terms, under the assumption that both a and b are TM modes, and apply the same
kind of algebra we used before to obtain:

~E∗a × ~Hb
TM
= − 1

Zεµ

i kεµ

γ2
b

E∗0,z,a ~∇⊥E0,z,b + ẑ
kTM

a (ω) kεµ

Zεµ γ2
a γ

2
b

~∇⊥E∗0,z,a · ~∇⊥E0,z,b

(9.314)

Again, the first term does not yield propagating power, so we neglect it. When we
integrate the second term over the waveguide cross section, we can see it vanishes via
the same kind of application of the eigenvector-eigenvalue equation:∫

S
~∇⊥ψ∗a · ~∇⊥ψb = γ2

b

∫
S

daψ∗aψb = 0 (9.315)

where the final vanishing occurs because the solutions of any eigenvector-eigenvalue
equation form an orthonormal basis and the integration over the cross section is the
appropriate inner product (like 〈ψa|ψb〉 in quantum mechanics).
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Via a similar calculation, one can show the other cross term vanishes when integrated
over the cross section S. This leaves only the non-cross-terms, which yield the power
in the individual modes. That is:〈

PTM
〉

= |ca|2
〈

PTM
a

〉
+ |cb|2

〈
PTM

b

〉
(9.316)

One can show the same thing via a similar technique when a and b are both TE
modes. When one is TE and one is TM, we apply the same technique yet again.
Orthogonality still applies: the TE and TM modes solve the same
eigenvector-eigenvalue equation but with different boundary conditions, so any pair of
TE and TM modes must be orthogonal. Thus, we have the general result

〈P〉=
∑

m

|cTM
m |2

〈
PTE

m

〉
+
∑

n

|cTE
n |2

〈
PTE

n

〉
(9.317)

where cTM
m and cTE

n are the coefficients of the TM,m and TE,n modes. The same of
course holds for the energy density:

〈U〉=
∑

m

|cTM
m |2

〈
UTE

m

〉
+
∑

n

|cTE
n |2

〈
UTE

n

〉
(9.318)
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It is interesting here that we do not have 〈P〉= vεµ〈U〉 as we had in free space, or even
〈P〉= vn(ω)〈U〉 as we might expect given the guided wave speed. This makes sense,
as vn(ω) > vεµ, so vn(ω) can exceed the speed of light. The quantity relating 〈P〉 and
〈U〉 is

vεµ

√
1−

ω2
c,n

ω2
=

dω

dkn(ω)
(9.319)

which one can see by differentiating the dispersion relation ω2 = v2
εµ

(
[kn(ω)]2 + γ2

n

)
:

2ω dω = v2
εµ (2 kn dkn + 0) =⇒ dω

dkn
= v2

εµ

kn(ω)

ω
= vεµ

√
1−

ω2
c,n

ω2
(9.320)

This speed is the group velocity, vg,n(ω). You are aware from Ph2a/12a how the
group velocity is the speed at which a wave packet propagates. The group velocity
here can never exceed vεµ, thus preventing the power flow from going faster than the
speed of light. So, we have

〈Pn〉= vg,n(ω)〈Un〉 vg,n(ω) = vεµ

√
1−

ω2
c,n

ω2
vg,n(ω) vn(ω) = v2

εµ (9.321)
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Waveguides with Finite Conductivity: Overview

Before considering imperfect conductors, let’s summarize perfect conductors:

I The conductivity is infinite, so, even when ~E is varying, the surface charge
redistributes itself so that ~Ec , the field inside the conductor, vanishes. Our
boundary conditions from Gauss’s Law and Faraday’s Law imply that there is a
discontinuity in n̂ · ~E due to this surface charge density while t̂ · ~E is continuous,
so the electric field outside the conductor is normal to its surface. Our TE and
TM mode boundary conditions are consistent with these conditions.
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I What about the magnetic field inside the conductor?

Since ~Ec vanishes, we know there can be no displacement current sourcing a
magnetic field. However, trying to work out from Ohm’s Law whether there is
or is not a true current is difficult: Ec → 0 but σ →∞, so J = σ Ec is
indeterminate.

Instead, let’s take the σ →∞ limit of the behavior in good conductors as
worked out in Section 4. There, we learned that, in a good conductor, both E
and B fall off exponentially with decay length given by the skin depth
δ =

√
2/µσ ω. The skin depth thus vanishes in a perfect conductor, implying

that H (B) also does not penetrate into the perfect conductor.

Coming back to the current, it is reasonable to conclude that, if both fields
vanish in the conductor, there can be no J: if there were, it would generate B
through Ampere’s Law. (We are assured above that there is no cancelling
displacement current term.)

Continuity of n̂ · ~B implies that n̂ · ~B = 0 outside the conductor. On the other
hand, a discontinuity in t̂ · ~H is allowed if there is a surface current density ~K .
That current density, along with the vanishing of ~B in the conductor, implies
that, just outside the conductor, n̂ × ~H = ~K : the magnetic field outside the
conductor is perfectly tangential.

Note that the conclusion that the magnetic field is tangential just outside the
conductor — i.e., that n̂ · ~H = 0 at the boundary — is consistent with the
boundary conditions we applied for perfect waveguides earlier.
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I Let’s revisit the continuity of, and thus vanishing of, the tangential component
of ~E in light of the surface current density. This continuity continues to hold:
Faraday’s Law tells us that there will only be a discontinuity in t̂ · ~E if the
magnetic field in the ŝ direction (ŝ = t̂ × n̂) has δ-function behavior at the
surface, and we have argued many times before that fields cannot have such
singularities (though charge and current densities can).

The lack of a tangential ~E is consistent with the existence of the δ-function-like
surface current density ~K because σ →∞. (Note the different result from the J
case in spite of the same indeterminacy being present.)

I This surface current density’s magnetic field cancels that of the external field to
ensure no magnetic field propagates into the interior of the conductor (much the
same way as the surface charge density does this for the electric field).

The above fact that magnetic fields vanish in perfect conductors when there is no free
current source in the conductor has been hinted at before in homework and in our
discussion of TEM modes for transmission lines, but we have never discussed it in as
general a setting as this before. For our waveguide mode derivation, we only required
n̂ · ~∇⊥H0,z vanish at the boundary.

Because of the importance of the surface current density, we will continue to work
with ~H rather than ~B, as we have been doing for some time.
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Now, let’s consider a waveguide with walls having good conductivity. There are two
adjustments to be made:

I Our boundary conditions on the waveguide solutions no longer hold exactly
because we may not assume that the electric and magnetic fields vanish
perfectly inside the conductor: as we know, they decay over a skin depth. The
condition E0,z |C = 0 thus obviously does not hold. If we recall the derivation of

n̂ · ~∇⊥H0,z

∣∣∣
C

= 0, it started from the fact that t̂ · ~E = 0 because Ec = 0. This

condition is no longer true, so the conclusion n̂ · ~∇⊥H0,z

∣∣∣
C

= 0 is no longer

valid either.

I Moreover, because σ is finite, Ohm’s Law is applicable and thus we also know
that a δ-function-like surface current density is not physically allowed because it
would require a δ-function-like electric field for finite σ. Therefore, there is no
surface current to shield the conductor from the magnetic field in the waveguide
medium, while there is nonzero J driven by Ec . Nonzero J and finite σ therefore
imply there is power dissipation in the walls due to the currents flowing in a
resistive material, and thus there must be attenuation of the wave.
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It is quite difficult to include these effects exactly, but we can derive some approximate
results in the case of a good conductor.

Specifically, we assume a successive approximation scheme where the fields outside the
conductor may now have t̂ · ~E and n̂ · ~B components, but they are small compared to
n̂ · ~E and t̂ · ~B. We obtain the dominant components of the field outside the walls
from the boundary value problem solutions for perfectly conductive walls (our
waveguide solutions), we use the good-conductor boundary conditions to obtain from
them the dominant components of the fields inside the walls, and then we again use
the good-conductor boundary conditions to obtain from these the corrections to the
fields outside the walls, and finally we use the boundary conditions again to find the
correction fields inside the walls. We find these correction fields in the waveguide are
indeed small compared to the perfect-conductor fields in the waveguide, justifying the
approximation scheme. More importantly, finding the fields inside the walls allows us
to calculate the Joule dissipation and thus the attenuation of the wave in the
waveguide. For the latter, after zooming in to find the fields in the conducting walls
and the correction fields, we will zoom back out, treating the quickly decaying current
density as a perfect sheet current and the fields as going to zero perfectly.
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Fields Near the Walls for Waveguides with Finite Conductivity

The fields inside the conductor must be those we obtained for EM waves in good
conductors (Section 4). We just need to know how to normalize them. The

normalization is found by using the fact that t̂ · ~H is continuous and n̂ · ~H ≈ 0, so the
EM wave in the conductor looks like a wave whose ~H field magnitude is given by t̂ · ~H
outside the conductor.

Let’s also think about the propagation directions inside and outside the conductor.
Outside the conductor, the ~E field is close to normal to the surface because t̂ · ~E ≈ 0
while n̂ · ~E 6= 0. That is, θi ≈ π/2: we have glancing incidence! You showed in
Ph106c Problem Set 4 #1 that the general expression for the propagation vector
inside a good conductor is

~kt = −n̂
1 + i

δ
+ ŵ

ω

vεµ
sin θi (9.322)

where the first term has −n̂ rather than n̂ because we use here a direction convention
for n̂ opposite to that in Problem Set 4. Since ω/vεµ = kεµ and

1/δ → kεµ
√
σ/(2 ε ω)� kεµ in the good conductor limit (Equation 9.140), we see

that k̂t ≈ −n̂ even if θi = π/2! Thus, we are assured that the propagation direction in
the conductor is normal to the interface. (Note, for our waveguide solutions, k < kεµ,
so the above dominance of the normal component holds even accounting for the full
frequency dependence of k from our discussion of dispersion relations.)
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With this information about the propagation direction in the conductor, we define ξ to
be the coordinate along k̂t = −n̂ (with the minus sign because we have defined n̂ to
point out of the conductor for waveguides) and η to be the coordinate perpendicular

to k̂t (along the waveguide boundary). Then, we have (with 0 subscripts used so we
can avoid writing everywhere the e i(k z−ω t) factor)

~H0,c (ξ, η) = ~H0(ξ = 0, η) e−ξ/δ e i ξ/δ (9.323)

where ~H0(ξ = 0, η) is the perfect waveguide field at the waveguide wall and

δ =
√

2/µc σ ω is the skin depth in the conductor. We know we can neglect n̂ · ~Hc for

two reasons: k̂t is approximately normal to the walls and even EM waves in
conductors are transverse; and n̂ · ~H0(ξ = 0) ≈ 0 due to the perfect conductor solution

having n̂ · ~B = 0 outside the conductor because ~Bc = 0.

We can obtain the component of ~Ec parallel to the interface from the relation between
~H and ~E for good conductors, Equation 9.153, yielding (recall, Zσ = 1/(σ δ))

~E0,c (ξ, η) =
2 Zσ

1 + i
n̂ × ~H0,c (ξ, η) =

2 Zσ

1 + i
n̂ × ~H0(ξ = 0, η) e−ξ/δ e i ξ/δ (9.324)

where again n̂ points outward from the conductor into the waveguide medium. We
thus have the dominant components of the fields inside the conductor.
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Rewriting these fields with the full spatial and time dependence:

~Hc (ξ, η, z, t) = ~H0(ξ = 0, η) e−ξ/δ e i ξ/δ e i(k z−ω t) (9.325)

~Ec (ξ, η, z, t) =
2 Zσ

1 + i
n̂ × ~H0(ξ = 0, η) e−ξ/δ e i ξ/δ e i(k z−ω t) (9.326)

Using boundary conditions to connect the fields inside the conductor to those outside,
we may now calculate the correction terms to the fields outside the conductor. The
tangential electric field outside the conductor is given by ~Ec (ξ = 0, η, z, t) by

continuity of this component. The normal component of ~H outside the conductor is
found using Faraday’s Law (now referring to the full fields, without 0 subscripts,
because we need the full spatial and time dependence for Faraday’s Law):

−µ n̂ · ∂
~H

∂t

∣∣∣∣∣
ξ=0

= n̂ ·
(
~∇× ~E

∣∣∣
ξ=0

)
(9.327)

For evaluating the curl, consider a temporary primed coordinate system, distinct from
the one we have been using from the waveguide, with ẑ ′ = n̂, x̂ ′ ∝ ~H0,c (ξ = 0, η),

and ŷ ′ ∝ ~E0,c (ξ = 0), η) ∝ n̂ × ~H0,c (ξ = 0, η). In this coordinate system,

n̂ ·
(
~∇× ~E

)
= ẑ ′ ·

(
~∇× ~E

)
=
∂Ey′

∂x ′
− ∂Ex′

∂y ′
=
(

x̂ ′ · ~∇
)(

ŷ ′ · ~E
)
−
(

ŷ ′ · ~∇
)(

x̂ ′ · ~E
)

(9.328)
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Given how we have defined the primed unit vectors, x̂ ′ · ~E = 0, so we only have the
first term (now evaluating the time derivative ∂/∂t as −i ω):

i µω n̂ · ~H(ξ = 0, t) =
(

x̂ ′ · ~∇
)

E(ξ = 0, t) (9.329)

n̂ · ~H(ξ = 0, t) = −µc

µ

δ

1− i

(
ĥ · ~∇

) [
ĥ · ~H(ξ = 0)

]
(9.330)

where we have defined ĥ = x̂ ′ to be the tangential unit vector at the boundary that is
parallel to ~H at the boundary (which will be along t̂⊥ = ẑ × n̂ for a TM mode but will
be some linear combination of t̂⊥ and ẑ for a TE mode).

Since n̂ · ~B is continuous, this equation also now gives the normal component of ~Bc ,
the magnetic field inside the conductor, at the interface, which is a small correction to
~Bc (and thus ~Hc ).

What is the typical magnitude of the normal magnetic field? ĥ · ~∇ has two
components: one along t̂⊥ and one along ẑ. The ẑ piece will yield something
proportional to k, while the t̂⊥ piece will yield something proportional to γn, where
γ2

n = k2
x + k2

y . Since k2 + γ2
n = k2

εµ, the ĥ · ~∇ derivative will always bring in factor
scaling like kεµ. (Note that it is kεµ that appears, not k, so we need not worry about
k → 0 as ω → ωc,n.) Thus, the magnitude of the above gradient is given by kεµH0,z ,
so the ratio of the normal component of the magnetic field to the tangential
component is δ/λεµ, which is small, as we expected.

Section 9.8.14 Fields Near the Walls for Waveguides with Finite Conductivity Page 715



Section 9.8 Electromagnetic Waves: Waveguides

Aside from seeing they are small, it is interesting to look at the magnitudes of the
correction fields relative to the original waveguide fields more carefully. We have, with
all fields evaluated right at the boundary (ξ = 0):

Hc = H0

Ec ≈ ZσH0 =
Zσ

Zεµ,c
Zεµ,c H0 =

Zσ

Zεµ,c

Zεµ,c

Zεµ
ZεµH0 ≈

Zσ

Zεµ,c

Zεµ,c

Zεµ
E0

∼ Zσ

Zεµ,c
E0 � E0

Et ≡ t̂ · ~E
∣∣∣
C

= Ec � E0

Hn ≡ n̂ · ~H
∣∣∣
C
≈ µc

µ
δ kεµH0 ∼ δ kεµH0 � H0

Next, using
Zσ

Zεµ,c
=

1

σ δ

√
εc

µc
=

1

σ

√
µc σ ω

2

√
εc

µc
=

√
εc ω

2σ
=

√
ω τ

2
=

kεµ,c δ

2

we see
Et

E0
=

Zσ

Zεµ,c

Zεµ,c

Zεµ
=

kεµ,c δ

2

Zεµ,c

Zεµ
=

kεµ δ

2

kεµ,c

kεµ

Zεµ,c

Zεµ

=
kεµ δ

2

√
εc µc

ε µ

µc

εc

ε

µ
=
µc

µ

kεµ δ

2
≈ Hn

H0
as we might have expected!
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Power Flow for Waveguides with Finite Conductivity

In the good conductor approximation, we expect the wave in the waveguide to
maintain its functional form but to decay with some decay length that is large
compared to the wavelength (in the waveguide, not the conductor!). We can
determine this decay constant by considering the (mean) Joule dissipation in the
conductor obtained from knowing the (approximate) fields in the conductor. This
power dissipated per unit volume in the conductor is

d〈PJ〉
dτ

=
〈
~J∗ · ~E

〉
=
σ

2

∣∣∣~E0,c (ξ, η)
∣∣∣2 =

σ

2

ω2 δ2

2
µ2

c

∣∣∣ ~H0(ξ = 0, η)
∣∣∣2 e−2ξ/δ (9.331)

where the z and t dependence have been eliminated when we take the magnitude,
leaving only the normalizing 0 fields that depend on the transverse coordinates (ξ, η).
(Note that we have used the definitions of Zσ and δ to manipulate the prefactor.)
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When we integrate this over depth to get the Joule dissipation per unit area,∫
dξ e−2ξ/δ yields δ/2. After some algebra (recall, δ =

√
2/µc σ ω and

Zσ = 1/(σ δ)), we find

d〈PJ〉
da

=
1

2σ δ

∣∣∣ ~H0(ξ = 0, η)
∣∣∣2 =

Zσ

2

∣∣∣ ~K(η)
∣∣∣2 (9.332)

where we have used the fact that, for the perfect conductor waveguide solution, the
tangential component of the auxiliary field gives the surface current density. (There is

no inconsistency in reintroducing ~K at this point: recall that ~K is the σ →∞, δ → 0
limit of δ ~J. Or, looked at from a length scale large compared to δ, the quickly
decaying ~J looks like an infinitesimally thin sheet of current. From that same
perspective, we recover the perfect conductor limit because the exponential decay of
the fields is compressed to zero thickness, yielding an apparent discontinuity in the
fields at the conductor boundary.) Looks like I2 R/2!

Integrating over the boundary yields the rate of power loss per unit length along the
waveguide

−d〈P〉
dz

=

∮
C(S)

dη
d〈PJ (η)〉

da
=

∮
C(S)

dη
Zσ

2

∣∣∣ ~K(η)
∣∣∣2 (9.333)

Section 9.8.15 Power Flow for Waveguides with Finite Conductivity Page 718



Section 9.8 Electromagnetic Waves: Waveguides

Now, assuming a TM mode (so H0,z = 0, ĥ = t̂⊥, and ~K = Kz ẑ) and using the
tangential boundary condition on the magnetic field:

K0,z (η) = H(ξ = 0, η) =
i kεµ

Zεµ γ2
n

t̂⊥ ·
(

ẑ × ~∇⊥E0,z

)∣∣∣∣
ξ=0,η

(9.334)

=
i kεµ

Zεµ γ2
n

(
t̂⊥ × ẑ

)
· ~∇⊥E0,z

∣∣∣∣
ξ=0,η

=
i kεµ

Zεµ γ2
n

n̂ · ~∇⊥E0,z

∣∣∣∣
ξ=0,η

(9.335)

where we used the cyclicity of the triple scalar product and t̂⊥ = ẑ × n̂. Plugging into
Equation 9.333 and using Zεµ =

√
µ/ε = µ vεµ, kεµ = ω/vεµ, and ωc,n = vεµ γn

(putting the n subscripts in now and not showing the (ξ, η) dependence for brevity):

−d
〈
PTM

n

〉
dz

=
Zσ

2

ω2

ω2
c,n

1

µ2 ω2
c,n

∮
C(S)

dη
∣∣∣n̂ · ~∇⊥E0,z,n

∣∣∣2 (9.336)

One can obtain the corresponding expression for TE modes (which has two terms, one

each for the currents associated with the transverse and longitudinal ~H components):

−d
〈
PTE

n

〉
dz

=
Zσ

2

ω2

ω2
c,n

∮
C(S)

dη

[
v2
εµ

ω2
c,n

(
1−

ω2
c,n

ω2

)∣∣∣n̂ × ~∇⊥H0,z,n

∣∣∣2 +
ω2

c,n

ω2
|H0,z,n|2

]
(9.337)
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To calculate the power loss per unit length explicitly, we must evaluate the above
integrals using the known waveguide solutions, so the exact result will depend on the
waveguide geometry. However, we can determine the approximate size of the above
expressions generically. Recall that, for perfectly conducting walls, the
eigenvalue-eigenvector equation implies (see Equations 9.308 and 9.309)∫

da
∣∣∣~∇⊥ψn

∣∣∣2 = γ2
n

∫
S

da |ψn|2 (9.338)

The above exact equality implies the approximate equality〈∣∣∣n̂ · ~∇⊥E0,z,n

∣∣∣2〉
C(S)

≈ γ2
n

〈
|E0,z,n|2

〉
S

〈∣∣∣n̂ × ~∇⊥H0,z,n

∣∣∣2〉
C(S)

≈ γ2
n

〈
|H0,z,n|2

〉
S

where the averages are over the boundary or the surface, not time. Thus, we can
relate the line integral over the boundary to an area integral over the cross section:∮

C(S)

dη

γ2
n

∣∣∣n̂ · ~∇⊥E0,z,n

∣∣∣2 = ξn
C

A

∫
S

da |E0,z,n|2 with C =

∮
C(S)

dη A =

∫
S

da (9.339)

where ξn is a fudge factor that has to be calculated for the specific geometry and is
defined by the above equations. There is a similar expression for the TE modes. The
area integral on the right is related to the power flow down the waveguide,
Equation 9.310.
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In fact, by combining Equations 9.310 and Equation 9.311 and the analogue of the
above equation for TE modes, one can show that the field decay constant is

κn = − 1

2〈Pn〉
d〈Pn〉

dz
=

Zσ(ωc,n)

Zεµ

C

2 A

√
ω
ωc,n√

1− ω2
c,n

ω2

[
ξn + ηn

ω2
c,n

ω2

]
(9.340)

where Zσ is evaluated at ωc,n, ξn is the order unity quantity defined above for TM
modes (and can be defined analogously for TE modes), and ηn is an analogous
quantity that is nonzero only for TE modes (corresponding to the second term in the
TE expression, proportional to ω2

c,n/ω
2, which comes from the current associated with

the longitudinal field). For any given waveguide geometry, one can find ξn, ηn, and κn

by evaluating the explicit d〈Pn〉/dz and 〈Pn〉 formulae. Note that ξn and ηn are
unrelated to the earlier (ξ, η) coordinates.

The useful and interesting thing about the above expression is that it exhibits all the
frequency dependence. ξn and ηn are unitless, O(1) factors that depend on the
solution to the eigenvector-eigenvalue equation, which is geometry- but not
frequency-dependent.
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Summing everything up, the fields in the waveguide medium including the decay along
the waveguide are (kn and κn functions of ω):

~En(~r , t) = ~E0,n(~r⊥) e i(kn(ω) z−ω t) e−κn(ω) z (9.341)

~Hn(~r , t) = ~H0,n(~r⊥) e i(kn(ω) z−ω t) e−κn(ω) z (9.342)

The fields in the walls are (~rC is a vector ~r ∈ C)

~Ec,n(~rC − n̂ ξ, z, t) =
2 Zσ(ω)

1 + i
n̂ × ~H0,n(~rC , z = 0) e i(ξ/δ(ω)) e−ξ/δ(ω) e i(kn(ω) z−ω t) e−κn(ω) z

(9.343)

~Hc,n(~rC − n̂ ξ, z, t) = ~H0,n(~rC , z = 0) e i(ξ/δ(ω)) e−ξ/δ(ω) e i(kn(ω) z−ω t) e−κn(ω) z

(9.344)

We do not work out the full spatial dependences of the correction fields in the
waveguide medium, i.e., the correction fields that yield nonzero (n̂ × ĥ) · ~E and n̂ · ~H
at the waveguide walls, because that would require an additional step of re-solving the
eigenvalue-eigenvector equations with a correction term to the boundary conditions, so
the transverse spatial dependences ~E0,n and ~H0,n in the waveguide medium remain the
perfect waveguide solutions.
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Section 10.1 Potentials Revisited: Potential Formulation

Potential Formulation

Revisiting Scalar and Vector Potentials

Recall how we arrived at Maxwell’s Equations. We first developed Faraday’s Law by
incorporating both empirical information (Faraday’s observations) and the requirement
of the Lorentz Force being consistent with Galilean relativity. We then found an
inconsistency that required the introduction of the displacement current, yielding the
full set of Maxwell’s Equations.

However, we have not revisited the static potentials that we developed in the static
field cases. Let’s do that because they will provide a much faster way to calculate the
fields radiated by accelerating charges.

We still have that ~∇ · ~B = 0, so the Helmholtz Theorem guarantees that we may
continue to write

~B = ~∇× ~A (10.1)
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However, Faraday’s Law implies that ~∇× ~E 6= 0 when ~B has time dependence.
Therefore, we cannot assume ~E = −~∇V . However, using ~B = ~∇× ~A, we see that

~∇× ~E = −∂
~B

∂t
= − ∂

∂t

(
~∇× ~A

)
=⇒ ~∇×

(
~E +

∂ ~A

∂t

)
= 0 (10.2)

Thus, the Helmholtz Theorem implies

~E +
∂ ~A

∂t
= −~∇V =⇒ ~E = −~∇V − ∂ ~A

∂t
(10.3)

Aside: The interpretation is that, by subtracting off ∂ ~A/∂t, we remove the
nonconservative part of the electric field, leaving a conservative part that can be
described by a scalar potential. This makes sense, as this term will be sourced by
anything time variable — the time variation of currents, which includes any movement
of charges that involves acceleration. The electrostatic piece, due only to stationary
charges, should not be part of this term. Moreover, we now have a very
straightforward way to calculate the Faraday’s Law ~Eind : it is just −∂ ~A/∂t (which is
consistent with Equation 7.57)!

By design, these new definitions of V and ~A are consistent with the homogeneous
Maxwell Equations (the ones that have no sources):

~∇ · ~B = 0 ~∇× ~E +
∂ ~B

∂t
= 0 (10.4)
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Let’s check whether Gauss’s Law and Ampere’s Law can be satisfied. In terms of the
potentials, Gauss’s Law becomes

ρ

εo
= ~∇ · ~E = −∇2V − ∂

∂t

(
~∇ · ~A

)
(10.5)

and Ampere’s Law becomes

~∇×
(
~∇× ~A

)
= µo

~J + εo µo
∂ ~E

∂t
= µo

~J − εo µo ~∇
∂V

∂t
− εo µo

∂2 ~A

∂t2
(10.6)

which we may rewrite using the usual ~∇× (~∇× ~a) = ~∇(~∇ · ~a)−∇2~a identity:(
∇2 ~A− εo µo

∂2 ~A

∂t2

)
− ~∇

(
~∇ · ~A + εo µo

∂V

∂t

)
= −µo

~J (10.7)

Equations 10.5 and 10.7 are second-order coupled partial differential equations for V
and ~A and, so far, we see no reason they cannot be solved.
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We can write Gauss’ Law (Equation 10.5) and Ampere’s Law (Equation 10.7) in terms
of the potentials in the symmetrical form (defining the d’Alembertian �2 with the
opposite sign convention as Griffiths to be consistent with our later discussion of
special relativity):

�2V − ∂L

∂t
=

ρ

εo
�2 ~A + ~∇L = µo

~J (10.8)

with �2 ≡ εo µo
∂2

∂t2
−∇2 L ≡ ~∇ · ~A + εo µo

∂V

∂t
(10.9)
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Gauge Freedom and Transformations

The new equations for the potentials reduce the number of degrees of freedom from
six to four. There remains what is called a gauge freedom that we will first describe
and then make choices for. This is the generalization of the freedom we had to set the
constant offset for the potential in electrostatics and to choose the value of ~∇ · ~A in
magnetostatics.

Gauge freedom answers the question: how much can we change ~A and V while still
obtaining the same fields? That is, let us assume two sets of potentials (V , ~A) and

(V ′, ~A ′) that differ by functions ~α and β:

~A ′(~r , t) = ~A(~r , t) + ~α(~r , t) V ′(~r , t) = V (~r , t) + β(~r , t) (10.10)

The requirement that these two sets of potentials yield the same fields gives the
equations:

0 = ~∇×
[
~A ′(~r , t)− ~A(~r , t)

]
= ~∇× ~α(~r , t) (10.11)

0 = −~∇
[
V ′(~r , t)− V (~r , t)

]
− ∂

∂t

[
~A ′(~r , t)− ~A(~r , t)

]
= −~∇β(~r , t)− ∂~α(~r , t)

∂t
(10.12)
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The first equation implies that ~α can be written as the gradient of a scalar

~α(~r , t) = ~∇λ(~r , t) (10.13)

which we then plug into the other equation

~∇
[
β(~r , t) +

∂λ(~r , t)

∂t

]
= 0 (10.14)

The above equation implies the quantity in parentheses must be position-independent,
which yields

β(~r , t) +
∂λ(~r , t)

∂t
= k(t) (10.15)

We can absorb k(t) into λ: add to λ the position-independent term
∫ t

0 dt′ k(t′),
whose gradient vanishes and thus does not affect α(~r , t). Thus
β(~r , t) = −∂λ(~r , t)/∂t and we have the relations

~A ′(~r , t) = ~A(~r , t) + ~∇λ(~r , t) V ′(~r , t) = V (~r , t)− ∂λ(~r , t)

∂t
(10.16)

This kind of change in (V , ~A) that has no effect on the fields is called a gauge

transformation. The choice of λ (perhaps implicit through specifying properties of ~A
and V ) is called the choice of gauge. With this gauge freedom, we see that there are
only three physical degrees of freedom in the electromagnetic field.

Section 10.1.2 Gauge Freedom and Transformations Page 730



Section 10.1 Potentials Revisited: Potential Formulation

Coulomb Gauge

This is the gauge we chose earlier for magnetostatics,

Coulomb Gauge ~∇ · ~A = 0 (10.17)

In this gauge, Poisson’s Equation simplifies to the electrostatic form

Coulomb Gauge ∇2V = − ρ

εo
(10.18)

That is, the charge density sets the potential in the same way as in electrostatics, so
changes in charge density propagate into the potential instantaneously. Of course, you
know from special relativity that this is not possible. We will see that there are
corrections from ∂ ~A/∂t that prevent ~E from responding instantaneously to such

changes. The differential equation for ~A becomes

Coulomb Gauge ∇2 ~A− εo µo
∂2 ~A

∂t2
= −µo

~J + εo µo ~∇
(
∂V

∂t

)
(10.19)

which is a wave equation for ~A with source terms from ~J and ~∇ (∂V /∂t). The latter
is determined by ∂ρ/∂t.
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Lorenz Gauge

The missing “t” is not a typo: different person!

Here the choice is

Lorenz Gauge ~∇ · ~A = −εo µo
∂V

∂t
(10.20)

The reason this choice is made is that it sets L = 0 in Equation 10.9 so that we obtain
symmetric, inhomogeneous (have source terms) wave equations for V and ~A:

Lorenz Gauge �2V =
ρ

εo
�2 ~A = µo

~J �2 ≡ εo µo
∂2

∂t2
−∇2 (10.21)

with, again, the opposite sign convention as Griffiths for �2. This will be the natural
gauge for calculating radiation of EM waves from moving charges and currents,
especially in a manner that is manifestly consistent with relativity.
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The Lorentz Force Law in Potential Form and Implications for Classical and
Quantum Mechanics (Optional)

Let’s write the Lorentz Force Law in terms of the potentials:

~F =
d~p

dt
= q

[
−~∇V − ∂ ~A

∂t
+ ~v ×

(
~∇× ~A

)]
(10.22)

Using the BAC − CAB rule for the triple vector product and recognizing ~v is not a
function of position, we may rewrite as

m
d~v

dt
= −q

[
∂ ~A

∂t
+
(
~v · ~∇

)
~A + ~∇

(
V − ~v · ~A

)]
(10.23)

We may write
∂ ~A

∂t
+
(
~v · ~∇

)
~A =

d ~A

dt
(10.24)

where d/dt is the total derivative of ~A, taking into account both the explicit time

dependence of ~A (the ∂ ~A/∂t term) and the time dependence of ~A to which the

particle is subject due to its motion (the (~v · ~∇)~A term). This kind of derivative
should be familiar to you from classical mechanics when considering the total time
derivative of the Lagrangian. The quantity on the left side of the above equation is
called the convective derivative of ~A (convective because it is particularly important in
fluid mechanics, where such a derivative accounts for the motion of a fluid element.)
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Let’s be explicit about why the convective derivative correctly gives the total
derivative of ~A. Consider a time interval dt in which the particle moves d~r = ~v dt:

d ~A = ~A(~r + ~v dt, t + dt)− ~A(~r , t) (10.25)

= vx dt
∂ ~A

∂x
+ vy dt

∂ ~A

∂y
+ vz dt

∂ ~A

∂z
+ dt

∂ ~A

∂t
= dt

[(
~v · ~∇

)
~A +

∂ ~A

∂t

]
(10.26)

With the appropriate definition of the total derivative of ~A, we may rewrite the
Lorentz Force Law as

d

dt

(
m ~v + q ~A

)
= −~∇

[
q
(

V − ~v · ~A
)]

(10.27)

which may be rewritten using the canonical momentum, ~π, and a velocity-dependent
potential energy, Uv (~r , ~v , t):

d~π

dt
= −~∇Uv ~π = m ~v + q ~A Uv (~r , ~v , t) = q

[
V (~r , t)− ~v · ~A(~r , t)

]
(10.28)
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You may have seen these ideas of a velocity-dependent potential and canonical
momentum distinct from mechanical momentum in Ph106a. Recall that the
Lagrangian formulation of mechanics is derivable as a special case, for conservative
forces, of the generalized equation of motion:

∑
i

~F
(nc)
i · ∂~ri

∂qk

= Fk =
d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk

(10.29)

where the ~F
(nc)
i are the set of non-constraint forces, the qk are generalized coordinates,

Fk is the generalized force in the kth generalized coordinate, and T is the kinetic
energy in terms of the generalized coordinates and velocities. For a conservative force,
the force term on the left side can be written as a gradient of a potential energy U
that is a function only of the coordinates. This form permits one to define the
Lagrangian function L = T − U and incorporate the gradient of U into the second
term on the right side. (Such a U does not contribute to the first term because it does
not depend on the generalized velocities.) The result is the Euler-Lagrange Equation

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= 0 (10.30)

For nonconservative, velocity-dependent forces like the Lorentz Force, it is clear that,
if one can construct the appropriate function Uv such that its partial derivatives with
respect to qk and q̇k generate the appropriate force terms on the left side, then the
same construction applies, now with L = T − Uv and Uv being a function generalized
coordinates and velocities, a velocity-dependent potential (energy).
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Let’s see how it works out in detail in this case, which will also lead us to the
appropriate Hamiltonian operator for quantum mechanics in the presence of
electromagnetic fields. Using the velocity-dependent potential energy we defined in
Equations 10.28, we write down the corresponding Lagrangian:

L = T − Uv =
1

2
m v2 − q

[
V (~r , t)− ~v · ~A(~r , t)

]
(10.31)

The generalized coordinates are qk = rk and the generalized velocities are
q̇k = ṙk = vk , so the Euler-Lagrange Equations become (recall, ∂ ṙk/∂rj = 0 as we
take the derivatives to obtain the Euler-Lagrange Equations; they do not become tied
to each other until we have those equations):

d

dt
[m ṙk + q Ak ] + q

[
∂V

∂rk

− ~v · ∂
~A

∂rk

]
= 0 (10.32)

m
dṙk

dt
+ q

∂Ak

∂t
+ q

(
~v · ~∇

)
Ak + q

∂V

∂rk

− q ~v · ∂
~A

∂rk

= 0 (10.33)

where we used the expression we derived earlier for the total derivative of ~A.
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Moving terms around and being careful not to reorder derivatives now that ~r and
~v = ~̇r are no longer independent, we have

m r̈k = q

[
−∂V

∂rk

− ∂Ak

∂t

]
+ q

[
3∑

n=1

ṙn
∂An

∂rk

−
3∑

n=1

ṙn
∂Ak

∂rn

]
(10.34)

If we put the above in vector notation, we obtain:

m ~̈r = q

[
−~∇V − ∂ ~A

∂t
+ ~∇

(
~̇r · ~A

)
−
(
~̇r · ~∇

)
~A

]
(10.35)

which recovers Equation 10.23 with ~̇r = ~v and ~̈r = d~v/dt. We may thus invert the use
of the BAC − CAB rule that took us from Equation 10.22 to Equation 10.23, yielding

m ~̈r = q

[
−~∇V − ∂ ~A

∂t
+ ~̇r ×

(
~∇× ~A

)]
(10.36)

as we expect: both the Lorentz Force Law and a second-order ODE for the particle
trajectory ~r(t).
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Let’s also calculate the canonical momentum and the Hamiltonian. Normally, one
writes the Hamiltonian in terms of the canonical momentum and the generalized
coordinates, not the generalized coordinates and velocities, but we will do the latter
first so we can see that it yields the correct total energy:

πk =
∂L

∂q̇k

= m ṙk + q Ak (10.37)

H =
∑

k

πk q̇k − L =
(

m ~̇r + q ~A
)
· ~̇r − L (10.38)

=
(

m ~̇r + q ~A
)
· ~̇r −

{
1

2
m ~̇r · ~̇r − q

[
V − ~̇r · ~A

]}
=

1

2
m ~̇r · ~̇r + q V = T + q V (10.39)

which is the energy, as we expect.
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Let’s rewrite the Hamiltonian as it should be done, in terms of the canonical
momentum, so that we can see how one again recovers the Lorentz Force Law as well
as obtains the quantum mechanical Hamiltonian operator. Start from the second line

above, using ~v =
(
~π − q ~A

)
/m:

H = ~π · 1

m

(
~π − q ~A

)
−
{

1

2 m

∣∣∣~π − q ~A
∣∣∣2 − q

[
V − 1

m

(
~π − q ~A

)
· ~A
]}

(10.40)

=
1

2 m

∣∣∣~π − q ~A
∣∣∣2 + q V (10.41)

Hamilton’s Equations of Motion relate the rate of change of the canonical momentum
to the gradient of the Hamiltonian and the rate of change of the generalized
coordinates to the canonical momenta:

π̇k =
dπk

dt
= −∂H

∂rk

= − 1

m

3∑
n=1

(πn − q An)
∂

∂rk

(πn − q An)− q
∂V

∂rk

=
q

m

3∑
n=1

(πn − q An)
∂An

∂rk

− q
∂V

∂rk

ṙk =
drk

dt
=
∂H

∂πk

=
1

m
(πk − q Ak )

In calculating the above, one must remember that πk and rj are independent variables,
∂πk/∂rj = 0, during the process of taking the derivatives in Hamilton’s Equations
(similar to the way rk and ṙk are independent in the process of taking the derivatives
to obtain the Euler-Lagrange Equation).
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After we take the derivatives, though, we drop this independence and substitute the
second equation in the first one to eliminate πk and obtain a second-order ODE in rk :

d

dt
(m ṙk + q Ak ) = q

3∑
n=1

ṙn
∂An

∂rk

− q
∂V

∂rk

d

dt
(m ṙk + q Ak ) = − ∂

∂rk

[
q
(

V − ~̇r · ~A
)]

= −∂Uv

∂rk

which recovers Equation 10.28 with the understanding that derivatives with respect to
rk should not be interpreted as acting on ṙk in order to get the last equation.

The greater point of interest about writing out the Hamiltonian is to see the
motivation for the quantum mechanical Hamiltonian. To go from classical mechanics
to quantum mechanics, we promote the canonical momentum to the momentum
operator −i ~ ~∇ (or, more correctly, we promote ~π to the quantum mechanical

momentum operator ~Π, whose representation in the position basis is −i ~ ~∇). The
above derivation shows why the Hamiltonian in the presence of an arbitrary EM field
has ~A in it, which otherwise goes unexplained in quantum mechanics.

The presence of ~A in the Hamiltonian is also why the vector potential plays a more
important role in quantum mechanics than it does in classical mechanics. Its presence
in H gives it the opportunity to affect the phase of the quantum mechanical state.
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We can also find an equation relating the time derivative of the particle energy to the
potentials. This will become useful when we consider the relativistic generalization of
the Lorentz Force Law, which will include an energy component. We obtain this by
calculating the work done per unit time by the Lorentz Force:

dT

dt
= ~v · ~F = q

[
~v ·
(
−~∇V

)
− ~v · ∂

~A

∂t
+ ~v ·

{
~v ×

(
~∇× ~A

)}]
(10.42)

The last term vanishes because the triple cross product is perpendicular to ~v ,
reflecting the fact that magnetic fields can do no work (except on fundamental
magnetic dipoles). Now, let’s add the total derivative of q V ,

d

dt
(q V ) =

(
~v · ~∇

)
(q V ) +

∂

∂t
(q V ) (10.43)

to both sides, yielding

d

dt
(T + q V ) =

∂

∂t

[
q
(

V − ~v · ~A
)]

=
∂

∂t
Uv (10.44)

This gives us an expression for conservation of energy in terms of the potentials
(rather than the fields) for fully time-dependent (but non-relativistic) situations. The

latter term on the RHS does not imply magnetic fields do work, as ~B is always
perpendicular to ~A, so ~v · ~A has no contribution from ~B. That term is present because
of the portion of ~A that produces an electric field.
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Gauge Transformations and Coupling of Matter to Electromagnetic Fields
(Optional)

Requiring invariance under gauge transformations provides another interesting way to
introduce the coupling of matter to electromagnetic fields in quantum mechanics,
differing from the approach we just provided.

We begin by showing that one can derive the Schrödinger Equation by considering the
wavefunction ψ(~r , t) to be a classical field with Lagrangian density (Lagrangian per
unit volume):

L =
1

2

[
ψ∗
(

i ~
∂

∂t

)
ψ + ψ

(
i ~

∂

∂t

)∗
ψ∗
]
− 1

2 m
ψ∗
(
−i ~ ~∇

)2
ψ (10.45)

With a Lagrangian density, we consider the field at every point in space ψ(~r , t) to be
an independent trajectory in time, analogous to ~x(t) for a single particle. Therefore,
our generalized coordinate is ψ(~r , t) with ~r acting as a label or index, with each point
in space corresponding to an independent variable. When one has a complex field, one
can show that one should actually use ψ∗ as the independent variable for the
Euler-Lagrange Equation; that is, the Euler-Lagrange Equation is

d

dt

(
∂L
∂ψ̇∗

)
− ∂L
∂ψ∗

= 0 (10.46)

where ψ̇∗ = ∂ψ∗/∂t and the equation should be evaluated independently at every ~r .
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Applying the above, we obtain

d

dt

(
− i ~

2
ψ

)
−
[

i ~
2

∂ψ

∂t
+

~2

2 m
∇2ψ

]
= 0 (10.47)

1

2 m

(
−i ~ ~∇

)2
ψ = i ~

∂ψ

∂t
(10.48)

which is Schrödinger’s Equation for a free particle.

The above Lagrangian density is invariant under the phase transformation

ψ(~r , t)→ ψ′(~r , t) = ψ(~r , t) e i χ with χ a constant (10.49)

simply because every time ψ appears, so does ψ∗: this phase transformation is a
symmetry transformation of the Lagrangian. Therefore, by Noether’s Theorem of
classical mechanics, there is a conserved quantity found by summing the product of
the canonical momentum and the derivative of the transformation with respect to its
parameter (χ) over all degrees of freedom (all values of ~r ; i.e., integrating over space):

I =

∫
dτ pψ

∂ψ′

∂χ
=

∫
dτ

∂L
∂ψ̇

∂ψ′

∂χ
=

∫
dτ

(
i ~
2
ψ∗
)

(i ψ) = −~2

2

∫
dτ |ψ(~r , t)|2

(10.50)

That is, the fact that the phase transformation is a symmetry transformation of the
Lagrangian density implies that the total probability of the wavefunction is conserved
(the negative sign is unimportant, as are the other prefactors).
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It is a general principle of modern field theory that we should expect global symmetry
transformations like the one above to also be symmetry transformations of the
Lagrangian when the transformation is made local. One reason we make this
requirement is that a symmetry transformation that is the same everywhere in space is
inconsistent with special relativity: how does the information propagate
instantaneously to all points in space? We also know simultaneity is frame-dependent
in special relativity, which also calls into question the idea of applying a transformation
that is the same at all points in space. In this case, that would imply the
position-dependent phase transformation

ψ(~r , t)→ ψ′(~r , t) = ψ(~r , t) e i χ(~r,t) (10.51)

is a symmetry transformation of the Lagrangian density.

However, we quickly see that, when we try to apply such a local transformation to the
Lagrangian density, the spatial and time derivatives act on χ(~r , t) and create all kinds
of additional terms such that L is not invariant under the local version of the
transformation. Specifically:

∂ψ′

∂t
=
∂ψ

∂t
e iχ + i ψ e iχ ∂χ

∂t
(10.52)

∇2ψ′ = ~∇ · ~∇
[
ψ e iχ

]
= ~∇ ·

[
e iχ ~∇ψ + i ψ e iχ ~∇χ

]
(10.53)

= e iχ∇2ψ + 2 i e iχ ~∇ψ · ~∇χ− e i χ ψ ~∇χ · ~∇χ+ i ψ e iχ∇2χ (10.54)

In each expression, the first term is what we had for the global version of the
transformation, but the additional terms break the invariance.
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There is a standard prescription for fixing this kind of problem. We need counterterms
to cancel the additional terms that appeared above. We make the replacement

~p~r = ~π~r = −i ~ ~∇ −→ ~p~r = ~π~r − q ~A(~r , t) = −i ~ ~∇− q ~A(~r , t) (10.55)

pt = πt = i ~
∂

∂t
−→ pt = πt − q V (~r , t) = i ~

∂

∂t
− q V (~r , t) (10.56)

where the new functions ~A(~r , t) and V (~r , t) also participate in the local phase
transformation, now called, for obvious reasons, a gauge transformation:

V ′(~r , t) = V (~r , t)− ∂λ(~r , t)

∂t
(10.57)

~A ′(~r , t) = ~A(~r , t) + ~∇λ(~r , t) (10.58)

with χ(~r , t) = q λ(~r , t)/~ the same function used in the transformation of the
wavefunction up to a constant factor, so the coupled gauge transformation of the
wavefunction is

ψ(~r , t)→ ψ′(~r , t) = ψ(~r , t) e i q λ(~r,t)/~ (10.59)

Section 10.1.6 Gauge Transformations and Coupling of Matter to Electromagnetic Fields (Optional) Page 746



Section 10.1 Potentials Revisited: Potential Formulation

With this replacement, the Lagrangian is

L =
1

2

[
ψ∗
(

i ~
∂

∂t
− q V

)
ψ + ψ

(
i ~

∂

∂t
− q V

)∗
ψ∗
]
− 1

2 m
ψ∗
(
−i ~ ~∇− q ~A

)2
ψ

(10.60)

We can check this Lagrangian density is invariant under the gauge transformation.
The space piece is:(

−i ~ ~∇− q ~A
)
ψ −→(

−i ~ ~∇− q ~A ′
)
ψ′ (10.61)

= −i ~
[
e i q λ/~ ~∇ψ + e i q λ/~ ψ

(
i

q

~

)
~∇λ
]
− q

[
~A + ~∇λ

]
e i q λ/~ ψ

= e i q λ/~
(
−i ~ ~∇− q ~A

)
ψ (10.62)

=⇒
(
−i ~ ~∇− q ~A

)2
ψ −→(

−i ~ ~∇− q ~A ′
)2
ψ′ =

(
−i ~ ~∇− q ~A ′

)
·
[
e i q λ/~

(
−i ~ ~∇− q ~A

)
ψ
]

= e i q λ/~
[
q ~∇λ− i ~ ~∇− q ~A− q ~∇λ

]
·
(
−i ~ ~∇− q ~A

)
ψ

= e i q λ/~
(
−i ~ ~∇− q ~A

)2
ψ (10.63)

The transformation yields just the simple phase factor in front that we need for the
cancellation to work.
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The time pieces are(
i ~

∂

∂t
− q V

)
ψ −→(

i ~
∂

∂t
− q V ′

)
ψ′ (10.64)

= i ~
[

e i q λ/~ ∂ψ

∂t
+ e i q λ/~ ψ

(
i

q

~

) ∂λ
∂t

]
− q

[
V − ∂λ

∂t

]
e i q λ/~ ψ

= e i q λ/~
(

i ~
∂

∂t
− q V

)
ψ (10.65)(

i ~
∂

∂t
− q V

)∗
ψ∗ −→(

i ~
∂

∂t
− q V ′

)∗
(ψ∗)′ (10.66)

= −i ~
[

e−i q λ/~ ∂ψ
∗

∂t
+ e−i q λ/~ ψ∗

(
−i

q

~

) ∂λ
∂t

]
− q

[
V − ∂λ

∂t

]
e−i q λ/~ ψ∗

= e−i q λ/~
(

i ~
∂

∂t
− q V

)∗
ψ∗ (10.67)

Again, the transformation yields just the simple phase factor in front that we need for
the cancellation to work.

Section 10.1.6 Gauge Transformations and Coupling of Matter to Electromagnetic Fields (Optional) Page 748



Section 10.1 Potentials Revisited: Potential Formulation

If we apply the Euler-Lagrange equation to the new Lagrangian, we get

d

dt

(
− i ~

2
ψ

)
−
[

i ~
2

∂ψ

∂t
− 1

2
q V ψ − 1

2
q V ψ − 1

2 m

(
−i ~ ~∇− q ~A

)2
ψ

]
= 0

(10.68)

1

2 m

(
−i ~ ~∇− q ~A

)2
ψ + q V ψ = i ~

∂ψ

∂t
(10.69)

which is exactly the Schrödinger Equation with coupling of the particle of charge q to
an electrostatic potential V (~r , t) and a vector potential ~A(~r , t)!

This is the same Schrödinger Equation that get if we promote the classical
Hamiltonian from Equation 10.41 to a quantum mechanical Hamiltonian operator by
replacing ~π with −i ~ ~∇ (in the position basis), as indicated earlier .
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Lastly, with the coupling between charge and the potentials now present, we can
reinterpret our Noether’s Theorem result: not only does it imply conservation of
probability but, because the particle now has a charge associated with it, it implies
conservation of charge, too! This is conservation of integrated charge over all of space
for each particle, not local conservation of charge.

To make the next step to local conservation of charge — i.e., the continuity equation
— one must demonstrate local conservation of probability. One does this by defining a
probability current

~j(~r , t) = − i

2

~
m

[
ψ∗ ~∇ψ − ψ~∇ψ∗

]
and showing, using the Schrödinger Equation, that

~∇ · ~j +
∂

∂t
|ψ|2 = 0

which is the continuity equation for probability. If one multiplies all of the above by q,
one obtains the continuity equation for charge density too!
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Retarded Potentials and Fields

Retarded Potentials

We would like to obtain solutions to the inhomogeneous wave equations,
Equation 10.21. Those equations have the structure of Poisson’s Equation aside from
the addition of the time derivative term. In the case of static fields, they in fact
reduce to Poisson’s Equation exactly. We know from the homogeneous wave equation
that this time derivative implies that the solution propagates at speed c = 1/

√
εo µo .

It is thus plausible that the solutions are given by generalizing the static equations to
account for the propagation time:

retarded time tr = t − |~r − ~r
′|

c
(10.70)

retarded
potentials

V (~r , t) =
1

4π εo

∫
V

dτ ′
ρ(~r ′, tr )

|~r − ~r ′|
~A(~r , t) =

µo

4π

∫
V

dτ ′
~J(~r ′, tr )

|~r − ~r ′|
(10.71)

We check below that these forms in fact solve the inhomogeneous wave equations.
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We would like to act with �2 on integrals of the following type:

φ(~r , t) =

∫
V

dτ ′
f (~r ′, tr )

|~r − ~r ′| (10.72)

Since �2 acts on the ~r (rather than the ~r ′) coordinate, we can pass it through the
integral to act on the integrand. The time term of �2 is easy:

∂2

∂t2

[
f (~r ′, tr )

|~r − ~r ′|

]
=

1

|~r − ~r ′|
∂2

∂t2
f (~r ′, tr ) =

1

|~r − ~r ′|
∂2

∂t2
r

f (~r ′, tr ) (10.73)

because ∂ tr
∂t

= 1. For the space term in �2, we will need ∇2f (~r ′, tr ) . Calculating this

by brute force is difficult because ~∇ is with respect to ~r but tr depends on |~r − ~r ′|.
We’ll employ a similar trick as we did when doing such manipulations in electrostatics,
which is to define ~s = ~r − ~r ′ (so that tr = t − s/c) and recognize that

∇2
~r f (~r ′, tr )

∣∣
~r

= ∇2
~s f (~r ′, tr )

∣∣
~s=~r−~r ′ (10.74)

because the expression is a scalar and thus cannot depend on the coordinate system
origin aside from evaluating it at the correct physical location (the business with the
arguments in the subscripts). Note that ~s and ~r ′ are independent variables, just as ~r
and ~r ′ were independent, so ∇2

~s does not act on the ~r ′ dependence of f (~r ′, tr )!
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Let’s evaluate the easier expression (recognizing tr only depends on s = |~s|):

∇2
~s f (~r ′, tr ) =

1

s2

∂

∂s

(
s2 ∂

∂s
f (~r ′, tr )

)
=

1

s2

∂

∂s

(
s2 ∂ f

∂tr

∂ tr

∂s

)
(10.75)

=
1

s2

∂

∂s

(
s2 ∂ f

∂tr

(
− 1

c

))
=

1

c2

∂2f

∂t2
r

− 2

s c

∂ f

∂tr

(10.76)

Again, ∂/∂s did not act on the ~r ′ dependence of f (~r ′, tr ) because the transformation
of variables was from (~r , ~r ′, t) to (~s, ~r ′, t) and so the independence of ~r and ~r ′

translates to independence of ~s and ~r ′. From the above, we obtain the expression we
will need below:

∇2
~r f (~r ′, tr )

|~r − ~r ′| =
1

c2

∂2f

∂t2
r

1

|~r − ~r ′| −
2

c

∂ f

∂tr

1

|~r − ~r ′|2 (10.77)

In a similar fashion, again because it is a scalar, we may evaluate another expression
we will need below:

2
[
~∇~r f (~r ′, tr )

]
· ~∇~r

(
1

|~r − ~r ′|

)
= 2

[
~∇~s f (~r ′, tr )

]
· ~∇~s

(
1

s

)
(10.78)

=
2

c s2

∂ f

∂tr

=
2

c

∂ f

∂tr

1

|~r − ~r ′|2 (10.79)
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Now, to proceed with the second term in �2 involving ∇2. Let’s work on it using the
product rule (this is a bit cleaner than the way Griffiths does it):

∇2
~r

[
f (~r ′, tr )

|~r − ~r ′|

]
=

[
~∇~r ·

~∇~r f (~r ′, tr )

|~r − ~r ′| + ~∇~r ·
(

f (~r ′, tr ) ~∇~r
(

1

|~r − ~r ′|

))]
(10.80)

=

[
∇2
~r f (~r ′, tr )

|~r − ~r ′| + f (~r ′, tr )∇2
~r

(
1

|~r − ~r ′|

)
+ 2

[
~∇~r f (~r ′, tr )

]
· ~∇~r

(
1

|~r − ~r ′|

)]
(10.81)

=

[
1

|~r − ~r ′|
1

c2

∂2f

∂t2
r

+ f (~r ′, tr )
[
4πδ(~r − ~r ′)

]]
(10.82)

where we plugged in the expressions we derived above for the first and third terms on
the second line and discarded the cancelling terms, and we used the usual relation
between the delta function and the Laplacian of the inverse distance. In the end result
we have, we see that the first term will cancel the (1/c2) ∂2/∂t2 term from �2. The
second term with the delta function can be easily evaluated (note that doing so gives
tr = t, also).
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Combining the two terms and applying the integral, we have

�2φ(~r , t) =

∫
V

dτ ′
[

1

c2

∂2

∂t2
−∇2

~r

](
f (~r ′, tr )

|~r − ~r ′|

)
(10.83)

= 4π

∫
V

dτ ′ f (~r ′, tr ) δ(~r − ~r ′) = 4π f (~r , t) (10.84)

Applying this to our proposed expressions for V (~r , t) and ~A(~r , t), we obtain

�2V (~r , t) =
ρ(~r , t)

εo
�2 ~A(~r , t) = µo

~J(~r , t) (10.85)

as desired.
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We need to confirm the Lorenz gauge condition is satisfied since we assumed it. We
will need to calculate the divergence of the integrand in the expression for ~A. Recall:

~∇~r
1

|~r − ~r ′| = − ~r − ~r ′
|~r − ~r ′|3 =

~r ′ − ~r
|~r − ~r ′|3 = −~∇~r ′

1

|~r − ~r ′| (10.86)

Therefore,

~∇~r ·
(
~J(~r ′, tr )

|~r − ~r ′|

)
=
~∇~r · ~J(~r ′, tr )

|~r − ~r ′| + ~J(~r ′, tr ) · ~∇~r
(

1

|~r − ~r ′|

)
(10.87)

=
~∇~r · ~J(~r ′, tr )

|~r − ~r ′| − ~J(~r ′, tr ) · ~∇~r ′
(

1

|~r − ~r ′|

)
(10.88)

=
~∇~r · ~J(~r ′, tr )

|~r − ~r ′| − ~∇~r ′ ·
(
~J(~r ′, tr )

|~r − ~r ′|

)
+
~∇~r ′ · ~J(~r ′, tr )

|~r − ~r ′| (10.89)

= −~∇~r ′ ·
(
~J(~r ′, tr )

|~r − ~r ′|

)
(10.90)

+
1

|~r − ~r ′|

[
∂ ~J

∂tr

· ~∇~r tr −
∂ρ

∂tr

+
∂ ~J

∂tr

· ~∇~r ′ tr

]

where the continuity equation was used when evaluating ~∇~r ′ · ~J(~r ′, tr ) but not for
~∇~r · ~J(~r ′, tr ) because the argument of ~J must match the divergence’s variable for
continuity to apply. Note that the ∂

∂tr
are evaluated at (~r ′, tr ).
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Using the same kind of argument as we used on the previous page for showing
~∇~r (1/|~r − ~r ′|) = −~∇~r ′ (1/|~r − ~r ′|), we have

~∇~r tr = − 1

c
~∇~r |~r − ~r ′| =

1

c
~∇~r ′ |~r − ~r ′| = −~∇~r ′ tr (10.91)

Therefore, those terms cancel each other and we have

~∇~r ·
(
~J(~r ′, tr )

|~r − ~r ′|

)
= −~∇~r ′ ·

(
~J(~r ′, tr )

|~r − ~r ′|

)
− 1

|~r − ~r ′|
∂ρ

∂tr

(10.92)

We may now calculate the divergence of ~A:

~∇~r · ~A(~r , t) = ~∇~r ·
µo

4π

∫
V

dτ ′
~J(~r ′, tr )

|~r − ~r ′| =
µo

4π

∫
V

dτ ′ ~∇~r ·
(
~J(~r ′, tr )

|~r − ~r ′|

)
(10.93)

=
µo

4π

∫
V

dτ ′

[
−~∇~r ′ ·

(
~J(~r ′, tr )

|~r − ~r ′|

)
− 1

|~r − ~r ′|
∂ρ

∂tr

]
(10.94)

= −εo µo
∂

∂t

1

4π εo

∫
V

dτ ′
ρ(~r ′, tr )

|~r − ~r ′| = −εo µo
∂

∂t
V (~r , t) (10.95)

where the first term in the second line has been transformed into a surface integral at
infinity that vanishes because the current distribution is assumed to be finite in extent.
We convert ∂/∂tr to ∂/∂t by using ∂t/∂tr = 1. The Lorenz condition is thus satisfied.
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Fields from Retarded Potentials: Jefimemko’s Equations

The natural next step is to calculate the fields from the above retarded potentials.
This is straightforward using calculations similar to what we did above (easier, in fact,
because we are only evaluating first derivatives rather than �2). First, let’s write down
a generic expression for a first derivative:

∂

∂ri

(
f (~r ′, tr )

|~r − ~r ′|

)
=

1

|~r − ~r ′|
∂ f

∂tr

∂ tr

∂ri

+ f (~r ′, tr )
∂

∂ri

(
1

|~r − ~r ′|

)
(10.96)

=

[
− 1

c

1

|~r − ~r ′|
∂ f

∂tr

− f (~r ′, tr )

|~r − ~r ′|2
]

(~r − ~r ′) · r̂i

|~r − ~r ′| (10.97)

where
∂ tr

∂ri

= − 1

c

∂

∂ri

∣∣~r − ~r ′∣∣ = − 1

c

(~r − ~r ′) · r̂i

|~r − ~r ′| (10.98)

Then, ~E(~r , t) = −~∇~r V (~r , t)− ∂

∂t
~A(~r , t) (10.99)

= − 1

4π

∫
V

dτ ′

[
1

εo

~∇~r
(
ρ(~r ′, tr )

|~r − ~r ′|

)
+ µo

∂

∂t

(
~J(~r ′, tr )

|~r − ~r ′|

)]
(10.100)

=
1

4π εo

∫
V

dτ ′

[
ρ(~r ′, tr )

~r − ~r ′
|~r − ~r ′|3 +

1

c

∂ρ

∂tr

~r − ~r ′
|~r − ~r ′|2 −

1

c2

∂ ~J

∂tr

1

|~r − ~r ′|

]
(10.101)

where, as usual, ρ and ~J are evaluated at (~r ′, tr ) and we used εo µo = 1/c2.
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Calculating the magnetic field is straightforward:

~B(~r , t) = ~∇~r × ~A(~r , t) =
µo

4π

∫
V

dτ ′ ~∇~r ×
(
~J(~r ′, tr )

|~r − ~r ′|

)
(10.102)

=
µo

4π

∫
V

dτ ′
3∑

i,j,k=1

εijk r̂i
∂

∂rj

(
Jk (~r ′, tr )

|~r − ~r ′|

)
(10.103)

=
µo

4π

∫
V

dτ ′
3∑

i,j,k=1

εijk r̂i

[
− 1

c

1

|~r − ~r ′|
∂Jk

∂tr

− Jk (~r ′, tr )

|~r − ~r ′|2
]

(~r − ~r ′) · r̂j

|~r − ~r ′|
(10.104)

=
µo

4π

∫
V

dτ ′

[
~J(~r ′, tr )

|~r − ~r ′|2 +
1

c

1

|~r − ~r ′|
∂ ~J

∂tr

]
× ~r − ~r ′
|~r − ~r ′| (10.105)

where we obtained a sign flip in the last step by exchanging the j and k indices.
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We thus have Jefimemko’s Equations:

~E(~r , t) =
1

4π εo

∫
V

dτ ′

[
ρ(~r ′, tr )

~r − ~r ′
|~r − ~r ′|3 +

1

c

∂ρ

∂tr

~r − ~r ′
|~r − ~r ′|2 −

1

c2

∂ ~J

∂tr

1

|~r − ~r ′|

]
(10.106)

~B(~r , t) =
µo

4π

∫
V

dτ ′

[
~J(~r ′, tr )

|~r − ~r ′|2 +
1

c

1

|~r − ~r ′|
∂ ~J

∂tr

]
× ~r − ~r ′
|~r − ~r ′| (10.107)

These equations are not incredibly useful in practice because it is usually easier to
calculate the retarded potential and differentiate to find the field, but they give a clear
physical understanding of how disturbances in the source distributions determine the
fields at a distance.
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The terms that fall off like 1/|~r − ~r ′|2 are just Coulomb’s Law and the Biot-Savart
Law, evaluated at tr . They simply account for the time delay in propagation of the
information about the source position.

We note that the ∂/∂tr terms in each equation fall off like 1/|~r − ~r ′| while the other
terms fall off like 1/|~r − ~r ′|2, so it is these ∂/∂tr terms that dominate at large
distances. We won’t do the calculations using the above expressions (we will use the
retarded potentials), but this is an interesting fact because it tells us that it is the time
variation of the sources that generates that the strongest fields at large distances (the
radiated fields). A heuristic (i.e., handwaving) way of understanding this is to attribute
it to the fact that time variation generates EM waves, which are self-propagating,
while static sources and charges must generate the distant field directly.
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Heald and Marion §8.2 has some nice discussion of the interpretation of these
equations as well as references to some papers that discuss the topic further. We note
two of their points here:

I It is frequently said (as we have said) that changing electric and magnetic fields
induce magnetic and electric fields, respectively, and this is how EM waves can
propagate. While this is true mathematically in Maxwell’s Equations, this is
something of an artifact. Maxwell’s Equations are local equations, meaning they
relate the fields, their derivatives, and the sources at a particular point in space
and time. But if we look at Jefimemko’s Equations, which are exactly true, we
see that fields at a distance are sourced by charges and currents. In effect,
Faraday’s Law and the displacement current term in Ampere’s Law are
intermediaries necessary to make Maxwell’s Equations local.

I There is also an interesting asymmetry in the above equations. The ∂ ~J/∂tr

term in the expression for the electric field is the term for which Faraday’s Law
is the intermediary: calculate a contribution to the electric field at a given
space-time point (~r , t) from the rate of change of the magnetic field at that
point, which depends on the rate of change of the sourcing current at (~r ′, tr ).
(It is the retarded version of Equation 7.57.) Yet there is no corresponding
∂ρ/∂tr term in the magnetic field expression to handle the displacement current
term! The retardation alone calculates the displacement current term in
Ampere’s Law. This is not explicitly obvious, but can be seen by inference by

Section 10.2.2 Fields from Retarded Potentials: Jefimemko’s Equations Page 762



Section 10.2 Potentials Revisited: Retarded Potentials and Fields

the following argument. Let’s Taylor expand the source charge and current
distributions around t = tr :

ρ(~r ′, t) = ρ(~r ′, tr ) +
∂ρ

∂t

∣∣∣∣
~r ′,tr

( |~r − ~r ′|
c

)
+

1

2

∂2ρ

∂t2

∣∣∣∣
~r ′,tr

( |~r − ~r ′|
c

)2

+ · · ·

~J(~r ′, t) = ~J(~r ′, tr ) +
∂ ~J

∂t

∣∣∣∣∣
~r ′,tr

( |~r − ~r ′|
c

)
+

1

2

∂2 ~J

∂t2

∣∣∣∣∣
~r ′,tr

( |~r − ~r ′|
c

)2

+ · · ·

That is, we can obtain the first two terms in both of Jefimemko’s Equations
simply by accounting for retardation. The third term in the electric field
equation is the manifestation of Faraday’s Law, as we said above. But there is
no corresponding term in the magnetic field expression for the displacement
current, so we are forced to conclude that the retardation calculation accounts
for it. Amazing!

(We also see from the above Taylor expansion how, again, the first terms in
Jefimemko’s Equations are Coulomb’s Law and the Biot-Savart Law evaluated
at tr .)
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Another nice feature of Jefimemko’s Equations is that they make it possible to
formally define the quasistatic approximation. Let τs be the characteristic timescale on
which a source term varies, as defined by

1

τs
=

1

f

∂ f

∂tr

(10.108)

where f is any source term (ρ or a component of ~J). Then the second terms are
smaller than the first terms by the factor

α =
|~r − ~r ′|

c

1

f

∂ f

∂tr

=
|~r − ~r ′|/c

τs
(10.109)

which is the ratio of the light travel time to the source term variation timescale. The
quasistatic approximation consists of assuming that α� 1 , which justifies neglecting
these terms and setting tr = t.
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The third term in the ~E equation requires a bit more analysis. It involves the current,
but we cannot compare it to the current terms in the ~B equation because ~E and ~B
have different units. So we must compare it to the other terms in the ~E equation,
which involve ρ. Let’s write J = ρ v (drop the vector nature, it’s not important for
this analysis), so then the ratio of the third to the first term is

|~r − ~r ′|
c

1

ρ c

∂J

∂t
=
|~r − ~r ′|

c

1

ρ c

∂(ρv)

∂t
=
|~r − ~r ′|

c

[
β

1

ρ

∂ρ

∂t
+

1

c

∂v

∂t

]
(10.110)

= αβ +
|~r − ~r ′|/c

τa

where β = v/c < 1 and τ−1
a = (1/c) ∂v/∂t is a relativistic (because it is c, not v in

the denominator) acceleration timescale. The first of the two above terms thus only
becomes important when both α and β are near unity; i.e., when the source variation
timescale approaches the light travel time and when the particles in the current are
moving relativistically. The second of the two above terms only becomes important
when the particles’ relativistic acceleration timescale τa approaches the light travel
time.
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Section 11.1 Relativity and Electrodynamics: Study Guide

Study Guide

Since you already studied special relativity in Ph1b and Ph106a, we will not repeat the
discussion of all the thought experiments that lead one to special relativity (Griffiths
§12.1.1-2) nor will we re-derive the Lorentz Transformation (Griffiths §12.1.3; though
a rigorous derivation is provided in skipped material) or the geometrical interpretation
of it (Sahakian Example 2.1; again, provided in skipped material). We will quickly
review the basic results of special relativity you learned in Ph1b (Griffiths §12.1.3). We
will then introduce four-vectors, the metric, and tensors (Griffith §12.1.4, with added
rigor), and proceed to discuss relativistic kinematics and energy-momentum (Griffiths
§12.2.1–2). We will then switch to a discussion of how to rewrite electrodynamics in
relativistic notation, including writing the total electromagnetic force (electric +
magnetic) in a form that respects special relativity and uses the relativistic notation
(Griffiths §12.3.3–5, §12.2.4), including derivation of the separate transformation
properties of the electric and magnetic fields (yielding the results in Griffiths §12.3.2
via a different approach). In the latter, you will see that we derive no new physics but
rather that electrodynamics is written far more naturally and concisely in this notation.
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Griffiths’ discussion in §12.3.1-12.3.2 is largely a duplication of what you saw in
Ph1bc, so we will not reproduce that discussion here. §12.3.1 demonstrates, using the
movement of a charged particle near a current-carrying wire, that a force that we
consider magnetic in one frame of reference is purely electric in the rest frame of the
charged particle. §12.3.2 derives the transformation of the fields by applying
appropriate Lorentz contractions and time dilations to specific cases like capacitor
plates and solenoids. Of course, you should review these discussions, which show that
the electric and magnetic fields are tied to each other not just through Maxwell’s
Equations but also through relativistic transformations.
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Fundamentals of Special Relativity

Reference Frames, Coordinate Representations, Transformation Properties,
Invariance, and Covariance

So far in this course, we have not concerned ourselves much with how the physical
objects we have defined — e.g., charge, currents, fields, forces, etc. — depend on the
frame in which they are written. That is generally a topic more relevant for
mechanics. But special relativity is mechanics and, more importantly, transformation
properties of these various quantities will play a central role in determining how we
write down electrodynamics in a way that is manifestly consistent with special
relativity. So let’s define a few terms that we will use in that discussion.

I Reference Frame
As you know, special relativity is concerned with how physical quantities behave
when we look at them in different inertial reference frames — frames that are
moving at fixed velocity. A frame that moves at fixed velocity is simply one in
which Newton’s Laws are obeyed. We will denote such frames by F , F̃ , etc.
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I Coordinate Representation
Any physical quantity has an existence independent of any specific coordinate
system or reference frame. (We use both terms because one can imagine
different coordinate systems that describe the same reference frame, and one
might not consider the coordinate systems of two reference frames to be
different if they are aligned and they coincide at one instant in time.) When we
write down physical laws, such as Newton’s Law or Coulomb’s Law or the
Biot-Savart Law or Maxwell’s Equations, those are statements about
relationships between physical quantities that are independent of coordinate
system or reference frame. Frequently, though, to actually execute those
relationships, we do need to pick a coordinate system or reference frame. The
coordinate representation of a physical quantity, such as an electric current, is
the set of numbers that define it in a given coordinate system or reference
frame. This representation can vary between coordinate systems or reference
frames. But that variation does not change the physical meaning of the quantity
to which one is referring. For the example of a current, which is a vector, its
coordinate representation will depend on coordinate system orientation. But it is
still the same current independent of that choice.
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I Transformation Properties; Invariance and Covariance
The term we use for the way a quantity behaves under such a change of
coordinate system or reference frame is transformation properties. (Note: when
we say “coordinate system or reference frame” here, we are not implying both
together, but rather one or the other. A quantity’s transformation properties are
generally different under the two when special relativity is considered!) A
physical quantity that does not change under a coordinate system or reference
frame change is called invariant. An electrostatic potential difference between
two points is, for example, is invariant under translational or rotational
transformations of the coordinate system because its coordinate representation is
the same in all such coordinate systems. (We shall see that, in special relativity,
electrostatic potential difference is not independent of inertial reference frame
velocity!) On the other hand, an electric field’s coordinate representation — the
three numbers representing it — does depend on coordinate system rotation.
When there are well-defined rules for how the representations in different
coordinate systems or reference frames are related, the quantity is called
covariant to indicate the existence of such rules. To provide a counterexample,
the z-component of an electric current is neither invariant nor covariant, but the
three components of the electric field together are covariant.
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There is clearly great value in writing down the laws of physics in terms of invariant
and covariant quantities: this ensures our laws can be written down in a manner that
is manifestly independent of coordinate system or reference frame. After reviewing
special relativity, out goal is to formulate electrodynamics in such a way that the
transformation properties of the various quantities we deal with — source
distributions, potentials, fields, etc. — are made clear. We will see that
electrodynamics is deeply related to relativity, a realization that in fact initiated the
development of special relativity by Poincaré, Lorentz, Einstein, and others. In fact,
Einstein’s first paper on special relativity is titled “On the Electrodynamics of Moving
Bodies” (Annalen der Physik, 17: 891 (1905)).
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Sign Convention

As with our definition of �2, we deviate from Griffiths and follow the more standard
sign convention for relativity where the inner product of a four-vector is of the form
(time component)2−(space components)2.
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Postulates of Special Relativity

The two basic postulates of special relativity are

1. Physics is the same in all inertial frames.

2. The speed of light is the same in all inertial frames.

The first postulate is just the principle of Galilean relativity that we discussed in the
context of Faraday’s Law. At that point, we defined an inertial frame to be a frame in
which Newton’s Laws hold. The implication of Galilean relativity is that there is no
absolute frame of reference; every inertial reference frame is as good as every other
one.

It is the second postulate that was Einstein’s brilliant leap and that leads to all the
nonintuitive implications of special relativity. To some extent, the second postulate is
a corollary of the first once one realizes that electromagnetic waves do not travel in a
medium. If the laws of electromagnetism, which give rise to the speed of light, are to
be the same in all frames, then the speed of light must of necessity be the same in all
frames. But it took the Michelson-Morley experiment to kill the concept of the ether,
a medium in which light propagates.
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Derivation of the Lorentz Transformation

Consider two inertial reference frames F and F̃ . Let them have coordinate axes
(x , y , z, t) and (x̃ , ỹ , z̃, t̃). We include t as a coordinate and allow it to be different in

the F̃ frame because it will be necessary to avoid a contradiction with the second
postulate. Let the two systems’ axes and origins coincide at t = t̃ = 0. Let the F̃
frame be moving at speed v = c β along the +x axis with respect to F , which means
that the position of the F̃ origin obeys x = β c t in the F frame.

This information is summarized in our space-time
diagram in the F system, a plot of t vs. x with the
origin of the F̃ system represented by the solid line
of slope β−1 and the path of a light ray emitted
from the origin shown by the dashed line of slope 1.
Points in the space-time diagram are referred to as
events because they are not just points in space, but
in time also. Obviously, one can generalize space-
time to more than one spatial dimension, it just
becomes hard to visualize.
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Coordinate Axis Parallel to Motion

Let us consider the path of a light ray in the two frames, requiring that the second
postulate hold. Suppose the light ray is emitted from the F̃ origin at time c t̃e = −L̃
in the +x direction, it hits a mirror at x̃r = L̃ at c t̃r = 0 and is reflected, returning to
the F̃ origin at c t̃a = L̃. (We use L̃ instead of L to avoid confusion when we later
discuss length contraction.) The light ray has ỹ = z̃ = 0 for all time. In a space-time

diagram of the F̃ frame, the reflection event (x̃r , c t̃r ) is obtained by the intersection

of light rays propagating forward in time from the emission event (x̃e , c t̃e ) = (0,−L̃)

and backward in time from the absorption event (x̃a, c t̃a) = (0, L̃). The intersection is

at (x̃r , c t̃r ) = (L̃, 0).

Left: F̃ system. Right: F system.
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Let’s examine the path in the F system, assuming we do not yet know the
transformation law for coordinates between reference frames. The light ray travels
only along the x direction, so it satifies y = z = 0 for all time also. Let (xe , c te ),
(xr , c tr ) and (xa, c ta) indicate the coordinates of the three events in the F frame.
The emission and absorption events must occur on the solid line representing the
position of the F̃ origin, which means their space and time coordinates are related by
the slope β−1. The line of this slope through the origin thus gives the space-time
location of the c t̃ axis in F . Time reversal invariance says that these events’
symmetric occurence in F̃ implies they occur at symmetric times in F . So the two
events must be at (−c ta β,−c ta) and (c ta β, c ta). Let’s calculate where light rays
from these two events would intersect, which will give us the position of the reflection
event in F , which yields the space-time location of the x̃ axis in F . In the following, r
and s begin as undetermined parameters indicating how much time passes in the F
frame between the emission or absorption event and the reflection event, respectively:

(−c ta β,−c ta) + r c (1, 1) = (c ta β, c ta) + s c (1,−1) (11.1)

r − s = 2β ta r + s = 2 ta (11.2)

r = (1 + β) ta s = (1− β) ta (11.3)

(xr , c tr ) = (−c ta β,−c ta) + r c (1, 1) = (c ta, β c ta) (11.4)

The last line implies that the reflection event (xr , c tr ) sits on the line through the
origin with slope β. Its position on that line depends on the value of ta, the time of
the absorption event — that is, on L̃ and β. Since the reflection event (x̃r , c t̃r ) is
always at c t̃r = 0, the line thus tells us where the x̃ axis sits in the F space-time
diagram. So, in sum, we have that the t̃ axis is a line of slope β−1 and the x̃ axis is a
line of slope β, both going through the F origin.
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We may construct the general form for the transformation of coordinates from F̃ to F
by using the above information along with expected properties of the transformation:

1. Linearity: We have seen that events on the x̃ axis lie on a line of slope β and
events on the c t̃ axis lie on a line of slope β−1 in F . If we assume the
transformation is linear in the space-time coordinates (x̃ , c t̃) then the

transformation for an arbitrary space time event with F̃ frame coordinates
(x̃ , c t̃) to the F frame can be written

(x , c t) = γ(β) (1, β) x̃ + γ̃(β) (β, 1) c t̃ (11.5)

Note that we only require linearity in (x̃ , c t̃), not in β.

2. Equivalence of the two frames: Since one of our postulates is that physics is
the same in any reference frame, the transformation for going from F to F̃ must
have the same form as the transformation from F̃ to F , modulo the change in
sign of β, so we also have

(x̃ , c t̃) = γ(−β) (1,−β) x + γ̃(−β) (−β, 1) c t (11.6)
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3. Symmetry of the two frames: By symmetry, the slope of the x and t axes in
the F̃ space-time diagram must be the same as the slope of the x̃ and t̃ axes in
the F space-time diagram, so γ(β) = γ(−β) and γ̃(β) = γ̃(−β) is required (the
sign flip has already been accounted for). So we have

x̃ = γ(|β|) x − γ̃(|β|)β c t c t̃ = −γ(|β|)β x + γ̃(|β|) c t (11.7)

x = γ(|β|) x̃ + γ̃(|β|)β c t̃ c t = γ(|β|)β x̃ + γ̃(|β|) c t̃ (11.8)

4. The transformation be invertible by the reverse transformation: We require
that if we transform from F̃ to F and then from F to F̃ , the overall
transformation should return the original (x̃ , c t̃). We apply this by using the
first pair of formulae for x and c t in the second pair of formulae and requiring
that we recover x̃ and c t̃:

[γ(|β|)]2 − γ̃(|β|) γ(|β|) = 0 [γ(|β|)]2 − γ̃(|β|) γ(|β|)β2 = 1 (11.9)

which is solved by γ̃(|β|) = γ(|β|) =
1√

1− β2
(11.10)

With these conditions, the transformation law is

x̃ = γ (x − β c t) c t̃ = −γ (β x − c t) Lorentz

x = γ
(
x̃ + β c t̃

)
c t = γ

(
βx̃ + c t̃

)
Transformation

(11.11)

This nomenclature “Lorentz Transformation” is historical: Lorentz derived these
before Einstein proposed special relativity.
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Coordinates Perpendicular to the Direction of Motion

What happens to the coordinates perpendicular to the boost direction, y and z or ỹ
and z̃? It turns out they are unaffected. We use an argument similar to the one that
we used to deduce the Lorentz transformation for x and t.

Consider again two frames F and F̃ , with F̃ moving at speed β in the +x direction
relative to F , and assume the origins of the two frames coincide at t = t̃ = 0. In this
case, we will emit a light ray from the origin in the +y direction and reflect it back to
the origin. The emission, reflection, and absorption events are given by (neglecting the
z coordinate, which is not involved at all):

(x̃e , ỹe , c t̃e ) = (0, 0,−L̃) (11.12)

(x̃r , ỹr , c t̃r ) = (0, L̃, 0) (11.13)

(x̃a, ỹa, c t̃a) = (0, 0, L̃) (11.14)

Let’s now repeat our argument regarding the coordinates of the three events in F ,
with the complication that our space-time now has three dimensions, though the
motion is only in two of them.
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Walking through the argument:

1. The position of the origin of F̃ in F is described by the same line as in our
original argument, except it is now a line in the x-c t plane in three dimensions.
Its coordinates in F are (xo , yo , c t) = (β c t, 0, c t) as a function of c t. We
know the origin’s y coordinate does not change because there is no motion in
that direction; whatever nonintuitive there may be about relativity, relative
motion of two points in a given frame is always well-defined.

2. As before, the emission and absorption events both occur at the position of the
origin of the F̃ system in F , and they must occur symmetrically about the time
origin. So we have

(xe , ye , c te ) = −c ta (β, 0, 1) (11.15)

(xa, ya, c ta) = c ta (β, 0, 1) (11.16)

Symmetry about the origin relates the time coordinates and the known velocity
vector of F̃ in F relates the space coordinates of the two events.

3. Though the reflection event occurs at ỹ 6= 0 and y 6= 0, the emission and
absorption events occur at the origin and thus are unaffected by the existence of
the y dimension. They must thus obey the Lorentz transformation rule, which
implies

(xe , ye , c te ) = −γ L̃ (β, 0, 1) (11.17)

(xa, ya, c ta) = γ L̃ (β, 0, 1) (11.18)
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4. Let us now calculate the position of the intersection of light rays sent out from
the emission and absorption events. We use the postulate that the speed of
light is c in F . The space-time displacement of a light ray in one unit of c t is
(
√

1− δ2, δ, 1), where δ allows for freedom in the direction (in the xy plane). δ
carries the same sign as yr . We have:

(xe , ye , c te ) + r (
√

1− δ2, δ, 1) = (xa, ya, c ta) + s (−
√

1− δ2, δ,−1) (11.19)

−γ L̃ (β, 0, 1) + r (
√

1− δ2, δ, 1) = γ L̃ (β, 0, 1) + s (−
√

1− δ2, δ,−1) (11.20)

Let’s explain this a bit more. We may assume the velocity vector has the same
components on the two sides, with just a sign flip in the y component, because
the light path must be symmetric about t = t̃ = 0 because the motion is along
x , not y . The signs are obtained as follows:

I The signs on the left-side velocity term are obtained by simple arguments:

I If ye = 0 and yr > 0, then the y light velocity must be positive
between the two events.

I In the limit β � 1, we must recover the nonrelativistic limit, and in
that limit we know that if the light ray always has x̃ = 0 and the x̃
origin is moving in the +x direction, then x ≥ 0 is required for the
position of the light ray.
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I The signs on the right-side are obtained by similar arguments:

I If yr > 0 and ya = 0, then the y light velocity must be negative
between the two events.

I Again, the x light velocity must be nonnegative to obtain the
nonrelativistic limit.

After a bit of manipulation, the equations for the three coordinates are:

r + s = 2 γ L̃ (r + s)
√

1− δ2 = 2β γ L̃ (r − s) δ = 0 (11.21)

Simplifying, we obtain

r = s = γ L̃
√

1− δ2 = β δ =
√

1− β2 = γ−1 (11.22)

The reflection event thus satisfies

(xr , yr , tr ) = (xe , ye , c te ) + r (
√

1− δ2, δ, 1) (11.23)

= −γ L̃ (β, 0, 1) + γ L̃ (β, γ−1, 1) = (0, L̃, 0) (11.24)

We thus see that the transverse coordinate is unchanged by the Lorentz
transformation. This would hold for z also.
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Implications of the Lorentz Transformation

We can derive a number of the most shocking implications of relativity from the
simple Lorentz transformation laws:

I Time dilation
Consider two events occuring at a fixed point in space in the frame F̃ ; for
example, two ticks of a clock. They are separated by the vector
(x̃ , c t̃) = (0, c τ). What is the separation of the two events in the frame F ,

relative to which F̃ is moving at speed β? The Lorentz transformation tells us

x = γ β c τ c t = γ c τ (11.25)

The time between the events in the F frame is larger than in F̃ . Hence, the
term “time dilation”: time “slows down” in the moving frame, the two events
have a smaller time separation in their rest frame than in any other frame. One
is not obtaining something for nothing, though, because the spatial separation
of the two events has become nonzero. That is, we are no longer measuring just
the time separation of two events that occur at the same point in space; we are
measuring a separation with both time and space components.
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I Length contraction
The length L̃ of an object at rest in F̃ can be viewed as two events with
separation (∆x̃ , c ∆t̃) = (L̃, 0), representing the left and right ends of the object
at some common time c t̃. The time separation between these two events will
become nonzero in the F frame because of their nonzero spatial separation, so
these two events are not valid as a length measurement in F . Explicitly, and
without loss of generality, we let the two events corresponding to the F̃ length
measurement be

(x̃1, c t̃1) = (0, 0) (x̃2, c t̃2) = (L̃, 0) (11.26)

The Lorentz transformation of the trajectories is

(x1, c t1) = (0, 0) (x2, c t2) = (γ L̃, γ β L̃) (11.27)

=⇒ (∆x ,∆t) = (γ L̃, γ β L̃) (11.28)

confirming the expectation that the length measurement events in F̃ do not give
a length measurement in F . To make a length measurement in F , we must pick
points on the two trajectories that are separated by ∆t = 0, which the above
expression implies is not possible if t̃1 = t̃2. Let us allow t̃1 6= t̃2 and apply the
requirement ∆t = 0, using the Lorentz transformation to write this condition in
terms of F̃ coordinates:

0 = c ∆t = c t2 − c t1 = γ
[
β (x̃2 − x̃1) +

(
c t̃2 − c t̃1

)]
(11.29)
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Without loss of generality, we again assume event 1 occurs when the two origins
intersect, so x̃1 = x1 = c t̃1 = c t1 = 0. We choose c t2 = 0 also in order to
obtain a length measurement in F . The assumption about the origins implies
that x̃2 = L̃ for all time because the object is at rest in F̃ . With these
assumptions, the c ∆t = 0 requirement reduces to

c t̃2 = −β x̃2 = −β L̃ (11.30)

With the same assumptions, the length as measured in F corresponds to the
Lorentz transformation of event 2:

x2 = γ
(
x̃2 + β c t̃2

)
= γ

(
x̃2 − β2x̃2

)
= γ−1x̃2 = γ−1L̃ (11.31)

We see a decrease in the apparent length. The F -frame length measurement
has space-time coordinates

(x1, c t1) = (0, 0) (x̃1, c t̃1) = (0, 0) (11.32)

(x2, c t2) = (γ−1L̃, 0) (x̃2, c t̃2) = (L̃,−β L̃) (11.33)

We see that in order to be simultaneous in the F frame, the two events must
occur with negative time separation, i.e., with c ∆t̃ = c t̃2 − c t̃1 = −β L̃, in the
rest frame of the object. The object is moving to the right with the F̃ frame, so
the right end of the object is not at x = L̃ yet in the F frame when the
measurement event occurs in F , hence the apparent length contraction.
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I Relativity of Simultaneity
The length contraction example shows that two events that are temporally
simultaneous but spatially separated in one frame may not be temporally
simultaneous in another; i.e., c ∆t̃ = 0 does not imply c ∆t = 0 unless ∆x̃ = 0
also. Generically, then, simultaneity of physically separated events is no longer
well defined.

I Transformations of Areas
The matrix of partial derivatives of our transformation is

J(β) =

[
γ −β γ

−β γ γ

]
(11.34)

So, space-time areas are preserved:

dx̃ c dt̃ = |J| dx c dt = dx c dt (11.35)

because γ2 − β2γ2 = 1. This is a necessity, as there must be symmetry between
the two directions for the Lorentz transformation, which would not hold if the
Jacobian determinant were not unity.

I Invariant Interval
From the Lorentz transformation and again using γ2 − β2γ2 = 1, one can show

(c t)2 − x2 = (c t̃)2 − (x̃)2 ≡ s2 (11.36)

The quantity s2 is the invariant interval associated with the space-time vector
(x , c t) and (x̃ , c t̃). It can be thought of like the magnitude of a vector in
space, which is invariant under spatial rotations. The invariant interval is
invariant under Lorentz transformations, also known as boosts.
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Geometric Interpretation of Lorentz Transformation

We may develop a geometrical interpretation of how the Lorentz transformation gives
the shape of one set of space-time axes in another frame. Define the rapidity or boost
angle or boost parameter η by tanh η = β (any η is possible because β = tanh η goes
to ±1 as η → ±∞). Then we have

β = tanh η γ = cosh η β γ = sinh η (11.37)

x = x̃ cosh η + c t̃ sinh η c t = x̃ sinh η + c t̃ cosh η (11.38)

So, the Lorentz transformation looks something like a coordinate rotation, except by
an imaginary angle i η. More importantly, though, we see the contours of constant x̃
or c t̃ as β (i.e., η) varies form hyperbolic curves in the x t plane. That is, the event

(x̃ , 0) in the F̃ frame appears on the hyperbola (x , c t) = x̃ (cosh η, sinh η) in F , with
η increasing as β increases. Similarly, the event (0, c t̃) appears on the hyperbola
(x , c t) = c t̃ (sinh η, cosh η) in F . This is illustrated in the figure on the following slide.

NOTE: Even though we have made the above geometrical intepretation, one has to be
a bit careful about overinterpreting it. The difficulty is that the quantity left constant
by a Lorentz transformation, the invariant interval, does not correspond to a curve of
fixed distance from the origin on the above plots. Rather, it corresponds to the
hyperbolic curves that the fiducial points follow as β is changed. Another way of
seeing this is that the entire first and third quadrants of the F̃ frame occupy the area
between the two corresponding slanted space-time axes displayed in the right plot.
Therefore, spatial distances and areas are not preserved by the mapping. Invariant
interval is preserved but does not correspond to a fixed distance on the plot!
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Left: position of (x̃ , c t̃) = (1, 0), (0, 1), (−1, 0), (0,−1) in F for η = 10−1, 10−3/4,
10−1/2, 10−1/4, 1, 101/4 (moving sequentially outward). This shows how a particular

event is seen in another frame as the relative speed β is increased. Right: F̃
space-time axes in F for same values of η (larger η =⇒ increasingly oblique). This

plot shows how the F̃ space-time axes appear “squeezed together” when seen in the F
frame. Both plots are for positive β and η. Negative β and η would occupy the other
two quadrants.
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Light Cones, Causality, and Simultaneity

The geometrical interpretation and invariant interval will make it possible to prove
that the relativity of simultaneity can never produce causality problems.

First, let us define the light cone as the region in space-time that can be reached from
a given event; refer to the figure on the slide at the end of this section. The light cone
of the event at the origin of a space-time diagram consists of all events with |c t| > |x |.
The region c t < 0, the past light cone, consists of all events that could have causal
influence on the event (x , c t) = (0, 0). The region c t > 0, the future light cone,
consists of all events that the event (x , c t) = (0, 0) can have causal influence on.
Since we know that, under Lorentz transformations, an event slides along a hyperbolic
curve in space-time as the speed β is varied, we are assured that events that are in the
future light cone of the event at the origin in one reference frame are also in that
event’s future light cone in any other reference frame. Similarly for past light cones.
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What about simultaneous events? Two events are simultaneous in a particular frame
F̃ if they occur at the same value of t̃, the time in the frame F̃ . Let one event be at
the origin (0, 0) and the other event at (x̃ , 0), so the space-time vector separating
them is (x̃ , 0). This event is outside the light cone of the origin, so, in this frame, the
two events are out of causal contact. When we transform to a different frame F , but
one whose origin coincides with that of F̃ at t = t̃ = 0, the space-time vector between
the two events will slide on the hyperbolic curve (cosh η, sinh η). The event at (x̃ , 0) in

F̃ may move to t < 0 or t > 0 in other frames, raising causality questions. The
causality worries are put to rest by the fact that the hyperbola is entirely outside the
light cone of the first event, so the second event is always outside of causal contact
with the first event.

Whether two events are causally connected is determined by the sign of the invariant
interval of the space-time vector separating them. If s2 > 0, then |c t| > |x | and the
two events connected by the vector are in causal contact. The vector is called
time-like. Our argument about hyperbolic curves ensures that the sign of the time
component of the vector does not change, preserving causal relationships. If s2 < 0,
then |c t| < |x | and the two events are never in causal contact, regardless of frame.
The vector is called space-like. The sign of the time component of the vector may
depend on the reference frame. If s2 = 0, the vector is called null or light-like since
only light (or, as we shall see, any other massless particle) can travel on such a path in
space-time. The concepts are illustrated on the following slide.
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c© 2013 Griffiths, Introduction to Electrodynamics

Space-time diagrams illustrating light cones, invariant intervals, and the preservation
of causality. The dashed lines indicate the light cone of the event at (x , c t) = (0, 0).
(Left) Surface of constant s2 > 0, corresponding to a time-like interval. Lorentz
transformations move space-time events along each half of this surface but cannot
cause events to move from one half to the other half and thus cannot change the sign
of t or affect causality. (Right) Surface of constant s2 < 0, corresponding to a
space-like interval. Lorentz transformations also move space-time events along this
surface, and the sign of t may change. However, none of these events are in the light
cone of (0, 0) and thus sign changes in t cannot affect causality.
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Four-Vectors in Special Relativity

A four-vector
⇒
r is an object whose in a given reference frame F consists of four

numbers rµ for which the transformation of the coordinate representation between
inertial references frames F and F̃ , with F having relative velocity c ~β = c β x̂ with
respect to F̃ (F and F̃ are exchanged relative to our previous derivations for reasons of
convention), is given by the Lorentz transformation law

r̃µ =
3∑

µ,ν=0

Λµν rν ≡ Λµν rν with Λµν =


γ γ β 0 0
γ β γ 0 0
0 0 1 0
0 0 0 1

 (11.39)

We introduce Greek indices to indicate 0, 1, 2, 3 (as opposed to just 1, 2, 3) and the
Einstein summation convention wherein a repeated index implies a sum over that
index. The term contraction is used to refer to matching up an index and summing
over it. We will use Latin indices to indicate the space components 1, 2, 3 only.
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The prototypical four-vector is the space-time position vector

rµ = (r0, r1, r2, r3) = (ct, x , y , z) (11.40)

Such four-vectors are termed “Lorentz covariant” to indicate that, while they do vary
between reference frames, there are rules for how they vary and those rules are given
by the Lorentz transformation law.

A quick way to check the sign of the matrix is to check the transformation properties
of the origin of the F frame, with rµ = (ct, 0, 0, 0). Using the above matrix, we get
r̃µ = (γct, γβct, 0, 0): the x = r̃ 1 coordinate is positive, as expected if F moves at

c β x̂ with respect to F̃ . Note how time dilation manifests itself in the transformation.

By application of three-dimensional rotation matrices, one can show that, for an
arbitrary direction of motion ~β, the Lorentz transformation matrix has the form

Λ0
0 = γ Λ0

i = Λi
0 = γ βi Λi

j = δij + (γ − 1)
βi βj

β2
i , j = 1, 2, 3 (11.41)

where δij is the usual Kronecker delta.
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The Invariant Norm of a Four-Vector and the Metric

We saw above in Equation 11.36 that we have a quantity connected to
⇒
r that is

invariant under Lorentz transformations (change of reference frame), the invariant
interval, more generally called the invariant norm in the context of a general
four-vector (as opposed to a four-vector corresponding to an interval between
space-time events). We may write it using our four-vector notation as follows, also
defining the Lorentz scalar product:

⇒
r · ⇒r ≡ |⇒r |2 = |rµ|2 = gµν rµ rν with gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(11.42)

g is the metric. One can check that this particular definition of g and the resulting

definition of |⇒r |2 is indeed independent of reference frame by applying the Lorentz
transformation to show explicitly

g̃µν r̃µ r̃ν = gµν r̃µ r̃ν = gµν rµ rν (11.43)

The chain of logic is important: g cannot be derived from some more fundamental
principle; it has this form because this form provides the invariant quantity we wanted.

Note that the · notation for the Lorentz scalar product will quickly become useless for
tensors, which may have more than two indices. We introduce it for analogy to the
three-dimensional dot product. The contraction notation is Lorentz-covariant and is
thus entirely sufficient.
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Tensors

More generally, a n-th rank tensor T is an object that has 4n components organized
with n indices, Tµ1···µn , and that transforms under a change of reference frame via
the rule

T̃µ1···µn = Λµ1
ν1
· · ·Λµn

νn
Tν1···νn (11.44)

i.e., contraction with Lorentz transformation matrices in all the indices. A four-vector
is a first-rank tensor. We will see second-rank tensors soon enough. A four-scalar (or
just scalar) is a zeroth-rank tensor and thus is invariant under Lorentz transformations;
conversely, any quantity that is invariant under Lorentz transformations is a scalar.
From now on, when we talk about tensors, we also include four-vectors in the
category. Given its transformation properties, the metric is a second-rank tensor.
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Covariant and Contravariant Indices

With gµν defined as it is, we introduce the concept of “lowering” and “raising”
indices. For tensors, we have only defined “raised” indices. We define “lowered
indices” via contraction with the metric:

rµ = gµν rν T
µ1···µj−1 µj+1···µn

ν = gνµj Tµ1···µj−1µjµj+1···µn (11.45)

It is straightforward to see that r0 = r0 and ri = −r i for i = 1, 2, 3.

If we are going to lower indices, we need a way to raise them, so we define in any frame

gµν gνσ = gµν gνσ = δµσ = δ σµ ⇐⇒ gµν ≡ (g−1)µν (11.46)

where the −1 implies the matrix inversion operation and where both versions of δ are
the identity matrix with ones along the diagonal in any reference frame. We can check
that this definition of gµν raises indices in a manner consistent with our definition of
how indices are lowered:

gµν rν = gµν gνσ rσ = δµσ rσ = rµ (11.47)

That is, we recover the raised-index four-vector we started with if we use the above
definitions.
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Now, because g is so simple, it turns out that gµν = gµν (just try it out in any given
reference frame). Note also that

gµν = gµσ gσν = δµν (11.48)

Moreover, it doesn’t make much sense to write δµν or δµν because they are the metric,

δµσ = gµνδ
ν
σ = gµσ δµσ = gµνδ σν = gµσ (11.49)

and thus writing δµσ or δµσ would be confusing: some of their elements would be −1!
It is ok to write gµν or g ν

µ , but it is preferred to use δµν or δ νµ to avoid obfuscation.

We can derive Lorentz transformation properties for “lowered” indices by using the
known properties of the raised indices and the metric:

r̃µ = g̃µν r̃ν = gµν Λνσ rσ = gµν Λνσ gσλ rλ (11.50)

=⇒ r̃µ = Λ λ
µ rλ with Λ λ

µ = gµν gσλ Λνσ (11.51)

where we used g̃µν = gµν (definition of metric) in the first step, the definition of the
raising operation in the second step, and then we applied a self-consistent use of
raising and lower operations on Λνσ in the third step. If one works it out in detail, one
can see that the components Λ ν

µ are given by Λµν with a sign flip on the velocity.
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Raised indices are called contravariant indices and lowered indices are called covariant.
The rationale is as follows.

For the sake of developing intuition, consider a coordinate system rotation instead of
Lorentz transformation. The rotation changes the coordinate axes. But a point in
space remains fixed — the rotation is just a relabeling of points in space. So its
coordinates in the new coordinate system are different than those in the old coordinate
system. The amount by which the coordinates must change is exactly the opposite of
the amount that the axes changed. For example, suppose one rotates about the z-axis
by +30◦ so that the new x-axis is in the first quadrant of the old coordinate system.
Then a point that was on the x-axis of the old coordinate system is now in the fourth
quadrant of the new coordinate system. When the unit vectors are rotated in the
positive direction, the coordinates of points appear to rotate in the negative direction.

There is an analogous discussion for Lorentz transformations, leading us to conclude

that the coordinates rµ of a space-time point
⇒
r transform in a manner opposite to

that by which the coordinate axes transform. Hence the term contravariant —
“contra” meaning “opposite to”. Lower indices transform like the coordinate axes, so
they are called covariant.

A four-vector can be covariant or contravariant because it has only one index. It is
more complicated for rank-n tensors: each index can be covariant or contravariant.

There is no deep physical meeting to covariant/contravariant indices in special
relativity except for the “sign-flip” issue noted above. Respecting the raising/lowering
conventions is necessary for a self-consistent mathematical scheme. Physically, the
only implication is consistency about signs of velocities in Lorentz transformations.
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Covariant Gradient

The next obvious tool we need is a four-vector version of the gradient operator. The
natural thing to want is for this gradient operator to do the right thing for Taylor

expansions. Given a scalar function S
(⇒

r
)

, we would like

S
(⇒

r + d
⇒
r
)
− S

(⇒
r
)

=

[
⇒
∇S

]
· d⇒r =

[
⇒
∇S

]
µ

drµ (11.52)

where we have used the Lorentz scalar product to ensure both sides are Lorentz scalars
even though the right side is made of coordinate-system-dependent — contravariant
and covariant under Lorentz transformation — quantities. We know that, since rµ is a
contravariant four-vector, its differential version drµ is also a contravariant
four-vector. This, along with the known form of Taylor expansions for the coordinate
representation in a particular reference frame, implies that

[
⇒
∇S

]
µ

=
∂S

∂rµ
≡ ∂µS =⇒ ∂µ ≡

(
∂

∂r0
,
∂

∂r1
,
∂

∂r2
,
∂

∂r3

)
(11.53)

would yield the desired result. Thus, we use the above as the definition of the
four-gradient or covariant gradient.
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Note that the contravariant version is

∂µ ≡
(

∂

∂r0
,− ∂

∂r1
,− ∂

∂r2
,− ∂

∂r3

)
(11.54)

The Lorentz-invariant second derivative is called the d’Alembertian, which we
introduced earlier:

�2 =
⇒
∇ ·

⇒
∇ = ∂µ ∂

µ =
∂

∂(r0)2
− ∂

∂(r1)2
− ∂

∂(r2)2
− ∂

∂(r3)2
(11.55)

=⇒ �2 =
⇒
∇ ·

⇒
∇ = ∂µ ∂

µ =
1

c2

∂

∂t2
− ~∇2 (11.56)
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Proper Time, the Covariant Four-Velocity, and Velocity Addition

It is natural to ask whether it is possible to create a space-time vector for the velocity,
an entity that transforms like the space-time position four-vector. This would provide
a “unified” treatment of velocity and position. The trick, of course, is to find a set of
four numbers that are covariant, that transform in the appropriate way under Lorentz
transformations.

First, we must define the proper time. Consider a frame that is moving with the
particle whose velocity we want to specify. In that frame, the particle’s space-time
position is always rµ = (c τ, 0, 0, 0) because the particle is at the origin. c τ specifies
the time in the frame moving with the particle. That may seem frame-specific; but
remember that c2τ2 is the invariant interval of the particle’s position. This will be the
same in all reference frames that share the same spatial origin at their time origin, so
it is reasonable to think of it as a quantity available in all frames.
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Given the proper time, a reasonable coordinate-free definition of a four-velocity is

⇒
v =

d

dτ

⇒
r (11.57)

or, if we want the representation in a given frame

vµ =
d

dτ
rµ (11.58)

where rµ is the position of the particle in the frame in which one wants to know the
four-velocity (at some time t in that frame) and τ is the invariant interval associated
with the particle’s position at that same time t. The notation is somewhat confusing
because τ seems like a rest-frame quantity, but it is also an invariant quantity.
Perhaps a more obvious, though more cumbersome, definition would be

vµ = c
d

d
√

rµrµ
rµ (11.59)

where rµrµ = (r0)2 − (r1)2 − (r2)2 − (r3)2 is the invariant interval associated with the
position of the particle. The definition of four-velocity clearly transforms like the
space-time position Lorentz vector because it is, essentially, the ratio of the space-time
position Lorentz vector to a Lorentz scalar.
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So, we have a good formal definition. What does it look like in terms of quantities we
have easy access to, three-velocities? Consider a particle moving at velocity c ~βp

(possibly a function of time) in some frame F . (We use the subscript p to distinguish

the particle velocity from that of the frame F relative to another frame F̃ .) The
particle’s trajectory is rµ(t) in this frame. We have the obvious differential relations

drµ = c (1, βpx , βpy , βpz ) dt (11.60)

dτ = γ−1
p dt (11.61)

where the second relation is simply time dilation. These relations are instantaneously
true even if the particle is accelerating. Thus, the four-velocity in F is

vµ =
drµ

dτ
=

c (1, βpx , βpy , βpz ) dt

γ−1
p dt

= γpc (1, βpx , βpy , βpz ) = γpc
(

1, ~βp

)
(11.62)

where γp =

(
1−

∣∣∣~βp

∣∣∣2)−1/2

is the γ factor associated with the particle velocity ~βp .

Thus, given a particle trajectory, we can easily calculate the four-velocity in any frame.

We note that we could have also obtained the four-velocity by Lorentz transformation
of the four-vector (c,~0) from one frame F to a frame F̃ in which F is moving a

velocity c ~βp , making the argument that (c,~0) is the four-velocity of the F frame origin
in F . It is hardly obvious that that would have been the right thing to do, though!
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We may now use the Lorentz transformation of the four-velocity to derive the rule for

velocity addition. Start with a particle with four-velocity
⇒
v with coordinate

representation vµ1 in F and suppose F is moving at velocity c β2x̂ with respect to the

frame F̃ . This will give us the addition of
⇒
v and the four-velocity

⇒
u = γ2c (1, β2, 0, 0). It is:

ṽµ =


γ2 γ2 β2 0 0

γ2 β2 γ2 0 0
0 0 1 0
0 0 0 1

 γ1 c


1
β1,x

β1,y

β1,z

 = γ1 c


γ2 (1 + β2 β1,x )
γ2 (β2 + β1,x )

β1,y

β1,z

 (11.63)

Because
⇒
v is a four-vector, we expect ṽµ = γ12 c

(
1, ~β12

)
where ~β12 is the velocity

relative to the F̃ frame. Therefore we may conclude

γ12 =
ṽ0

c
= γ1γ2 (1 + β2 β1,x ) β12,y =

ṽ2

ṽ0
=

1

γ2

β1,y

1 + β2 β1,x
(11.64)

β12,x =
ṽ1

ṽ0
=

β2 + β1,x

1 + β2 β1,x
β12,z =

ṽ3

ṽ0
=

1

γ2

β1,z

1 + β2 β1,x

The expression for γ12 could be derived more algebraically, but the above is clearly the
simplest way to obtain it.
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One could of course consider a more general velocity addition by allowing F to move
in an arbitrary direction with respect to F̃ . The algebra is worse but there is no
conceptual difference.

It is possible to derive the above, or understand it, by considering all the length
contractions and time dilations involved. Clearly, using the Lorentz transformation is
much faster.
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Relativistically Covariant Formulation of Electrodynamics

The Covariant Source Density

The natural way to define the charge/current source four-vector is to consider a
charge distribution in its rest frame F and Lorentz transform it. If ρo is the rest-frame
charge density, and there is no current in this rest frame because no charges are
moving, then, going to a new frame F̃ relative to which F is moving at velocity c ~β,
we know the charge density increases due to length contraction in the direction of
motion and a current appears, given by the charge density in F̃ and the velocity c ~β:

ρ = γ ρo
~J = ρ ~v = ρo γ ~v (11.65)

This is easily summarized using the four-velocity
⇒
v we just defined:

⇒
J = ρo

⇒
v Jµ = ρo vµ = γ (ρo c, ρo ~v) = (ρ c, ρ ~v) (11.66)

Since we are multiplying a four-vector by the invariant quantity ρo , we are assured
⇒
J

is also a four-vector, which we call the covariant source density. Note: ρ itself is not
an invariant quantity, but the rest-frame charge density ρo is invariant because the
total amount of charge cannot depend on the reference frame (it just consists of
counting up charges!). The continuity equation is then written in manifestly
Lorentz-invariant form (using the Lorentz scalar product and covariant gradient):

0 =
∂ρ

∂t
+ ~∇ · ~J = ∂µJµ =

⇒
∇ ·

⇒
J (11.67)
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The Covariant Potential

Recall Equations 10.21, our inhomogeneous wave equations in the Lorenz gauge:

�2V =
ρ

εo
�2 ~A = µo

~J �2 ≡ 1

c2

∂2

∂t2
− ~∇2 (11.68)

If we define the covariant potential
⇒
A by

Aµ ≡
(

V

c
, ~A

)
(11.69)

then the above equations can be rewritten as the covariant wave equation

�2
⇒
A = µo

⇒
J (11.70)

Since
⇒
J is a four-vector and �2 and µo are scalars, we are assured that

⇒
A is a

four-vector as desired. Of course, the above equations only apply in Lorenz gauge, the
condition for which can be written in a manifestly Lorentz-invariant form:

0 = εo µo
∂V

∂t
+ ~∇ · ~A = ∂µAµ =

⇒
∇ ·

⇒
A (11.71)

The Lorenz gauge condition is invariant under change of reference frame because it is
a four-scalar by definition. Note how it is the natural extension of ~∇ · ~A = 0 (which is
a scalar under rotations and thus independent of coordinate axis orientation.)
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Lienard-Wiechert Potential via Lorentz Transformation

The definition of
⇒
A makes derivation of the potentials of a moving point charge

trivial. These are called the Lienard-Wiechert potentials and their derivation without
special relativity is highly nontrivial, as seen in Griffiths §10.3.1.

In the rest frame F of a point charge q, the covariant potential has components

V (~r , t) =
1

4π εo

q

[x2 + y2 + z2]1/2
~A(~r , t) = 0 (11.72)

Now, to have the charge move with velocity ~v = c ~β = c β x̂ , we simply need to obtain
⇒
A in a lab frame F̃ relative to which the charge’s rest frame F moves at ~v . That is,

we use the Lorentz transformation, Equation 11.39, on
⇒
A :

1

c
Ṽ = γ

[
1

c
V + β Ax

]
=
γ

c
V Ãx = γ

[
Ax + β

1

c
V

]
=
γ β

c
V (11.73)

and Ãy = Ay = 0 and Ãz = Az = 0.
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This is half the work. V is of course written in terms of the rest frame coordinates
rµ = (c t, x , y , z), so we need to rewrite it in terms of the lab frame coordinates
r̃µ = (c t̃, x̃ , ỹ , z̃). These coordinates are also related by Lorentz transformation, but
we need the one going in the opposite direction (because we are now writing F

coordinates in terms of F̃ coordinates)

c t = γ
[
c t̃ − β x̃

]
x = γ

[
−β c t̃ + x̃

]
(11.74)

and y = ỹ and z = z̃. (You can check that this is the correct direction for the

transformation by considering the position of the F frame origin in F̃ frame
coordinates: (ct, x = 0) should obey x̃ = β c t̃.) Combining the Lorentz transformation
of the potential with the above transformation of the coordinates, we obtain:

Ṽ (r̃µ) =
1

4π εo

γ q[
γ2
(
β c t̃ − x̃

)2
+ ỹ2 + z̃2

]1/2
(11.75)

=
1

4π εo

q[{(
x̃ − v t̃

)2
+ ỹ2 + z̃2

}
− β2 (ỹ2 + z̃2)

]1/2
(11.76)

The coordinates in the above are the current position of the charge in F̃ .
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Let’s generalize the above expression for an arbitrary direction of motion by defining

R(r̃µ) =
[(

x̃ − v t̃
)2

+ ỹ2 + z̃2
]1/2

sin2 θ =
ỹ2 + z̃2(

x̃ − v t̃
)2

+ ỹ2 + z̃2
(11.77)

Then we have Ṽ (r̃µ) =
1

4π εo

q

R(r̃µ)

1[
1− β2 sin2 θ

]1/2
(11.78)

Ãi (r̃µ) =
1

c2

1

4π εo

q vi

R(r̃µ)

1[
1− β2 sin2 θ

]1/2
(11.79)

where θ is now the angle between the direction of motion ~v and the vector ~R from the
particle’s current position to the position at which we want to know the potentials.

We see that the potentials are unmodified along the particle’s trajectory (ahead of or
behind) but that the potential strengthens as one moves away from that trajectory,
becoming strongest transverse to the direction of motion.

Notice how the above expression shows us that the vector potential of the moving
particle is related to the scalar potential by a factor of β/c. When we calculate forces,
there will be another factor of v that shows up for magnetic force, making it smaller
than electric force by a factor of β1 β2 where β1 and β2 are the factors for the source
charge and the charge feeling the force.

We will see later it will be useful to rewrite these expressions in terms of the retarded
position of the particle — the position at the retarded time — but we will avoid that
digression for now.
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Electric and Magnetic Fields

We define the electromagnetic field tensor or the Faraday tensor F by

F =
⇒
∇ ∧

⇒
A ⇐⇒ Fµν = ∂µAν − ∂νAµ ⇐⇒ −F 0j = F j0 =

1

c
Ej F ij = −εijk Bk

(11.80)

where we have introduced the wedge product, ∧, which is the four-dimensional
generalization of the cross-product, and where i , j , k run over 1, 2, 3 and εijk is the

completely antisymmetric Levi-Civita symbol. (We define Ej ≡ E j and Bj ≡ B j ; we
are free to do this because they are not components of a four-vector, for which the
relation between contravariant and covariant components is fixed). From the above,

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (11.81)

Thanks to the definition of F in terms of the covariant gradient and the covariant
potential, we are assured it is a second-rank tensor. F is clearly the Lorentz-covariant
way to represent the electric and magnetic fields: its second-rank tensor
transformation properties provide all the information we need:

F̃µν = Λµλ Λνσ Fλσ (11.82)
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Let’s write these transformation laws in terms of the fields explicitly so we can see the
transformation rules more clearly. As noted above, we define lowered roman indices for

three-tensors by Ej ≡ E j , Bj ≡ B j , βi ≡ βi , vi ≡ v i = c βi , and δjk ≡ δj
k (we will not

use vµ here so there is no confusion); for the space components of four-tensors,

ri = −r i , g j
k = −g jk continue to hold. We have:

Ẽj = −c F̃ 0j = −cΛ0
λ Λj

σ Fλσ (11.83)

= −c
[
Λ0

0 Λj
0 F 00 + Λ0

0 Λj
k F 0k + Λ0

k Λj
0 F k0 + Λ0

k Λj
` F k`

]
(11.84)

where we have expanded out the sums into space and time components. We use
F 00 = 0 and the generic forms of the components of Λ, Equation 11.41,

Ẽj = −c

[
γ

(
δjk + (γ − 1)

βj βk

β2

)
F 0k + γ βk γ βj F k0 + γ βk

(
δj` + (γ − 1)

βj β`

β2

)
F k`

]
(11.85)

Next, we use the antisymmetry of F : F k0 = −F 0k and βk β` F k` = 0 in the last term
of the last term. This yields

Ẽj = −c

[
γ F 0j +

βj βk

β2

[
γ2 − γ − β2 γ2

]
F 0k + γ βk F kj

]
(11.86)
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Next, we use F 0j = −Ej/c and F kj = −F jk = εjk`B`:

Ẽj = γ Ej + (1− γ)
βj βk

β2
Ek − γ vk εjk` B` (11.87)

We will reduce this a simpler form soon, but let’s obtain the analogous result for the
magnetic field first. To extract ~B from F , we need the identity εijk εijm = 2 δkm. With
this,

−1

2
εjk` F k` =

1

2
εjk` εk`m Bm =

1

2
εk`j εk`m Bm = δjm Bm = Bj (11.88)

Therefore,

B̃j = −1

2
εjk` F̃ k` = −1

2
εjk`Λ

k
λ Λ`σ Fλσ (11.89)

= −1

2
εjk`

[
γ βk

(
δ`m + (γ − 1)

β` βm

β2

)
F 0m +

(
δkm + (γ − 1)

βk βm

β2

)
γ β` F m0

+

(
δkm + (γ − 1)

βk βm

β2

)(
δ`n + (γ − 1)

β` βn

β2

)
F mn

]
(11.90)

where we have used F 00 = 0 already.
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Using F m0 = −F 0m, F m` = −F `m, F kn = −F nk , εjk` βk β` = 0 and βm βn F mn = 0:

B̃j = −1

2
εjk`

[
γ βk F 0` − γ β` F 0k + F k` − γ − 1

β2

(
βk βm F `m + β` βn F nk

)]
(11.91)

then, using εjk` = −εj`k , F 0a = −Ea/c, −εjk` F k`/2 = Bj and F ab = −εabc Bc :

B̃j =
1

2 c
γ
[
εjk` βk E ` + εj`k β` E k

]
+ Bj −

1

2
εjk`

γ − 1

β2
[βk βm ε`mn Bn + β` βn εnkm Bm]

(11.92)

and, finally, using the cyclicity and antisymmetry of εabc in its indices followed by the
identity εabc εdec = δad δbe − δae δbd and then apply the δ’s and rearranging:

B̃j =
γ

c2
εjk` vk E` + Bj −

1

2

γ − 1

β2

[
βk βm Bn εjk` εmn` + β` βn Bm εj`k εnmk

]
(11.93)

=
γ

c2
εjk` vk E` + Bj −

γ − 1

β2
βk βm Bn

[
δjm δkn − δjn δkm

]
(11.94)

=
γ

c2
εjk` vk E` + Bj −

γ − 1

β2

[
βj βk Bk − β2 Bj

]
(11.95)

= γ Bj + (1− γ)
βj βk

β2
Bk +

γ

c2
εjk` vk E` (11.96)

which we see is a form very similar to the one we obtained for the transformation of
the electric field, Equation 11.87.
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We may write Equations 11.87 and 11.96 in three-vector form:

~̃E = γ ~E + (1− γ) β̂
(
β̂ · ~E

)
− γ ~β × c ~B (11.97)

~̃B = γ ~B + (1− γ) β̂
(
β̂ · ~B

)
+ γ ~β ×

~E

c
(11.98)

Let us resolve the fields into pieces parallel and perpendicular to the velocity:

~̃E|| = β̂ β̂ · ~E ~E⊥ = ~E − β̂ β̂ · ~E ~̃B|| = β̂ β̂ · ~B ~B⊥ = ~B − β̂ β̂ · ~B
(11.99)

Thus, we have

Ẽ|| = E|| ~̃E⊥ = γ
[
~E⊥ − ~β × c ~B⊥

]
(11.100)

B̃|| = B|| ~̃B⊥ = γ

[
~B⊥ + ~β ×

~E⊥
c

]
(11.101)

recovering the results in Griffiths §12.3.2, where the transformation properties of the
fields are derived. (These are the equivalent of Equations 12.109 in Griffiths,
accounting for the fact that those equations give the field in F in terms of the field in
F̃ and thus have a sign flip on the velocity.) We see that these properties have fallen
out of the Lorentz transformation of the F tensor.
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Notice how the expressions for ~E and ~B are analogues of each other, differing only by
a sign flip on the ~β× term and factors of c to convert units.

We first saw the mixing of electric and magnetic fields via transformation between
inertial frames in the context of Faraday’s Law. The field tensor codifies this mixing
(with γ’s added) and gives it a satisfying rationale by tying it to the general
requirement of Lorentz covariance (i.e., special relativity).

One must of course remember that both Faraday’s Law and the invariance of the
speed of light that lead to special relativity, and more generally the principle that
physical laws are independent of inertial reference frame, are empirical observations
that we codify via an underlying principle. The principles are profound, which may
seem sufficient justification to assume them, but, ultimately, emprical verification of
predictions is what justifies those principles. This is the difference between modern
empiricism and the ancient Greek approach to science, where the principles were
deemed sufficient and formulation and testing of predictions deemed unnecessary!
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Fields of a Moving Point Charge

Let’s now derive the fields of a moving point charge using Lorentz transformation
properties. This is again much (much!) easier than doing it without special relativity,
as is done in Griffiths §10.3.2 from the Lienard-Wiechert potentials. The fields in the
charge’s rest frame are

~E(~r , t) =
1

4π εo

q

r3
~r ~B(~r , t) = 0 (11.102)

We take ~v = v x̂ . Applying the Lorentz transformation to the fields, we obtain

Ẽx (rµ) = Ẽ|| = E|| = Ex =
1

4π εo

q

r3
x (11.103)

B̃x (rµ) = B̃|| = B|| = Bx = 0 (11.104)

~̃Eyz (rµ) = ~̃E⊥ = γ
[
~E⊥ − ~β × c ~B⊥

]
=

1

4π εo

γ q

r3
(y ŷ + z ẑ) (11.105)

~̃Byz (rµ) = ~̃B⊥ = γ

[
~B⊥ + ~β ×

~E⊥
c

]
= ~β ×

~̃E

c
(11.106)

These fields are still in terms of the F -frame coordinates, so they are not very useful
as is.
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As with the Lienard-Wiechert potential example, we use the Lorentz transformation of
the space-time vector to rewrite rµ in terms of r̃µ,

c t = γ
[
c t̃ − β x̃

]
x = γ

[
−β c t̃ + x̃

]
(11.107)

and y = ỹ and z = z̃. Therefore,

Ẽx =
1

4π εo

γ q[
γ2
(
x̃ − v t̃

)2
+ ỹ2 + z̃2

]3/2

(
x̃ − v t̃

)
(11.108)

~̃Eyz =
1

4π εo

γ q[
γ2
(
x̃ − v t̃

)2
+ ỹ2 + z̃2

]3/2
(ỹ ŷ + z̃ ẑ) (11.109)

which we may write as

~̃E(r̃µ) =
1

4π εo

γ q[
γ2
(
x̃ − v t̃

)2
+ ỹ2 + z̃2

]3/2
~R(r̃µ) (11.110)

=
1

4π εo

q

γ2
[{(

x̃ − v t̃
)2

+ ỹ2 + z̃2
}
− β2 (ỹ2 + z̃2)

]3/2
~R(r̃µ) (11.111)

where ~R = ~̃r − ~v t̃.
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Just as we did for the Lienard-Wiechert potentials, we may generalize this result in
terms of current position:

~̃E =
1

4π εo

q ~R(r̃µ)

[R(r̃µ)]3

1− β2[
1− β2 sin2 θ

]3/2
(11.112)

The expression for the magnetic field may be summarized as

~̃B(r̃µ) = ~β ×
~̃E(r̃µ)

c
(11.113)

We see the phenomenology is different from that for potentials (Equations 11.78 and
11.79): along and behind the direction of motion, the field is weakened by a factor
γ−2 while, transverse to the direction of motion, the field is enhanced by a factor γ.
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Electromagnetic Field Tensor Invariant

We can construct an invariant quantity by contracting F over both indices, Fµν Fµν .
To see what value this takes on, let’s first calculate Fµν :

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 (11.114)

=⇒ Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (11.115)

Then, Fµν Fµν consists of multiplying the two matrices not with standard matrix
multiplication but rather element by element and then summing over all elements.
That yields the Lorentz invariant:

Fµν Fµν = − 2

c2
~E · ~E + 2 ~B · ~B =⇒ − c2

2
Fµν Fµν = E 2 − c2 B2

(11.116)

This implies that the field strengths scale together from frame to frame: if one
increases or decreases, so does the other. Finding this invariant without first having
the Faraday tensor would have been quite difficult!
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The Dual Electromagnetic Field Tensor and a Second Field Tensor Invariant

We may define the dual tensor G using the completely antisymmetric four-index
Levi-Civita symbol εµνλσ :

Gµν =
1

2
εµνλσ Fλσ (11.117)

which yields

G 00 = 0 G jj = 0 (11.118)

−G 0j = G j0 =
1

2
ε0j
λσ Fλσ G ij =

1

2
εij
λσ Fλσ (11.119)

=
1

2
ε0j

ik F ik =
1

2

(
εij

0k F 0k + εij
k0 F k0

)
= −1

2
εjik εik` B` = εij

k0 F k0

=
1

2
εjik ε`ik B` =

1

c
εijk Ek

= δj` B` = Bj (11.120)

where ε0j
λσ = ε0j

ik on the left side because εµνλσ vanishes if any of its indices repeat,
so the j , λ, and σ indices must all take on space values 1, 2, 3 and thus all three must
be latin indices. Similarly, on the right side, because its first two indices are latin

indices, εij
λσ is only nonzero if one of λ or σ is zero, which then requires the other to

become a latin index so it takes on space values.
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We may write G out component by component:

Gµν =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

 (11.121)

which is obtained from Fµν by the replacement ~E/c → ~B and ~B → −~E/c.

G gives us the opportunity to form another invariant. While Gµν Gµν = Fµν Fµν

because the resulting contraction of the Levi-Civita symbol with itself yields an
identity operator (or, just make the ~E and ~B replacements in Fµν Fµν = E 2 − c2 B2

and the result is the same up to a sign), a new invariant is obtained by

Fµν Gµν = − 4

c
~E · ~B =⇒ − c

4
Fµν Gµν = ~E · ~B (11.122)

This invariant implies two things: 1) if the fields are perpendicular in one frame (or
one vanishes), then they remain perpendicular (or one vanishes) in any other frame;
2) if the above invariant is nonzero in some frame, then, since the field strengths
increase or decrease together, the magnitude of the cosine of the angle between them
changes in the opposite fashion, so the angle between them changes in the same
fashion as the fields; e.g., if the field strengths increase, they must become more
perpendicular to each other.
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Maxwell’s Equations

Finally, we can rewrite Maxwell’s Equations in a very simple form using the
electromagnetic field tensor and its dual. The inhomogeneous equations (the ones
with source terms on the right side, Gauss’s Law and Ampere’s Law) are:

∂µ Fµν = ∂µ ∂
µ Aν − ∂µ ∂ν Aµ = �2 Aν − ∂ν ∂µ Aµ = µo Jν − 0 (11.123)

∂µ Fµν = µo Jν (11.124)

where the second term vanishes due to the Lorenz gauge condition (Equation 11.71).
The homogenous equations are

∂µ Gµν =
1

2
∂µ ε

µνλσ (∂λ Aσ − ∂σ Aλ) = ∂µ ε
µνλσ ∂λ Aσ = 0 (11.125)

∂µ Gµν = 0 (11.126)

where the second step is possible because εµνλσ is antisymmetric under exchange of λ
and σ (doing this exchange in the second term yields a copy of the first term) and the
third step holds because ∂µ ∂λ is symmetric under exchange of these indices. It is

interesting that physics statements — Faraday’s law and the divergencelessness of ~B
— reduce to a mathematical identity thanks to the definitions of F and G. This is
something we have seen before: ~∇ · ~B = 0 can be viewed as a consequence of
~B = ~∇× ~A. It is a sign that we have defined G well!

Section 11.3.8 Maxwell’s Equations Page 826



Section 11.3 Relativity and Electrodynamics: Relativistically Covariant Formulation of Electrodynamics

It is straightforward to see that these equations yield the standard Maxwell Equations:

∂µ Fµ0 = µo J0 ∂µ Fµi = µo J i (11.127)

∂0 F 00 + ∂i F i0 = µo ρ c
1

c
∂t F 0i + ∂j F ji = µo J i (11.128)

0 +
∂

∂r i

Ei

c
=

1

c εo
ρ − 1

c2

∂E i

∂t
− εjik

∂Bk

∂r j
= µo J i (11.129)

~∇ · ~E =
ρ

εo

~∇× ~B = µo
~J + εo µo

∂ ~E

∂t
(11.130)

Since the structure of G parallels that of F with the replacement E i/c → B i and
B i → −E i/c, we may reuse the above arithmetic to see that:

∂µ Gµ0 = 0 ∂µ Gµi = 0 (11.131)

~∇ · ~B = 0 − 1

c
~∇× ~E = c εo µo

∂ ~B

∂t
(11.132)

~∇× ~E = −∂
~B

∂t
(11.133)
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Relativistic Dynamics with Electromagnetic Fields

Lorentz Force and Four-Momentum

We can also rewrite the Lorentz Force in a relativistically covariant way. As with the
definition of the covariant source density, we use the rest-frame relation and the
Lorentz transformation to figure out what the correct form is. In the rest frame of a
particle of charge q, we know the nonrelativistic force is

d

dt

(
m

dx i

dt

)
= q E i = q c F i0 (11.134)

where m dx i/dt is the nonrelativistic momentum (we don’t use v i or pi to avoid
confusion with what will follow). How do we formulate a relativistically covariant
version? The quantity being differentiated on the left side is m dx i/dt; its natural
generalization is, as you know, the covariant momentum pµ = m vµ. (This is
analogous to the covariant current density, multiplying a scalar with the
four-momentum.) On the right side, c is the rest-frame time component of vµ, so
c F i0 looks like the time component of vν F iν . We are still stuck with a d/dt on the
left side, but that becomes relativistically invariant if we replace it with d/dτ where τ
is the proper time of the particle. Thus, we are motivated to write

dpµ

dτ
= q Fµν vν (11.135)

This expression is now relativistically covariant because both sides of the equation are
rank 1 tensors (four-vectors).
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Of course, we need to check that this generalization yields the correct Lorentz Force in
an arbitrary frame, so let’s evaluate it in a frame in which the charged particle is
moving. We have for the space components (recall vµ = (γ c,−γ ~v) (−1 on space

components because of the lowered index), and writing ~F · r̂i , ~v · r̂i , and ~p · r̂i to avoid

sign ambiguities for space components (note ~F is force while Fµν is the field tensor!):

dpi

dτ
= q

(
F i0 γ c − F ij γ ~v · r̂j

)
(11.136)

dt

dτ

dpi

dt
= q

(
Ei

c
γ c + εijk Bk γ ~v · r̂j

)
(11.137)

γ
(
~F · r̂i

)
= γ q

(
Ei +

(
~v × ~B

)
i

)
(11.138)

=⇒ ~F = q
(
~E + ~v × ~B

)
(11.139)

where dt/dτ = γ (time dilation) and we note the subtlety that, in relativity, the

natural generalization of Newton’s Second Law is to replace ~F · r̂i = (d/dt)(~p · r̂i ) by

~F · r̂i =
dpi

dt
=

d

dt
(γm ~v · r̂i ) (11.140)

This generalization ensures the force and momentum can get as large as one wants
without |~v | exceeding c. We note that Griffiths defines Kµ = dpµ/dτ as the
Minkowski force because it is a four-vector (transforms by the Lorentz transformation
rule); dpµ/dt is not.
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Let’s look at the time component that comes along for free in the above. It is

d

dτ
γm c = q

(
F 00 γ c − F 0i γ ~v · r̂i

)
(11.141)

dt

dτ

d

dt
γm c = q

[
(0)(c)−

(
−Ei

c

)
γ ~v · r̂i

]
(11.142)

γ
d

dt
γm c = γ q

Ei

c
~v · r̂i (11.143)

dU

dt
= q ~v · ~E (11.144)

where we have been motivated to define U = γm c2 as the relativistic generalization
of the energy of the particle. This is just conservation of energy: the rate of change of
the particle energy is given by the work being done by the electric field (the magnetic
field does no work).

We may now see the full meaning of the four-momentum we defined earlier:

⇒
p = m

⇒
v ⇐⇒ pµ = m vµ = γm (c, ~v) =

(
U

c
, γ ~p

)
(11.145)

which is entirely consistent with what we have derived above. It may seem strange

that the interpretation of the time component of
⇒
p as the particle energy comes as

an afterthought rather than being something we design in, but this makes sense given
our interest in covariant quantities: we could not necessarily know ahead of time what
quantity should be combined with ~p to make a four-vector. Formulating a
relativistically covariant generalization of the Lorentz Force made the meaning of the

time component of
⇒
p self-evident.
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Lagrangian Formulation of Relativistic Electrodynamics (Optional)

We will show how we can recover all of the above by beginning with a Lagrangian
formulation the interaction of the EM field with particles and for the EM field itself.

Lagrangian Formulation for Particle-Field Interaction

In Ph106a, you learned about the appropriate Lagrangian to use for a free particle as
well as for a particle interacting with an electromagnetic field, so we review that here.
Recall that the Lagrangian for a free particle is

L = −m c2

γ
= −m c2

√
1− |~v |

2

c2
(11.146)

where |~v |2 is the modulus of the three-velocity. This quantity makes sense because it
gives a Lorentz-invariant action:

S =

∫ t2

t1

dt L =

∫ t2

t1

dτ γ L = −m c2
∫ t2

t1

dτ (11.147)

where τ is the proper time, not the volume element! We can check that this
Lagrangian recovers the nonrelativistic free particle limit:

L
β�1−→ −m c2

(
1− 1

2

|~v |2
c2

)
= −m c2 +

1

2
m |~v |2 (11.148)

which, aside from an irrelevant constant, is what we expect. Note the importance of
the negative sign in the definition of the full relativistic Lagrangian.
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We need to consider similarly Lorentz-invariant ways to introduce the interaction with
the EM field. In our earlier discussion of the potential form for the Lorentz Force Law,
we showed via the construction of a velocity-dependent potential that the appropriate
nonrelativistic Lagrangian for this interaction is

Lint = −q
(

V − ~v · ~A
)

(11.149)

This is already a Lorentz-invariant quantity when written in terms of the covariant
potential and the four-velocity:

Lint = −q vµAµ = −q

[
c

V

c
− ~v · ~A

]
= −q

(
V − ~v · ~A

)
(11.150)

We can confirm that it yields a sensible canonical momentum (again using ~v · r̂i for
the components of the three-velocity to avoid confusion with the space components of
the four-velocity):

πi =
∂L

∂ (~v · r̂i )
= −m c2 1

2
γ

(
−2 (~v · r̂i )

c2

)
− q

(
−Ai

)
= γm (~v · r̂i ) + q Ai (11.151)

which is what we expect from the nonrelativistic version ~π = m ~v + q ~A along with the
relativistic replacement m ~v → γm ~v .
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The Euler-Lagrange Equations are

0 =
d

dt

∂L

∂ (~v · r̂i )
− ∂L

∂x i
(11.152)

=
d

dt

(
γm (~v · r̂i ) + q Ai

)
+ q

∂

∂x i

(
V − ~v · ~A

)
(11.153)

=
d

dt
(γm (~v · r̂i )) + q

[
∂A

∂t

i

+
(
~v · ~∇

)
Ai

]
+ q

∂V

∂x i
− q

∂

∂x i

(
~v · ~A

)
(11.154)

=
d

dt
(γm (~v · r̂i )) + q

[
∂V

∂x i
+
∂A

∂t

i
]
− q

[
~v ×

(
~∇× ~A

)]
· r̂i (11.155)

where we used the convective derivative (Equation 10.24) to expand dAi/dt and then
we used the BAC − CAB rule to reconstruct the triple cross-product in the last
equation. Separating the time derivative of the momentum from the other terms, we
find

d

dt
(γm (~v · r̂i )) = q

[
− ∂V

∂x i
− ∂A

∂t

i
]

+ q
[
~v ×

(
~∇× ~A

)]
· r̂i (11.156)

= q
[
~E + ~v × ~B

]
· r̂i (11.157)

which is exactly the relativistic version of the Lorentz Force Law we derived earlier
(Equations 11.139 and 11.140).
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It is somewhat unsatisfying that we do not trivially recover the relativistically covariant
version of the Lorentz Force Law, Equation 11.135, but that is because the standard
Euler-Lagrange Equations are inherently non-covariant — they treat time and space
coordinates differently (though the Lagrangian itself can be composed of Lorentz
covariant quantities). We will deal with this in the next section.

Did we have other options for Lint ? The only quantities we have for the EM field from
which to construct a Lagrangian are the covariant potential Aµ, the field strength
tensor Fµν , and its dual Gµν , and the only quantity from the particle is the four
velocity vµ. Had we tried to construct Lint using either of the field strength tensors
instead, we would have obtained a Lagrangian quadratic in vµ since these tensors
have two indices to contract over. If one starts to work out the resulting equations of
motion, one finds that they just aren’t sensible and cannot yield the nonrelativistic
limit. So we are left to use only Aµ and vµ, yielding the form we already checked
above.

Section 11.5.1 Lagrangian Formulation for Particle-Field Interaction Page 835



Section 11.5 Relativity and Electrodynamics: Lagrangian Formulation of Relativistic Electrodynamics (Optional)

Lagrangian Density for the EM Field and Recovery of Maxwell’s Equations

We previously introduced the concept of Lagrangian densities in the context of
deriving the Schrödinger Equation by treating the quantum mechanical wavefunction
ψ as a classical field and extending the Lagrangian formalism to such fields, treating
the value of the wavefunction at each point in space and an infinite set of degrees of
freedom evolving in time, ψ(~r , t). We will do the same here for the covariant potential
and the EM field tensor.

The obvious question is: what do we write down for the Lagrangian density for the
EM field? A good starting principle is that we want the Lagrangian density to be a
Lorentz scalar. We know of two Lorentz scalars we can build with the EM field tensor,
FµνFµν and FµνGµν . We did note it before, but the latter version is undesirable
because Gµν is a pseudotensor, meaning that it does not change sign under coordinate
inversion. The Lagrangian density itself should be invariant under coordinate
inversion, so the first form is but the latter form is not. So we choose the first form.

In order to get Maxwell’s Equations with sources, we clearly need to include an
interaction term. The generalization of the interaction Lagrangian for a single particle
with the EM field, −q vµ Aµ is −JµAµ.

With foreknowledge of the appropriate coefficients needed to obtain the correct
Maxwell’s Equations, we therefore propose for the Lagrangian density

L = − 1

4µo
FµνFµν − JµAµ
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Next, we must obtain the Euler-Lagrange equations for this Lagrangian. We have to
choose the degrees of freedom. While it might seem like they should be the
components of Fµν , we know these components are highly redundant. We have the
mathematical constraint that arises via construction that ∂µGµν = 0
(Equation 11.124). This, along with the presence of Aµ in the interaction Lagrangian
density, suggests that we should treat Aµ as our degrees of freedom.

The second question is: what are the relativistically covariant Euler-Lagrange
Equations? It turns out the correspondence is (see, e.g., Goldstein, Poole, and Safko)

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk

= 0 −→ ∂µ
(

∂L
∂ (∂µAν)

)
− ∂L
∂Aν

= 0

Given the above two points, it makes sense to rewrite the Lagragian density in a
manner that makes the dependence on Aν explicit and also makes all appearances of
∂µ and Aν consistent with the version in the Euler-Lagrange Equations:

L = − 1

4µo
gαβgγδ

(
∂βAδ − ∂δAβ

)
(∂αAγ − ∂γAα)− JµAµ
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Let’s calculate the required derivatives:

∂L
∂ (∂µAν)

= − 1

4µo
gαβgγσ

[
δ βµ δ

σ
ν Fαγ − δ σµ δ βν Fαγ + δ αµ δ γν Fβσ − δ αµ δ γν Fβσ

]
= − 1

µo
Fµν by symmetry of gµν and antisymmetry of Fµν

∂L
∂Aν

= −Jµ

Thus, we have

∂µ
(
− 1

µo
Fµν

)
+ Jµ = 0 =⇒ ∂µFµν = µo Jµ

which recovers Equation 11.124! We will not be able to recover Equation 11.126
because it is not dynamical but rather it is a mathematical identity given the
construction of Fµν from Aµ.
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Relativistic Conservation Laws (Optional)

Maxwell Energy-Momentum Tensor and Conservation of Energy-Momentum

It is natural to generalize the Maxwell Stress Tensor that we defined some time ago.
We define the Maxwell Energy-Momentum Tensor T as

Tµν =
1

µo

[
Fµλ Fλν +

1

4
gµν Fλσ Fλσ

]
(11.158)

The components of T are (recall, we found the relativistic invariant Fµν Fµν before):

T 00 =
1

µo

[
F 0

0 F 00 + gij F 0j F i0 +
1

4
g00

(
− 2

c2

)(
E 2 − c2 B2

)]
(11.159)

=
1

µo

[
(−1)

(
−E 2

c2

)
− 1

2

(
E 2

c2
− B2

)]
=
εo

2

(
E 2 + c2 B2

)
= ufield (11.160)

where ufield is the EM field energy density.
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The space-space components are

T ij =
1

µo

[
F iλ gλσ Fσj − g ij

2

(
E 2

c2
− B2

)]
(11.161)

=
1

µo

[
g00 F i0 F 0j + gk`

(
F ik F `j

)
+
δij

2

(
E 2

c2
− B2

)]
(11.162)

=
1

µo

[
F i0 F 0j −

(
F ik F kj

)
+
δij

2

(
E 2

c2
− B2

)]
(11.163)

=
1

µo

[
− 1

c2
Ei Ej − εik` B` εkjm Bm +

δij

2

(
E 2

c2
− B2

)]
(11.164)

= εo

[
−Ei Ej + c2 εi`k B` εjmk Bm +

δij

2

(
E 2 − c2B2

)]
(11.165)

= εo

[
−Ei Ej + c2

(
δij δ`m − δim δ`j

)
B` Bm +

δij

2

(
E 2 − c2B2

)]
(11.166)

= εo

[
−Ei Ej − c2Bi Bj +

δij

2

(
E 2 + c2B2

)]
= −

(
T
)

ij
(11.167)

i.e., the negative of the Maxwell Stress Tensor we defined in Equation 8.31. (To be
clear, T is the four-tensor while T is the three-tensor.) Note that we allow space-space

(roman) indices to be contracted without requiring one raised and one lowered index.
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The space-time components are

T 0i =
1

µo
F 0λ gλσ Fσi =

1

µo
F 0j gjk F ki = − 1

µo
F 0jδjk F ki = − 1

µo
F 0j F ji (11.168)

where we used F 00 = 0 in the first step to reduce λ to j , the diagonality of g in the
second step to reduce the sum over σ to k, and finally the fact that gjk = −δjk in the
third step. Then, we have

T 0i = − 1

µo

(
−Ej

c

)(
−εjik Bk

)
=

1

µo

1

c
εijk Ej Bk =

1

c
Si = c pfield,i (11.169)

where ~S = ~E × ~B/µo is the Poynting vector. Summarizing,

Tµν =

[
ufield c ~g

c ~g −T
]

(11.170)
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With the energy-momentum tensor in hand, it is natural to rewrite our energy and
linear momentum conservation laws using it. If we take the four-divergence of the
energy-momentum tensor, we find

∂µTµν =
1

µo

[(
∂µFµλ

)
Fλν + Fµλ∂µFλν +

1

4
∂ν
(

Fλσ Fλσ
)]

(11.171)

We use the inhomogeneous Maxwell Equation, ∂µFµν = µo Jν , to rewrite the first
term and move it to the left side, and we also rewrite the right side (splitting the first
term into two copies and applying the product rule to the second term):

∂µTµν − JλFλν =
1

2µo
Fµλ

[
∂µFλν + ∂µFλν + ∂νFµλ

]
(11.172)

We may rewrite the last two terms using the homogeneous Maxwell Equation, which
we rewrite as:

0 = ∂σGσλ =
1

2
∂σε

σλνµFνµ = ∂λFνµ + ∂µFλν + ∂νFµλ (11.173)

−∂λFνµ = ∂µFλν + ∂νFµλ (11.174)

The last step in the first line is obtained by just writing out all the terms and
combining the ones that differ by a single flip of two indices; it may seem strange that
four equations (λ = 0, 1, 2, 3) became 64 equations (λ, µ, ν = 0, 1, 2, 3), but many
of them vanish and the others are redundant (see how convenient the dual tensor is!).
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Using this in the equation for the divergence of the energy-momentum tensor, and
then reordering the indices on the second term on each side (and picking up minus
signs), we have

∂µTµν − JλFλν =
1

2µo
Fµλ

[
∂µFλν − ∂λFνµ

]
(11.175)

∂µTµν + FνλJλ =
1

2µo
Fµλ

[
∂µFλν + ∂λFµν

]
(11.176)

The quantity in brackets on the right side is now symmetric in µ and λ, while Fµλ is
antisymmetric, so the right side vanishes. Moving the field-current term to the right
side, we obtain

∂µTµν = −FνλJλ (11.177)

If we write out the time and space components of this four-vector equation, we obtain

∂ufield

∂t
+ ~∇ · ~S = − ~J · ~E = −∂umech

∂t
(11.178)

∂~g

∂t
− ~∇ · T = −

[
ρ~E + ~J × ~B

]
= −∂~pmech

∂t
(11.179)

which are Equations 8.15 and 8.40 from our discussion of conservation laws.
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Angular Momentum Tensor

The relativistic angular momentum tensor M has coordinate representation

Mµνσ = − [Tµν rσ − Tµσrν ] = Tµσrν − Tµν rσ (11.180)

which is the natural generalization of the three-dimensional angular momentum
current density tensor we defined earlier, Equation 8.57; we will see its
space-space-space components recover that definition (up to a sign, which is the same
sign difference between the relativistic and nonrelativistic versions as we saw for the
stress tensor). However, in three dimensions, we could write those as a cross-product.
That is not possible in four dimensions. Instead, we use the analogous construction,

the antisymmetrized product of
⇒
r and T . This is called the wedge product and is

written as

M = −T ∧ ⇒r (11.181)

where the ∧ indicates the antisymmetric difference over the index of the space-time
position four-vector and the last index of the stress tensor.
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Let’s work out what the components of this tensor are:

M000 = 0 (11.182)

−M0i0 = M00i = −
[
T 00r i − T 0i r0

]
= −u r i +

S i

c
c t = −u r i + c g i c t ≡ −c2N i

(11.183)

M0ij = −
[
T 0i r j − T 0j r i

]
= −S i

c
r j +

S j

c
r i = c (~r ∧ ~g)ij ≡ c `ij

field (11.184)

M i00 = 0 (11.185)

−M ij0 = M i0j = −
[
T i0r j − T j0r i

]
= −

[
S i

c
r j −

(
T
)ij

c t

]
=
(
T
)ij

c t − c g i r j

(11.186)

M ijk = −
[
T ij rk − T ik r j

]
=
(
T
)ij

rk −
(
T
)ik

rk =
(
T ∧ ~r

)ijk
=
(
−M

)ijk

(11.187)

where we have defined the relativistic energy three-moment c2 ~N, the
three-dimensional angular momentum density tensor `

field
= ~r ∧ ~g , and the

three-dimensional torque tensor M = −T ∧ ~r . The latter two are the wedge-product
generalizations of the three-dimensional versions that involved cross products
(Equations 8.67 and 8.57). The interpretation of the space-space-time and
space-time-space components will become clear later. We unfortunately cannot write
the breakdown in a nice matrix form as we did for T because M has three indices.
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Let’s write down a conservation law for this tensor using ∂µTµν = −FνλJλ and
∂µrν = δ νµ :

∂µMµνσ = −∂µTµν rσ + ∂µTµσrν (11.188)

=
[(

FνλJλ

)
rσ −

(
FσλJλ

)
rν
]

+
[
−Tµνδ σµ + Tµσδ νµ

]
(11.189)

=
[
rσFνλ − rνFσλ

]
Jλ + [−Tσν + Tνσ] (11.190)

=
(⇒

r ∧ F
)σνλ

Jλ =
(
−⇒r ∧ F

)νσλ
Jλ (11.191)

where, in the penultimate step, we used the symmetry of the stress tensor and, in the
last step, we used the asymmetry of the wedge product (the νσ indices are the
wedge-product indices). Let’s break this down piece-by-piece.

The time-time component (ν = 0, σ = 0) is trivial because Mµ00 = 0 and the right
hand side is also antisymmetric in these indices.

The space-time components (ν = 0, σ = i and vice versa) imply a relationship between
center-of-mass motion and the total linear momentum. We will not explore that here.
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Let’s consider the space-space components µ = i , ν = j next. The left-hand side is

∂µMµij = ∂0M0ij + ∂k Mkij =
1

c

∂

∂t

(
c `ij

field

)
+∇i

(
−M

)ijk
=

(
∂

∂t
`

field
− ~∇ ·M

)ij

(11.192)

The right-hand side is

−
[
r i F jλ − r j F iλ

]
Jλ = −r i E j

c
ρ c − r i

(
−εjkmBm

) (
−Jk

)
− (i ↔ j) (11.193)

= −
(
~r ∧ ρ~E

)ij
−
[

r i
(
~J × ~B

)j
− (i ↔ j)

]
(11.194)

= −
(
~r ∧ ρ~E

)ij
−
[
~r ∧
(
~J × ~B

)]ij
= − ∂

∂t
`ij

mech
(11.195)

where we have written down the differential version of Equation 8.51, replacing the
cross products in that expression with wedge products, and we have also replaced the
mechanical angular momentum density cross product ~̀mech with the wedge product
version `

mech
. Thus, we have

∂

∂t
`

field
− ~∇ ·M = − ∂

∂t
`

mech
(11.196)

which is Equation 8.68 showing that the rate of change of the angular momentum
density is given by the divergence of the torque tensor.
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Section 12.1 Radiation: Potentials, Fields, and Power Radiated by an Accelerated Point Charge

Potentials, Fields, and Power Radiated by an Accelerated Point
Charge

Introduction and Study Guide

Our practical goal is to calculate the power radiated by an accelerated point charge.
To get there, we need to calculate the potentials of an accelerated point charge, then
the fields, and from the fields the power.

We proceed in a very different manner than Griffiths. In §10.3.1, Griffiths uses the
retarded potential formulae (Equation 10.71) to do a direct calculation of the
Lienard-Wiechert potential, which is challenging. Then, in §10.3.2, Griffiths brute-force
differentiates the potentials to get the fields. Instead, we have used relativity to obtain
the potentials of a particle moving at fixed velocity — the Lienard-Wiechert potentials
— and its fields in terms of the current position of the particle. We can rewrite the
results in terms of the retarded time. Then, we return to the Lienard-Wiechert
potentials and incorporate the effect of acceleration through possible time-dependence
of the velocity by direct differentiation allowing the velocity to vary, which is much
easier now that we have accounted for all other time dependences via the
relativity-based derivation of the Lienard-Wiechert potentials and corresponding fields.
Finally, from the fields we calculate the radiated power pattern for the general case,
specializing to slowly moving particles at the end to obtain the Larmor Formula.
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We calculate the power radiated by an accelerated charge before moving on to the
general topic of dipole and multipole radiation. Griffiths proceeds in the opposite order
for reasons that are not clear, first doing dipole/multipole radiation in Section 11.1
before doing the radiation of a moving point charge in Section 11.2.1.

Our treatment of the calculation of the fields follows, partially, that of M. Cross’s
Ph106c lecture notes, which do not appear to follow any specific textbook. The
treatment of radiation follows that of Heald and Marion Sections 8.7 and 8.8.

We will not cover the topic of radiation reaction (Griffiths 11.2.2 and 11.2.3) — it’s
interesting, but there is not much to add to what Griffiths says.
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Potentials and Fields of a Fixed-Velocity Point Charge in Terms of Current
Position

Let’s first reiterate the potentials and fields of a moving point charge that we
calculated using Lorentz Transformations in a form that will be useful going forward.
From Equations 11.78 and 11.79:

Lienard-Wiechert
scalar potential

using current position
V (~r , t) =

1

4π εo

q

R(~r , t)

1√
1− β2 sin2 θ

(12.1)

Lienard-Wiechert
vector potential

using current position

~A(~r , t) =
µo

4π

q c ~β

R(~r , t)

1√
1− β2 sin2 θ

(12.2)

It is very important for us to note that, even though the above potentials were derived
using Lorentz Transformations — i.e., fixed velocity — they turn out to be the same
as what one would get by working from the general forms for the retarded potentials
(Equation 10.71). That derivation is done in Griffiths §10.3.1.
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There is an intuitive reason for this matchup, which does not hold for the fields. The
retarded potential expressions involve the position of the point charge. The process of
doing the integral can involve Jacobians, which involves first derivatives and thus
might involve the velocity. But there is no way for second derivatives to appear, and
thus acceleration cannot be relevant. If acceleration does not matter, then the
fixed-velocity derivation using Lorentz Transformations must be valid even in the
accelerating case.

And from Equations 11.112 and 11.113:

Electric field
of moving point charge
using current position

~E(~r , t) =
q

4π εo

~R

R3

1− β2[
1− β2 sin2 θ

]3/2
(12.3)

Magnetic field
of moving point charge
using current position

~B(~r , t) =
µo

4π

q c ~β × ~R

R3

1− β2[
1− β2 sin2 θ

]3/2
(12.4)

Relation between electric and
magnetic fields of moving point charge

using current position

~B =
1

c
~β × ~E (12.5)
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Comments:

I The forms suggest that the potential information at the field point (the point at
which one wants to know the potentials and fields) acts as if the particle had
kept moving at the velocity it had when the potential information left the
particle. Effectively, the retarded potential carries information not just about the
position of the particle at the retarded time but also about its velocity! And, of
course, it is not affected yet by later time events!

I The potentials and fields are forward-backward symmetric in magnitude. We
shall see that, when we rewrite using retarded time, they are not!

I The potentials are enhanced in the transverse direction by a factor
γ = 1/

√
1− β2 and take on the static values in the forward and backward

directions along the direction of motion.

I The fields have enhanced angular and β dependence. The field is enhanced by a
factor 1/

√
1− β2 (the Lorentz factor of the particle, γ) in the plane transverse

to the direction of motion (at θ = π/2) and reduced by a factor 1− β2 along
the axis of motion (θ = 0 or θ = π).

I The relation ~B ∝ ~β × ~E along with ~E ∝ ~R implies that ~B wraps around ~β
following the right-hand rule.
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Potentials and Fields of a Fixed-Velocity Point Charge in Terms of Retarded
Position

When we calculate the fields of an accelerating charge, we find that it is more
convenient (or, rather, less inconvenient) to start from expressions for the potentials
and fields in terms of the retarded position, the position of the particle at the retarded
time. We therefore need to relate the current position to the retarded position. We
make use of the following figure, with ~w(t) being the particle trajecory and ~β = ~w ′/c
its constant velocity:

The point O is the position ~r at which we want to calculate the potential, the field
point. The points A and B are the position of the particle at the retarded time tr and
the current time t. The vectors AO and BO are given by

AO : ~Rr (t) = ~r − ~w(tr ) BO : ~R(t) = ~r − ~w(t) (12.6)

Griffiths uses a boldface script r for our ~Rr and a boldface R for our ~R. These are the
retarded relative position and the current relative position.
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We can relate γ to α and θ:

γ = π −
(
θ +

(π
2
− α

))
=
π

2
− (θ − α) (12.7)

=⇒ cos γ = cos
[π

2
− (θ − α)

]
= sin (θ − α) = sin θ cosα− cos θ sinα (12.8)

Then, from the figure,

Rr sinα = R sin θ (12.9)

because the right triangles with ~Rr and ~R as hypotenuses share the same vertical side,
PO. We also have

|AP| = |AB|+ |BP| (12.10)

=⇒ Rr cosα = β Rr + R cos θ (12.11)

We use the above two relations to substitute for cosα and sinα in the expression for
cos γ:

cos γ = sin θ

[
sin θ

β Rr + R cos θ

Rr
− cos θ

R sin θ

Rr

]
= β sin θ (12.12)
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Thus, we can rewrite the denominator of Equation 12.1:

R

√
1− β2 sin2 θ = R

√
1− cos2 γ (12.13)

From the figure, we also see

R
√

1− cos2 γ = |BO| sin γ = |CO| = |AO| − |AC | (12.14)

= Rr − ~β Rr · R̂r = Rr

(
1− ~β · R̂r

)
(12.15)

which is obtained as follows. The vector AO is ~Rr , so |AO| = Rr . AC is part of a
right triangle whose hypotenuse is AB, the distance between the retarded position and
the current position. |AB| = βRr , the distance the particle moves during the time it
takes light to travel the distance from the retarded position to the field point. The
angle between AC and AB is θ, the angle between the velocity of the particle and the
retarded position vector. So cos θ = β̂ · R̂r . Therefore,
|AC | = |AB| cos θ = β Rr β̂ · R̂r = ~β · Rr R̂r . So

R

√
1− β2 sin2 θ = Rr

(
1− ~β · R̂r

)
(12.16)
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Inserting this into Equations 12.1 and 12.2, we obtain

Lienard-Wiechert
scalar potential

using retarded position
V (~r , t) =

1

4π εo

q

Rr (~r , t)

1

1− ~β(tr ) · R̂r (~r , t)

(12.17)

Lienard-Wiechert
vector potential

using retarded position

~A(~r , t) =
µo

4π

q c ~β(tr )

Rr (~r , t)

1

1− ~β(tr ) · R̂r (~r , t)
(12.18)

These are versions of the Lienard-Wiechert potentials that use the retarded position of
the particle. It has been assumed that the particle has constant velocity between tr

and t. The β → 0 limit is also clear here: the correction term becomes unity.
Comments:

I These potentials are what one might expect based on the retarded time, but
with a correction factor related to the angle between the direction of motion
and the position vector between the moving particle and the observer.

I While ~β · R̂r > 0 is possible, the correction factor is always nonnegative because
β < 1.

I The potentials are stronger than the steady-state case in the half-space ahead of
the particle and weaker in the half-space behind it, with the steady-state value
obtained on the boundary. This effect can be understood in terms of a “piling
up” effect that is like that of the non-relativistic Doppler shift. This
phenomenon is discussed in more detail in Griffiths §10.3.1.
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I How do we explain the above change from forward-backward-symmetric to
asymmetric?

I The potential is forward-backward symmetric when we consider the
particle at two points (with O ahead or behind the particle) with the same
value of current distance R.

I However, because the particle is moving asymmetrically in the direction ~β,
these two points equidistant from O in R are not equidistant from O in
Rr : Rr > R when O is ahead of the particle and Rr < R when O is
behind the particle. This difference confounds our forward-backward
asymmetry expectations (for a reason we will explain in the comment
after the next one).

I If we think about two points that are equidistant in Rr , then we recognize
that the one for which O is ahead of the particle will have R < Rr and the
one for which O is behind the particle will have R > Rr . In addition, θ
will be closer to π/2 for the former than for the latter. These effects
make the denominator in the “current position” expressions smaller for
the former case, thus giving the forward enhancement and backward
reduction we expect.

I Considering again the two points equidistant in R, we noted above that
the point for which O is ahead of the particle has larger Rr : the forward
enhancement is canceled by the greater distance Rr , rendering the
potential strength equal for the two points.
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We can also use the above form to obtain the fields in terms of the retarded position.
Recall the relation that we used to convert the Lienard-Wiechert potentials from
retarded position to current position:

R

√
1− β2 sin2 θ = Rr

(
1− ~β · R̂r

)
(12.19)

Revisiting the geometry, we also have

~R = ~Rr − ~β Rr = Rr

(
R̂r − ~β

)
(12.20)

In addition, we note that, because ~E ∝ ~R = Rr (R̂r − ~β), then (R̂r − ~β)× ~E = 0 and
therefore

~B =
1

c
~β × ~E =

1

c

[
~β +

(
R̂r − ~β

)]
× ~E =

1

c
R̂r × ~E (12.21)
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Inserting the above relations into the equations for the fields in terms of the current
position, we have

Electric field of fixed
velocity point charge

using retarded position

~E(~r , t) =
q

4π εo

(
~Rr − ~β Rr

)
R3

r

(
1− β2

)[
1− ~β · R̂r

]3
(12.22)

Magnetic field of fixed
velocity point charge

using retarded position

~B(~r , t) =
µo

4π

q c ~β × ~Rr

R3
r

(
1− β2

)[
1− ~β · R̂r

]3
(12.23)

Relation between electric and magnetic
fields of fixed velocity point charge

using retarded position

~B =
1

c
~β × ~E =

1

c
R̂r × ~E (12.24)

These match Griffiths Equations 10.72 and 10.73 with zero acceleration (~a = 0). ~B

wraps around ~β as for the current position fields.
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Comments:

I These fields have a reduction factor 1− β2 in the numerator, but the overall
reduction/enhancement relative to the static case is more complex.

I Unlike the current position fields, there is a forward-backward asymmetry with
enhancement (1− β2)/(1− β)3 in the forward direction and reduction
(1− β2)/(1 + β)3 in the backward direction.

I These factors are different from those for the potentials, which had only one
power of 1− ~β · R̂r in the denominator.

I The electric field does not point along ~Rr : the field points along the current
relative position vector, not the retarded relative position vector

I Again, information about both the position and velocity seems to be
transmitted in the fields.

Section 12.1.3 Potentials and Fields of a Fixed-Velocity Point Charge in Terms of Retarded Position Page 861



Section 12.1 Radiation: Potentials, Fields, and Power Radiated by an Accelerated Point Charge

Potentials and Fields of an Accelerated Point Charge

In calculating the fields from the Lienard-Wiechert potentials, we assumed the charge
was moving uniformly — that ~β was constant — by passing it through all derivatives.
Let’s now drop this assumption. Since our prior derivations assumed that ~β was the
velocity vector at the retarded time, we will replace ~β with ~β(tr ) in all our prior
expressions.

We will find that it is more convenient (or, rather, less inconvenient) to use the
retarded position expressions for the Lienard-Wiechert potentials.

We assume the particle has a trajectory ~w(t) and that its instantaneous velocity is
~β(t) = ~w ′(t)/c. We will end up evaluating these and derivatives thereof at tr .

First, let’s consider the partial derivatives of ~β(tr ). Evaluating these is difficult
because of the somewhat circular dependence of ~w(tr ) and tr , so we use an unobvious
but clever technique to do so. We start with the definition of tr ,
tr = t − |~r − ~w(tr )|/c, rewriting it as

c2 (t − tr )2 = (~r − ~w(tr )) · (~r − ~w(tr )) (12.25)
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Let’s take the partial derivatives of both sides. First, with respect to t holding ~r fixed,
and recalling that c (t − tr ) = Rr and ~β = ~w ′/c,

2 c2 (t − tr )

(
1− ∂ tr

∂t

∣∣∣∣
~r

)
= 2 (~r − ~w(tr )) ·

(
−~w ′(tr )

) ∂ tr

∂t

∣∣∣∣
~r

(12.26)

−
[
c Rr − ~Rr · c ~β(tr )

] ∂ tr

∂t

∣∣∣∣
~r

= −c Rr (12.27)

∂ tr

∂t

∣∣∣∣
~r

=
1

1− ~β(tr ) · R̂r

(12.28)

We repeat the same procedure with ∂/∂ri , holding t fixed:

−2 c2 (t − tr )
∂ tr

∂ri

∣∣∣∣∣
t

= 2

[
(ri − wi (tr )) + (~r − ~w(tr )) ·

(
−~w ′(tr )

) ∂ tr

∂ri

∣∣∣∣∣
t

]
(12.29)

−
[
c Rr − ~Rr · c ~β(tr )

] ∂ tr

∂ri

∣∣∣∣∣
t

= Rr,i (12.30)

∂ tr

∂ri

∣∣∣∣∣
t

= − 1

c

Rr,i/Rr

1− ~β(tr ) · R̂r

(12.31)
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From these, we can calculate derivatives of ~β, defining ~β ′ = ~w ′′/c as the first

derivative of ~β or second derivative of ~w/c with respect to its argument:

∂βi

∂t

∣∣∣∣
~r

= β′i (tr )
∂ tr

∂t

∣∣∣∣
~r

=⇒ ∂ ~β

∂t

∣∣∣∣∣
~r

= ~β ′(tr )
∂ tr

∂t

∣∣∣∣
~r

(12.32)

∂βi

∂rj

∣∣∣∣∣
t

= β′i (tr )
∂ tr

∂rj

∣∣∣∣∣
t

=⇒ ∂ ~β

∂rj

∣∣∣∣∣
t

= ~β ′(tr )
∂ tr

∂rj

∣∣∣∣∣
t

(12.33)

where the partial derivatives of tr are what we just calculated.

Next, we can use these expressions to calculate derivatives of ~β · R̂r , the quantity
involving ~β that appears in the denominator of the potential expressions. Remember
that the prior process of calculating the fields using Lorentz transformation takes all
the necessary derivatives of all parts of the potentials, including derivatives of R̂r ,
except derivatives of ~β. Therefore, when evaluating derivatives of ~β · R̂r , we do not
need to take derivatives of R̂r , so we indicate it is held fixed:

∂

∂t

(
~β · R̂r

)∣∣∣∣
~r,R̂r

=
∂

∂t

∑
i

βi
Rr,i

Rr

∣∣∣∣∣
~r,R̂r

=
∑

i

β′i
Rr,i

Rr

∂ tr

∂t

∣∣∣∣
~r,R̂r

=
(
~β ′ · R̂r

)∂ tr

∂t

∣∣∣∣
~r,R̂r

(12.34)

∂

∂rj

(
~β · R̂r

)∣∣∣∣∣
t,R̂r

=
∂

∂rj

∑
i

βi
Rr,i

Rr

∣∣∣∣∣
t,R̂r

=
∑

i

β′i
Rr,i

Rr

∂ tr

∂ri

∣∣∣∣∣
t,R̂r

=
(
~β ′ · R̂r

)∂ tr

∂ri

∣∣∣∣∣
t,R̂r

(12.35)
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Next, to calculate ~E , we start from Equations 12.17 and 12.18 but now allow ~β to be
differentiated also. We only show the new terms, understanding that ~β and ~β ′ are
evaluated at tr :

−∂V

∂ri

= −∂V

∂ri

∣∣∣∣∣
~β

− 1

4π εo

q

Rr

−1[
1− ~β · R̂r

]2

− ∂

∂ri

[
~β · R̂r

]∣∣∣∣∣
t,R̂r

 (12.36)

= −∂V

∂ri

∣∣∣∣∣
~β

+
q

4π εo

1

c

Rr,i

R2
r

1[
1− ~β · R̂r

]3
~β ′ · R̂r (12.37)

=⇒ −~∇
~r,R̂r

V = −~∇~r V
∣∣∣
~β

+
q

4π εo

1

c

R̂r

Rr

1[
1− ~β · R̂r

]3
~β ′ · R̂r (12.38)

−∂
~A

∂t
= −∂

~A

∂t

∣∣∣∣∣
~β

− µo

4π

q c

Rr

 −~β[
1− ~β · R̂r

]2

(
− ∂

∂t

[
~β · R̂r

]∣∣∣∣
~r,R̂r

)
+

1

1− ~β · R̂r

∂ ~β

∂t

∣∣∣∣∣
~r,R̂r


(12.39)

= −∂
~A

∂t

∣∣∣∣∣
~β

− µo

4π

q c

Rr

1[
1− ~β · R̂r

]3

[
~β
(
~β ′ · R̂r

)
+
(

1− ~β · R̂r

)
~β ′

]
(12.40)

where we used our formulae from the previous two pages.
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We can combine the three terms, recognizing that εo µo = 1/c2:

~E = ~E
∣∣∣
~β

+
q

4π εo

1

c Rr

1[
1− ~β · R̂r

]3

[(
R̂r − ~β

)(
R̂r · ~β ′

)
+
(

1− ~β · R̂r

)
~β ′
]

(12.41)

Finally, using the BAC − CAB rule and adding powers of Rr to turn R̂r into ~Rr :

~E(~r , t) = ~E(~r , t)
∣∣∣
~β

+
q

4π εo

1

R3
r

1

c

~Rr ×
[(
~Rr − ~β Rr

)
× ~β ′

]
[
1− ~β · R̂r

]3

Electric field
of accelerated
point charge

using retarded
position

(12.42)

(~β and ~β ′ are evaluated at tr .) We see that the expression is very similar to the

fixed-~β term, Equation 12.22, except that
(
~Rr − ~β Rr

) (
1− β2

)
is replaced with the

triple cross product. We also see that this term is smaller than the fixed-~β term by a
factor (Rr/c)β′, which is sensible: this factor is the ratio of the light travel time to
the characteristic relativistic acceleration timescale (i.e., where the latter is normalized
to c, not to c β, as we discussed in the context of Jefimemko’s Equations,
Equations 10.106 and 10.107.)
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Similarly,

Bi = Bi |~β +
∑
j,k

εijk
∂

∂rj

[
µo

4π

q c βk (tr )

Rr (~r , t)

1

1− ~β(tr ) · R̂r (~r , t)

]∣∣∣∣∣
t,R̂r

(12.43)

= Bi |~β +
µo

4π

q c

Rr

∑
j,k

εijk


∂βk
∂rj

∣∣∣∣
t,R̂r

1− ~β · R̂r

−
βj

∂
∂r

k

(
~β · R̂r

)∣∣∣
t,R̂r[

1− ~β · R̂r

]2

 (12.44)

= Bi |~β +
µo

4π

q c

Rr

∑
j,k

εijk

 β′k

(
− Rr,j

c Rr

)
[
1− ~β · R̂r

]2
−
βj

(
~β ′ · R̂r

)(
−Rr,k

c Rr

)
[
1− ~β · R̂r

]3

 (12.45)

=⇒ ~B = ~B
∣∣∣
~β

+
µo

4π

q

Rr

− R̂r × ~β ′[
1− ~β · R̂r

]2
+

~β × R̂r[
1− ~β · R̂r

]3
R̂r · ~β ′

 (12.46)
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Therefore (multiplying top and bottom by R2
r ),

~B(~r , t) = ~B(~r , t)
∣∣∣
~β

+
µo

4π

q

R3
r

(
Rr − ~β · ~Rr

)
~β ′ × ~Rr +

(
~Rr · ~β ′

)
~β × ~Rr[

1− ~β · R̂r

]3
(12.47)

(~β and ~β ′ are evaluated at tr .) As with ~E , we see a form similar to the fixed-~β term,

now with replacement of ~β × ~Rr (1− β2) by the complicated expression in the

numerator. Like for the electric field, this term is smaller than the fixed-~β term by a
factor (Rr/c)β′. If we compare this to Equation 12.41, the acceleration electric field
prior to application of the BAC − CAB rule, we can also conclude

~B =
1

c
R̂r × ~E 6= 1

c
~β × ~E

Magnetic field of accelerated point
charge using retarded position

(12.48)

Only one of the relations between ~E and ~B is preserved.
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The direction of these acceleration fields is dramatically different from that of the
fixed-velocity fields. The latter were similar in direction to the static field, with ~E ∝ ~R,
the current position vector and thus being radial, and ~B wrapping around ~β in the
usual azimuthal manner. By contrast, the acceleration electric field is perpendicular to
~Rr ; thus it is transverse to the vector from the retarded position. We will see below
that the remaining direction choice for ~E is set by the acceleration vector ~β ′: the
electric field is in the plane formed by ~Rr and ~β ′. The magnetic field direction is
completely determined by ~Rr and ~E : it is perpendicular to both, making it also
transverse relative to the retarded position (and thus also determined by ~Rr and ~β ′).

It is striking how the fixed-velocity fields seem to emanate from the current position of
the particle, and thus they carry information about the particle’s position and velocity
at the retarded time but transfer it forward to the current position, while the
acceleration fields clearly emanate from the particle’s retarded position and are
determined by its acceleration at the retarded time. The acceleration fields “make no
assumption” about the acceleration being fixed at times in the future, while the
fixed-velocity fields assume fixed velocity into the future.

We can view this differing behavior of fixed-velocity and acceleration fields as a
consequence of Galilean relativity (which is also the first postulate of special
relativity): for the fixed-velocity field, we are just taking the electrostatic field of a
point charge at rest and transforming frames. That transformation is valid at all space
and time points if the point charge frame has been moving at fixed velocity for all
time, and thus that transformation encodes information about the particle position
assuming fixed velocity. It can only depend on current position. By contrast, the
acceleration fields have to depend on retarded position due to causality.
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Poynting Vector Radiated by an Accelerating Point Charge

With the above detailed formulae for the fields due to an accelerated charge, we can
make our first study of radiation, which consists of the propagating fields created by
accelerated charges. We will of course calculate the power radiated using the Poynting
vector, ~S = ~E × ~B/µ0 (no need for complex conjugations or taking real parts because
all fields are real here; also, we don’t time average because we are not yet considering
sinusoidal behavior). We can quickly see that only the terms involving the acceleration

~a = c ~β ′ are important at large distances by extracting the dependences of various
terms from the full expressions:

~E
∣∣∣
~β

:
q

εo

1

γ2

1

R2
r

~B
∣∣∣
~β

:
q

εo

1

c

β

γ2

1

R2
r

(12.49)

~E − ~E
∣∣∣
~β

:
q

εo

1

c
~β ′

1

Rr

~B − ~B
∣∣∣
~β

:
q

εo

1

c2
(1 + β) ~β ′

1

Rr
(12.50)

The |~β terms are called the velocity terms and the others are called the acceleration

terms. Only the latter are important at large distances, the so-called far field.
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We note a number of important facts about the fields:

I We again recognize that the acceleration terms differ from the velocity terms by
a factor (Rr/c)β′, which is the ratio of the light travel time to the relativistic

acceleration timescale τa. This factor was introduced by the derivatives of ~β
that were taken to obtain the fields from the potentials.

I Note, too, that this factor causes the replacement of a factor of Rr in the
denominator with the length quantity c/β′, which is the distance light travels in
an acceleration timescale. This is a key replacement, as it is what make the
acceleration fields dominant at large distances, yielding the 1/R2 law for the
radiated power!

I The acceleration electric field is perpendicular to R̂r (because it is the result of a

cross-product including R̂r ), which points along the line-of-sight from the
retarded position of the point charge to the field point. This may be easier to
visualize if you imagine looking at the retarded position from the perspective of
the field point: R̂r is the vector pointing at you along that line-of-sight.

I The acceleration magnetic field is perpendicular to both this line-of-sight and
the acceleration electric field (because the magnetic field is proportional to the

cross product of R̂r and the electric field).
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Let’s now calculate the Poynting vector:

~S ≈ 1

µo

(
~E − ~E

∣∣∣
~β

)
×
(
~B − ~B

∣∣∣
~β

)
=

1

2µo

(
~E − ~E

∣∣∣
~β

)
× 1

c

[
R̂r ×

(
~E − ~E

∣∣∣
~β

)]
~S ≈ 1

c µo
R̂r

∣∣∣∣~E − ~E
∣∣∣
~β

∣∣∣∣2 (12.51)

where the last step used the BAC −CAB rule and R̂r · (~E − ~E |~β) = 0. We see that the

Poynting vector is along the line-of-sight from the retarded position to the field point.

We’ll consider the cases of the acceleration parallel and perpendicular to the velocity
separately and then add the two to get the fully relativistic result. We can then either
take its non-relativistic limit to get the Larmor Formula, or we can start from a
non-relativistic version of the electric field to get the same result.
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Acceleration Parallel to Velocity: Bremsstrahlung

Let’s first do the parallel acceleration case. A standard application of this case is to
calculate bremsstrahlung (“braking radiation”), the radiation an electron gives off as it
is decelerated by interaction with matter (primarily the Coulomb force from the

positive charge of nuclei.) We set ~β× ~β ′ = 0. The relevant piece of Equation 12.42 is

~E~β ′||~β =
q

4π εo

1

Rr

R̂r ×
(

R̂r × 1
c
~β ′
)

[
1− ~β · R̂r

]3
= − q

4π εo

1

Rr

1
c
~β ′⊥[

1− ~β · R̂r

]3
(12.52)

with ~β ′⊥ = ~β ′ − R̂r

(
R̂r · ~β ′

) projection of acceleration
perpendicular to line-of-sight from

the retarded position (R̂r )
(12.53)

or ~a⊥ = ~a− R̂r

(
R̂r · ~a

)
(12.54)

where we used the BAC − CAB rule to evaluate the triple cross product. The result
tells us that only the projection of the acceleration perpendicular to the line-of-sight is
responsible for the far-field radiation. (Be sure not to confuse this with the case of
acceleration perpendicular to the velocity! In fact, in this case, the acceleration is
parallel to the velocity.) A bit strange: velocity and acceleration in one direction only
yields radiation at angles away from that direction, and the radiation is strongest in
the direction perpendicular to the acceleration and velocity. If one thinks about the
relationship between the acceleration and the electric field direction, though, it makes
perfect sense: the electric field in a given direction is only affected by acceleration
parallel to that direction.
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Next, if we define ~a to be the z-axis of a spherical coordinate system and θ the polar
angle of the field point, then we have ~a = a ẑ, |~a⊥| = a sin θ, and ~β · R̂r = β cos θ, so

~S =
µo q2

16π2

1

c R2
r

a2 sin2 θ

[1− β cos θ]6
R̂r (12.55)

(We rewrote εo in terms of c and µo .) The energy radiated into a unit area per unit

field point time interval is d2U/dt dA = R̂r · ~S .

However, we will also be interested in knowing the energy lost by the particle per unit
time, so we need to convert the dt in the above to a dtr by dividing by ∂tr/∂t, which
we calculated in Equation 12.28. The distinction between the two is the same
(nonrelativistic!) “piling up” effect that we discussed earlier in the context of
calculating the Lienard-Wiechert potential. Therefore (multiplying by R2

r to convert
from power per unit area to power per unit solid angle):

dP

dΩ
=

d2U

dtr dΩ
=

d2U

dt dΩ

(
∂ tr

∂t

∣∣∣∣
~β

)−1

= R2
r R̂r · ~S

(
∂ tr

∂t

∣∣∣∣
~β

)−1

=
µo q2

16π2

1

c

a2 sin2 θ

[1− β cos θ]6

(
1− ~β · R̂r

)
(12.56)

dP

dΩ
=
µo q2

16π2

a2

c

sin2 θ

[1− β cos θ]5

power per solid angle radiated by a
point charge accelerated

parallel to direction of motion
(12.57)
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The following figure is a polar plot that illustrates the shape of this function for a
particle moving from left to right. When β � 1, one obtains a distribution symmetric
between the forward and the reverse direction. As β increases, the denominator begins
to take effect and the radiation is strongly directed into the forward hemisphere
(though the radiation along the direction of motion continues to vanish), with the
peak intensity found on a cone.

c© 2012 Heald and Marion, Classical Electromagnetic Radiation
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Bremsstrahlung is present in a variety of environments. In astrophysics, it is called
“free-free emission” and arises in hot, ionized plasmas where the electrons experience
acceleration as they Coulomb scatter with ions. It is the dominant emission
mechanism of the hot gas in galaxy clusters (where the bremsstrahlung appears at
X-ray energies) and of hot ionized plasma in our galaxies (where the lower
temperature gas yields bremsstrahlung at radio frequencies, up to 100–200 GHz).
Bremsstrahlung is also a dominant mechanism for energy loss by high-energy electrons
passing through matter, such as electrons produced by radioactive beta decay or by
pair-production by gamma rays.

One can integrate the above over all angles to obtain the total radiated power

P =
µo q2

6π

a2

c (1− β2)3
=
µo q2

6π

a2

c
γ6

total power radiated by a
point charge accelerated

parallel to direction of motion
(12.58)

where γ = (1− β2)−1/2 is the usual relativistic Lorentz factor. Note the strong
dependence on γ!
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Acceleration Perpendicular to Velocity: Synchrotron Radiation

Now, let’s do the perpendicular acceleration case. The archetypal example of this kind
of radiation is synchrotron radiation emitted by a particle being accelerated while in
circular motion, such as in a circular particle accelerator or in an astrophysical or
laboratory magnetic field. Unfortunately, in this case we have to keep both terms in
the accelerated electric field, Equation 12.42, and the expression is not simple. If we
set ~β = β ẑ and ~a = a x̂ , then one can work out the vector algebra (see, e.g., Heald
and Marion §8.8) to show

dP

dΩ
=
µo q2

16π2

a2

c

(1− β cos θ)2 −
(
1− β2

)
sin2 θ cos2 φ

[1− β cos θ]5

power per solid angle
radiated by a
point charge

moving along ẑ and
accelerated along x̂

(12.59)

θ is the polar angle relative to the particle’s direction of motion (i.e., angle away from
ẑ in this case), while φ is the azimuthal angle around the particle’s direction of
motion, with φ = 0 being along the acceleration direction (x̂ in this case).
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The classic example of synchrotron radiation is a charged particle executing circular
motion due to the Lorentz force in a uniform magnetic field, for which the velocity and
acceleration are perpendicular. The resulting radiation pattern (valid for any case of
perpendicular velocity and acceleration, not just circular motion) is shown below. As
β → 1, the radiation becomes “beamed” in the direction of motion. In the β → 0
limit, the radiation pattern is a donut whose axis is along ~a, so the radiation in the
forward direction and in the perpendicular direction along ŷ have the same intensity.

c© 2012 Heald and Marion, Classical Electromagnetic Radiation

The dashed lines indicate the angle at which the radiated power vanishes, and the ×
factors indicate the enhancement of the “backward” lobe for visualization (which, in
fact, moves to the forward hemisphere as β → 1).
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Synchrotron radiation is also present in a variety of environments. Synchrotron light
sources put electrons in a circular ring, producing intense light in the direction tangent
to the circle. Such light sources produce photons in energy from tens of eV (hard UV)
to tens of keV (hard X-ray), mostly for studies of materials. Synchrotron radiation is
used as a beam monitor for high-energy physics electron storage rings (LEP and
BaBar in the 1990s–2000s). Synchrotron radiation is ubiquitous in astrophysical
environments. It is the dominant mechanism for radio emission from our galaxy at
tens of GHz and lower frequencies, arising from electrons spiraling in the magnetic
fields of supernova remnants. It is the dominant source of emission in pulsars and
magnetars, spinning neutron stars with enormous magnetic fields. It is also the
dominant mechanism in the jets of accelerated particles emitted by the supermassive
black holes that power active galactic nuclei: the magnetic field winds up and threads
the jets emitted from the poles of the rotating black hole, and the particles
accelerated in the jet execute circular motion around the field lines, emitting
synchrotron radiation. Synchrotron radiation is generally highly polarized because the
field line geometry creates a preferred direction.

The total radiated power is (weaker but still strong dependence on γ)

P =
µo q2

6π

a2

c (1− β2)2
=
µo q2

6π

a2

c
γ4

total power radiated by a
point charge accelerated

perpendicular to
direction of motion

(12.60)
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Arbitrary Acceleration Direction

By extrapolation from these two cases and returning to Equation 12.42, we can write
the general formula for the power per unit solid angle:

dP

dΩ
=
µo q2

16π2

a2

c

∣∣∣R̂r ×
[(

R̂r − ~β
)
× â
]∣∣∣2

[1− β cos θ]5

power per solid angle
radiated by a
point charge

with velocity ~β and
acceleration ~a

(12.61)

Combining the two total power formulae, which only differ by a factor of γ2, yields the
total power radiated for an arbitrary angle between velocity and acceleration:

P =
µo q2

6π

a2

c

1−
∣∣∣~β × â

∣∣∣2
(1− β2)3

=
µo q2

6π

a2

c
γ6

(
1−

∣∣∣~β × â
∣∣∣2) total power radiated

by an accelerated
point charge

Lienard’s Formula

(12.62)
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Non-relativistic Limit

The nonrelativistic or “slowly moving charge” limit is obtained by letting β → 0 but
allowing β′ 6= 0 in Equation 12.42. The electric field simplifies to

~E(~r , t) = ~E(~r , t)
∣∣∣
~β

+
q

4π εo

~Rr ×
[
~Rr × ~β ′

]
c R3

r

Electric field
of accelerated

point charge in
non-relativistic limit

(12.63)

where the first, fixed-velocity term still falls off more quickly than the second,
acceleration term in this limit.

We will calculate the radiated power from Equation 12.51. If we again define ~a to be
the z-axis of a spherical coordinate system and θ the polar angle of the field point so
that ~a = a ẑ, ~Rr = r̂ (= ~R because β → 0), then we have

~Rr ×
[
~Rr × ~β ′

]
=

a r2

c
r̂ × [r̂ × ẑ] = −a r2

c
r̂ × φ̂ sin θ =

a r2

c
θ̂ sin θ (12.64)

Therefore, canceling out factors of r2 = R2
r ,∣∣∣∣~E − ~E

∣∣∣
~β

∣∣∣∣2 =

(
q

4π εo

)2 a2 sin2 θ

c4 r2
(12.65)
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Therefore,

~S =
1

cµo
R̂r

∣∣∣∣~E − ~E
∣∣∣
~β

∣∣∣∣2 = r̂
µo q2

16π2

a2 sin2 θ

c r2
(12.66)

(We rewrote εo in terms of c and µo and used R̂ = r̂ and Rr = r .) The energy

radiated into a unit area per unit time interval is d2U/dt dA = r̂ · ~S, so the radiated
power per unit solid angle and total power radiated then become (the observer-emitter
time correction ∂t/∂tr |~β = 1 in this limit):

dP

dΩ
=
µo q2

16π2

a2 sin2 θ

c
P =

µo q2

6π

a2

c

power per solid angle and total
power radiated by a slowly moving

point charge with acceleration ~a
Larmor’s Formula

(12.67)

The angular dependence is simply sin2 θ.

We could have obtained this limit from the fully relativistic Equation 12.61 by letting
β → 0 and β′ 6= 0 as we did here. We would also see that the angular radiation
pattern of both the parallel and perpendicular acceleration cases (bremsstrahlung and
synchrotron) both converge to the above simple, symmetric sin2 θ dependence because
the direction of motion does not break the symmetry.
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General Theory of Radiation

Introduction and Study Guide

As usual, we don’t follow Griffiths closely. We immediately go to the full radiation
calculation via the technique of Fourier Transforms, skipping his example of electric
dipole radiation. This makes it easier to interpret the radiation field in terms of
spherical outgoing waves.

We note three length scales that will be important in the discussion and on whose
relative sizes we will base various approximations:

I d : the length scale of the source distribution

I r : the distance from the source distribution to the field point, the point where
we want to know the potentials, fields, and radiated power

I λ: the wavelength of the emitted radiation
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Fourier Transforms

We are going to use Fourier techniques to simplify the derivations in the case of
radiation from an arbitrary source distribution, so we need to define the formalism.

We use the concept of orthonormal functions that we developed in connection to
separation of variables. We state without proof (see ACM 95/100) that any function
of time can be written in the form (with ω = 2π f ):

g(t) =

∫ ∞
−∞

df g̃(f ) e−i ω t g̃(f ) =

∫ ∞
−∞

dt g(t) e i ω t (12.68)

For the special case of the delta function,

δ(t) =

∫ ∞
−∞

df e−i ω t δ(f ) =

∫ ∞
−∞

dt e i ω t = 2π δ(ω) (12.69)

The function g̃(f ) is the Fourier Transform of the function g(t). It has the units of g
divided by frequency. For g(t) to which no boundary conditions have been applied
(typical BC would be to assume periodicity with a particular frequency f0 or to assume
Dirichlet or Neumann BC at two times ta and tb), there is no restriction on the values
of f — any value must be allowed. (In real life, the rate at which you can sample g(t)
sets an upper limit on the values of f for which information is available — the
so-called Nyquist criterion — but we won’t worry about real life here...).
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Note that our Fourier Transform sign convention for the argument of the exponential
is the opposite of that used in electrical engineering (which gives the impedance of
inductors and capacitors as i ω L and 1/i ω C). As long as one is self-consistent, one
can choose whichever convention one likes. But be careful when comparing to other
texts.

The value of the Fourier Transform lies in the linearity of electrodynamics.
Specifically, define

ρ(~r , t) = ρ0(~r) e−i ω t ~J(~r , t) = ~J0(~r) e−i ω t (12.70)

and suppose the resulting fields are

~E(~r , t) = ~E[ρ0, ~J0](~r , f ) e−i ω t ~B(~r , t) = ~B[ρ0, ~J0](~r , f ) e−i ω t (12.71)

where ~E[ ](~r , f ) and ~B[ ](~r , f ) indicate functional dependence: put in the spatial

functions ρ0(~r), ~J0(~r) and the frequency f and what you get out are the spatial

functions ~E(~r , f ), ~B(~r , f ). The linearity of Maxwell’s Equations assures us that the
harmonic time dependence is carried through from the sources to the fields. More
importantly, linearity assures us that, if we have a source distribution with arbitrary
time dependence that can be broken down in terms of components with harmonic
time dependence like that shown above, then we can calculate the fields for each
component using ~E[ ](~r , f ) and ~B[ ](~r , f ) and then sum them up to get the total field.
The Fourier Transform is the tool for doing all this.
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Let’s be more specific about the procedure. In all generality, define

ρ̃(~r , f ) =

∫ ∞
−∞

dt ρ(~r , t) e i ω t ~̃J(~r , f ) =

∫ ∞
−∞

dt ~J(~r , t) e i ω t (12.72)

The motivation for these expressions is that multiplication by the e i ω t factor followed
by the integration would pick out the ρ0(~r) and ~J0(~r) with the e−i ω t time
dependence shown on the previous page. Then, from the above solution that
determines fields from sources, we know

~̃E(~r , f ) = ~E[ρ̃(~r , f ), ~̃J(~r , f )] ~̃B(~r , f ) = ~B[ρ̃(~r , f ), ~̃J(~r , f )] (12.73)

and then, by linearity,

~E(~r , t) =

∫ ∞
−∞

df ~̃E(~r , f ) e−i ω t ~B(~r , t) =

∫ ∞
−∞

df ~̃B(~r , f ) e−i ω t (12.74)

Therefore, we only need determine the functions ~E[ ](~r , f ) and ~B[ ](~r , f ) by
determining the fields for a harmonic time dependence e−i ω t of the sources and then
we can use Fourier Transforms to calculate the fields for arbitrary source time
dependence.
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Linearity also holds, surprisingly, for quadratic quantities like energy and radiation if
one time averages. Specifically, let’s calculate the time-averaged Poynting vector:

〈
~S(~r , t)

〉
=

1

2µo

〈
R
(
~E∗(~r , t)× ~B(~r , t)

)〉
(12.75)

=
1

2µo

〈
R
(∫ ∞
−∞

df1

∫ ∞
−∞

df2 e i(ω1−ω2)t ~̃E∗(~r , f1)× ~̃B(~r , f2)

)〉
(12.76)

=
1

2µo
R
(∫ ∞
−∞

df1

∫ ∞
−∞

df2

〈
e i(ω1−ω2)t

〉
~̃E∗(~r , f1)× ~̃B(~r , f2)

)
(12.77)

Now,

〈
e i ω t

〉
= lim

T→∞

1

T

∫ T/2

−T/2
dt e i ω t = lim

T→∞

∫ T/2
−T/2

dt e i ω t∫ T/2
−T/2

dt
=

δ(f )

δ(f = 0)
(12.78)
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So,〈
~S(~r , t)

〉
=

1

2µo
R
(∫ ∞
−∞

df1

∫ ∞
−∞

df2
δ(f1 − f2)

δ(f = 0)
~̃E∗(~r , f1)× ~̃B∗(~r , f2)

)
(12.79)

=
1

δ(f = 0)

1

2µo
R
(∫ ∞
−∞

df1
~̃E∗(~r , f1)× ~̃B∗(~r , f1)

)
(12.80)

There is a funny normalizing factor that corrects for the fact that the Fourier
Transforms of the fields have the units of field divided by frequency; since there is only
one integral over frequency left, the δ(f = 0) provides another unit of frequency in the
numerator as needed. Recall, δ(f = 0) = limT→∞ T is present because of the
time-averaging. It will always be canceled by a similar factor in the numerator,
eliminating what appears to be division by ∞. (We will not actually be calculating
power from the Fourier Transforms directly, so this will turn out not to be an issue
below.) More importantly, the above tells us that the time-averaged Poynting vector is
obtained by summing up the contributions from each frequency in a linear way: the
power at different frequencies just adds up, so we can calculate the power for a given
frequency and then do sums to get total power. The cross-terms drop away in the
time average.

A final point to make is that time derivatives become powers of ω for Fourier
transforms. This is seen by differentiating the expression for g(t):

dg

dt
=

d

dt

∫ ∞
−∞

df g̃(f ) e−i ω t =

∫ ∞
−∞

df g̃(f )
d

dt
e−i ω t =

∫ ∞
−∞

df (−i ω) g̃(f ) e−i ω t

(12.81)

So, in what we do below, a factor of ω will be rewritten as a time derivative.
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Radiation from an Arbitrary Source Distribution

Let’s now consider the radiation from an arbitrary configuration of time-varying
charges and currents. It will be no surprise that we need to apply techniques similar to
those used for calculating the potentials and fields of electric and magnetic multipole
configurations. As motivated by our discussion of Fourier Transforms, we start with
source distributions having simple harmonic time dependence

ρ(~r , t) = ρ0(~r) e−i ω t ~J(~r , t) = ~J0(~r) e−i ω t (12.82)

We assume that ρ0 and ~J0 are zero outside some volume V near the origin. The
retarded scalar and vector potentials are (Equations 10.71; recall, tr = t − |~r − ~r ′|/c)

V (~r , t) =
1

4π εo

∫
V

dτ ′
ρ (~r , tr )

|~r − ~r ′|
~A(~r , t) =

µo

4π

∫
V

dτ ′
~J (~r , tr )

|~r − ~r ′| (12.83)

When e−i ω t is evaluated at t = tr , we get

e−i ω tr = e−i ω t e i k |~r−~r ′| with k =
ω

c
(12.84)
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Let’s rewrite the retarded potentials using this information. With the assumption of
harmonic time dependence and no sources outside V (ρ = 0, ~J = 0 outside V),
Ampere’s Law tells us that, outside V,

εo µo
∂ ~E

∂t
= ~∇× ~B =⇒ ~E = c2 i

ω
~∇× ~B (12.85)

Therefore, we only need to calculate ~A. It becomes

~A(~r , t) =
µo

4π
e−i ω t

∫
V

dτ ′ ~J0(~r ′)
e i k |~r−~r ′|

|~r − ~r ′| (12.86)

Now, for large distances, |~r | � |~r ′| for ~r ′ inside V, so we can Taylor expand |~r − ~r ′|.
(In our electric and magnetic multipole expansions, we used Equation 3.147 to expand
|~r − ~r ′|−1, but here we want to expand |~r − ~r ′| in the argument of the exponential
too.). This expansion is:

|~r − ~r ′| =
√

r2 − 2~r · ~r ′ + (r ′)2 = r

√
1− 2 r̂ · ~r

′

r
+

(
r ′

r

)2

(12.87)

= r − r̂ · r̂ ′ r ′ +O
(

d2

r

)
(12.88)

where d is the characteristic size of the source distribution.
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Putting these two together, we have

e i k |~r−~r ′|

|~r − ~r ′| ≈
1

r

[
1 + r̂ · r̂ ′ r ′

r
+O

(
d2

r2

)]
exp

[
i k

(
r − r̂ · r̂ ′ r ′ +O

(
d2

r

))]
(12.89)

=
e i k r

r

[
1 + r̂ · r̂ ′ r ′

r
+O

(
d2

r2

)]
exp

(
−i k r ′ r̂ · r̂ ′ + i k O

(
d2

r

))
(12.90)

Now that the dependences are clear, let’s figure out what we need to keep. The first
factor is independent of r ′ and multiplies the whole expression, so no issue there. In
the second factor, there are power law dependences on r ′ and r , and there are no
direct power-law dependences elsewhere, so we may look at this factor alone. In the
limit d � r , we may keep the first term and discard the second and remaining terms
because they falls off as higher powers of r .

Now, looking at the exponential, it has a completely imaginary argument, which
causes the phase of the exponent to vary. The ratio of the second term to the first
term of this phase factor is (kd2/r)/(kd) = d/r , so it varies much less quickly than
the first term in the limit d � r , so the first one will dominate the phase variation of
the argument of the exponential in this limit. However, we also want to require that
the second term in the argument is not large in an absolute sense: if it is of order
unity, then it causes fast enough variations in the phase of the argument of the
exponential that it will result in cancellations and make that term vanish. We thus
require k d2/r � 2π, or d2/λ� r : this is the so-called “far-field” approximation,
with d2/λ being the “far-field distance.”
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Making these approximations and inserting into our expression for the vector potential:

radiation from arbitrary
source distribution

vector potential
d � r , d2/λ� r

~A(~r , t) =
µo

4π

e i (k r−ω t)

r

∫
V

dτ ′ ~J0(~r ′) e−i k r ′ r̂·r̂ ′ (12.91)

It may seem strange that we dropped the r̂ · r̂ ′ r ′ term from the expansion of
|~r − ~r ′|−1, the one that yielded the electric dipole and magnetic dipole potentials.
The reason we don’t need it here is because of the exponential: its variation over the
scale of the source distribution (note that we did not make the approximation
k d = 2π d/λ� 1!) prevents the cancellation that occurred for the monopole terms
in the static case and necessitated keeping the r̂ · r̂ ′ r ′ term.

This expression makes very explicit the physical picture that the harmonic dependence
of the source current drives a spherical outgoing wave: the e i(k r−ω t)/r factor.

From the above, we can calculate the fields, time-averaged Poynting vector, radiation
pattern, and total power radiated (for harmonic time dependence!):

~B = ~∇× ~A ~E = c2 i

ω
~∇× ~B

〈
~S
〉

=
1

2µo
R
(〈
~E∗ × ~B

〉) 〈
dP

dΩ

〉
= r2 r̂ ·

〈
~S
〉

〈P〉=
∫

dΩ
dP

dΩ
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If we make the further approximation d � λ, then the exponential can be
Taylor-expanded to obtain

radiation from
arbitrary

source distribution
vector potential
d � r , d � λ

~A(~r , t) =
µo

4π

e i (k r−ω t)

r

∞∑
m=0

(−i k)m

m!

∫
V

dτ ′ ~J0(~r ′)
(
r ′ r̂ · r̂ ′

)m

(12.92)

We have dropped the d2/λ� r requirement because it is implied by the other two
requirements. This is now the multipole expansion for radiation: successive terms
probe finer and finer structure of the source distribution. We see next how these
various terms give electric dipole, magnetic dipole, and electric quadrupole radiation.

The different multipole terms are not an analogue of the multipole terms we
calculated for the electric scalar and magnetic vector potentials (Equations 3.224 and
5.96): in those cases, we had [(r ′)m/rm+1] Pm(r̂ · r̂ ′) in the integrand, here we have
[(k r ′)m/r ] (r̂ · r̂ ′)m in the integrand: same units, different formula. In the radiation
case, all the multipole terms fall off as 1/r , but they depend on different moments of
the current distribution. In contrast, for the static potential multipoles, the higher
terms fell off with increasing powers of r (and depended on higher moments of the
charge and current distributions, but calculated in a different manner).
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Electric Dipole Radiation

We take the m = 0 term, which is

~A(~r , t) =
µo

4π

e i (k r−ω t)

r

∫
V

dτ ′ ~J0(~r ′) (12.93)

We dealt with this same expression in our study of magnetic multipoles,
Equations 5.94 and 5.95, where there we saw it vanished because we assumed
~∇ · ~J0 = −∂ρ0/∂t = 0 for magnetostatics. Here, we do not make that assumption, so

J0,i e−i ω t = ~∇ ·
(

ri
~J0 e−i ω t

)
− ri

~∇ · ~J0 e−i ω t = ~∇ ·
(

ri
~J0 e−i ω t

)
+ ri

∂

∂t

(
ρ0 e−i ω t

)
= ~∇ ·

(
ri
~J0 e−i ω t

)
− i ω ri ρ0 e−i ω t (12.94)

When we do the integral, the first term vanishes: it can be turned into a surface
integral of ri

~J at the boundary of V and, since the sources are contained in V, there
can be no current flowing through the boundary of V. That leaves the second term, so
the vector potential becomes

~A(~r , t) =
µo

4π

e i (k r−ω t)

r

∫
V

dτ ′ (−i ω) ρ0(~r ′)~r ′ = −i
µo

4π

ω ~p0

r
e i (k r−ω t) (12.95)

where we have used the definition of the dipole moment, Equation 3.227. We see that
~A is in the direction of the current (recall, ~Jp = d ~P/dt), and, in the static limit
(ω → 0), the expression vanishes, both as we expect.
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To calculate the magnetic field, we need to take the curl. The curl will act on both
the 1/r and the phase factor in the exponent. But the action of the curl on 1/r will
yield 1/r2, which we can drop if we also assume k r � 1 or λ� r . So we calculate

~∇×
(
~p0 e i k r

)
= −~p0 × ~∇e i k r = −~p0 × e i k r ~∇(i k r) = −~p0 × e i k r i k r̂ (12.96)

Therefore

~B(~r , t) =
µo

4π

ω2 r̂ × ~p0

c r
e i (k r−ω t) d � λ� r (12.97)

where the factor of ω/c came from k. We obtain the electric field from
~E = c2(i/ω) ~∇× ~B = c2 (−k/ω) r̂ × ~B = −c r̂ × ~B, where we used a similar
technique for the calculation of the curl (involving more terms, but again one drops all
terms of order 1/r2). This yields (using µo = 1/(c2 εo ))

~E(~r , t) = − 1

4π εo

ω2 r̂ × (r̂ × ~p0)

c2r
e i (k r−ω t) d � λ� r (12.98)

The geometry of the fields is as follows. The magnetic field is normal to both the
line-of-sight to the dipole at the origin (r̂) and to the dipole’s direction ~p0. So, for a

dipole along ẑ, ~B oscillates in the φ̂ direction. The electric field is normal to the
line-of-sight and to ~B, so it oscillates in the θ̂ direction. Both θ̂ and φ̂ are in the plane
normal to r̂ . As expected, ~E is in the direction of the acceleration of the charges
involved.
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Let’s now generalize these using our discussion of Fourier Transforms. Let’s assume an
arbitrary time dependence of the charge density ρ(~r , t) and the dipole moment ~p(t).
The former has a Fourier decomposition (Equation 12.72), which we can use to
Fourier decompose the latter:

ρ̃(~r , f ) =

∫ ∞
−∞

dt ρ(~r , t) e i ω t ⇐⇒ ρ(~r , t) =

∫ ∞
−∞

df ρ̃(~r , f ) e−i ω t

=⇒ ~p(~r , t) =

∫
V

dτ ′ ρ(~r ′, t)~r ′ =

∫
V

dτ ′ ~r ′
∫ ∞
−∞

df ρ̃(~r ′, f ) e−i ω t (12.99)

=

∫ ∞
−∞

df ~̃p(f ) e−i ω t with ~̃p(f ) =

∫
V

dτ ′ ρ̃(~r ′, f )~r ′ (12.100)

Now, the quantity ~̃p(f ) e−i ω t is just like ~p0 e−i ω t since both ~p0 and ~̃p(f ) have no

spatial dependence. Therefore, our expressions for ~A, ~B, and ~E for harmonic
dependence apply to it. Since Maxwell’s Equations are linear, we can just sum up the
contribution to the fields from each frequency f using Fourier Transforms.
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That is, we may write

~̃A(~r , f ) e−i ω t = −i
µo

4π

ω ~̃p(f )

r
e i (k r−ω t) (12.101)

where we have factored the e−i ω t dependence out of the vector potential and added

the f argument to indicate that each ~̃p(f ) generates its own ~̃A(~r , f ). Now, sum up
over frequency components using the Fourier Transform:

~A(~r , t) =

∫ ∞
−∞

df ~̃A(~r , f ) e−i ω t =

∫ ∞
−∞

df

[
−i

µo

4π

ω ~̃p(f )

r
e i k r

]
e−i ω t (12.102)

Next, recall how time derivatives are related to factors of −i ω in Fourier Transforms,
Equation 12.81, and also recall Equation 12.84, which tells us that
e i (k r−ω t) = e−i ω tr (recall, r � r ′ is assumed!). These let us rewrite the above as

~A(~r , t) =
µo

4π

1

r

∫ ∞
−∞

df
[
−i ω ~̃p(f )

]
e−i ω tr =

µo

4π

~̇p(tr )

r
(12.103)

where ~̇p indicates the derivative of ~p with respect to its argument. Note that we were
able to trivially convert from −i ω to d/dt even though the time is evaluated at tr

because the approximation r � r ′ simplifies the t-dependence in the argument of the
complex exponential.
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One can do similar Fourier analyses for ~B and ~E . One could instead take the curl and
time derivative of the above expression, using again the r � r ′ approximation to
make these derivatives easy to take. The Fourier analysis path seems more physical
because it makes a bit clearer how the r̂× factors below arise.

The result is the full generalization of our harmonic time dependence expressions:

electric dipole radiation
vector potential

d � λ� r

~A(~r , t) =
µo

4π

~̇p(tr )

r
(12.104)

electric dipole radiation
magnetic field

d � λ� r

~B(~r , t) = − µo

4π

r̂ × ~̈p(tr )

c r
(12.105)

electric dipole radiation
electric field
d � λ� r

~E(~r , t) =
1

4π εo

r̂ ×
(

r̂ × ~̈p(tr )
)

c2r
(12.106)

Note that the dipole moment derivatives are evaluated at tr ! These equations match
Equations 11.54, 11.56, and 11.57 of Griffiths.
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Let’s define a coordinate system with ~̈p ∝ ẑ and θ the spherical coordinate polar
angle, so then

r̂ × ẑ = −φ̂ sin θ r̂ × (r̂ × ẑ) = r̂ ×
(
−φ̂ sin θ

)
= θ̂ sin θ (12.107)

Thus, for an arbitrary time dependence, we obtain (using dP/dΩ = r2 r̂ · ~S , no
complex conjugations or real parts necessary because these formulae do not assume
harmonic time dependence, and ~S ∝ ~E × ~B ∝ θ̂ ×−φ̂ = r̂):

electric dipole
radiation pattern

d � λ� r

dP

dΩ
=

µo

16π2

p̈2 sin2 θ

c
P =

µo

6π

p̈2

c
(12.108)

Notice the similarity to the Larmor formula! Had we calculated the Larmor formula for
two point charges forming a dipole, going through the fields to see how the factors of
q d add coherently, we would have obtained the above result. (The dipole
approximation automatically incorporates β → 0.) If we assume harmonic time
dependence and time-average (also now taking the necessary complex conjugations
and real parts if we use complex notation), we obtain:

electric dipole
radiation pattern

for harmonic
time dependence

d � λ� r

〈
dP

dΩ

〉
=

µo

32π2

p2
0 ω

4 sin2 θ

c
〈P〉= µo

12π

p2
0 ω

4

c
(12.109)
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Magnetic Dipole and Electric Quadrupole Radiation

Next, let’s look at the m = 1 term:

~A(~r , t) =
µo

4π

e i(k r−ω t)

r
(−i k)

∫
V

dτ ′ ~J0(~r ′) r̂ · r̂ ′ r ′ (12.110)

This term is a factor of order k d = 2π d/λ smaller than the electric dipole term. We
also calculated this term in the process of deriving the vector potential due to a
magnetic dipole, starting at Equation 5.97. Again, we now have to allow
~∇ · ~J0 = −∂ρ0/∂t 6= 0. This yields (many steps left out!)

~J0(~r ′) r̂ · r̂ ′ r ′ =
1

2

[(
~r ′ × ~J0

)
× r̂
]

+
1

2
r ′
[(

r̂ · r̂ ′
)
~J0 +

(
r̂ · ~J0

)
r̂ ′
]

(12.111)

The second two terms involve quantities similar to those we dealt with for the electric
dipole term. We can integrate these terms by parts to obtain expressions involving
~∇ · ~J0 (and therefore bringing in one more power of r ′ to cancel the dimensions of ~∇),

which can be evaluated using continuity, ~∇ · ~J0 = −∂ρ0/∂t = i ω ρ0. They therefore
result in terms containing i ω ρ0 and two powers of r ′. These are electric quadrupole
terms. They are of the same order of magnitude as the terms we will keep, but they
are complicated and so we will drop them for this study.
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The first term recalls the definition of the magnetic dipole moment (Equation 5.110)

~m0 =

∫
V

dτ ′
1

2
~r ′ × ~J0(~r ′) (12.112)

Using this definition, we may rewrite the vector potential as

~A(~r , t) = i
µo

4π

ω r̂ × ~m0

c r
e i(k r−ω t) d � λ� r (12.113)

This expression is smaller than the analogous expression for electric dipole radiation
(Equation 12.95) by a factor (m0/c)/p, which we can see is k d as expected:

1

p

m0

c
=

1

d3ρ d

d3J d

c
=

1

ρ d

ω d ρ d

c
= k d (12.114)

where J ∝ ω d ρ follows from our evaluation of ~J in the electric dipole radiation case.
The fields are easily derived using the same procedure as for the electric dipole term to
evaluate the curls, yielding

~B(~r , t) = − µo

4π

ω2 r̂ × (r̂ × ~m0)

c2r
e i (k r−ω t) d � λ� r (12.115)
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For the electric field, we can use the harmonic relation ~E = −c r̂ × ~B (from
~E = c2(i/ω) ~∇× ~B) to find

~E(~r , t) =
1

4π εo

ω2 r̂ × (r̂ × (r̂ × ~m0))

c3r
e i (k r−ω t) (12.116)

In the electric dipole case, we had ~B ∝ (1/c) r̂ × ~E ∝ r̂ × (r̂ × (r̂ × ~p)), but we also

derived ~B ∝ r̂ × ~p. We thus suspect that the quadruple vector product in ~E for
magnetic dipole radiation reduces to r̂ × ~m0. Let’s prove that explicitly using the
BAC − CAB rule for an arbitrary vector ~a:

r̂ × [r̂ × (r̂ × ~a)] = r̂ [r̂ · (r̂ × ~a)]− (r̂ × ~a) (r̂ · r̂) = −r̂ × ~a (12.117)

Thus, we may rewrite ~E in the magnetic dipole case as

~E(~r , t) = − 1

4π εo

ω2 r̂ × ~m0

c3r
e i (k r−ω t) d � λ� r (12.118)

Griffiths derives the magnetic dipole fields for the special case ~m0 ∝ ẑ. We saw for the
ideal electric dipole that r̂ × (r̂ × ẑ) = θ̂ sin θ and r̂ × (r̂ × (r̂ × ẑ)) = φ̂ sin θ.

Applying that here yields ~B ∝ −θ̂ sin θ and ~E ∝ φ̂ sin θ, thus matching Griffiths
Equations 11.36 and 11.37.
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As we did with the electric dipole radiation field, we can generalize these expressions
using Fourier Transforms, yielding

magnetic dipole radiation
vector potential

d � λ� r

~A(~r , t) = −i
µo

4π

r̂ × ~̇m(tr )

c r
(12.119)

magnetic dipole radiation
magnetic field

d � λ� r

~B(~r , t) =
µo

4π

r̂ ×
(

r̂ × ~̈m(tr )
)

c2r
(12.120)

magnetic dipole radiation
electric field
d � λ� r

~E(~r , t) =
1

4π εo

r̂ × ~̈m(tr )

c3r
(12.121)

where again all the dipole moments and derivatives thereof are evaluated at the
retarded time. The vector potential is perpendicular to both the vector rate of change
of the dipole and the position vector, the electric field is perpendicular to the second
derivative of the dipole and the position vector, and the magnetic field is
perpendicular to the second derivative of the dipole and the electric field. There is no
analogue of these generic results in Griffiths, who only considers the special case of
~m ∝ ẑ and harmonic time dependence, as we derived above. For the special case of a
dipole ~m ∝ ẑ that also has ~̇m ∝ ẑ and ~̈m ∝ ẑ, the vector potential and electric field
are along φ̂ and the magnetic field is along θ̂. Note how ~A and ~E have the same
direction as the infinitesimal current and the acceleration of the charges, respectively.
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To determine the power pattern, we can use the calculations we did for the electric
dipole case because the dependences are similar: up to signs and normalization, ~B for
the electric case matches ~E for the magnetic case and ~E for the electric case matches
~B for the magnetic case. In both cases, ~E × ~B ∝ +r̂ as is necessary for outgoing
radiation, so we can dispense with the signs. The normalization is set by the
replacement p → m/c. So, we have (again, dP/dΩ = r2 r̂ · ~S, all fields real)

magnetic dipole
radiation pattern

d � λ� r

dP

dΩ
=

µo

16π2

m̈2 sin2 θ

c3
P =

µo

6π

m̈2

c3
(12.122)

Again, we see an analogue to the Larmor formula. If we assume harmonic time
dependence and time-average (taking complex conjugations and real parts as
necessary for complex notation), we obtain:

magnetic dipole
radiation pattern

for harmonic
time dependence

d � λ� r

〈
dP

dΩ

〉
=

µo

32π2

m2
0 ω

4 sin2 θ

c3
〈P〉= µo

12π

m2
0 ω

4

c3
(12.123)

Given the replacement p → m/c, the magnetic dipole radiation power is down by a
factor of [(m/c)/p]2 = (k d)2 = (2π d/λ)2 relative to electric dipole radiation.
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Postscript

Griffiths is unfortunately lacking in examples on the topic of radiation. The reason for
this is that, with the above formalism in hand, the basic examples consist largely of
calculating electric and magnetic dipole moments and then plugging into the above
formulae. Rather than do a lot of this plug-and-chug, it makes sense to move on to
classical scattering theory and antennas, which provide more meaty and meaningful
applications of the above.

If it seems like the above discussion was a bit tortured — the term-by-term
manipulation of Equation 12.92, the by-hand splitting of the m = 1 term into
magnetic dipole and electric quadrupole radiation, the reappearance of the same
electric and magnetic field dependences — that impression is correct. There is a more
unified way of treating the multipole expansion, which is given in Jackson Chapter 16,
but which we do not have time to present.
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Section 13.1 Applications of Radiation: Classical Scattering Theory

Classical Scattering Theory

What is Scattering?

When we considered wave propagation in a medium having a permittivity and a
permeability, we assumed the medium was completely uniform, with polarization and
magnetization volume density that reflect none of the atomic nature of the material or
any variation in polarization or magnetization density with position. This also meant
the medium was infinite in extent, with no boundaries except planar boundaries
infinite in transverse extent. When we calculated the polarization density using the
simple dispersion model, we again assumed that this model gave us a smooth
polarization volume density.

Scattering is, by contrast, an effect that happens when an EM wave propagates
through a nonuniform medium. Now the polarization and magnetization volume
density can be slightly or even substantially position dependent. At one extreme, we
have a single polarizable particle in vacuum. At the other extreme, we have a gas or a
dense medium with a fluctuating density. In all cases, we treat each nonuniformity as
its own dipole that radiates in response to an EM wave. When more than one
scatterer is present, we assume they are randomly positioned relative to one another
so there is no coherence between the radiated fields of individual scatterers.
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Scattering to Large Distances of Polarized Light by a Small Object, d � λ� r

Consider a linearly polarized EM wave

~E(~r , t) = ~E0 e i(~k·~r−ω t) (13.1)

incident on a single particle of size d � λ (k d � 2π) and of frequency-dependent
polarizability α(ω). Then the dipole moment of the particle is (in complex notation)

~p = α(ω) ~E = α(ω) ~E0 e−i ω t (13.2)

(Recall we derived models for α(ω) in Section 5.) This is an oscillating, accelerating

electric dipole with ~p, ~̇p, and ~̈p in the same direction as the incoming polarization
vector. We can calculate its radiated power pattern using Equation 12.109, which
adds the assumption d � λ� r (scatterer much smaller than wavelength, which is
smaller than the distance to field point):

〈
dP

dΩ

〉
=

µo

32π2

α2 |~E0|2 ω4 sin2 θ

c
〈P〉= µo

12π

α2 |~E0|2 ω4

c
(13.3)

where θ is the polar angle relative to the polarization vector of the incoming wave.
Note that the emitted power pattern has no dependence on φ, the azimuthal angle
around the polarization vector, implying the scattered light does not care about the
incoming wave direction, only its polarization.
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We define the particle’s differential and total scattering cross section as

dσ

dΩ
=

〈
dP
dΩ

〉
incident power flux

σ =
〈P〉

incident power flux
(13.4)

With the incident power flux I =
〈
|~S |
〉

= c εo |~E0|2/2, we obtain

linearly polarized
cross section
d � λ� r

dσpol

dΩ
=

(
α

4π εo

)2 ω4

c4
sin2 θ σpol =

8π

3

(
α

4π εo

)2 ω4

c4
(13.5)

Because α/4π εo carries units of volume, σ carries units of area and dσ/dΩ units of
area/solid angle. The reason for this is that we assume an incoming plane wave of
infinite transverse extent, so we cannot calculate the fraction of its total power
scattered: that would vanish because the power is infinite. Rather, we calculate the
power scattered given an incoming power per unit area, so we have to multiply by an
area to get the right output units.
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Scattering to Large Distances of Unpolarized Light by a Small Object,
d � λ� r

It is in general useful to calculate the corresponding results for unpolarized incoming
light: light with equal amounts of the two complementary linear polarizations and no
specific phase relationship between those two polarizations. (A specific phase
relationship would just result in a different polarization.) This excites oscillating dipole
moments simultaneously in the two directions corresponding to these two
polarizations. Since the two polarization vectors are orthogonal, we need to write their
scattering cross-sections in the same coordinate system in order to sum their
contributions. So far, we have written the scattering cross-section in terms of angles
relative to the polarization vector (the oscillating dipole moment). Instead, let’s write

it in terms of angles relative to the incoming wave’s propagation vector k̂ and the
viewing direction (the outgoing scattered wave direction) r̂ .

Consider a coordinate system whose z-axis is the incident
wave direction k̂ and whose xz plane (the scattering plane)

is defined by k̂ and the scattered direction (viewing direc-

tion) r̂sc . Let θsc be the polar angle of r̂sc relative to k̂, in
the scattering plane. The incoming light has components
polarized parallel to and perpendicular to the scattering
plane. Since we will consider unpolarized light, we know
that the result will have no dependence on the azimuthal
angle around k̂, which is why we can choose r̂sc in the xz
plane.
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For the polarization component perpendicular to the scattering plane, the scattering
plane makes an angle π/2 with the polarization vector. The angle θsc is the φ angle in
a coordinate system whose z-axis is this polarization vector. Thus, for any θsc , the
angle θ in the differential cross section formula is θ⊥ = π/2 in the diagram. Assuming
the incoming light is unpolarized implies half of the incoming power is in this
polarization component, yielding

dσ⊥
dΩ

=
1

2

dσ

dΩ

∣∣∣∣
θ=π/2

=
1

2

(
α

4π εo

)2 ω4

c4
(13.6)

For the polarization component parallel to the scattering plane, the scattering plane
lies in the xz-plane of the coordinate system whose z-axis is this polarization vector
and whose ±x-axis is the incident direction k̂. Thus, the polar angle in the scattering
coordinate system and the polar angle in the incident polarization coordinate system
are complementary, so sin θ|| = cos θsc and therefore

dσ||

dΩ
=

1

2

dσ

dΩ

∣∣∣∣
θ=π/2−θsc

=
1

2

(
α

4π εo

)2 ω4

c4
cos2 θsc (13.7)

We want to combine these cross sections to get the total cross section. Do we need to
worry about constructive or destructive addition of the scattered waves in the two
polarizations? No, a fact we can see both conceptually and mechanically.
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We can see this conceptually as follows. We first recognize that the two incoming
polarizations excite dipoles parallel to the incoming field directions and therefore
perpendicular to each other:

~̈p|| ∝ ~Ein,|| ~̈p⊥ ∝ ~Ein,⊥ ~Ein,|| ⊥ ~Ein,⊥ =⇒ ~̈p|| ⊥ ~̈p⊥ (13.8)

Then, we recall that the electric field of the radiated wave is in the direction of the
projection of ~̈p transverse to the line-of-sight direction (r̂sc ). Therefore, the radiated
electric fields for the two incoming polarizations must be perpendicular to each other
(and to the line of sight). We know that fields in orthogonal polarizations do not
interfere with each other and their powers just add, hence we just add the cross
sections, accounting for the fact that half the power is in each polarization.
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We can see this mechanically by calculating the Poynting vector of the summed wave:

µo
~Stot =

(
~Erad,|| + ~Erad,⊥

)∗
×
(
~Brad,|| + ~Brad,⊥

)∗
(13.9)

The fields of the scattered (radiated) wave satisfy (Equations 12.105 and 12.106)

~Erad ∝ r̂ ×
(

r̂ × ~̈p
)
∝ r̂

(
r̂ · ~Ein

)
− ~Ein

~Brad ∝ −r̂ × ~̈p ∝ r̂ × ~Ein (13.10)

Therefore, the cross terms in the Poynting vector are (applying the BAC − CAB rule
many times):

~E∗rad,⊥ × ~Brad,|| ∝
[
r̂
(

r̂ · ~Ein,||

)
− ~Ein,||

]
×
[
r̂ × ~Ein,⊥

]
(13.11)

=
(

r̂ · ~Ein,||

) [
r̂ ×

(
r̂ × ~Ein,⊥

)]
− ~Ein,|| ×

(
r̂ × ~Ein,⊥

)
(13.12)

=
(

r̂ · ~Ein,||

) [
r̂
(

r̂ · ~Ein,⊥

)
− ~Ein,⊥

]
(13.13)

−
[
r̂
(
~Ein,|| · ~Ein,⊥

)
− ~Ein,⊥

(
r̂ · ~Ein,||

)]
(13.14)

The third term vanishes because the polarizations are perpendicular to one another.
The second term cancels the fourth term. The first term vanishes because, given the
geometry, r̂ is in the plane perpendicular to ~Ein,⊥. So the whole cross term vanishes.

The other cross term is obtained by exchanging || and ⊥ and so it also vanishes.
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Since the power radiated in the two polarizations just sum, we may add the two cross
sections together (incoherent sum). We also integrate over all angles to get the total
scattering cross section:

unpolarized
cross

section
d � λ� r

dσunpol

dΩ
=

(
α

4π εo

)2 ω4

c4

1 + cos2 θsc

2
σunpol =

8π

3

(
α

4π εo

)2 ω4

c4
(13.15)

The total scattering cross section is the same as the polarized case because the
polarized cross section has no dependence on polarization angle.
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Application: Rayleigh Scattering, or Why the Sky is Blue

Recall our discussion of the permittivity and index of refraction of dispersive materials
and how it depends on frequency. In particular, it is fairly independent of frequency in
regions well away from any known bound states. For the atmosphere, the relevant
states are either vibrational and rotational states of molecules or electronic states of
the constituent atoms. The atmosphere is dominated by N2 and O2, which are
symmetric molecules with no net dipole moment; hence, in our approximation, there is
no coupling of light to their rotational and vibrational states. The electronic states of
N, O, and the third major component, Ar, are above optical frequencies. Therefore,
the permittivity becomes constant over the optical part of the spectrum. We may infer
from this that the polarizability α becomes constant. (Given the above, it actually
vanishes for N2 and O2 and the scattering is entirely by the individual atoms, not
molecules.)

Thus, the frequency dependence of the scattering cross section comes entirely from
the ω4 term. This strong dependence on frequency implies that the blue portion of the
solar spectrum scatters much more than the red portion: seven times comparing
400 nm to 650 nm.
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The above strong dependence leads to a number of interesting phenomena:

I When we look away from the sun, the light we are seeing is primarily scattered
light, which is dominantly blue.

I When we look at the sun at sunrise or sunset, when the path length through the
atmosphere is large, the blue light has been scattered out of the line-of-sight
and we see a red sunrise or sunset.

I Because of the angular dependence in in Equation 13.15, when we look in a
direction normal to the sun’s rays (e.g., straight up when the sun is low in the
sky, but not so low that all the blue light has been lost), we can only see
scattered light in the polarization perpendicular to the scattering plane. (The
polarization of sunlight parallel to the scattering plane has its polarization vector
pointed in the same direction as our line-of-sight r̂sc , so we get no scattered
light in that polarization.) So, if we look in this direction with a polarizer, we
can make the sky appear bluer by selecting the scattered polarization or less
blue by selecting the unscattered polarization: the light in the unscattered
polarization consists only of light reflected from our surroundings (which is not
preferentially blue).

Section 13.1.4 Application: Rayleigh Scattering, or Why the Sky is Blue Page 918



Section 13.1 Applications of Radiation: Classical Scattering Theory

Application: Thomson Scattering

A simple situation in which to apply our theory of scattering quantitatively is the case
of Thomson scattering, which is scattering of an electromagnetic wave off of a free
electron. Recall that we calculated the relation between a bound, damped electron’s
dipole moment and the incident electric field to be (Equation 9.190)

p̃(t) = e x̃(t) =
q2/m

ω2
0 − ω2 − i γ ω

Ẽ0 e−i ω t (13.16)

If we take the limit ω � ω0 and ω � √γ ω (the plasma limit we defined in Section 5),
we obtain

αfree =
p̃free (t)

Ẽ0 e−i ω t
= − e2

mω2
(13.17)

In this limit, the polarizability is determined entirely by the electron’s inertia.
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Plugging in to our total scattering cross section equation, Equation 13.15, and
rearranging (canceling powers of ω, moving c2 around), we obtain the differential and
total scattering cross section of a free electron:

free-electron
(Thomson)

cross section

dσThomson

dΩ
=

(
e2

4π εo me c2

)2
1 + cos2 θsc

2
σThomson =

8π

3

(
e2

4π εo me c2

)2

(13.18)

The total cross section is called the Thomson cross section and is ubiquitous because
it sets the scale of scattering of EM waves off of electrons, even when quantum
mechanical effects are taken into account. Notice that it is independent of frequency
because the ω−2 dependence of α cancels the ω4 dependence of dipole radiation.
Though, recall we have assumed (p/e) ∼ d � λ� r . This assumptions fails at high
enough frequency.

The quantity in parentheses is called the classical electron radius

rclassical =
e2

4π εo me c2
(13.19)

because it is the radius one obtains by equating the rest mass energy of the electron,
me c2, to the Coulomb energy required to assemble of sphere of uniform charge
density of total charge e and radius rclassical . One the one hand, it is remarkable that
this radius gives σThomson up to a factor of 8/3; on the other hand, it is the only
length scale available, so perhaps we should not be surprised.
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Application: Small (d � λ) Dielectric Sphere Scattering

Another simple application is to consider scattering off of a dielectric sphere of radius
d � λ and permittivity ε. The polarization of such a sphere was calculated in Griffiths
Example 4.7, which we quoted in Equation 4.69, with:

~p = 4π εo d3 ε− εo

ε+ 2 εo

~E0 (13.20)

α is easily read off the above expression, yielding

dielectric sphere scattering cross section
d � λ� r

dσdiel. sph.

dΩ
=

(
ε− εo

ε+ 2 εo

)2

(k d)4 d2 1 + cos2 θsc

2
(13.21)

σdiel. sph. =
8π

3

(
ε− εo

ε+ 2 εo

)2

(k d)4 (π d2
)

(13.22)

where (k d)4 comes from (ω/c)4 d4. This is also termed “Rayleigh scattering”
because of the similar frequency dependence. (“Mie scattering,” important for dust,
pollen, smoke, and water droplets in the atmosphere, is the case d 6� λ and is not
treated here because our multipole expansion fails.)
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Application: Scattering in a Gas

For a gas, because the atoms are in random positions, we may apply our scattering
theory to the medium as a whole. Let’s determine the rate at which incoming power is
attenuated due to scattering to off-axis angles. The decay rate of the transmitted
power per unit area F is given by

F (z) = F (0) e−γ z γ = n σ (13.23)

where n is the density of atoms or molecules and σ is the scattering cross section per
atom or molecule. To find σ, we need the polarizability, α. Recalling the definition of
the dielectric constant εr , we have

~P = n ~p = nα ~E and ~P = χe εo
~E = (ε− εo ) ~E =⇒ α =

ε− εo

n
(13.24)

Inserting this into our expression for σunpol , Equation 13.15, we obtain

γdilute = n σ = n
8π

3

(
ε− εo

4π εo n

)2 ω4

c4
=

8π3

3

(
ε− εo

εo

)2 1

n λ4
(13.25)

This attenuation constant is applicable to the scattering of sunlight, again explaining
why the sun becomes redder as it sets: the redder wavelengths have a substantially
smaller attenuation constant (larger attenuation length) than the bluer wavelengths.
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Application: Scattering in a Dense Medium

In a dense medium (e.g., a liquid), individual scatterers can no longer be treated as
totally independent. Instead, we treat the medium as consisting of cells of size d such
that d � λ while also d � ξ where ξ is the correlation length of fluctuations in the
medium’s density. The number of scatterers per unit volume is 1/d3 because that is
the number of cells per unit volume. The “polarizability per scatterer”, which is α in
the case of a single scatterer, is given by α δNd where δNd is the rms fluctuation in
the number of scatterers in cells of size d . Thus, the attenuation length becomes
(using α = (ε− εo )/n from the previous page)

γdense = (# of cells per unit volume)× (cross section per cell) (13.26)

=
1

d3

8π

3

(
α δNd

4π εo

)2 ω4

c4
=

8π3

3

(
ε− εo

εo

)2 1

n λ4

〈
δN2

d

〉
n d3

(13.27)

In an ideal gas (not what we are dealing with), we should make the cell size match the
volume per atom because the correlation length vanishes for an ideal gas. Thus, the
cell volume d3 is 1/n and the rms fluctuation per cell is 1 because that is the rms for
a Poisson distribution with mean value of 1. With these values, we recover the prior
dilute expression.
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More generally, one can derive from thermodynamics that〈
δN2

d

〉
n d3

= n kB T βT with βT = − 1

V

(
∂P

∂V

)
T

(13.28)

where βT is the isothermal compressibility (basically, how hard it is stuff more atoms
or molecules into a given volume). With this, we have

γ =
8π3

3

(
ε− εo

εo

)2 1

n λ4
kB T βT (13.29)

This kind of Rayleigh scattering is quite important for light propagation in liquids;
scattering, rather than absorption, is the primary reason for light attenuation in liquids.

One perhaps surprising overlap of particle physics and thermodynamics is the fact
that, in almost any detector that involves the propagation of Cerenkov or scintillation
light in a liquid — e.g., water Cerenkov and liquid scintillator detectors of neutrinos
such as in the SuperKamiokande, Sudbury Neutrino Observatory, MiniBooNE,
MicroBoone, Daya Bay, LZ, XENONnT, and DUNE experiments (among many
others), and liquid noble detectors based on scintillation light used for these purposes
as well as dark matter searches and coherent neutrino-nucleus scattering
measurements — Rayleigh scattering is the dominant mechanism for attenuation and
must be modeled well to accurately simulate the detector behavior.

Also, interestingly, βT can diverge at the liquid-gas critical point, giving rise to
extremely large scattering called critical opalescence, which provides a useful way of
measuring the critical point of a particular material.
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Antennas

Introduction and Study Guide

Antennas are our second major application of the theory of radiation we have
developed. This material is not covered in Griffiths, it is largely from Heald and
Marion §9.4, §9.5, and §9.7.
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A d � λ Electric Dipole Antenna

Let us consider an electric dipole given by a line current along the z-axis
I(t) = I0 e−i ω t that has length d . This is the current that flows in the case of an
oscillating perfect electric dipole, with I(t) d = ṗ = q0 ḋ . Plugging this into the
electric dipole radiation formulae, Equations 12.105, 12.106, and 12.108, and
assuming harmonic time dependence and ~p ∝ ẑ, we obtain

~B = −i
µo

4π
ω I0 d

e i(k r−ω t)

c r
φ̂ sin θ ~E = −i

1

4π εo
ω I0 d

e i(k r−ω t)

c2r
θ̂ sin θ

(13.30)〈
dP

dΩ

〉
=

µo

32π2

ω2I2
0 d2 sin2 θ

c
〈P〉= µo

12π

ω2I2
0 d2

c
=

(k d)2

6π

〈
I2
〉

Z0 (13.31)

with the free-space impedance Z0 =
√
µo/εo and

〈
I2
〉

= I2
0/2 the mean-square current.

We see the first hint of a concept of an antenna’s radiation resistance, which gives the
relation between mean-square current and the radiated power. We will see that, for an
antenna radiating into free space, the maximal efficiency for radiated power is
obtained when 〈P〉/

〈
I2
〉

= Z0. This short line antenna does not do a good job of

radiating into free space because of the prefactor (kd)2/6π � 1. We immediately see
that, to match free-space well, an antenna must have a size of order the wavelength it
is radiating. The approximations made for the multipole expansion and electric and
magnetic dipole radiation fail and we must go back to the more general expressions.
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General Setup for d 6� λ Antennas

Given the above, let us recall a number of results from our general discussion of
radiating systems. The form for the vector potential under the assumption d � r and
d2/λ� r , but not assuming d � λ, Equation 12.91, is

~A(~r , t) =
µo

4π

e i (k r−ω t)

r

∫
V

dτ ′ ~J0(~r ′) e−i k r ′ r̂·r̂ ′

We did not derive expressions for the fields in this general case, so we do so here. We
recall that, with the above assumed harmonic time dependence, the application of the
curl to get the magnetic and electric fields yields i k r̂ × factors from the argument of
the exponential (neglecting the terms of higher order in r that come from
differentiating the 1/r dependence). Therefore,

antenna
magnetic

field

~B(~r , t) = i
µo

4π

ω

c

e i (k r−ω t)

r
r̂ ×

∫
V

dτ ′ ~J0(~r ′) e−i k r ′ r̂·r̂ ′ (13.32)

antenna
electric

field

~E(~r , t) =
i c2

ω
~∇× ~B = −c r̂ × ~B (13.33)

We will consider antennas that can be treated as line currents, so dτ ′ ~J0(~r ′)→ I d ~̀′.
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Antenna Gain

An antenna is fundamentally a device for either radiating power or receiving power
with a desired pattern. They are frequently intended to radiate to or receive from a
particular direction. This can be quantified using the idea of antenna gain:

antenna gain G(r̂) =

〈
dP
dΩ

(r̂)
〉

〈P/4π〉 (13.34)

which is just the ratio of the power per unit solid angle into a particular direction
divided by the total power per unit solid angle into all directions. The antenna
radiates more power in directions for which this number is large. If an antenna is fully
omnidirectional, then G(r̂) = 1 in all directions. We shall see that this same number
also quantifies how directional an antenna is in reception mode.

Gain is frequently quoted in decibels (dB), with

G(r̂) [dB] = 10 log10 G(r̂) (13.35)

Thus, an omnidirectional antenna has 0 dB gain in all directions while other antennas
have positive dB gain in some directions (the directions they are good at transmitting
to) and negative dB gain in other directions.
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Antenna Impedance

Since the antenna may not be small compared to λ, the mean-square current
〈
I2
〉

may

not be the same everywhere in the antenna. For specificity, we choose to evaluate
〈
I2
〉

at the point where the antenna is fed by wires or a waveguide, the so-called “gap”
drive point. We then define the antenna impedance and radiation resistance:

antenna
impedance

Zant =
Vg

Ig

radiation
resistance

Rrad =
〈P〉〈
I 2
g

〉 (13.36)

For an ideal antenna, meaning one that radiates all the power it receives from a
transmission line, Zant = Rrad (we use R instead of Z for the radiation component
because it is always real by definition). For non-ideal antennas, there may be
additional resistive or reactive components.

Of particular importance is that Zant determines the relation between power flowing in
on a transmission line and power received by the antenna (which can then be
radiated). If Zant = Zline , then the antenna receives all power from the transmission
line and reflects none. If this is not true, as may be the case because transmission
lines have a set of standard impedances, then a transformer can be used to impedance
match such a transmission line to an antenna. We discussed earlier how appropriate
lengths of transmission line could be used as transformers. These can work quite well
for antennas intended for single-frequency use. Broadband impedance matching —
matching over a large fractional bandwidth ∆ν/ν — is more difficult.
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Center-Driven Line Antennas

A line antenna is an antenna with a line current in the z-direction,
~J0(~r ′) dτ ′ = I(~r ′) d` ẑ. In general, solving for the current and vector potential even
approximately is nontrivial. Jackson §9.4.B demonstrates that, for a thin-wire antenna
that is perfectly conducting and with wire radius a� λ, d and that has azimuthal
symmetry about the antenna’s long direction d , the vector potential is exactly
sinusoidally dependent on the distance along the antenna. From this, he concludes the
current is approximately sinusoidal. We will assume this behavior in the following.

We assume a configuration as illustrated below, where the antenna consists of a long
wire of length d in the z-direction, symmetrically placed about the origin, with a gap
of negligible extent at z = 0. The two pieces of the antenna are connected to the two
electrodes of a transmission line.

c© 1999 Jackson, Classical Electrodynamics
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The current in the wire is assumed to follow

I(z) = I0 sin

[
k

(
d

2
− |z|

)]
(13.37)

This form is sinusoidal as desired and also satisfies the boundary condition that the
current vanish at the end. The derivative is not continuous at z = 0 except for certain
values of d . The current at the gap drive point is Ig,0 = I0 sin k d

2
. Given the current

distribution, we may calculate the magnetic field, noting that r̂ × d` ẑ = −φ̂ sin θ:

~B(~r , t) = −i φ̂
µo

4π

ω

c
I0

e i(k r−ω t)

r
sin θ

∫ d/2

−d/2
dz ′ e−i k z′ cos θ sin

[
k

(
d

2
− |z ′|

)]
(13.38)

Let us rewrite this as the product of a function of λ and a function of d/λ and θ:

center-driven
line antenna

magnetic field

~B(~r , t) = −i φ̂
µo

4π

ω

c
I0
λ

2

e i(k r−ω t)

r
f

(
d

λ
, θ

)
(13.39)

center-driven
line antenna

magnetic field
pattern

f

(
d

λ
, θ

)
=

sin θ

π

∫ π d/λ

−π d/λ
dζ e−i ζ cos θ sin

(
π d

λ
− |ζ|

)
(13.40)
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Comparing with our calculation of the radiation field due to a line current electric
dipole, we see that if we make the correspondence,

I0 d ↔ I0
λ

2
sin θ ↔ f

(
d

λ
, θ

)
(13.41)

and note that the relation between ~E and ~B is the same as for the line current electric
dipole, then the expressions calculated for the line current electric dipole can be
translated to this case, giving

〈
dP

dΩ

〉
=

µo

32π2

ω2I2
0
λ2

4

c

∣∣∣∣f (d

λ
, θ

)∣∣∣∣2 =
Z0

32
I2

0

∣∣∣∣f (d

λ
, θ

)∣∣∣∣2 (13.42)

The gain and radiation resistance are

antenna
gain

pattern
G(θ) =

∣∣∣f ( d
λ
, θ
)∣∣∣2〈

|f |2
〉 with

〈
|f |2
〉

=
1

4π

∫
dΩ

∣∣∣∣f (d

λ
, θ

)∣∣∣∣2 (13.43)

antenna
radiation
resistance

Rrad =
〈P〉〈
I2

g

〉 =

Z0
32

I2
0 4π

〈
|f |2
〉

1
2
I2

g,0

=
π

4

1

sin2 k d
2

〈
|f |2
〉

Z0 (13.44)
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For the sinusoidal current we have assumed, we can evaluate the field pattern for
arbitrary d . This is done by using the trigonometric product identities

cos A sin B =
1

2
[sin (A + B)− sin (A− B)] (13.45)

sin A sin B =
1

2
[cos (A− B)− cos (A + B)] (13.46)

and also using the Euler formula for e−i k z′ cos θ. This yields

center-driven
line antenna

radiation
field pattern

f

(
d

λ
, θ

)
=

2

π

cos
(

k d
2

cos θ
)
− cos k d

2

sin θ
(13.47)
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We can calculate these quantities for some specific antenna lengths. A plot comparing
the radiation patterns of our idealized electric dipole and half-wave and full-wave
antennas is given at the end.

I half-wave antenna, d = λ/2

The quantity kd/2 = π/2, so the current, field pattern,
〈
|f |2
〉
, and radiation

resistance are

I(z) = I0 sin
(π

2
− k|z ′|

)
= I0 cos kz (13.48)

f

(
d

λ
=

1

2
, θ

)
=

2 cos
(
π
2

cos θ
)

π sin θ

〈
|f |2
〉

= 0.247 (13.49)

Gmax =
|f (d/λ = 1/2, θ = π/2)|2〈

|f |2
〉 =

(2/π)2

0.247
= 1.64 = 2.15 dB (13.50)

Ig,0 = I0 Rrad ≈ 73 Ω (13.51)

This type of antenna is therefore well-matched to 75 Ω coaxial cable. The
antenna radiates an azimuthally uniform pattern but has highest gain in the
θ = π/2 plane. It is not a great match to free space because Rrad is quite
different from Z0 = 377 Ω.
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I full-wave antenna, d = λ

The current is

I(z) = I0 sin
(
π − k|z ′|

)
= I0 sin k|z ′| = I0

∣∣sin kz ′
∣∣ (13.52)

The current at the drive point formally vanishes and the antenna’s radiation
resistance is formally infinite: basically, no matter what voltage the transmission
line has on it, it cannot drive a current at the antenna drive point. Clearly, not a
very good antenna to drive with a transmission line! The corrections we ignored
in making the assumption of perfectly sinusoidal current will enable Ig 6= 0.
However, we can still calculate the radiation pattern using our formula for f
with k d/2 = π, giving

f

(
d

λ
= 1, θ

)
=

2

π

cos (π cos θ)− cosπ

sin θ
=

4

π

cos2
(
π
2

cos θ
)

sin θ
(13.53)〈

|f |2
〉

= 0.672 (13.54)

Gmax =
|f (d/λ = 1, θ = π/2)|2〈

|f |2
〉 =

(4/π)2

0.672
= 2.41 = 3.82 dB (13.55)

The full-wave antenna has a more peaked radiation pattern than the half-wave
antenna, though it is harder to drive.
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I folded half-wave antenna

The idea here is to fold a full-wave antenna at z = ±λ/4 and connect the two
ends together back at the center. This joining changes the boundary condition
so that the joined point should be a point of peak current and the fold points
are now current zeros. If s is the distance along the antenna from the drive
point, so that s = ±λ/2 sits at z = 0, the current becomes I(s) = I0 cos ks
instead of I(s) = I0| sin ks|. The current is negative at s = ±λ/2 = d/2, but,
because the antenna has been folded so this piece of the antenna is pointed in
the opposite direction as the unfolded piece, this current that is negative relative
to s is positive relative to z. The antenna now looks like two half-wave antennas
right next to each other. The radiation pattern is the same as a half-wave
antenna, but the effective current I0 for a given gap drive current Ig,0 is
enhanced by a factor of two relative to the half-wave antenna, so the radiation
resistance increases by a factor of (I0/Ig,0)2 = 4:

I0 = 2 Ig,0 Rrad = 4× 73 Ω = 292 Ω (13.56)

This higher radiation resistance is a better match to free space, which has
Z0 = 377 Ω as noted before. Flat-pair or twisted-pair transmission line, which
have impedances of about 300 Ω, are best for feeding this antenna.
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I Arbitrary Length

Given on the following slide is a plot of the antenna impedance
(Equation 13.36) as a function of length in units of λ. The length is marked
with tickmarks on the trajectory. The impedance is a complex number whose
resistive (real) part is the horizontal axis and whose reactive (imaginary) part is
the vertical axis. The real part is dominated by the radiation resistance
(Equation 13.36), which is always real by definition. The reactive component
simply indicates that the current and voltage at the drive point (which are
supplied by the feeding transmission line) are out of phase, with the sign of the
phase defining whether the antenna has a capacitive or inductive reactance.

The right side of the trajectory, at d/λ = 1, would go off to infinity for an ideal
full-wave antenna; nonidealities keep it finite. At d/λ = 3/2, the antenna looks
similar to a half-wave antenna but with a somewhat higher impedance.

One can use a plot like this to pick the transmission line that best impedance
matches the antenna one wants to use, the choice of which is usually driven by
the radiation pattern or the available space. If there is an impedance mismatch,
one might use a transmission line transformer to transform the impedance or
lumped element capacitors or inductors to “tune out” (cancel) the reactive part
of the antenna impedance.
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2 1 1 2
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Polar plot of gain patterns (power units) of ideal electric dipole (black), half-wave
antenna (red), and full-wave antenna (blue). The greater gain of the full-wave
antenna is due to its cos4 dependence (vs. cos2 for the half-wave antenna). Figure
courtesy of M. Cross.

Antenna impedance as a function of
antenna length in units of λ. Tickmarks
indicate d/λ. The axes are in Ω and
give the complex Zant , which is real for
integer multiples of λ/2, implying
Zant = Rrad at these lengths.
NOTE: This plot follows the engineering
sign convention. Our sign convention is
the opposite, so the curve should be
mirrored about the horizontal axis.
d < λ/2 will still be the capacitive
portion and λ/2 < d < λ the inductive
section (and so on for d > λ).

http://www.astrosurf.com/luxorion/qsl-swr.htm
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Antenna Reciprocity Theorem

One can prove a theorem that the power received by an antenna from a plane wave in
direction k̂ is

Pr (k̂) =
λ2

4π
G(−k̂) × incident flux (13.57)

The quantity (λ2/4π) G(−k̂) is the effective area of the antenna in the direction k̂
(sort of like the cross section for scattering we discussed earlier.) By its definition,∫

dΩ G(r̂) = 4π, so the above also tells us that the total effective area of the antenna
integrated over all possible incoming angles is λ2. This is an important theorem in
antenna theory because it provides a normalizing factor for measuring antenna
efficiency: if you surround an antenna with a blackbody radiator, you know the
incident flux. The antenna should receive a power λ2 times the flux incident from the
blackbody. You can then measure the power exiting the antenna onto a transmission
line and take the ratio of observed to expected power to determine the antenna’s
overall efficiency. This could also be used, for example, to determine the antenna’s
radiation resistance.

The proof of this theorem is interesting because it involves the Lorentz Reciprocity
Theorem and can be found in Drabowich et al., Modern Antennas, §4.1.
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Driven Arrays of Line Antennas

Suppose one has an array of N antennas, each displaced from the origin by ~∆j , j = 1

to N, all fed identically with current, in phase. Let ~E0 be the radiation field pattern of
an individual antenna situated at the origin. Then the radiation pattern of the array is
easily calculated by recognizing that each antenna’s contribution to the total electric

field is the same up to the phase offsets due to the e−i k r ′ r̂·r̂ ′ factor arising from the
displacement in ~r ′ between antennas:

~E =
N∑

j=1

i c2

ω
~∇×

[
~∇× ~Aj (~r , t)

]
(13.58)

=
N∑

j=1

i c2

ω
~∇×

[
~∇× µo

4π

e i(k r−ω t)

r

∫
Cj

d ~̀′ I(~r ′) e−i k r̂·~r ′
]

(13.59)

=
N∑

j=1

i c2

ω
~∇×

[
~∇× µo

4π

e i(k r−ω t)

r

∫
C0

d ~̀′ I(~r ′) e−i k r̂·(~∆j +~r ′)

]
(13.60)

= ~E0

N∑
j=1

e−i k r̂·~∆j (13.61)

where we factored e−i k r̂·~∆j out of the integral and recognized ~E0 in what remains.
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You hopefully recognize the sum over phase factors of this type as the same kind of
sum present in the calculation of the interference pattern due to an array of slits in a
screen. Let us consider an analogue of that, an array of N center-fed antennas oriented
with their currents flowing along the z-axis and displaced from the origin with uniform
spacing ∆. Let the first antenna be at ~r0 with r0 � r . The radiation field pattern is

~E = ~E0

N∑
j=1

e−i k r̂·~∆j = ~E0

N∑
j=1

e−i k r̂·(~r0+(j−1) ~∆) (13.62)

= ~E0 e−i k r̂·~r0

N∑
j=1

e−i k r̂·~∆ (j−1) = ~E0 e−i k r̂·~r0
1− e−i k N r̂·~∆

1− e−i k r̂·~∆
(13.63)

where we have used the standard result
∑N

j=1 r j−1 = (1− rN )/(1− r) for geometric

series. Thus, if f0(d/λ, θ) is the radiation pattern corresponding to ~E0, we have

∣∣∣∣f (d

λ
, θ

)∣∣∣∣2 =

∣∣∣∣f0

(
d

λ
, θ

)∣∣∣∣2
∣∣∣∣∣1− e−i k N r̂·~∆

1− e−i k r̂·~∆

∣∣∣∣∣
2

(13.64)

driven-array
antenna

radiation pattern

∣∣∣∣f (d

λ
, θ

)∣∣∣∣2 =

∣∣∣∣f0

(
d

λ
, θ

)∣∣∣∣2 sin2 N k r̂·~∆
2

sin2 k r̂·~∆
2

(13.65)
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The factor at the end is the same factor one finds in the calculation of the interference
pattern from an array of slits. It has the following properties:

peak position at k r̂ · ~∆ = 2 n π (13.66)

peak height N2 (13.67)

peak width |k r̂ · ~∆− 2 n π| ≈ 2
√

6/N (13.68)

secondary peaks at k r̂ · ~∆ = m π/N (m 6= 2 n N π) (13.69)

secondary peak height O(1) (13.70)

These results for the peak height and width are obtained by Taylor expanding the sines
near k r̂ · ~∆ = 2 n π to first and third order, while the secondary maxima are found by
requiring k r̂ · ~∆ = m π/N 6= 2 n π.

This structure is easier to understand if we set ~∆ = ∆ ŷ , which yields
k r̂ · ~∆ = k ∆ sin θ sinφ. If we additionally assume ∆ < λ, this ensures there are at
most two primary peaks at φ = 0, π because k ∆ sin θ sinφ < 2π for all (θ, φ). The
figure below shows the gain in the xy -plane (θ = π/2) for ∆ = λ/2, N = 5. Off this
plane, there are no primary peaks, only secondary peaks. Figure courtesy of M. Cross.
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Driven arrays of antennas are pervasive. Here are some examples:

I The radar in the nose cone of most airplanes is a driven array antenna. The
phase of the current driving the individual elements is varied, which is the
equivalent of changing the orientation of ~∆ so that the emitted (and received)
radiation beam can be pointed away from the direction of motion of the plane
without steering a physical antenna.

I Much of radio astronomy is done with driven antenna arrays operated in
reception mode. The signals from the individual antennas are routed to a
central “correlator.” In principle, one should sum the signals from all the
antennas. But the interesting behavior comes from the cross-terms in the sum,
so, instead, all independent pairs of voltage signals (proportional to electric
field) are multiplied, which gives the cross-terms. The advantage of the array
approach is the very narrowly peaked gain function thus obtained: the width is
roughly the same as that of a single radio telescope whose diameter is the
extent of the array. These are called “radio interferometers.” The Jansky Very
Large Array in New Mexico and the Atacama Large Millimeter Array in Chile are
examples for which the individual antennas are themselves radio telescopes. At
longer wavelengths, a number of projects use arrays of simple antennas to
obtain very large collecting areas (appreciable fractions of a square kilometer,
including the Long Wavelength Array in the Owens Valley operated by Caltech)
that view a large fraction of the sky at one time and for which different
resolution functions can be obtained by digitizing and then doing the
multiplications in a computer. There is also the Event Horizon Telescope, which
combines telescopes spread over the entire planet and has imaged the event
horizon of the black holes at the centers of M87 and our galaxy.
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Passive Arrays of Line Antennas

Many television or radio antennas are arrays of linear antennas with one driven
element and many passive elements. These passive elements are driven by radiation
received from the driven element, and then they radiate with a definite phase relative
to the driven antenna. The combined radiation pattern of the driven and passive
antennas can be designed to be peaked in a particular direction. As we will see below,
this forward peaking of the emitted radiation pattern also ensures that the antenna is
a good receiver in that direction.

Here, we consider a Yagi-Uda antenna, shown below.

Directors
(capacitive)

Reflector
(inductive) Drive

Forward
direction

Section 13.2.9 Passive Arrays of Line Antennas Page 945



Section 13.2 Applications of Radiation: Antennas

The important features of this design are as follows:

I There is one driven antenna, which is a folded half-wave antenna (for reasons
discussed earlier).

I There is one antenna placed behind the the drive antenna that is intended as a
back-reflector: it is spaced λ/4 behind the driven antenna so that the wave that
reflects from it is in phase in the forward direction (remember the extra π phase
shift due to a reflection from a conductor). This is the equivalent of saying that
the wave that is radiated by the back-reflector, which is excited by the driven
antenna, is in-phase with the driven antenna’s wave in the forward direction and
out of phase in the backward direction.

I There are multiple “director” antennas placed ahead of the driven antenna.
They are intended to constructively interfere with the driven antenna in the
forward direction and destructively in the backward direction. If there were just
one, it would be placed λ/2 in front of the driven antenna (so the reflected
wave in the reverse direction is out of phase). With multiple directors, the
optimal spacing turns out to be about λ/3.
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I A more sophisticated discussion implies that the lengths of the passive antennas
are also important. The spacing argument is an oversimplification because it
assumes the back-reflector acts like an infinite conducting plane. Really, we
should think about the antenna impedance and ask what needs to be done to
cancel the −i k r̂ · ~∆ phase factor that arises from the spacing between the
driven antenna and the back-reflector or directors. This issue did not arise for
the phased array because, using identical antennas, there are no path length
differences for the direction of maximum constructive interference, perpendicular
to the spacing ~∆ between elements. But here we want constructive interference
in the direction in which there are path length differences, and so we need to
cancel out the corresponding phase factors using the antenna impedances.

Recall the figure showing the antenna impedance as a function of size: antennas
that have d < λ/2 are capacitive and those with λ/2 < d < λ are inductive. In

the forward direction, the phase factor −i k r̂ · ~∆ is negative imaginary. With our
−i ω t time dependence, a capacitive element has a positive imaginary
component to its impedance (positive phase factor), so the directors should be
capacitive to cancel this negative imaginary phase and yield constructive
interference in the forward direction (and, conversely, destructive interference in
the reverse direction). So, the directors should have dd < λ/2. Conversely, the
back-reflector should be inductive and thus have λ/2 < dr < d . Usually, dd and
dr are not much different from d .
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Diffraction

Introduction and Study Guide

Diffraction is the third major application of the theory of radiation we have developed.
This material is not covered in Griffiths; it is largely from Heald and Marion Chapter
12 and from Jackson Section 10.5. We will study scalar diffraction theory only (vector
diffraction theory gets rather complicated; it is covered in Jackson Section 10.6) and
focus on the Fraunhofer limit (d � λ� r).

We may use a scalar rather than vector approach because we will focus primarily on
using the wave equation for EM waves, in which ~E and ~B decouple and in which each
component of ~E and ~B individually satisfies the wave equation, and also because we
will not be calculating radiated fields from currents but rather directly from received
fields. This point will become clearer as we proceed.

We will therefore assume a scalar field with harmonic time dependence ψ(~r) e−i ω t

that satisfies the wave equation.(
∇2 − 1

c2

∂2

∂t2

)
ψ(~r) e−i ω t = 0 (13.71)

Because of the harmonic time dependence, the time derivative part simplifies and the
wave equation becomes the Helmholtz equation(

∇2 + k2
)
ψ(~r) = 0 with k = ω/c (13.72)
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The Helmholtz-Kirchoff Integral

The first step we must take is to figure out, given the EM fields on some bounding
surface of a region due to sources external to the region, how to calculate the fields
that propagate to points inside that region. See the picture below at left, where the
sources are marked with × symbols, the bounding surface is shown in gray, and the
point at which we want to calculate the field is P.

c© 2012 Heald and Marion, Classical Electro-

magnetic Radiation

c© 1999 Jackson, Classical Electrodynamics

If one wants to think instead about the classical diffraction geometry, think of the
boundary as an opaque screen with a hole in it with fields incident on the hole from
sources on one side of the hole. We want to calculate the fields at points P on the
other side of the screen. The figures above at the right could describe these
geometries, with the sources in region I and the point P in region II.
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Let us suppose that, along with having the scalar wave function ψ that satisfies the
Helmholtz equation, we also have the Green Function for the equation, i.e., the
function G(~r , ~r ′) that satisfies the Helmholtz equation with a unit point source:(

∇2
~r + k2

)
G(~r , ~r ′) = −δ(~r − ~r ′) (13.73)

The sign on the right side for the source comes from the inhomogeneous wave
equation in Lorenz gauge, Equation 10.21, where it is due to the choice of sign
convention for the d’Alembertian (negative sign in front of the spatial derivatives).

Next, applying Green’s Theorem (Equation 3.13) with ψ(~r ′) and G(~r , ~r ′), we have

−
∮
S

da′
[
ψ(~r ′) n̂(~r ′) · ~∇~r ′G(~r , ~r ′)− G(~r , ~r ′) n̂(~r ′) · ~∇~r ′ψ(~r ′)

]
=

∫
V(S)

dτ ′
[
ψ(~r ′)∇2

~r ′G(~r , ~r ′)− G(~r , ~r ′)∇2
~r ′ψ(~r ′)

]
= −ψ(~r) for ~r ∈ V, 0 otherwise (13.74)

where the left side has acquired a negative sign because we define n̂ to the be inward
rather than outward normal on the surface S. We have used the Helmholtz equation
to evaluate the ∇2

~r ′ terms on the right-hand side, and we have also assumed G(~r , ~r ′)
is symmetric in its arguments as usual. The delta function in the Helmholtz Equation
for G gives the one nonzero term on that side. When evaluating ∇2

~r ′ψ(~r ′), there is no
source term because the sources are outside V. We have thus obtained what we want,
an equation for ψ(~r ∈ V) in terms of ψ and its normal gradient on the boundary. We
need the Green Function for the specific geometry, of course.
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We then make two approximating assumptions:

I For any geometry of interest, it is acceptable to use the Green function for the
Helmholtz equation for a free-space geometry, G(~r , ~r ′) = exp(i k R)/R with
~R = ~r − ~r ′, independent of the specific geometry. We first need to evaluate the
action on G of ~∇~r ′ ,

~∇~r ′G(~r , ~r ′) = ~∇~r ′
e i k R

R
=

(
i k − 1

R

)(
−R̂
) e i k R

R
(13.75)

where we have −R̂ instead of R̂ because the gradient is with respect to ~r ′, not
~r . Inserting this into the equation for ψ(~r):

ψ(~r) = − 1

4π

∮
S

da′
e i k R

R
n̂(~r ′) ·

[
~∇~r ′ψ(~r ′) +

(
i k − 1

R

)
R̂ ψ(~r ′)

]
(13.76)

I We may break the surface S into surfaces S1 and S2 where S1 consists of a
screen with apertures for which we wish to calculate the diffractive effects of a
wave incident from outside of S and where S2 consists of the remainder of S,
taken off to infinity. At such large distances,

ψ → f (θ, φ)
e ikr

r
r̂ · ~∇ψ →

(
i k − 1

r

)
ψ (13.77)
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At these distances, r ′ � r , so ~R → −~r ′, R → r ′, and n̂→ −r̂ ′ and the
integrand becomes

e ikr

r

(
−r̂ ′

)
·
[(

i k − 1

r ′

)
ψ r̂ ′ +

(
i k − 1

r ′

)(
−r̂ ′

)
ψ(~r ′)

]
= 0 (13.78)

That is, the S2 integral vanishes.

We thus arrive at the Helmholtz-Kirchoff Integral,

ψ(~r) = − 1

4π

∫
S1

da′
e i k R

R
n̂(~r ′) ·

[
~∇~r ′ψ(~r ′) +

(
i k − 1

R

)
R̂ ψ(~r ′)

]
(13.79)

where S1 is now just the diffracting screen. (The utility of this for scalar fields is
reflected by the fact that it was first derived by Helmholtz in 1859 for acoustic waves.
Kirchoff extended it to EM waves in 1882.)

To do this integral, we need to know both ψ(~r) and n̂ · ~∇ψ(~r) on the screen S1, which
already hints at a problem: by analogy to Laplace’s equation in electrostatics, we
should not need to know both. Nevertheless, soldiering on, the Kirchoff approximation
consists of assuming these functions vanish everywhere but in the apertures in the
screen and that their values there are given by the values they would have in the
absence of the screen. This is not an unreasonable approximation if we assume the
screen is a perfect absorber.
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The problem with this approximation is that one can show that, if both ψ and its
normal gradient vanish on any finite surface, then ψ vanishes everywhere. (This is not
obvious.) This is both inconsistent with the second assumption and it does not
recover the values in the opening (i.e., one cannot use the formula for a point ~r in the
apertures in S1). We will see below, nevertheless, that the approximation is useful.
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The formally correct method would have been to not make the first approximation
about the Green function being the free-space Green function. One should specify
either Dirichlet or Neumann boundary conditions (knowing ψ or its normal gradient on
S1) and find the appropriate Green function as we did in electrostatics, requiring it
satisfy the appropriate condition:

Dirichlet: GD (~r ∈ S,V, ~r ′ ∈ S) = 0 (13.80)

Neumann: n̂ · ~∇~r ′GN (~r ∈ S,V, ~r ′ ∈ S) = 0 (13.81)

One then gets the appropriate Generalized Helmholtz-Kirchoff Integral from
Equation 13.74

Dirichlet: ψ(~r) =

∫
S1

da′ ψ(~r ′) n̂(~r ′) · ~∇~r ′G(~r , ~r ′) (13.82)

Neumann: ψ(~r) = −
∫
S1

da′ G(~r , ~r ′) n̂(~r ′) · ~∇~r ′ψ(~r ′) (13.83)

It turns out (again, not obvious) these expressions are consistent with the input
approximation: in the Dirichlet case, that ψ vanishes on S1 except in the apertures,
where it equals the incident wave; and in the Neumann case, that the normal gradient
of ψ vanishes on S1 except in the apertures, where it equals the normal gradient of
the incident wave.

So, to do the calculation fully correctly, one needs to know the Green Function for the
Helmholtz equation in the particular geometry. In simple cases, it is easy to find.
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Plane Screen Case

Let us consider a specific, common case, where S1 is a plane with an aperture or
apertures in it. If we place the plane at z = 0, one can show using the Method of
Images that the Green Functions are

Dirichlet: GD (~r , ~r ′) =
1

4π

(
e i k R

R
− e i k R′

R′

)
(13.84)

Neumann: GN (~r , ~r ′) =
1

4π

(
e i k R

R
+

e i k R′

R′

)
(13.85)

with ~r ′ = x ′x̂ + y ′ŷ + z ′ẑ ~r ′′ = x ′x̂ + y ′ŷ − z ′ẑ (13.86)

and ~R = ~r − ~r ′ ~R ′ = ~r − ~r ′′ (13.87)

The resulting Generalized Helmholtz-Kirchoff Integrals are then

Dirichlet: ψ(~r) = − 1

2π

∫
S1

da′
e i k R

R
n̂(~r ′) · R̂

(
i k − 1

R

)
ψ(~r ′) (13.88)

Neumann: ψ(~r) = − 1

2π

∫
S1

da′
e i k R

R
n̂(~r ′) · ~∇~r ′ψ(~r ′) (13.89)

which are two times the first or second terms of the Helmholtz-Kirchoff integral.
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These forms look quite different from each other. Let’s consider a simple case,
though, to see how they correspond. We assume the incident wave is sourced by a
point source many wavelengths from the screen so the incident wave is a spherically
symmetric expanding wave, ψ(~r ∈ S1) = ψ0 exp(i k |~r − ~rsrc |)/|~r − ~rsrc |. We assume
the observation point ~r ∈ V is also many wavelengths from the screen so that
k R = 2π R/λ� 1 and we can ignore the additional 1/R terms in the integrands.
Under these assumptions, all three expressions (Helmholz-Kirchoff, Equation 13.79,
and the two generalized forms, Equations 13.88 and 13.89) can be written in the
common form (taking the origin of ~r ′ to be the center of the apertures in the screen)

ψ(~r) = − i k

2π
ψ0

∫
apertures

da′
e i k |~r ′−~rsrc |
|~r ′ − ~rsrc |

e i k |~r−~r ′|
|~r − ~r ′| O(θsrc , θobs ) (13.90)

where O(θsrc , θobs ) =


cos θobs ≡ ẑ · r̂ ′ Dirichlet
cos θsrc ≡ −ẑ · r̂src Neumann
1
2

(cos θobs + cos θsrc ) = 1
2

(ẑ · r̂ ′ − ẑ · r̂src ) Kirchoff

is the obliquity factor. The ẑ comes from n̂(~r ′): we get ẑ · r̂ ′ from n̂(~r ′) · R̂ and we get

−ẑ · r̂ ′src from n̂(~r ′) · ~∇~r ′ψ(~r ′). The “Kirchoff” version is termed the Fresnel-Kirchoff
diffraction integral. The other two versions do not have defined names.
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By way of explanation: The first factor in the integrand simply calculates the value of
the field in the aperture. The denominator allows for variation of the intensity over the
aperture, while the numerator allows for the variation of the phase over the aperture.
The second factor then propagates the field from the aperture to the observation
point in similar fashion, accounting for both intensity and phase variation as the
variable of integration varies over the aperture.

In the limit of a source very far away from the screen, so that d � r (a further
approximation in addition to our assumption rsrc � λ, r � λ), the angles θsrc and
θobs do not vary much over the integral. The three cases thus just have different
normalizations, so we see they tie together somewhat. We do not have time here to
address the issue of the differing normalizations.
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Incoming Plane Wave Limit

Given that similar expressions are present as for our discussion of radiation, one can
imagine taking similar limits. Let’s first do this for the source field. The first step
would be to assume that the source is in the far-field, where, if d is the size scale of
the aperture, we assume d � rsrc and d2/λ� rsrc , as we did in deriving
Equation 12.91. This would yield

ψ(~r) = − i k

2π

e i k rsrc

rsrc
ψ0

∫
apertures

da′ e i k r ′ r̂src ·r̂ ′ e i k |~r−~r ′|
|~r − ~r ′| O(θsrc , θobs ) (13.91)

If we further assume d � λ, we can Taylor expand the exponential in the same way as
we did to obtain the multipole expansion for radiation, Equation 3.224, yielding

ψ(~r) = − i k

2π

e i k rsrc

rsrc

∞∑
m=0

(−i k)m

m!
ψ0

∫
apertures

da′
(
r ′ r̂src · r̂ ′

)m e i k |~r−~r ′|
|~r − ~r ′| O(θsrc , θobs )

(13.92)
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The most extreme approximation would be to assume the source is along z axis and so
far away that the phase variation over the aperture is negligible — i.e., the incoming
wave looks like a plane wave with k̂ = ẑ, in which case one keeps only the m = 0 term:

ψ(~r) = − i k

2π

e i k rsrc

rsrc
ψ0

∫
apertures

da′
e i k |~r−~r ′|
|~r − ~r ′| O(θsrc = 0, θobs ) (13.93)

This is equivalent to assuming the incoming wave is a plane wave with k̂ = ẑ and
hence we can term this the incoming plane wave limit.
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Fraunhofer, Fresnel, and the Fraunhofer Limit

We will work with the Fresnel-Kirchoff diffraction integral in the incoming plane wave
limit. This is not general, but will illustrate the important aspects of diffraction.

We may consider a similar set of approximations when evaluating the terms that
involve the observation point ~r . We first make the same approximation as earlier,
d � r (note that we have already assumed λ� r in deriving the Fresnel-Kirchoff
diffraction integral). We will not yet make the far-field approximation, d2/λ� r . We
will make the paraxial approximation, which is that θobs is close to zero so
cos θobs ≈ 1 and r̂ · r̂ ′ ≈ 0 (i.e., r̂ is almost perpendicular to the plane in which r̂ ′

lives, the aperture plane). This yields (similar to the case of radiation but keeping one
more term in the exponential for now)

ψ(~r) = − i k

2π

e i k rsrc

rsrc

e i k r

r
ψ0

∫
apertures

da′e−i k r ′ r̂·r̂ ′e i k (r ′)2/r (13.94)

The paraxial approximation was used to ignore the term of order kd2/r that includes
r̂ · r̂ ′ (which comes from the expansion of r̂ − r̂ ′ to that order) and also to reduce the
obliquity factor to unity.
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Section 13.3 Applications of Radiation: Diffraction

The Fraunhofer limit consists of ignoring the factor of order d2/r in the argument of
the exponential; this is equivalent to taking the far-field limit, r � d2/λ. When we do
not take that limit, the analysis is called Fresnel diffraction and the analysis gets very
involved. If we do indeed make the far-field approximation, the expression reduces to

ψ(~r) = − i k

2π

e i k rsrc

rsrc

e i k r

r
ψ0

∫
apertures

da′ exp
[
−i k

(
x ′ θobs,x + y ′ θobs,y

)]
(13.95)

where we have used the fact that the component of r̂ along ẑ is orthogonal to r̂ ′, so
we only retain the componets of r̂ in the transverse plane. In the paraxial limit, those
components are x/r and y/r , involving the transverse coordinates of ~r . These
quantities are the sines of the x and y projections of θobs , which, in the paraxial limit,
can be taken to simply be the angles themselves. The above is thus the Fraunhofer
diffraction integral that you have seen in prior courses.
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