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Section 1.1 Introduction to Course: Course Material

Course Material

Overview

This is a course on electrodynamics. It will review the basic material you learned in
Phlbc but will go beyond in both content as well as in mathematical sophistication.

The intended learning outcome of both Ph106b and Ph106c is for students to acquire
the ability to calculate electric and magnetic potentials, fields, energies, and forces in
a variety of basic physical configurations combined with an understanding of the
underlying physical principles and calculation techniques. This outcome requires both
an understanding of principles as well as the ability to apply them to do calculations!

The course will primarily use and follow Introduction to Electrodynamics by Griffiths
(fourth edition). Supplementary material is drawn from Jackson and from Heald &
Marion, both on electronic and physical reserve from the library. The material
presented here will be self-contained, but past students have found it useful to obtain
a copy of Jackson. It is certainly a book you will want if you continue in physics or a
related field.

Section 1.1.1 QOverview Page 10



Section 1.1 Introduction to Course: Course Material

Prerequisites

Physics:

» Electricity and Magnetism: While Phlbc is a formal prerequisite for the course,
we will develop the material from scratch. However, review material will be
covered quickly and a basic familiarity with the concepts will be assumed.

» Classical mechanics: Generally, mechanics at the level of Phla is sufficient for
this course, though some optional material at the end of Ph106c will make use
of Ph106a material.

Section 1.1.2 Prerequisites Page 11



Section 1.1 Introduction to Course: Course Material

Mathematics:

» Chapter 1 of Griffiths except for Sections 1.1.5 (“How Vectors Transform”) and
1.5 (“The Dirac Delta Function”). We will review some of prerequisite material
as needed.

» Solutions to second-order linear ordinary differential equations with constant
coefficients (i.e., simple harmonic oscillator).

» Orthonormal functions/bases.

> Over the course, we will develop the following more sophisticated concepts:

> Dirac Delta function.

> Separation of variables to reduce second-order linear partial differential
equations to ordinary differential equations.

> Various specific types of orthonormal functions, specifically sinusoids,
Legendre polynomials, and spherical harmonics.

> Tensor formalism for relativity.

» Key point: Mathematics is the language of physics. You must be competent in
the above basic mathematics to understand and use the material in this course.
Intuition is crucial, but it must be formalized mathematically.

However, mathematics is not just symbolic manipulation or brute force
calculation. Make sure you understand the meaning of every mathematical
expression — i.e., carry along the intuition with the symbols! Only do algebra
and explicit differentiation and integration as a last resort! We will demonstrate
this approach regularly.

Section 1.1.2 Prerequisites Page 12



Section 1.1 Introduction to Course: Course Material

Topics to be Covered

New topics for Ph106b not covered in Phlbc
New topics for Ph106c not covered in Phlbc

>

>

Section 1.1.3

Review of basic electrostatics — Coulomb’s Law; Gauss's Law; electric field,
potential, and potential energy; conductors, capacitors, and capacitance matrix.

Advanced electrostatics — boundary value problems (BVP) for determining

potentials and fields; Green Functions for BVP; multipole expansion of potential.

Electrostatics in Matter — polarization, susceptibility, permittivity of matter;
BVP with polarizable materials, energy and forces in matter.

Magnetostatics — Lorentz force; Biot-Savart Law; Ampére's Law; vector
potential; boundary conditions; multipole expansion of potential.

Magnetostatics in Matter — magnetization, susceptibility, and permeability of
matter; boundary conditions; ferromagnetism; BVP with magnetizable materials.
Electrodynamics — electromotive force and electromagnetic induction;
inductance and energy in magnetic fields; Maxwell's equations in vacuum and in
matter; boundary conditions for Maxwell's equations.

Conservation Laws — Continuity equation; Poynting's Theorem; electrodynamic
momentum and energy.

Electromagnetic Waves — in vacuum, in polarizable/magnetizable matter, in
conductors, in transmission lines and waveguides.

Topics to be Covered

Page 13



Section 1.1 Introduction to Course: Course Material

>

>

Section 1.1.3

Potentials and Radiation — potential formulation; fields and potentials of
moving point charges; radiated electromagnetic waves; antennas.

Relativity and Electrodynamics — review of special relativity including
relativistic kinematics and collisions, relativistic tensor notation, transformation
of fields, transformation of field tensor, relativistic potentials, relativistic
formulation of Maxwell's Equations, relativistic dynamics with EM fields,
relativistic conservation theorems.

Topics to be Covered
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Section 1.2 Introduction to Course: Notation; including Deviations from Griffiths

Notation; including Deviations from Griffiths

>

We will use standard black text for material that is covered in lecture, while
magenta text will be used for material that is skipped during lecture for which
you remain responsible. We will skip material generally when it consists of
computation or calculation that is tedious to do on the chalkboard, summarizing
the results as necessary. You will need to be able to apply the skipped material
as well as the techniques developed in this skipped material.

Green text will be used to indicate supplementary material for which you will
not be responsible.

Griffiths uses boldface notation to indicate vectors and a script 7 to indicate the
difference vector ¥ — 7. In order to better match what can be written by hand,
we use ~ rather than boldface for vectors and we use R for the difference vector.

Griffiths uses F to refer to the position of the test charge Q and 7’ to refer to
the position of the source charge g. This seems unnecessarily confusing. We
instead use q and 7 for the test charge and g’ and 7’ for the source charge.

Griffiths uses §3(F) to refer to the delta function in three spatial dimension. We
use §(F) for this for reasons that are explained after Equation 2.9.
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Section 2.1 Review of Basics of Electrostatics: Study Guidelines

Study Guidelines

You have seen all the material in this section before in Phlb. However, the derivations
done there were not as rigorous as they could be because you were simultaneously
learning vector calculus. Our goal in this section is to do more rigorous derivations to
give you some practice in using the mathematical tools. We won’t do any examples in
lecture or the notes because they duplicate Phlb. But you should make sure you are
comfortable with the examples in Griffiths Chapter 2.
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Section 2.2 Review of Basics of Electrostatics: The Assumed Conditions for Electrostatics

The Assumed Conditions for Electrostatics

Electrostatics is the study of electric fields, potentials, and forces under two
assumptions:

> All electric charges sourcing the electric field are stationary and have been so for
a sufficiently long time that all fields are static and thus the electric field can be
written in terms of the source charges’ current positions.

» The source charges are held fixed and cannot react to the fields from any test
charges that may be stationary or moving relative to the source charges.

We will see later that, when charges are moving, it takes time for the information
about the position to propagate and thus the fields at a given point depend on the
configuration of the charges at earlier times.
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Coulomb’s Law and the Electric Field

Coulomb’s Law, Electrostatic Forces, and Superposition
We begin with two empirical facts:

» Coulomb’s Law: the empirical fact that the force on a test charge g at position
F due to a source charge g’ at 7’ is given by Coulomb’s Law:

1 ~ _
99g with R=7—F (2.1)

!
Fo_l a
4me, R2

where €, = 8.85 x 10712 C2 N=1 m—2. The force points along the line from ¢’
to g as indicated by the sign of the definition of R. The electric charge is in the
units of Coulombs (C), which is a fundamental unit that cannot be written in
terms of other fundamental units.

Recall that: we use ~rather than boldface to indicate vectors; R where Griffiths
uses a script r; and a different convention from Griffiths for the symbols for the
two charges and their position vectors.

» Superposition: the empirical fact that Coulomb’s Law obeys the principle of
superposition: the force on a test charge g at 7 due to N charges {ql/} at
positions {7} is obtained by summing the individual vector forces:

N /
_ = 1 g9 5 . 5 S
F = g = g yy— I'?? R; with R =7F—F (2.2)

Section 2.3.1 Coulomb’s Law, Electrostatic Forces, and Superposition Page 19



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

The Electric Field

Given that any test charge g placed at the position 7 feels the same force per unit
charge, we are motivated to abstract away the test charge and define what we call the

electric field at that position 7

/o~
E(R) = F_ e R , for a single source charge ¢’ at 7’
q >N, 47360 % R;  for N source charges {q/} at positions {7}
!
(2.3)

The electric field has units of N/C.

Section 2.3.2

The Electric Field
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Coulomb’s Law for Continuous Charge Distributions

If a charge distribution is continuous, then the natural extension of Coulomb’s Law is
to integrate the electric field or force over the contributions from the infinitesimal
charge elements dq at r’:

ER) = o [ s Ral?) (24)

:47reo ﬁ

=

where R varies with the location 7/ of dq as the integral is performed. dq is
admittedly undefined here. However, before worrying about that, let us note that the
integrand is a vector and so this integral requires some care: we must break up R into
its components and individually integrate each component. For example, if we use

Cartesian coordinates, then R=%x <.‘3 . ?) +y (ﬁ . )7) +z (,‘3 . E), and, since the
Cartesian unit vectors do not depend on the location of the infinitesimal charge
dq(7”"), we may write the integral out as follows:

E( = (2.5)
47r1€a {?/% (R-%) dq(F')JF?/% (R-7) dq(f”)+?/% (R-2) dq(F’)]

which is sum of three integrals with scalar integrands.

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 21



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Now, consider some specific charge distributions:

» volume charge distribution:

with p(7’) having units of C m~3,
oy . S
. 1 dr' o(F!) ~ r’ running over all points in the
E(F) = 7/ Lgr) R volume distribution V, and d7’ (2.6)
v R being the differential volume

element at 7’ for V

» surface charge distribution:

with o(7") having units of C m—2,

~ . S
N 1 da’'o(F!) ~ r’ running over all points in the
E(F) = / # R surface distribution S, and da’ (2.7)
dmeo Js R being the differential area element
at 7/ for S

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 22



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

» line charge distribution:

with A(F’) having units of C m~1,
1 / dOA(F') ~ P’ running over all points in the
— [ ——R
C

E(A) = > line distribution C, and d¢’ being (2.8)
4meo R the differential length element
at 7/ for C

Using the Dirac delta function we will define below, one can write the first two as
special cases of the latter by using delta functions in the dimensions in which the
charge distribution has no extent.

Section 2.3.3 Coulomb’s Law for Continuous Charge Distributions Page 23



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Aside: The Dirac Delta Function

Relating Equation 2.6 to Equation 2.3 offers us both the opportunity to rigorously
connect them as well as a chance to introduce the Dirac delta function. The Dirac
delta function at 7, 6(F— 7p), is defined by what it does when it is multiplied against
an arbitrary function f(7) and integrated: For any function f(7) and any volume V
containing the point 7,, it holds that

fo &V

[ e - mydr = { fw) mey (2.9)

In particular, if £(7) is unity, then the right side of the above integral is unity for
fo € V: the integral of a delta function over the volume containing its 7, is 1, and,
conversely, the integral of a delta function over any volume not containing its 7,
vanishes.

Section 2.3.4 Aside: The Dirac Delta Function Page 24



Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field

Two notes on dimensions and notation:

» In order for the units in the above equation to work out, the delta function

Section 2.3.4

above must have units of m—3. The general rule is that the delta function’s
units are the inverse of those of the differential that its argument says it should
be integrated with. In this case, the argument is a vector in 3D space and the
differential is the differential volume element d7, and so the delta function has
units of m—3. The units can be subtle, though. If one considers a delta function
that picks out a 2D surface in 3D space (e.g., for collapsing an integral of a
volume charge density to one of a surface charge density), its argument will be a
3D vector, but it should have units of m~1 since it eliminates only one of the
three dimensions. (One example would be if the surface were a sphere; then one
would have §(r — r,), implying units of m~1.)

Griffiths refers to the above delta function as 63(7 — 7). He does this because
one can think of this delta function in terms of 1D delta functions

3ro oy _ _ _ F=xX+yy+zz
0°(F— 7o) = 6(x — x0)0(y — ¥0)0(z — z0) where P = xR+ Yo7 + 205

(2.10)

We drop the 3 because it is unnecessary: the dimension of the delta function is
implied by its argument, the fact that it picks a single point out of 3D space.
Moreover, the 3 notation is misleading and confusing because it suggests that &3
is the cube of something that has ¥ — r, as its argument. It is not!

Aside: The Dirac Delta Function
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Section 2.3 Review of Basics of Electrostatics: Coulomb's Law and the Electric Field
With the above, if we define the charge distribution for a set of point charges {q/} at
positions {F’} to be

o) =S a7 7) (211)

i=1

then, when we do the integral in Equation 2.6 over any volume V containing all N
charges, we recover the discrete version of the expression for the electric field,

Equation 2.3.

This is seen as follows:

1 / N dr'qls(F —F') F—F
v F—r

E(7) -
(") 47eo P |F—F’|? |F—
N = =1
Z/ A i
47reo P |F— 73
N — =/ N /

r—r; 1 q; 5
= — R; 2.12
47r602q EE 47reo,§' 2 R (212)

i=1
which recovers Equation 2.3.

Section 2.3.4 Aside: The Dirac Delta Function
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Gauss's Law

Statement of Gauss's Law

The flux of the electric field through a surface is the integral of the component of the
electric field normal to the surface over the surface:

R:LEﬂn@ (2.13)

where F lies on the surface S and n(F) is the surface normal at that point 7. Note that
the flux has a sign based on the choice of the orientation of 7.

Gauss's Law relates the flux of the electric field through any closed surface to the total
charge enclosed by that surface:

E . _1 T p(F
R:éEmmwf%A@dMﬁ (2.14)

where V(S) is the surface enclosed by S and § indicates the integral over a closed
surface. Our derivation below will take the surface normal direction to be outward
from the closed volume.

Section 2.4.1 Statement of Gauss's Law Page 27



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Utility of Gauss's Law

Gauss's Law has three uses:

» For charge distributions having some amount of geometrical symmetry, it
provides a way to calculate the electric field that is much easier than brute-force
integration of Coulomb’s Law.

P> We will see that it will enable us to relate the electric field's boundary
conditions at an interface between two volumes (the conditions relating the
electric field components on the two sides of the interface) to the amount of
charge at that interface.

» We can obtain a differential version of it, relating spatial derivatives of the
electric field to the charge density locally. Doing so directly from Coulomb’s
Law is difficult (though not impossible, given what we will prove about the
divergence of Coulomb’s Law!).

Section 2.4.2 Utility of Gauss's Law Page 28



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Proof of Gauss's Law

The proof offered in Griffiths' is unnecessarily unrigorous; we follow Jackson §1.3.

First consider a charge distribution
p(F) that lies completely inside an
arbitrarily shaped closed surface S.
What is the infinitesimal flux through
an infinitesimal portion da of S at
a point 7 due to the infinitesimal
amount of charge in the infinitesimal
volume d7’ at the location 7’7 It is

© 1999 Jackson, Classical Electrodynamics

1 dr'p(F")

d>Fs(7,7') = e (F—7') - A(7) da (2.15)

dme, |F—

The left side is a double differential because the right side is. If one considers the
geometry (see diagram above), one sees that the quantity (F— 7’) - A(F) da/|F — F'| is
the projected area of the area element da normal to the unit vector (F— r’) /|F — F’|
from 7’ to 7. Since |F— 7’|? is the square of the distance from 7’ to 7, then the
quantity (F— 7’) - A(F) da/|F — 7'|? is the solid angle dQ(F, 7") subtended by da at 7'
as viewed from 7’

Section 2.4.3 Proof of Gauss's Law Page 29



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The corresponding mathematical formula is
2 = =/ 1 ! = =/
d“Fs(F,F') = —— d7'p(F") dQ(F, F") (2.16)
47e,

We know that if we integrate the solid angle over the entire closed surface S
surrounding our source charge point 7/, we recover 4, so:

dFs(F') =

%S dt'p(F')dQ(F, F') = é dr’'p(F") (2.17)

47eo
That is, for any infinitesimal volume element d7’ at 7/, the flux of the electric field

due to that element through any surface S enclosing it is equal to the charge in that
infinitesimal volume divided by ¢,.

Section 2.4.3 Proof of Gauss's Law Page 30



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

We expect that, due to superposition, if the above is true for the flux due to an
infinitesimal volume of charge, then it holds for the whole distribution of charge
enclosed by S. We can prove this by calculating the flux through S due to the entire
charge distribution, using the fact that the distribution is fully contained inside S (one
of our starting assumptions):

= nl _ ! 7d7—/p(’ﬂ) F—F") - n(F) da
Fs = § Es(7)- () da = yi/v(s) P (=) () g
1

47eo
1
= ?é/ d’r’p(?')dﬂ(ﬁ?/): }{/ d2.7:5(r?,F/) (2.18)
dmes Js V(S) dmeo Js V(S)

where Es(F) is the electric field at 7 due to all the charge contained by S. Note that

we implicitly used superposition in the above via the formula relating ES(F) to the
charge distribution. Exchanging the order of integration,

Fs= / ?{dZIS(F,r'):i/ de(F’)=i/ dr'p(7') (2.19)
Ameo Jy(s)Js € JV(S) €0 JV(S)

which is Gauss's Law.

Note how the proof depended on the 1/r? dependence of Coulomb'’s Law. The proof
could be done in the opposite direction: Gauss's Law implies Coulomb’s Law. In
general, for any force, there is a simple Gauss's Law if and only if the force has a 1/r?
dependence. Another example is gravity, as you learned in Phla and Ph106a.

Section 2.4.3 Proof of Gauss's Law Page 31



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

But we are not quite done yet, as we assumed at the start that the charge distribution
vanishes outside of S. Does the result generalize to the case where there is some
charge outside of S so that Egs receives contributions from that charge? Yes, it does.

Returning to d?Fs(F, F') (Equation 2.16), suppose we consider a source charge at a
point 7/ that lies outside of S. (See diagram below.) Then, for a given point Fon S
and the solid angle it subtends dQ2(F, 7’) as viewed from the source charge point 7/,
there will be second point on S that has the same unit vector to the source charge
point 7/ and subtends the same solid angle. But, because the direction of A(F) enters
the expression for d2Fs(F, 7’), and the two points subtending the same solid angle
will have opposite signs of n, their two contributions cancel. Thus, the integral over S
that yields dFs(F’) vanishes for F’ outside of S, and, therefore, the charge
distribution at points outside of S do not contribute to the flux through S, and so our
derivation remains valid.

q outside S _—
n

qeo—

© 1999 Jackson, Classical Electrodynamics
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The Divergence of E and the Differential Version of Gauss's Law

You learned about the divergence theorem (Gauss's theorem) in Malabc. Applied to
E, the divergence theorem says

/ V. E(R) dr = 7§ E(7) - A(7) da (2.20)
V(S) s
Gauss's Law tells us 1
R ?{ E(F) - A(F) da (2.21)
€0 Jw(s) s

Combining the two, we have

/ ﬁE(fde:i/ dr p(7) (2.22)
V(S) €0 Jv(s)

Since the above holds for any volume V), the integrands must be equal, giving us the
differential version of Gauss's Law:

V- E(R) = —p(F) (2.23)

€o

We will frequently employ this technique of using an equality between two integrals
over an arbitrary volume or surface to conclude their integrands are equal.

Section 2.4.4 The Divergence of E and the Differential Version of Gauss's Law Page 33



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

Direct Proof of Differential Version of Gauss's Law

We can prove the above differential version by simply calculating the divergence of E
using Coulomb’s Law, also. This is of course not independent of Gauss's Law because
Gauss's Law is proven using Coulomb’s Law, but it provides some exercise in vector
calculus and leads us to the Dirac delta function. We take the divergence of
Coulomb's Law for E:

S E(7) 26/ 1 dr'p(7F)

v e, |F— 173

(77 (2.24)

Now, the integral is over 7/ over the volume V', but the divergence is calculated
relative to the 7’ coordinate, so we can bring the divergence inside the integral. Note
that it does not act on p because p is a function of 7/, not 7. Thus, we have

=

o o 1 - F=7F

V-E(F)= dr'p(F )V —=— (2.25)
ATeo Jyr |F—F'|3

One could calculate the above divergence explicitly in any particular coordinate

system. But it is both more rigorous and more instructive to do it using the

divergence theorem.

Section 2.4.5 Direct Proof of Differential Version of Gauss's Law Page 34



Section 2.4 Review of Basics of Electrostatics: Gauss's Law

We can calculate the integral of the above divergence over some arbitrary volume V
(with surface S, with neither V nor S necessarily related to V' and S’), as we need to
do for Gauss's Law, by exchanging the order of integration (no prohibition on doing so
because we don't move V around) and converting the volume integral over 7 to an
easier-to-do surface integral using the divergence theorem:

— —/

1 - F—r
d dr'p(F )V« ———
/V 7'471_60// ' p(F") [F— 7|3

/VdTﬁ-E(r)

1 . = =
- dr'p(7') / drv . ——
4’7TEO v/ \ |r — f'lP
1 »_
- / df’p(r*/)jf dad(F) —— L (2.26)
A7eo ’ S(V) |F— 73

We can apply to the surface integral the same argument about solid angles that we
used in proving Gauss's Law. The integrand above is just the solid angle subtended by
the area element da at 7 as viewed from 7’. As before, if 7/ is inside V, then the
above integral yields the total solid angle, 4. If 7/ is not inside of V), then, for every
area element da at F, there is an area element with an equal and opposite
contribution, making the integral vanish. That is,

- r—r 47 if 7' is inside V
/vdTv"Fi 7{ 0  if 7 is outside V (2.27)

The divergence in the integrand looks a lot like a delta function; more on that later.
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

The above statement says that the integral over V vanishes if 7’ is not inside V and
yields 4 7 if it is inside V. This turns the double integral over V and V' into a single
integral over VN V':

. 1 1
/dTV-E(F’): / dr’ dmp(F) = 7/ dr' p(7") (2.28)
v 4meo Jyny! €o Jyny’

Now, consider points in V but outside ¥V N )’. Because V' is the entire volume
containing charge (by Coulomb’s Law), the charge density vanishes in V — VNV, We
can thus add the volume V — V NV’ without changing the integral of the charge
density because the contribution from the added volume vanishes. This changes the
volume of integration from V NV’ to V. Therefore,

/VdTﬁ-E(r): i/vd#p(r/) (2.29)

€o
The volume V is arbitrary, so the integrands must be equal:

ER = (D) (230)

which is again the differential version of Gauss's Law.
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law
Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under
Inversion of its Argument

We can use the above manipulations to prove another property of the Dirac delta
function. Let's apply the differential version of Gauss's Law to the left side of
Equation 2.25, yielding

F—r

F—r3

| (2.31)

:47r

1 / F»/ v
G —/V,drp( ) ¥

Now, p(F) is an arbitrary function, so we see that the divergence in the integrand acts
like the § function: it picks out p(¥’ = F). Thus, we have also proven

=/
v =4xd(F -7 (2.32)

F_
EE

(note the ordering of Fand 7’ in the argument of the delta function! Fis the
equivalent of 7, in Equation 2.9.) We will find this is a useful property of the delta
function: the delta function is the divergence of the 1/r? law.

Since the delta function picks out the point where its argument vanishes, it doesn't
matter what the sign of the argument is. One can prove this explicitly using change of
variables: when the sign of the argument changes, the sign of the differential and of
the limits of integration change also. Those two sign flips cancel each other. Thus

(' =P =68(F—F") (2.33)
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Section 2.4 Review of Basics of Electrostatics: Gauss's Law

It may seem that this last property is not true given the above relation between the
delta function and a divergence. In particular, let’s flip the sign on the function the
divergence is acting on:

F—F - r'—F - ' —F
— =V - =V ———— = 47— F
rF— F‘/|3 ‘?/_,?|3 |,7/_ﬂ3 ( )

4ms(f'—f):€.|

(2.34)

Don't we have a problem7 No, because we failed to recognize that V takes derivatives
with respect to 7. Since F— F’ just offsets 7, then the divergence with respect to

F— F’ is the same as the dlvergence with respect to . But, when we flip the sign on
F— F’, we should do the same for the divergence: the divergence should be taken with
respect to 7’ — F. That flips the sign of the divergence operator: 6?_;/ = 767/_;.
Finally, 7 acts like an offset for 7, and so the divergence with respect to 7’ — 7 is the
same as with respect to /. That is:

R P 7 B} A A

e e e N e R
= = r—r' > Fr—r Lo

Therefore: 47r§(r'—F):VF'm:VW-| e =4rns(Fr—r") (2.35)

Note this technique of applying an offset; we will use it again.
Errors of the above type are easy to make and not self-evident! Mathematics in

physics is not just symbol manipulation: there is meaning that must be understood in
order to be sure those manipulations are justified.

Section 2.4.6 Aside: Relation of the Dirac Delta Function to a Divergence, Invariance under Inversion of its Argument
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

The Electric Field has Vanishing Curl
Calculating the Curl of the Electric Field

The curl of E can be shown to vanish simply by calculating it for an arbitrary charge

distribution:
. . 1 . 77
VxER =V x [ drp(F) s
47 e v |F—F'3
1 PR F—r
= dr'p(F')V X ——— (2.36)
dmeo Jy |F—rF'|3

We could brute-force calculate the curl in the integrand in Cartesian or spherical
coordinates, but that would be painful because the function on which the curl is
acting has no symmetry in the 7 coordinate system.
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

Let's take a simpler, more geometric, and more intuitive approach. As we saw above,
F’ is just an offset to r, thus

=

r-r (2.37)
|F— 73 '
Note that, in doing this offset, the curl will be expressed in terms of the components
of ¥— 7. This does not change the bounds of integration, but it may make the
expression look complicated because the variable of integration is still 7/. Since we
will show this expression, the integrand, vanishes, this bookkeeping complication is not

important. If we define §= 7 — F’, then we have

Vi x =Vrpr X

F—r
=7

(2.38)

Now, the function on which the curl is acting has symmetry in the coordinate system
in which the curl is acting, and hence the calculation will be simplified. You can
probably see intuitively that the above curl vanishes, but let's prove it. (Note also that
the change of variables would require a change to the limits of integration, but, again,
because we will prove the integrand will vanish, this bookkeeping complication will not
be important.)

Section 2.5.1 Calculating the Curl of the Electric Field Page 41



Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

With the above form, we can trivially apply the formula for the curl in spherical
coordinates, which is listed in Griffiths. For the sake of being explicit, that formula is

- 1 7] . vl . 1 1 dv, _ 6] ~
V><Vﬁrsin6’ {89 (v¢sm6) 8¢}r+r|:sin9 [e10) or (rv¢) o
1[0 ovy | ~
t7 |:8r (rve) = g ] ¢ (239

Don't get confused between S and 7 the r derivatives and subscripts refer to the
radial coordinate of the coordinate system in which the curl is being taken. In our
case, s is the radial variable and the radial component of §'/s3 is 1/52. Thus, V has
only a radial component and that radial component depends only on the radial
distance from the origin. All the derivatives involving the 6 and ¢ components of v
vanish because the components themselves vanish, and the derivatives involving the
radial component vanish because those derivatives are with respect to 6 and ¢. (Don't
be confused: V itself depends on 6 and ¢ because the direction of V depends on them;
but the curl formula takes care of that dependence.)

Thus, we have V5 X (5/s3) = 0 and the integrand in Equation 2.36 vanishes. So:

Vv x E(F) (2.40)

Note again that we did not brute-force differentiate, but rather we thought about how
to simplify the calculational aspect (via origin offset) and then saw that made the
result both geometrically/intuitively obvious and easier to demonstrate via calculation.

Section 2.5.1 Calculating the Curl of the Electric Field
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Section 2.5 Review of Basics of Electrostatics: The Electric Field has Vanishing Curl

The Line Integral of the Electric Field

Stokes' Theorem (a mathematical theorem we will not prove here but that you saw in
Malabc) then tells us that, for any surface S with boundary C(S),

7%:(5) a7 E(F) = /S dan(7) - [V x E(A)] =0 (2.41)
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

The Electric Potential

Electric Potential Definition using Line Integral

e I3 We used above the fact that the line integral of the electric field
around any closed loop C vanishes. If we consider two points along
the loop 7 and 7, C defines two paths along the loop from i to
7, C1 and C,. Let's difference the line integrals along these two

7 C1 paths, using the vanishing of the line integral around the loop to

see that the difference vanishes:

B L B 5
/ ai- ER - 7 di E@) =
. )

1,1 Co,A C1,i

di’- E(f)+/?1 di’- E(F)

Ca,1

= 7{ di-E(F)=0 (2.42)
C

(Be careful again about the endpoint ordering and signs of the two terms!) Therefore,

B B
/ ai- Em = [ daf-Em (2.43)
Cl,Fl szi
Section 2.6.1 Electric Potential Definition using Line Integral
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential
The above relation tells us that the value of the above line integral depends only on
the location of its endpoints, not on the path taken. Thus, we can construct a
function, the electric potential, V/(F), defining it via its differences between points:

v(m) - v = - | " i E(7) (2.44)

n

The fundamental theorem of calculus for line integrals in multiple dimensions implies

V(%) - V(7) = /fZ i S V(F) (2.45)

1

where 6V(F’) is the gradient of the electric potential. The above two formulae hold
regardless of choice of endpoints and path, so the integrands are equal and we have

E(F)=-VV(? (2.46)

which can be viewed as an alternate definition of the potential. The offset of V(F) is

not defined because it has no influence on E(F) which is the quantity we began with
from Coulomb’s Law.

The electric potential has units of (N m/C) = (J/C), which we call the volt, V. (The
appearance of J will be important when we discuss electric potential energy.) The
electric field is frequently written in units of V/m instead of N/C.
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

Relation of the Electric Potential to the Charge Distribution

We know two things now:

E() =

and  V(B)— V(R) = 7/:2 di- E(R)

47reo

We can use these to obtain an explicit expression for the potential in terms of the
charge distribution. In practice, trying to do the line integral explicitly using the
definition of E is tedious and not illuminating.

Instead, let us use our understanding of the meaning of the mathematical expression

E(F) = —VV(F) to make an Ansatz. If we have a point charge at the origin, then the
electric field points radially outward and falls off as 1/r?. What function’s derivative
gives that dependence? V/(F) = 1/r. This suggests to us

4/
= “’I (2.47)

V() =

We may then prove explicitly this form is correct by taking the gradient.
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

First, pass V inside the integral because it is 67 while the variable of integration is 7”:

- 1 - 1
—VzV(F) = — / dr'p(F)V# (ﬁ) (2.48)
dmeo Jy |F— 7|

As we did earlier when calculating V x E, we change variables to §=F—F’ to

evaluate the gradient:
- 1 - 1 - 1 s F—r

Al=——=)=Vip (=" )=Veic=—Z = ————— 2.49

r(\F‘—F’|> =r (F’—F”|> °s 52 |F—rF'3 ( )
where we used the formula for the gradient in spherical coordinates from Griffiths:
- oT 10T ~ 1 0T ~

VT(F)= —7F+=-—90 — 2.50

= 56 Tame 05 ¢ (2:50)

Hence, we see that our form for V(F) yields the correct electric field
- 1 , g =T =
—VV(F) = dr'p(F') =——5 = E(P) (2.51)
4mes Jy |F— 73
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Section 2.6 Review of Basics of Electrostatics: The Electric Potential

Comments on the Electric Potential

» The electric potential obeys superposition

Section 2.6.3

This is trivial consequence of superposition for the electric field: because the
electric potential is a linear function of the electric field, and integration is a
linear operation, superposition for the electric field transfers to superposition for
the electric potential. One can also see it from Equation 2.47, where the
potential is a linear function of the charge density.

Definition of potential offset

There are two typical choices. When the charge distribution is confined to a
finite volume, the electric field vanishes at infinity, which suggests one should
define the electric potential to vanish at infinity too. When the charge
distribution is not confined (e.g., a uniform electric field over all of space), it is
typical to choose the origin to be the point at which the potential vanishes. Any
other point would work, too, but will generally make the explicit functional form
of V/(F) unnecessarily complicated if one is interested in using the above integral
expression. There will be situations, however, where such a choice is the most
convenient.

Utility of the electric potential

The electric potential is scalar, not a vector, function, and thus applying
superposition to calculate the potential due to a charge distribution, followed by
taking the gradient to find the electric field, is usually much simpler than
explicitly calculating the electric field.

Comments on the Electric Potential

Page 48



Section 2.7 Review of Basics of Electrostatics: Aside on Techniques
Aside on Techniques

It is important to recognize how we almost uniformly avoided brute-force calculations
of divergences, curls, and gradients so far. The only times we did those calculations
explicitly were when we had rendered the calculations trivial. A key part of doing
E&M successfully and with minimal pain is avoiding algebra and calculus whenever
possible and instead making use of clever arguments of the type we used above. Only
do algebra and calculus as a last resort! There are two reasons for this.

First, the kinds of arguments we used are more physical and help you develop
intuition. For example, in proving the differential version of Gauss's Law, at no point
did we explicitly take derivatives of E1 Incredible, right? Instead, we proved that the
divergence of the 1/r? law is the delta function (again, not explicitly, but by referring
to the geometric proof we made for the integral version of Gauss’s Law) and used that
fact. We could have done the brute-force calculation in Cartesian coordinates, and it
would have given the same result. But you would have derived no intuition from it.

Second, brute-force calculations are prone to oversights — like the one about the sign
flip on V in the delta-function symmetry derivation — as well as bookkeeping
mistakes — algebraic sign flips, misapplications of the product and chain rules, etc.
Doing brute-force calculations does not help you understand physics, or even
mathematics. Of course, sometimes brute-force calculations are needed, but try to
avoid them, and keep your wits and intuition about you as you do them!

It takes time to learn how to work this way, but we do derivations (rather than just
quote results) so you can learn these techniques.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Conditions on the Electric Field and Potential

While Gauss's Law makes it possible to determine the electric field for charge
distributions with sufficient symmetry, the more important application of Gauss's Law
and the vanishing of V x E is to obtain generic information on the behavior of the
electric field and potential across an interface between two regions.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Condition on the Normal Component of the Electric Field

Construct a Gaussian cylinder of infinitesimal height

g ”////
: \\ / dz whose axis is normal to the interface under ques-

\\

tion at the point of interest. Let n be the surface

normal at 7, with orientation from region 1 to region

2. Let’s calculate the flux through the cylinder's
(non-infinitesimal) faces S; and S»:

\

o F= / da (—A(7)) - Ei(7)
(@© 1999 Jackson, Classical Elec- S1
trodynamics +/ da ﬁ(F) . 52(F) (2.52)
S

where E is evaluated over the two faces. We neglect the flux through the cylindrical
wall because we will let dz vanish in the end and so its area will vanish and it will
contribute no flux. We momentarily make the assumption that there is no charge
density that is singular in the direction parallel to the interface — i.e., point charges or
a line charge density — so that we don’t have to worry about possible singularities in
the electric field that might complicate the flux calculation. We allow only a surface
charge density, which is delta-function singular in the z dimension but not in the
dimensions parallel to the interface.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

For Gauss's Law, the volume integral of the charge density enclosed has two
contributions: from the non-delta-function-like volume charge density in the
half-cylinders and from any delta-function-like surface charge density on the surface.
The contribution of the former will vanish as we let dz — 0. The latter converts the
volume integral to a surface integral:

iO/Vdré(f—S)a(F): é/Sdaa(f) (2.53)

where S is the area at the interface intersected by the cylinder. (Note that this is a
case where the delta function’s argument requires some interpretation to understand
the delta function’s units. It is the S in the argument that implies the function has
units of m—1 rather than m—3: it is picking out a surface rather than a point and thus
changing the units by one power of distance, not three.) Equating the two expressions
for F, letting dz — 0, and seeing that S1,S2 — S as dz — 0 in the flux integral yields

/dan (7 - Eg(r‘) E1(F) /daa (7 (2.54)
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

This holds for any choice of cylinder and thus any S, so the integrands must be equal:

A7) (B0 - ()] = = () (2.55)

That is, the change in the normal component of the electric field across the interface
is proportional to the surface charge density at the interface. If there is no surface
charge at the interface, this component of the electric field must be continuous.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Let's now reconsider the condition we placed at the start of the derivation, that there
be no charge density at the intersection of the cylinder and interface that is singular in
the dimension parallel to the interface, which could consist of a set of point charges
and/or a line charge density.

If that charge density is not at the contour C consisting of the intersection of the
cylinder’s wall and the interface, then the flux of its field remains entirely calculable. It
may cause o(F) to have a delta-function singularity in one or two dimensions parallel
to the interface, but no part of the derivation fails. We simply allow that type of o(F)
in Equation 2.55.

If the parallel-dimension-singular charge density is on C, then things are bit more
complicated. If we consider the flux through the cylindrical wall anywhere but on the
charge density, that flux vanishes because the field of the charge density is always
parallel to the cylindrical wall as dz — 0. What about on the charge density?
Answering this question in a mathematically explicit fashion — i.e., by calculation —
is difficult, as the field not only becomes singular at this point but the direction of the
singular field depends on the direction from which one approaches the charge. One
can, however, conclude from this indeterminancy that there cannot be a contribution
to the flux, as it would imply that the field direction is not indeterminate so that n- E
can be nonzero. This is a mathematically valid proof by contradiction. Thus, such
charge distributions do not affect the derivation and Equation 2.55 continues to hold.

We will see the above expectation confirmed in practice when we compare the
potential for the point charge near the grounded sphere derived by method of images
(which does not rely on Equation 2.55 in the case of such a singular charge
distribution) and by separation of variables (which does).
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Condition on the Tangential Component of the Electric Field

.
A\

Construct a rectangular loop C with two legs normal
to the interface of interest (i.e., along n(F) at posi-
tions 7 and Fp) having infinitesimal length dz and
two (non-infinitesimal) legs parallel to the interface
C1 and Cp. Let (7) denote the normal to the loop
area (so A(F) - t(F) = 0). t will set the orientation
of the line integral we will do around the loop fol-
lowing the right-hand rule. The loop legs C; and
\ C, parallel to the interface are parallel to the vector
// 5(F) = t(F) x A(F). Let’s calculate the line integral

@© 1999 Jackson, Classical Electrody-

D

of E along this loop (referencing the diagram: 7; at

namics the lower right, 7}, at the upper left):
. B-AN% R BHAR % .
fd@- E(F) = Ei(F)-dt+ Ex(F) - de (2.56)
c Cr,7—A(F) % Co Pyt A(F) &

where we neglect the contributions from the infinitesimal legs because they will vanish
as dz — 0. (We may apply arguments similar those just used in the derivation of the
normal field boundary condition to show that these legs contribute nothing even in the
case of a charge density at the interface with a delta-function singularity in the
dimension parallel to the interface.)

Section 2.8.2 Boundary Condition on the Tangential Component of the Electric Field
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Be careful about the signs of the integrals: d? for an open contour acquires its
orientiation from the the ordering of the endpoints; it has no intrinsic orientation
until this ordering is specified. Therefore, the sign of dZ and of the endpoint ordering
do not multiply; they are redundant. Specifically, in this case, the endpoints imply
that df’ points along +5 for the second term and —5 for the first term and thus that
the integrands have opposite sign. Do not then think that the opposite polarity of the
endpoint ordering of the two terms implies another relative sign between the two
integrals, with the two relative signs canceling!
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

The vanishing of the curl of the electric field implies the left side of the equation is
zero.

We can combine the two terms on the right side by changing the endpoint ordering on
the first term and recognizing that C1 — C» as dz — 0 (remember: C; and C»
themselves have no orientation: the orientation of the line integrals is set by the
ordering of the endpoints). Thus, we have

L SO I o [ . R
0= —/ E\(7) - dl + IAGE = / [EQ(F) - El(F)] - di
c [CNA

1,7 % Co, Py +A(R) E

With this ordering of the endpoints, we may identify df = §(7) ds. Since the contour
Cy is arbitrary, the integrand must vanish, yielding

7 - [E(7) - Bi(A] =0 (2.57)

This expression holds for any t and thus  parallel to the surface, so it tells us that the
tangential component of the electric field is continuous across any boundary
(regardless of whether there is surface charge present).
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

Boundary Conditions on the Electric Potential

From our definition of the electric potential as the line integral of the electric field, and
the corollary E = V'V, we can derive boundary conditions on the electric potential:

» Continuity of the electric potential
The electric potential is the line integral of the electric field. If we think about
calculating the discontinuity in V' by integrating E -7 d¢ across the boundary, we
recognize that, as the length of the path goes to zero, the only way to prevent
the integral from vanishing is if E-7Ais not only nonzero but delta-function
singular. The only place that can conceivably happen is at a point where a
charge density becomes singular in at least one dimension (point charge or linear
or surface charge density). In the same way as we argued in the derivation of
the normal field boundary condition, Equation 2.55, we may also argue here that

—

this quantity E - 7 still vanishes and thus V is always continuous.

We do note that, while V' could become infinite near these charge densities, it
must approach infinity from both sides of the boundary in the same way, and
thus it remains continuous. We will see this in the example of the point charge
near the grounded sphere when we do separation of variables in spherical
coordinates.
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Section 2.8 Review of Basics of Electrostatics: Boundary Conditions on the Electric Field and Potential

» Change in the normal gradient
This is just a direct rewriting of the boundary condition on the normal
component of the field, Equation 2.55:

ia(a = (7 - [E(F) - E(A)] = A7) - [-VVa(A) + VVa(P)]

— AR - [Fva() ~ VW(R)] =~ o(7)

€o

Note the sign!
»> Continuity of the tangential gradient

(2.58)

Again, this follows directly from the continuity of the tangential component of

the electric field, Equation 2.57:

0=5(7) - [E(M) - (7] =57 [-VVa(A) + YVi(7)]

= [3(7)- [VVa(A) - VWa(R)] =0

Section 2.8.3 Boundary Conditions on the Electric Potential

(2.59)
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Section 2.9 Review of Basics of Electrostatics: Poisson's and Laplace’s Equations

Poisson’s and Laplace’s Equations
It is natural to rewrite Gauss's Law in terms of the electric potential:

LA = ¥ -E(7) = -v2v(P) (2.60)

€o

Rewritten more cleanly:

V2V(7) = —é o(7) (2.61)

This is known as Poisson’s Equation.

Poisson’s Equation is a partial differential equation. You know from basic calculus that
a differential equation alone is not sufficient to obtain a full solution V/(F): constants
of integration are required. For partial differential equations in multiple dimensions,
the constants of integration are given by specifying boundary conditions, conditions for
how the solution or its derivatives must behave on the boundary of the volume in
which we are specifying p(7) and would like to determine V(7).
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Section 2.9 Review of Basics of Electrostatics: Poisson's and Laplace’s Equations

Our expression for the potential in terms of the charge distribution, Equation 2.47, is
the explicit solution to this equation for a particular boundary condition, V(F) — 0 as
r — oo. Section 3.11 will develop the concept of a Green Function, which is the
generic tool for solving Poisson’s Equation for arbitrary boundary conditions.

When there is no charge and the right side vanishes, Equation 2.61 is known as
Laplace’s Equation. The importance of this equation is that it implies that, in a region
where there is no charge, the second derivative vanishes everywhere, which implies
there can be no local maxima or minima (they would require a positive or negative
second derivative). We will prove this explicitly in Section 3.1.

For completeness, let’s also rewrite the curl-freeness of the electric field in terms of
the electric potential. There is a mathematical theorem that the curl of a gradient
always vanishes:

-

Vx(-VV)=0 (2.62)

This is not surprising, as the vanishing of the curl of E is the mathematical property of
E that allowed us to define the potential as a line integral, which then allowed us to
write E as the gradient of the potential. The above must be true for self-consistency.
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Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Electrostatic Energy
Electric Potential Energy of a Point Charge in an Electric Field

Consider moving a point charge from ri to > along a contour C. The work done on
the charge is given by doing the line integral of the negative of the electric force along
the path because that is the mechanical force that has to be exerted to move the
charge against the electric force Fe:

) N
Wi = 7/ di- Fu(P) (2.63)
C

A

The force is related to the electric field, and so we have

wie=—q [ of E()=qV(R) - v(a) (2.60)

s

That is, the work done on the charge by the mechanical force in going from A to 7 is
given by the charge times the change in electric potential between the two positions.
Note the sign: if the potential is higher at the end point, then the work done was
positive.
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Of course, this lets us to define the electric potential energy by

[U(®) - UR) = q [V(B) - V()] (2.65)

That is, the electric potential energy of the charge and the electric potential of the
field are simply related. Since it was defined in terms of work done against a force,
electric potential energy obviously has units of Joules (J). That is explicit in the above
form, which is C (N m/C) = (N m) = J.

Note that the electric field can also do work on the charge. In this case, the sign in
the above line integral for the work is flipped and work is done as the charge loses
potential energy. In this case, the work done by the electric field on a charge is what
gives it the kinetic energy it has at the end: the electric potential energy is converted
to mechanical kinetic energy.
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Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Electric Potential Energy of a Charge Distribution

How much work must be done to assemble a distribution of charge? This energy is
most easily understood by first considering the assembly of a set of point charges
one-by-one by bringing them in from infinity. When the ith charge is brought in, work
must be done against the electric field of the first i — 1 charges. Put another way, the
ith charge starts with zero potential energy and ends with potential energy

i—1

1 qj
Ui = Z qi Y (2.66)

= 4eo |1 — Fjl

Thus, the total potential energy is

N i—1 N
Sy oy (267)
47reo S R-7l 8meo, A |7~ 7l

where the factor of 1/2 was introduced to allow i and j to both run from 1 to N.
Generalizing this to a continuous charge distribution, we have

smo/ / dr 'prf)_prj;) (2.68)
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Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Electric Potential Energy in Terms of the Electric Field
We can use the relations between potential, field, and charge density (Equations 2.6,

2.47, and 2.61) and the divergence theorem (Equation 2.20) to obtain an alternate
expression for the electric potential energy in terms of the electric field as follows:

87T60/d7—/d /P|:*J_p;|’) /dq—pF)V :_f/d V2 V(A] V(P

_ /d V- | V(A VV() +—/ [VV(A))?  with @Eintegration by parts

divergence

theorem €0 daf [V(F) E(F)] _,’_3’/ |V V()2 (2.69)
2 Jsw) 2 Jy

In the last line, the first term is an integral of the product of the potential and the
field at the surface of the volume. In order to get the full energy of the charge
distribution, ¥ must include all the charge. If we assume the charge distribution is
restricted to some finite volume, then V is naturally the volume containing the charge
distribution. But we can add volume that does not contain charge because it
contributes nothing to the initial expression for the electric potential energy.
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Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Therefore, we replace V with all of space and let S go to infinity:

u="% /HOO dan- [V(7) E(7)] + %/ 9 V(7P (2.70)

2 all space

Because the charge distribution is restricted to the finite volume V' and thus looks like
a point charge as r — oo, the field and potential fall off like 1/r? and 1/r. The surface
area of S only grows as r?, so the integral goes like 1/r and thus vanishes as r — co.
(If the charge distribution is not restricted to a finite volume, the surface term may

not vanish, requiring one to either keep the surface term or use the initial expression.)

It may seem strange that we can make this choice of S, as changing V and S affects
both integrals in the last expression. The explanation is that the choice of S changes
the two integrals but leaves their sum constant, and taking S to infinity simply zeros
out the first integral, leaving only the contribution of the second integral.

We thus find

u="% [IEDP (271)

where the integral is over all of space. Correspondingly, the quantity u = %" \1:3\2 is an
energy density. We interpret this form as indicating that the potential energy created
by assembling the charge distribution is stored in the field: less charge implies a
smaller field and therefore less potential energy.
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Section 2.10 Review of Basics of Electrostatics: Electrostatic Energy

Superposition and Electric Potential Energy

Because the electric potential energy is a quadratic function of the charge distribution
or the electric field,

electric potential energy does not obey superposition

The energy of a sum of fields is more than just the sum of the energies of the
individual fields because there are cross terms due to the potential energy of the
charges in one another’s fields.
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Self-energy and Point Charges vs. Continuous Charge Distributions

We were slightly cavalier in going from Equation 2.67 to Equation 2.68 in that the
“self-energy” term i = j that was not included in the former did get included in the
latter. In the point-charge version, this term is infinite because the denominator
vanishes. In the continuous distribution version, p(7) p(¥’) dT — 0 as |F— 7’| = 0 as
long as p remains finite over all space, and thus there is no infinite contribution. (If p
included a delta function, as would be necessary to represent a point charge, then it
would produce an infinite contribution because the integral would yield §(0)/0.) Thus,
we must be careful and choose the appropriate formula depending on the situation.

The infinite self-energy of a point charge reflects the fact that we do not know how to
assemble a point charge. In fundamental particle physics, the existence of point
charges such as the electron is an assumption, not a consequence, of the theory. In
fact, there is scheme, called “renormalization,” by which the infinite self-energy one
calculates for such a charge from Equation 2.71 is “subtracted off” in a self-consistent
fashion across all situations. While this practice is accepted and applied carefully, it is
not understood. String theory, which postulates that all particles are actually vibrating
string-like objects with finite extent, may offer a solution, but string theory currently is
not complete — it does not offer a way to calculate the Standard Model — and there
is no explicit proof it is correct.
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Section 2.11 Review of Basics of Electrostatics: Electric Conductors

Electric Conductors
Definition and Behavior of a Conductor

We now talk about electric conductors, both because they are interesting and because
they provide a first opportunity to use boundary conditions to determine properties of
the charge distribution, field, and potential. Notice that we derive these properties
without explicit calculations!

An electric conductor is defined to be a material in which charge is able to flow
completely freely in response to an external electric field. It is assumed, a priori, to
contain equal and opposite amounts of positive and negative electric charge that
perfectly cancel everywhere in the absence of an electric field (p = 0) but that can
separate in response to an electric field. One can add charge to a conductor explicitly.

Without any calculation, we know what the response of the conductor will be to an
externally applied electric field: If there is any field present in the conductor, positive
and negative charge densities will separate in response to the field. That separation
results in an additional field whose direction is opposite the applied field because of
the direction the two polarities of charge move in response to the applied field. This
movement occurs until the sum field vanishes, at which poigt there is no further force
on the charges and the system becomes static. Therefore, E = 0 inside any conductor.
Note the lack of distinction between the applied field and the field created by the
charges: each charge is only sensitive to the total field, so it is the total field that
must vanish inside the conductor. The charges arrange themselves so their
contribution to the total field cancels that of the applied field.
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Section 2.11 Review of Basics of Electrostatics: Electric Conductors

Derived Properties of a Conductor

We may derive the following conductor properties from the fact that E =0 inside a
conductor everywhere:

> p also vanishes inside a conductor

Section 2.11.2

This follows directly from Gauss's Law: because E=0 everywhere in the
interior, then V - E = p/e, also vanishes.

Another way of seeing this, at least for a conductor with no net charge, is that,
if there were a nonzero p, then there must be an equal and opposite amount of
charge elsewhere in the conductor because the conductor is neutral overall. An
electric field would_appear between the oppositely signed charge distributions,
contradicting the E = 0 condition. Alternatively, the opposite charge will be
attracted to the nonzero p by the field and move to cancel it until the field
vanishes.

Derived Properties of a Conductor

Page 71



Section 2.11 Review of Basics of Electrostatics: Electric Conductors

» Any net charge or induced charge resides on the surface

Section 2.11.2

The picture we described before, of charge separation being induced by the
external field, does imply that there may be such induced charge on the surface.
This does not violate Gauss's Law because E may be nonzero outside the
conductor and thus one has to be careful in calculating V - E at the conductor
boundary (we must resort to the boundary conditions we derived,

Equations 2.55 and 2.57).

Also, if we intentionally add charge to a conductor, it must also move to the
surface by the same Gauss's Law argument. An alternative, microscopic way of
seeing this is that, if we add charge to a neutral conductor, which has no electric
field or charge density in its interior, the added charge repels itself, pushing itself
to the exterior (as far as it can go without leaving the conductor). An
alternative picture is that the added charge attracts charge from the surface to
cancel it, leaving net charge on the surface. Regardless, the added charge that
now appears on the surface arranges itself so there is no net field in the interior.

Aside: As Griffiths notes in a footnote, this property can be interpreted to be a
consequence of the fact that the electric field obeys the Coulomb’s Law 1/r?
dependence in three dimensions (from which we derived Gauss's Law, which we
used above in the proof). In a different number of dimensions, or with a
different dependence on r, we would not have been able to derive Gauss's Law!
There will be a homework problem considering conductors when Coulomb’s Law
is modified.

Derived Properties of a Conductor
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» A conductor has the same electric potential everywhere

Section 2.11.2

That is, a conductor is an equipotential. This occurs because E vanishes
everywhere in the conductor: any line integral of E between two points must
therefore also vanish. The conductor may have a nonzero electric potential, but
the value is the same everywhere.

One can see this using the gradient, too. If V were not constant in the
conductor, there would be a nonzero E= —VV which we said above is not
allowed.

The electric field just outside a conductor is always normal to its surface
This arises from the boundary conditions we derived, Equations 2.55 and 2.57.
Since E vanishes inside the conductor, and the tangential component of Eis
continuous across any interface, the tangential component must vanish just
outside the conductor, too. There is no such condition on the normal component
because there may be an induced or net surface charge density o on the surface.

Another way of looking at this is is that an electric field tangential to the
surface would cause charge to move along the surface until that tangential
component vanished. No such argument applies to the normal component
because the charge is no longer free to move normal to the surface when it sits
at the surface — it cannot leave the conductor.

Derived Properties of a Conductor
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Section 2.11 Review of Basics of Electrostatics: Electric Conductors
Conductors with Cavities

The mental image we have so far is of a conductor that has no cavities inside of it.
What additional properties can we derive for a conductor with cavities?

> A charge q inside a cavity in a conductor results in an equal induced charge g
on the surface of the conductor

To see this, construct a surface S that lies inside the
conductor but also contains the cavity. The electric
field vanishes on S because it is in the conductor,
so the net charge enclosed must vanish. Since a
charge q is inside the cavity, there must be a cancel-
ing charge —q inside S. Since S can be shrunk to be
arbitrarily close to the inner surface without chang-
Conductor ing this statement, the induced charge must lie on
the inner surface of the cavity.

Gaussian

surface

(@© 2013 Griffiths, Introduction

to Electrodynamics

Since —q has appeared on the inner surface, we know, by neutrality of the
conductor, there must be a charge +q elsewhere on the conductor. If we now
expand S to approach the outer surface, the above statement about —q inside
S continues to hold, so the only place +q can be is on the outer surface.
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Section 2.11.3

The exact distribution of g on the surface depends on the geometry. For cases
with some symmetry, we may be able to guess the solution easily.

Consider a conductor with a spherical outer surface. Since there are no field
lines inside the conductor, there is no way the charge in the cavity or on the
inner surface of the conductor can influence the distribution of charge on the
outer surface, even if the inner cavity is non-spherical and/or the charge is not
placed at the center of the cavity. Thus, the charge must distribute itself on the
outer surface of the conductor in the same way as it would if charge +q were
added to a spherical conductor with no cavity. By symmetry, that distribution is
uniform with surface charge density o = q/4 7 r?.

Note, however, that, in general, the charge on the inner surface of the conductor
will not be distributed uniformly. It will only be uniform if the inner surface is
spherical and the charge in the cavity is at the center of the cavity, as this
situation has symmetry. (Note that the shape of the outer surface, or the inner
cavity's location with respect to the outer surface, have no impact, for the same
reasons as the inner cavity does not affect the distribution of charge on the
outer surface.) In any other case, the field lines from the charge in the cavity
will exhibit no symmetry as they terminate on the cavity wall and therefore the
surface charge required to cancel those field lines in the conductor will have no
symmetry.
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Section 2.11 Review of Basics of Electrostatics: Electric Conductors

> If there is no net charge inside a cavity in a conductor, the electric field inside
the cavity vanishes, independent of the external field applied to or net charge

Section 2.11.3

added to the conductor

(© 2013 Griffiths, Introduc-

tion to Electrodynamics

We use proof by contradiction. Assume there is a
nonzero electric field in the cavity. Since there is no
charge in the cavity, the field lines must start and end
on charges on the surface of the cavity. Therefore,
there is a path through the cavity with fc/g E #*
0. Now close the path with a segment inside the
conductor. This portion of the now-closed loop C
contributes nothing to the line integral §C d{- E over

the entire loop because E = 0 inside the conductor.
Since §,dl- E = 0, the contribution from inside
the cavity must vanish also. Contradiction. So the
assumption E # 0 in the cavity must be false.

Aside 1: Note the technique of proof by contradiction, which we will use again

in E&M.

Aside 2: This fact is used for shielding of experiments from external electric
fields (and also electromagnetic waves) and is called a Faraday cage. Note that
the conductor can have some net charge on it (and correspondingly sit at some
nonzero electric potential with respect to infinity) and this property still holds.
As we will see later, it also holds in the presence of external electromagnetic
waves, which is the more typical and important application.

Conductors with Cavities
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Section 2.11 Review of Basics of Electrostatics: Electric Conductors

Surface Charge and the Force on the Surface of a Conductor

Our boundary condition for the normal component of the electric field combined with
the fact that the electric field vanishes inside a conductor tells us that the electric field
infinitesimally above the surface of the conductor is

E=Z% (2.72)

€o
where 1 points from the inside to the outside of the conductor.

There is a charge density o at this point, and an electric field above it, so is there a
force on the charge? Yes, but the calculation is subtle. The thing to recognize is that
the small element of charge o da in an infinitesimal area da cannot exert a force on
itself. The field to which this element of charge is subject is the field of the charge
distribution excluding it. We find this field by finding the field of this charge element
and subtracting it from the total field. This is an example of one of the indirect
approaches we must apply in E&M: a brute-force approach will not be successful or
generic.
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We know (Griffiths Example 2.5) that the electric field of a charge sheet in the xy
plane is £ = +(0/2¢€,) Z where the sign applies depending on whether z > 0 or z < 0.
While the small patch we are considering is not an infinite sheet, it looks like one if we
are infinitesimally close to it. We also know Eothe, must be continuous at the charge
element because, in the absence of that charge element, there is no charge at the
boundary and thus no surface charge density to cause a discontinuity in the normal
component. (Note that we do not claim we know Eothe,, only that we know that it
has this continuity property!) Thus, we may write the equations

— N o . s

~ g
Eoutside = Eother + n Einside = Eother — n (2-73)
2¢0 2¢0

where Eothe, is the field due to the rest of the charge distribution excepting da and,
because of its continuity, the same expression for Epe, appears in both equations.
(Note this technique, which you learned doing story problems in middle-school
pre-algebra, of writing down an equation in which the knowns are not segregated on
one side yet.) Using Eoutside = (0/€eo) n and/or Einside = 0, we find Eothe, = (0/2¢€o5) A.
This is the field that acts on the charge o da in da. Therefore, the force per unit area
is

Fo E _ o'daI::othE, Y o . o?
da da 2¢o 2¢0

A (2.74)
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Writing the force per unit area in terms of the field at the surface E = (o/¢,) 7

2

Q

f=

A= %" EA (2.75)

N

€o

That is, the surface of a conductor always feels an outward force. Consider what
would happen if you put charge on a balloon with a metallized surface.

Note the force per unit area, which has units of energy density, is actually equal to the
energy density just above the conductor. We could have in fact used the energy
density to derive the force: the force per unit area is the gradient of the energy per
unit area, and moving the conductor surface in or out by an infinitesimal distance dz
would have changed the total energy per unit area by udz.

Note the indirect technique of proof. Again, we did no integral and we did not use
Coulomb’s Law explicitly.
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Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

Capacitance

Consider two conductors (of arbitrary shapes) and suppose we put equal and opposite
charges Q and —Q on them. The potential difference AV between the two is of
course given by the line integral of the electric field from any point on the surface of
one to any point on the surface of the other. How does AV scale with the charges?

The linear dependence of E on the charge density p ensures that AV is linear in Q.
Therefore, we may define the capacitance

(2.76)

Capacitance is a purely geometric quantity: it does not depend on the amount of
charge on the two conductors (as long as equal and opposite charges are given to
each, a caveat we will remove soon). It does depend on the shapes of the conductors
and their relative position and orientation because those determine the shape of the
electric field (while Q varies its normalization). The unit of capacitance is
Coulombs/volt, which we define to be the Farad, F.

One can talk about the capacitance of a single conductor with charge Q by implicitly

assuming there is another conductor at infinity that has charge —Q and is defined to
be at V = 0.
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Now departing from Griffiths and instead following Jackson §1.11, we can generalize
capacitance to include multiple conductors by simply assuming a generalized linear
relationship between potentials, which we also call voltages, and charges as we argued
above must be true:

N
Vi= Z D;Q  or =DQ (2.77)

where V and Q are N-element column matrices for the voltages and charges on the N
conductors and D is a N x N matrix that connects the two. It is explicit that any

voltage depends linearly on all the charges. The capacitance matrix is then C = D1,
with -

N
Q,:Zc,,-vj oo Q=CV (2.78)

This form serves to make it clear that the capacitance is not just a single quantity
between two conductors, but is more general. According to Jackson, the diagonal
element Cj; is the “capacitance” of electrode i, and the Cj; are termed the “coefficients
of induction” to convey that they indicate the charge induced on electrode i when a
voltage is placed on electrode j. We will show below that neither of these is what one
would consider the capacitance of a pair of conductors as we discussed initially.
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In all of this, there is an implicit assumption that V(r — oo) = 0. Without this
assumption, we would always need to explicitly include the electrode at co (with an
additional index in C and 2) in order to get the right offset for V.

To calculate the capacitance or the capacitance matrix, one clearly needs to
determine, given a set of charges {Q;}, what the voltages {V;} are. To do this
trivially, there typically must be a symmetry or approximation that allows one to guess
what the charge distributions on the conductors are (e.g., uniform as for an infinite
parallel plate capacitor) and to calculate the field using Gauss's Law and from the field
the potential. For more complex geometries, the boundary-value problem techniques
we will develop may be sufficient. The total charge on each electrode normalizes the
voltage.
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For the simple case of two mirror-symmetric electrodes with equal and opposite
charges £Q and voltages -V, we can relate the elements of the capacitance matrix to
the pair capacitance, which is what we usually call the capacitance (e.g., in Phlb).
We can assume the following form for the capacitance matrix:

_ G —Cn
c- [ & % (2.79)
Why could we assume the above form? The symmetry of the system implies

C11 = Cpp. We shall see below that all capacitance matrices are symmetric matrices,
so Ci2 = Cp1. We chose the negative sign on Ci» = —Cp, with some foreknowledge of
the result, but that's a choice and doesn't affect the value of Cis.
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The defining condition of the pair capacitance is that equal and opposite charges are
placed on the two conductors. By symmetry, we can conclude that the conductors
carry equal and opposite voltages (not true for a non-mirror-symmetric configuration).

Thus
Q=CVi—CnVo=CV —Cun(—V)=(C+ Cm) V (2.80)
Q=-"CaVi+CVo=—-CrV+GC(-V)=—(C+ Cpn)V (2.81)
which yields @, = —Q; = —Q as assumed. Thus, the capacitance of the pair is

Q _(G+Cm)V _ C+Ca

“av 2V 2

(2.82)

After we have discussed energy, we will return to this system for a more detailed
analysis of what one can say about Cs and Cp,.
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Capacitance and Field Lines

Let's also think about capacitance in terms of field lines. The diagonal element Dj;
tells us the potential of electrode i if we put charge on it and no other electrodes. That
potential is the line integral of the field from infinity to the electrode, so it is telling us
about the field lines going from the charge on that electrode to infinity (or to/from if
the charge is negative). The off-diagonal elements Dj; tell us how the potential of
electrode j changes when charge is put on electrode i. This makes sense, as that
charge on i will change the overall field configuration, also due to the addition of the
field lines that must start from or end on its charge, and that change will affect V.

The elements of C are interpreted differently. When we put one electrode i at a
voltage while holding the others fixed (possibly at zero), charge must be added to that
electrode. The diagonal element Cj; tells us how much charge must go onto the
electrode, and that charge sources field lines. The off-diagonal elements Cj; then tell
us how much charge must appear on the other electrodes so their voltages V; remain
fixed. This reflects the fact that some of the new field lines starting (or ending) on
electrode i due to the new charge on it must end (start) on some of the other
electrodes j, and in fact tells us how much charge must be added to those other
electrodes to terminate those new field lines.

As a corollary, an off-diagonal element of D or C can only vanish if there is no mutual
influence of the two electrodes. It is hard to see how this could happen unless they are
infinitely far apart!
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Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

Electric Potential Energy of a Capacitor

In a simple two-electrode, mirror-symmetric capacitor with charges +-q on the
electrodes and a voltage difference AV = q/C between the two electrodes, the
amount of work required to change the charge from g to g + dgq is given by the
amount of work required to move a charge dq from the negative electrode (which has
charge —q and voltage —AV/(q)/2) to the positive electrode (which has charge +q
and voltage +AV/(q)/2):

dU = dq {%(C’) - (—%(q))] = AV(q)dg = % dq (2.83)

Note that AV is a function of g here: the voltage is not held fixed while the charge is
moved; rather, the voltage and charge increase together (linearly).
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We integrate this expression from 0 to the final charge Q to find

1 /e 1 Q2
U== dg == —~— 2.84
C/qu 5 C (2.84)

Alternatively, using Q = CAV,

U=

2
% = % C(AV)? (2.85)

N =

We could have modeled the above process differently. Our transferral of dg from one
electrode to the other is the equivalent of taking charge dg from the negative voltage
electrode, carrying it out to infinity (where we set V = 0), and bringing it back and
putting it on the positive voltage electrode. The equivalence is because the voltage
difference between two points is path-independent. This process is, then, equivalent to
bringing charges dq and —dq in from infinity and putting them on the positive and
negative voltage electrodes, respectively. And the last process is equivalent to bringing
the charges in consecutively rather than simultaneously because we proved earlier the
potential energy does not depend on the order of assembly of the charge distribution.
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The above picture is what we need for considering a multi-electrode system: we build
up the charge on each conductor by bringing in charge from infinity and calculating the
work done. Consider bringing charge dg; in from infinity and adding it to electrode i.
The change in the electric potential energy of the system due to adding this charge is

N
dU; = Vi dg; = Z Dj; q; dg; (2.86)
j=1

There are two possible double-countings we must avoid: 1) This infinitesimal element
of charge dg; is moved from V = 0 at infinity to V = V; on the ith electrode, so the
voltages of the other electrodes are irrelevant during this infinitesimal charge transfer
and we should not bring them into the equation; 2) Because the charges on all the
other electrodes j # i are physically immobile as dg; is brought in, no work is done on
them, and so there are no other contributions to include (as strange as it may seem
given that their voltages change by dV; = Dj;dg;; remember, a force must be exerted
over a distance for it to do work).
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Now, let’s integrate over dg;. We will later do a sum over i. The ordering of the two
steps does not matter because we proved earlier that the electric potential energy does
not depend on the order of assembly. But we do need to worry about the order of how
we have brought in the charges because we should not calculate cross-terms for
charges that do not yet exist. Let's assume that, if we are integrating the ith charge,
then the first i — 1 charges have already been integrated to their full values {Q;},
j=A{1,...,i—1}, and the remaining N — i electrodes j = {i + 1,..., N} have no
charge on them yet. Thus, the voltage V;(gi; {Q)}j<i) is given by

i—1

N
Vi(aii{Qj}j<i) = E Djj q; = Dji q; + Z Dj Q; (2.87)
=1

Jj=1

because gq; = Q; has already been achieved for j = {1,...,i — 1}, qj = 0 for
j={i+1,...,N}, and q; # Q; is still being changed. Therefore,

i—1

Qi Qi
/ Vi(aii {Qj}j<i) dai = / Dj qi dg; + Y _ D Q; da;
0 0

Jj=1

Ui

i—1
1
5 D;iQ}+> DyQ;Q; (2.88)

Jj=1

Section 2.12.3 Electric Potential Energy of a Capacitor Page 90



Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

Next, we need to sum over i to account for the charging up of all the electrodes:

ZD,,Q2 - ZZD,,Q,QJ (2.89)

i=1 j=1

Modifying the second sum to be symmetric (assuming D is symmetric, which we will
prove below) and including a factor of 1/2 to correct for double-counting, we have

ZDHQ2+7 Z D;QiQ; = ZDUQ,Q,

i,j=1,i#j ij=1
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We can write this more succinctly as

U=-Q'c'q (2.90)

1
2

Using Q = C V, we can rewrite as

U=

vicv (2.91)

N =

Let's check that this gives the correct result for an elementary capacitor with two
mirror-symmetric electrodes having equal and opposite charges +Q and voltages +V.
Using the capacitance matrix we derived earlier (recall, C;3 = G2 = Cs and

Ci2 = G1 = —Cp),

U= [Cu(+V)? + Co(— V)2 + Coa(+V)(=V) + Cu (= V)(+ V)]

V2[Cs+ Cs+ Cm+ Cm] =2C V2 =

NI =N =

c(Av)? (2.92)

N | =

as expected.
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Properties of the Capacitance Matrix and Its Inverse

We can derive a number of useful properties:

> Both C and D are symmetric.
Let's consider two electrodes, i and j with i # j. From Equation 2.88, their
contribution to the potential energy, assuming j has been charged up before i, is

1
Uy = 5 (DiQ? + D;QF) + D;Q; @ (2.93)
What happens if we reverse the charging order? Then we get
Y (p 24D, 0,0
Ui =5 (DiQ + Dy Q) + D@ @ (2.94)

In our initial discussion of the electric potential energy, we argued that the
charging order does not matter. So we may equate the two, U; = Uj;.
Recognizing that Q; and Q; are arbitrary then implies

T

Dj=D; <= D'=D <+ (2.95)
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» The self-capacitances C;; are positive.

Section 2.12.4

We need only consider the energy in the case that all other electrodes are held
at zero potential. Then the energy is

i

1
U;(all others grounded) = 5 Ci V? (2.96)

Since the energy should be positive (it takes work to add charge dg; in the
presence of the same-sign charge g;, as is done when charging up the electrode),
C;; must be positive.

The diagonal elements of the inverse capacitance matrix, CI.,TI = D;; are
positive.

Now, we consider the energy in the case that all other electrodes are kept
neutral. Then the energy is

1
U;(all others neutral) = 5 D; Q? (2.97)

Again, since the energy should be positive, D;; must be positive.

Properties of the Capacitance Matrix and lts Inverse
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» The off-diagonal elements of the inverse capacitance matrix C’.j_1 = Dj; are

Section 2.12.4

positive.

Now, let's consider two electrodes i, j in a multi-electrode configuration, with all
the other electrodes uncharged. Let's suppose electrode i is already raised to its
final charge, and now we want to consider the work needed to increment
electrode j's charge:

dUj = Dj; q; dg; + Dy Q; dg; (2.98)

(The self-terms and cross-terms vanish for all the electrodes k # i,j because
they have Qx = 0.) If we consider the case of Q;, qgj positive, and if we bring in
more positive charge dg;, it is obvious that both the change in the jth
self-energy and the energy cross-term should be positive: we are bringing
positive charges in proximity to existing positive charges. (While the existing
charge might move around on the electrodes, those electrodes are conductive
and so are equipotentials: no work is done.) We already know the self-energy
terms are positive. In order for the energy cross-term to be positive, D;; must be
positive. In the mirror-symmetric electrode case, we would see via explicit
inversion of C that D’s off-diagonal elements are positive.

Another way to see that the cross-terms must be positive is to recall that the
entire expression must be consistent with our original expression for the electric
potential energy, Equation 2.68. That expression could be broken down into
three integrals, one for each self-energy term and one for the cross-term. When
the charge density is positive, all contributions to that expression are manifestly
positive.

Properties of the Capacitance Matrix and lts Inverse

Page 95



Section 2.12 Review of Basics of Electrostatics: Capacitors and Capacitance

> The off-diagonal elements of the capacitance matrix C;; are negative.

Section 2.12.4

Let's consider the same multi-electrode system with electrodes k # i, j grounded
(i.e., Vi = 0), electrode i at its final positive voltage V;, and electrode j's
voltage.being incremented from v; to v; + dv;, both positive. The change in
energy is

dUj = Cjvj dvj + Gy Vi dy; (2.99)

We already know the first term is positive. The second term is more
challenging. If we want to increment a positive voltage v; by a positive amount
dv;, we need to put positive charge on it. This positive charge will draw
negative charge out of the battery holding V; constant: some of the field lines
of that new charge on electrode j have to terminate on electrode i if Cj; is
non-zero. Again, from Equation 2.68, we know that contribution to the electric
potential energy must be negative even if V; is positive. Thus, the energy
cross-term must be negative, which requires Cj; to be negative. (If V; is
negative, that implies Q; is negative. It takes positive work to add negative
charge to an electrode that already has negative charge on it, so Cj; < 0 ensures
the cross-term becomes positive, as it should.)

Properties of the Capacitance Matrix and lts Inverse
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> >4 Cijl <|Cjl: for a given electrode, the sum of the off-diagonal elements
of the capacitance matrix is no larger in magnitude than the corresponding
diagonal element.
Just consider the same situation as just considered. The change in the charge
on the jth electrode is dq; = Cj; dv;. The field lines from those added charges
will terminate either on other electrodes or infinity, so the total negative charge
added to all the other electrodes can be no larger in magnitude than |dg;|.

Therefore,
> dai=3_ Cjdy| <|dg;=Cydy| = |3 C;|<|G| (2.100)
i#j i) i)
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Capacitance Matrix of a Mirror-Symmetric Configuration Revisited

Considering again a mirror-symmetric two-electrode configuration, we now know
Cs > Cm > 0, and we know the pair capacitance we are familiar with is related to
them by C = (Cs + Gn) /2, but can we determine Cs and Gy, explicitly?

If we consider the case Vi = V and Vb, =0, we find @1 = GV and @ = —-Cp, V, so
we can determine Cs; and Cp, if we know the full field configuration, with the boundary
condition V = 0 at infinity: we obtain the surface charge density from the normal
component of the field at the electrode surfaces and integrate it to get Q; and Q> and
thus Cs and Crn. (Remember, if V' # 0 at infinity, we need to include infinity explicitly
as an electrode of the system.)

Maybe we can then do this for the one mirror-symmetric case whose full electric field
configuration we can calculate trivially, the infinite parallel-plate capacitor? No! The
infinite parallel-plate capacitor violates the condition V = 0 at infinity because, if
either plate has non-zero potential, that plate’s non-zero equipotential surface extends
off to infinity in the transverse direction. We violate the assumption that allowed us to
ignore the electrode at infinity. Moreover, infinity is no longer even an equipotential
surface in this configuration! On the equipotentials defined by the two electrodes (at,
e.g., z = £d/2), the potential at infinity is the potential of the corresponding
electrode. If the two plates have equal and opposite potentials, then the field outside
the plates vanishes and the potential on the surface of that volume at infinity is zero.
The potential on the line z = 0 is also zero. And then, for 0 < |z| < d/2 and

X,y — 00, the potential is the same linear function of z that it would be at x,y = 0.
Clearly, our assumptions are violated!
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We note that, formally, C is infinite for this mirror-symmetric configuration, anyways:
the mirror-symmetric potential configuration requires infinite charge on each electrode!
The pair capacitance per unit area, however, is finite and trivially calculated.

So, we are stymied. In order for the V = 0 at infinity condition to be satisfied, our
electrodes must be finite in extent. But, for electrodes finite in extent, we cannot
calculate the potential in a trivial fashion, so we cannot determine Cs and Cp,, or even
C, trivially. We need to develop the full machininery for solving Poisson’s and
Laplace'’s Equations, which we will begin to do soon.
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Intuitive Approach to Laplace's Equation

As we mentioned earlier, the integral forms for the electric field or the potential

=/

~ r—r p(F")
) d d V(A= dr' 31
(") 47reo/ 7o(7 Ur=e R (1) = 47reo/v "= (3.1)

are always correct but can be difficult to deal with in practice. Most systems will not
have symmetries that make the integrals easily doable (or avoidable via Gauss's Law).
Moreover, and this is the greater problem, it is rare that one completely specifies p(F)
in setting up a problem. Experimentally, what we can easily control are the shapes,
positions, and potentials (voltages) of conductors. We do not control how the charge
arranges itself on the conductors. Thus, we need to seek alternate ways to solve for
the potential and field over all of space. Laplace’s and Poisson’s Equations are the key.
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Laplace's Equation in One Dimension

In one dimension, Laplace’'s Equation takes the simple form

d*v

We can solve this by direct integration to obtain
V(x)=mx+b (3.3)
where m and b are two constants of integration. We determine m and b by boundary

conditions: specification of V or dV//dx at specific point(s). In the one dimensional
case, there are two options for how to specify the boundary conditions:

» Specify V at two points.
> Specify V at one point and dV//dx at one point (possibly the same point).

Note that these are the only choices in one dimension. Specifying dV//dx at two
points either yields a contradiction (if two different values of dV//dx are given) or
insufficient information (if the same value is given). There are no other quantities to
specify: all higher derivatives vanish thanks to Laplace’s Equation.
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Let us note two important characteristics of the solutions of Laplace’s Equation:

Section 3.1.1

> V/(x) is equal to the average of any pair of points V(x + a) and V(x — a) for

any a such that x & a belong to the region being considered:

SVl +a) + Vix = a)] = 5 [(m(x-+2) 4 B) + (m (x = 2) + )]

=mx+b=V(x) (3.4)
Solutions to Laplace's Equation have this intrinsic averaging property.

V(x) has no nontrivial local maxima or minima. We already mentioned this
property for the three-dimensional Laplace’'s Equation. The proof is
straightforward in one dimension. Suppose X is a local maximum or minimum.
Then we have dV//dx = 0 at this point xp. Then, for any other point x;:

dv
dx

dv
dx

1 d?v
+/ TY x=0+0=0 (3.5)
x dx

x X0
Therefore, if dV /dx vanishes anywhere, V(x) is a constant. This is a trivial
local maximum/minimum. If dV /dx vanishes nowhere, then the endpoints of
the region give the maximum and minimum of V/(x) or, if there are no
endpoints, there are no maxima or minima at all. Consider, for example, a
uniform electric field Eo over all of space.
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Laplace's Equation in Multiple Dimensions

We quote the analogues of the above two properties for arbitrary numbers of
dimensions and prove them for three dimensions:

» The value V/(F) of a solution to Laplace’s Equation at any point is equal to the
average of its value on any sphere centered on that point in the region of
interest:

S, 92 V(7")

(3.6)
Js.m %

v(r) =(V(M), =

where S,(F) is the sphere of radius a centered on F. This is straightforward to
show (Griffiths Problem 3.37). Let’s integrate Laplace’s Equation over the
volume enclosed by S;(F), Va(F), and use the divergence theorem:

o:/ dr’V%,V(F’):/ da’ A(F') - Vi V(F)
Va(?) Sa(7)

(7
:/ A A7) e V() (3T)
54

In the last step, we have used the fact that V does not care about the location
of the origin (since it is just an offset).
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Section 3.1.2

Now, we can define = 7’/ — F. In this coordinate system, where F is at the
origin, A(F’) =5, the radial unit vector in the § coordinate system. So, we have
(inserting a factor 1/4 a%):

1 av
0= / 22dQs (3.8)
dma* Js,(=0) Os |o=,

where S,(5 = 6) is the sphere of radius a centered on the origin of the s system
(i.e., the same as the sphere of radius a centered on Fin the 7’ coordinate
system). If we pull the factor a® outside of the integral, the integral is now over
the spherical angles in the 5 coordinate system, while the derivative is in the
radial direction in this coordinate system. Thus, we can pull the derivative
outside the integral too, yielding

1 |4
0= > 2° / dQs ov
47a S.(5=0) Js

Because the limits of integration state to evaluate the integrand at s = a, the
derivative changes from being with respect to s to being with respect to a.

19
" 47 Da

/ V() (3.9)
S4(5=0)

s=a
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Thus, the integral must be a constant

1

c- L dQV/(5) = 12/ da V(7' (3.10)
47 Js,(5=0) dmac Js,m

where we switched the variable of integration back to 7/ and we reinserted aZ.
The right side is just the average of V over the sphere of radius a centered at 7.
Since this holds for any a, it must hold as a — 0, which tells us C = V(7). So,
we have

1

47 a2

V(R = /sam da V(7') (3.11)

» As a consequence of Laplace’s Equation and the above property, V can have no
local maxima or minima in the region of interest. The proof of this property is
trivial: if there were such a candidate maximum (minimum), simply draw a
sphere around it. Because the point is a maximum (minimum) there must be
some radius of the sphere for which the values of all the points on the sphere are
less than (greater than) the value at the candidate maximum (minimum). The
average over this sphere is therefore less than (greater than) the value at the
candidate maximum (minimum). This contradicts the above averaging property.

One could also prove this by a technique similar to the 1D case, calculating vV
at any point 7’ in the region by doing a line integral of Laplace's Equation from
the candidate extremum 7 to that point. Since V'V vanishes at the candidate
extremum (because it is an extremum of V), and the integrand (V?V) of the
line integral vanishes by Laplace’s Equation, VV vanishes at 7’.
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Uniqueness Theorem

Before obtaining a solution of Laplace’s and Poisson’s Equations, we prove some
uniqueness theorems we will need. This section draws from Jackson §1.8 and §1.9.

Green's ldentities and Theorem

First, some mathematical preliminaries. Let us apply the divergence theorem to the
function ¢V where ¢(7) and (F) are arbitrary functions:

%Sdaﬁ- (Nw) - /v(s) drv - (Ww)

This yields Green'’s First Identity:

f{sdaqﬁﬁ- = /V(S) dr [¢V21/1 + %.m,] (3.12)

The function 7 - 61/) is the normal gradient of v because it is the projection of the
gradient of ¢ along the direction normal to the surface. If we exchange ¢ and ¢ and
then difference the two versions, we have Green’s Second Identity or Green's Theorem:

fs da [¢ﬁ. Vi —yh- %} - / dr [$V2 — V6] (3.13)

V(S)
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Types of Boundary Conditions

We shall see in the proof of the Uniqueness Theorem that three types of boundary
conditions are permitted:

» Dirichlet boundary condition

In this case, the value of the potential V/(F) is specified on all bounding
surfaces. This is the most typical experimentally realized situation, where we
attach a number of conductors to voltage sources to set their voltages.

Neumann boundary condition

In this case, the value of the normal derivative of the voltage, ii- VV/(7), is
specified on the boundary. An example of such a condition is specification of the
electric field (or, equivalently, the surface charge density) at the surfaces of a set
of conductors; since the tangential electric field vanishes at these surfaces, the
normal electric field fully defines the electric field at the conductors.

Mixed boundary conditions
Dirichlet in some places, Neumann in others, is allowed as long as both are not
specified at the same place.

If the volume under consideration is not bounded by a surface on which we specify the
boundary conditions, then we must also specify a boundary condition at infinity.

The proof of the Uniqueness Theorem will not show why only one of these types of
boundary conditions may be specified. That proof will be provided soon, in §3.4.1.

Section 3.2.2

Types of Boundary Conditions

Page 109



Section 3.2 Advanced Electrostatics: Uniqueness Theorem

Generic Uniqueness Proof for Poisson's Equation

Suppose we have specified one of the above three types of boundary conditions.
Assume that, for a particular given charge distribution p(r), there are two independent
solutions V4(F) and V»(F) of Poisson’s Equation that satisfy the boundary condition.
Let V3 = V; — V,. Since the charge distribution is the same, V2V; = —p/€o = V2V,
and thus V2V3 = 0: V; satisfies Laplace’s Equation. By a similar differencing
argument, Vj either satisfies the Dirichlet boundary condition V3(F € S) = 0, the
Neumann boundary condition 7 - §V3(F€ 8) =0, or a mixed boundary condition of
these types. If we apply Green's first identity with ¢ = ¢ = V3, we have

?{da v3ﬁ-6v3:/ dr <v3v2v3+€v3-6v3> (3.14)
s V(S)

The left side vanishes because of the boundary condition (any type). The first term on
the right side vanishes by Laplace’s Equation. Thus, we have

/ dr|[VW32=0 = VW(/)=0 =—> V3= constant (3.15)
V(S)

where we take the second step because the integrand is nonnegative. This result
implies that our two candidate solutions V;(7) and V>(F) differ by at most a constant.
Hence, uniqueness is proven.
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Special Cases of Uniqueness Theorem

Given the above, we may state/prove three special cases of the uniqueness theorem,
the ones given in Griffiths:

» The solution to Laplace's Equation in some volume V is uniquely specified if V

Section 3.2.4

is specified on the boundary surface S(V).
This is the above uniqueness theorem with p = 0 in V and a Dirichlet boundary
condition on S(V).

The solution to Poisson’s Equation in some volume V is uniquely specified if
p(F) is specified throughout the region and V is specified on the boundary
surface S(V).

This is the above uniqueness theorem with arbitrary p(7) in V and a Dirichlet
boundary condition on S(V).

In a volume V surrounded by conductors at the surface(s) S(V) and containing
a specified charge density p(F), the electric field is uniquely determined if the
total charge on each conductor is specified.

This one is not as obvious, but we can show that this BC yields the same input
to the Uniqueness Theorem derivation as the other BCs we have specified.
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Let each conductor i have surface S; and charge Q;. Since we know the surface
charge density on each conductor is related to the normal component of the
electric field at that conductor, we may see

?f dafi(F) - E(F ?{ dao(F) fioo,- (3.16)

Now, as before, let’s assume that there are two different solutions V4 (F) and
V5 (F) and their difference is V3 = Vo — V. Let’s evaluate the left-hand side of
Equation 3.14 for the BC we are specifying here:

fdav3ﬁﬁv3:—2f dav3ﬁ-E3:—Zv3,,-f daf-E5  (3.17)
S i Si i S;

where we were able to pull V3 out of the integrals because V4 and V, have
equipotentials on each surface and so therefore does V3 (with values V3 j, which
we do not need to know). The surface integral of the normal component of l::3
over each S; vanishes because, as we indicated above, specifying Q; specifies
this surface integral to be the same for Ei and E2, so the surface integral
vanishes for E3 = E, — E1. Thus, the LHS of Equation 3.14 also vanishes for
this BC, and so the remainder of the proof of uniqueness carries through.

Note how this proof relied on the boundary surfaces being conductors! Knowing
the total charges on nonconducting boundary surfaces would not be sufficient.
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Method of Images
Overview: The Basic Idea of Method of Images

The method of images uses the concept of uniqueness of solutions to Poisson’s
Equation. Basically, given a physical setup involving a true charge distribution p(7)
and Dirichlet boundary conditions for some volume V), one tries to replace the region
outside of V with an image charge distribution pjmage(F) such that, when the image
charge’s potential is summed with that of p(7), the potential on the boundary is the
same as that specified by the Dirichlet BC.

The technique works because of the uniqueness theorem: since the potential due to
the image and original charges matches the boundary conditions and satisfies
Poisson’s Equation with the same source term inside V, it is the solution to Poisson’s
Equation for that source term and choice of boundary conditions.

The imagined charge distribution is called image charge because, at least in the
example of the boundary condition being imposed by the presence of a conductor, the
image charges appear to be a (possibly distorted) mirror image of the original charges
through the boundary. “Image charge” is also used (somewhat erroneously) to refer to
the surface charge induced on a conducting boundary that sources the potential that
one models as due to the image charge.

Note that the image charge must be placed outside the volume V because we may not
change p(F) inside V; that would change the problem we are trying to solve.

We will see later how the potential due to the image charge distribution (the induced
surface charge) is a component of the particular problem’s Green Function.
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A Point Charge near a Grounded Infinite Conducting Plane

For a system with the point charge q at d Z above a conducting plane at z = 0 with
V =0, and considering the volume V consisting of the z > 0 half-space, the
appropriate image charge is —q at —d Z. By symmetry, the (Dirichlet) boundary
condition V =0 at z = 0 is met. Thus, the solution for V(7) for F€ V (the z > 0
half-space) is

V() = 1 { q q

- 3.18
Ameo | X2+ y2+(z—d)? /X2 +y?+(z+d)? 319

The potential clearly satisfies V(z =0) = 0 (and V(r — oo) — 0). Let's use this
solution to do some other calculations:

» Induced surface charge
This we can calculate by recognizing that it is given by the change in the normal
component of the electric field at the conducting boundary. Since E = -VV,

z—d B z+d
(2 4y 4 (2= )2 (2 4y + (2 +d))?

q

2—0 41

__a__ 4 (3.19)

Y (x2 + y2 + d2)3/2

0= — € —

oz

z=0

We will treat the surface charge density and the normal component of the
electric field (the normal gradient of the potential) as almost equivalent going

forward.
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Section 3.3.2

We can calculate the total induced surface charge:

0 o 2m  —qd 1 1 *
ind = rdr/ do ———> =9gd ————| =—q (3.20
nd -/0 Jo T (r2+d2)3/2 q V2 £ d?|, q ( )

This is an example of an important general theorem: The total induced surface
charge is equal to the image charge, or to the negative of the real charge, or to
some combination of the two, depending on the geometry, by Gauss's Law.
Because of the mirror symmetry of this problem, the two cases are degenerate,
so this is not a particularly illustrative example of the theorem. Furthermore,
because the volumes and surfaces one must integrate over are infinite, Gauss's
Law cannot be applied to such a geometry. We'll return to this theorem in our
next example where there is no such issue.

Force on the point charge

The induced charge is opposite in sign to the real charge, so the two are
attracted to each other. We can calculate the force by taking the gradient of
the potential due to the image charge only (because the real charge does not
feel a force due to its own potential). Since the image charge’s potential is just
that of a point charge, calculating the force is straightforward:

1 ¢ .

i BaR e (3.21)

—

F=gq Eimage charge(d/z\) =

This is equivalent to just calculating the force on the real charge exerted by the
image charge, which is in general a valid approach. Whether to calculate the
image charge potential and take the gradient or calculate the image charge force
is a matter of choice and convenience.

A Point Charge near a Grounded Infinite Conducting Plane
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» Electric potential energy

Section 3.3.2

Here we have to be more careful because potential energy is not linear in
charge, and, moreover, because the induced charge depends on the original
point charge. Let's figure this out by calculating the work one would have to do
against the electric force (i.e., the mechanical force doing the work is opposite
in sign to the attractive electric force) to bring g from z =d to z = oo

0o 1 2 oo . 1 2
U:—/ (—=F(z))dz=— i/ Z__ a (3.22)
d dmeo 4 Jyg 22 dmeo 4d

Note that this result is half what one would get for the potential energy of two
equal and opposite point charges separated by a distance 2d:

1

Uy = ———
alt 4dmeo 2d

(3.23)

There are two ways to understand this. The first is to recognize that, unlike in
the case of two point charges, no energy is gained or lost in moving the negative
charge because it is in the conductor, where V =0 and thus gV =0
everywhere. The second is to recognize that the above expression is the energy
stored in all of space in the field of two point charges, but, in this case, the field
is only real in the z > 0 half-space and so the integrated energy is reduced by a
factor of 2.

A Point Charge near a Grounded Infinite Conducting Plane
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A Point Charge near a Grounded, Conducting Sphere

Consider a conducting sphere of radius R centered on the origin and held at V = 0.
Place a point charge at aZ with a > R so the point charge is outside the sphere. We
would like to know the potential in the volume V outside the conducting sphere,
which is the volume in which the point charge sits.

By symmetry, the appropriate image charge must be on the z axis. Let its value be q’
and its position be bZ, where b may be positive or negative. We can find ¢’ and b by
requiring that V=0 at F= £RZ:

0= V(+R2) = [ a, 9 }
dme, |la—R R—b

/
0=V(-Rz)= " [ g g }
d7e, |la+ R R+ b

R R2

— d=-qg—+#—gq b= (3.24)

a a

(This is an example of how one does not always need to consider the generic case;
these special cases at the two poles give us the information we need.) We see that
both values are always physically reasonable because R < a. In particular, b < R so
the image charge remains outside V (i.e., inside the sphere), as we expect. Note that

q #—q!
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The potential at a point (r > R, 0, ¢) is found by summing the potentials of the real
charge and the image charge:

1 R
Virz R0 = | L R (3.25)
4meo | |F—aZ| |;‘,RT’Z\
__ 49 1 _ R/a
4meo | \/r?sin?0 + (a — r cos0)? \/rzsin20 (B2 _t cosh)?
(3.26)

We can use the above expression to see that the boundary condition V(r = R) =0 is
satisfied in full generality:

q 1 R/a

V(r=R,0,¢) = : .
4meo | \/R?sin26 + (a — R cosf)? \/R25in29 + (R?2 — R cos 0)?2

q 1 1
4meo \/R2sin29+(a—Rc056’)2 \/azsin29+(R—acosﬁ)2
=0 (3.27)
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Let's calculate the induced surface charge from - vV = oV /or:

oV
or r=R

(3.28)

o= — €

2
., q | Rsin?0—(a— Rcosf) cos® R Rsin?0 — (& — R cos0) cosd

4 | (R?sin0 + (a— R cos0)2)*/?  a (R2sin26’ +(B-R c059)2)3/2

a

R2
q R — acosf a2 R — = cosf
47 |(R24+22—2aR cos0)*?  R?(a24+ R2—2aR cos0)*/?

2 2

_a R(1- &) 4 R 1- &
- 3/2 2 3/2
47 (R? + a2 —2aR cos0)*/ 47R a(1+5—22—2§c056’>/

One can show by integration that the total induced charge is g’. In this geometry, this
makes sense because the volume enclosed by a surface integral of electric field flux at
the boundary encloses the volume containing the image charge. This example
illustrates one case of the theorem stated earlier; in this case, the total induced surface
charge is equal to the image charge. We will see other cases illustrated in the next
example.

The force on the point charge and the electric potential energy can be calculated in a
manner similar to that used for the conducting plane.
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Some Related Examples

These are drawn from Jackson Chapter 2.

Example 3.1: Point charge inside a spherical volume with a conducting
boundary

The geometry of this problem is like the last one, except the point charge is inside the
spherical boundary, a < R, and everything outside the boundary is conductor. One can
show that the solution is identical: same formula for image charge value and position,
same induced surface charge density. However, strangely enough, the total surface
charge is now just —q!

Mathematically, this is because the evaluation of the integral depends on whether
R < aor R > a. (There is a power series expansion involved, which must be done
differently in the two cases.)

Physically, this is because the calculation of the total induced surface charge via
Gauss's Law must be done differently. One method is to use a spherical surface just
outside the boundary, so it is in the conducting volume where the field vanishes. This
implies that the sum of the real and induced charge vanishes, so the induced charge is
the negative of the real charge.
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The other method is to put the surface just inside the boundary. Now, the charge
enclosed is only the real charge. As the surface approaches the boundary, though, the
flux integral is equal to the negative of the integral of the surface charge density (up
to €o) because the electric field near a conductor is o /€, (with the negative because
the field is pointed inward). So this tells us the total induced surface charge is the
negative of the real charge too.

Thus, we see illustrated another case of the theorem we stated earlier, that the total
induced surface charge is the image charge, the negative of the real charge, or some
combination of the two. Which one depends on the geometry: is the boundary outside
the volume of interest, inside, or some combination of the two?

In the case of the point charge outside the conducting sphere, we noted that the
Gauss's Law calculation, with the Gaussian sphere just inside the volume V (i.e.,
having radius infinitesimally larger than a), yields ¢’ # —q. The distinction is whether
the volume V of interest is “outside” the boundary (neglecting the boundary at
infinity) as in the previous case or “inside” the boundary as in this case.

(In the previous case, the Gauss's Law calculation outside V (i.e., using a Gaussian
sphere of radius less than a) yields no useful information because the sphere doesn’t
contain the induced surface charge. The flux through such a sphere vanishes because
the field is zero inside the conductor, which just tells us that all the induced surface
charge resides, well, on the surface.)
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Example 3.2: Point charge in the presence of a conducting sphere at fixed
potential Vg

We can treat this by superposition. Consider first bringing the sphere up to the
desired potential in the absence of the point charge, then bringing the point charge in
from infinity to its final position aZz. We can use the grounded-case solution for the
latter part because it has V = 0 on the sphere and V — 0 at infinity, so the sum of it
and the solution for the V' # 0 sphere alone satisfies the boundary condition of the
problem of the point charge near the V # 0 sphere, and thus it must be the correct
solution. (Note the use of the principle of superposition for the potential.)

What is the solution for the V' # 0 sphere on its own? Certainly, the sphere is an
equipotential with the desired value V4. By symmetry (remember, the point charge is
not present for this problem), the charge is uniformly distributed on the surface. Thus,
we can apply Gauss's Law to the problem, which tells us that the potential of the
sphere is identical to that of a point charge at the origin. To figure out the value of
the point charge, we require that the point charge’s potential match the boundary

condition:
qo R
—— =V = q =471, VWR — V(r) =W — (3.29)
dmes R |71
Finally, we add the two solutions together:
1 R R
Y CES ) P By R S T (R VA S EE )
dmeo ||F—azl |- B 3 71
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Example 3.3: Point charge in the presence of a charged, insulated, conducting
sphere

We can solve this using the solution we just calculated along with the principle of
superposition (again!). Suppose we want to have a charge Q on the sphere. This is
the same as first bringing the point charge g in while the sphere is grounded,
disconnecting the grounding wire, adding Q — ¢’ (> Q for g > 0), which causes the
sphere to float to some nonzero voltage, and then connecting to a voltage source with
that voltage. This situation is identical to the situation we just studied if we require

Q-¢q Q+qk
—Q-¢d = V=T _ = 2 3.31
wo=Q-q 0 Adreo R 4meo R 47meo R ( )
Plugging this into solution for the sphere held at V; gives
R
q 1 R/a Q+q7
V(r>R,0,0¢) = — — 2 3.32
(rz ¢) dmeo | |F—aZ] ‘?_F\ﬁj 47 e |F] ( )
a

Notice that this reduces to our original point charge near a sphere solution not when
Q = 0 but rather when Q = ¢/ = —q R/a, which is the charge that must flow onto
the sphere for it to stay at V =0 (i.e., grounded).
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Formal Solution to Poisson's Equation: Green Functions

The remaining material in this section of the notes is based on Jackson §1.10.

Integral Equation for the Electric Potential

Can we solve Poisson’s Equation? Sort of. We can convert it from a differential
equation for V in terms of p (with boundary conditions separately specified) to an
integral equation for V in terms of p with the need for the boundary conditions quite
explicit. It is still not a closed-form solution for V in terms of p and the boundary
conditions, but it helps us to frame the problem of finding solutions for V in a
different manner that is helpful.

We obtain this equation by applying Green’s Theorem (Equation 3.13) with
d(F") = V(7') and ¢(F') = |F— 7|71 Note that 7’ is the variable we integrate over;
F'is considered a constant for the purposes of the Green's Theorem integrals.

V()

1 1
|F— 7]

/ dr’ {V(F')Vg,ﬁ -
V(s) |F— 7]
1 1 N

:j'{ da [V(F/)H(F’)-ﬁ;/ﬁ — AP Ve V(F)| (3.33)
s |F—r|  |F— 7]
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We reduce this by making use of the very important relation

1
2 -
Vi 7oA —4mo(F—7") (3.34)

which is seen by combining Equations 2.32 and 2.49:

=/ — =/

F—F - 1 F
———— =476(F—F') and V- = -
,:'_r—‘/‘3 ( ) r/lf/_ﬂ |F—7’|3

ﬁf/"

Using the above expression for the Laplacian of |F— F 1 doing the integral over the
delta function, applying Poisson’s Equation, moving the second term on the right side

/|—

to the left side, and multiplying everything by —ﬁ yields, now only for F € V(S):
1 P
V(FeV(S)) = / ar ) (3.35)
ATeo Jy(s) |F— 7|
1 1 = = 1
+— ¢ da | =——-n(F") Ve V(F) = V(F)al(F') - Vi ——-
47 Js |F—F| [F— 7|

(The left side vanishes for F ¢ V(S) because the integral was over 7’ € V(S)).
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This is a formal equation for the electric potential. The boundary conditions are
present on the right side: in the case of Dirichlet, we specify V(F’) for 7’ € S, while
in the case of Neumann, we specify A(7’) - V7 V(7') for 7/ € S. Our Uniqueness
Theorem says we should only need to specify one or the other at any given point on
the boundary. In fact, since the Uniqueness Theorem says that knowing one specifies
the other (knowing one gives the full solution, which determines the other), we don’t
have the freedom to specify both independently! Knowing both essentially requires
knowing the solution to the problem. For example, if we consider the simplest possible
case of specifying an equipotential on the boundary, then knowing the other boundary
term requires knowing the normal gradient of the potential at the boundary, which is
equivalent to knowing the surface charge density on the boundary. We would not be
able to guess this except in cases with sufficient symmetry.

Therefore, this is not a closed-form solution but rather an integral equation for V/(7’)
for F/ € V(8) US: the boundary condition does not provide everything on the right
side, but, if we know the solution, it will satisfy the equation.

Note that, in the limit of S — oo and V(r — 00)  1/r — 0, the integrand of the
surface integral falls off as r—3 and so the surface term vanishes and we recover the
usual Coulomb’s Law expression for V/(7), Equation 2.47. That is, in a situation where
we know the behavior of both surface terms is trivial, the equation does provide a
closed-form expression for V/(7) in terms of p(7).

So far, however, this integral equation is not very useful. Once we have introduced the
concept of Green Functions, we will see its utility.
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The Concept of Green Functions

Suppose we have the generalization of Poisson's Equation, the linear partial
differential equation

O-F(7) = g(7) (3.36)

where O is a linear partial differential operator taking derivatives with respect to the
coordinate 7, f is a generalized potential, and g is a generalized source function.
Poisson’s Equation is an example, with Or = —e,V?, f(F) = V/(F), and g(7) = p(7).
Is there a general approach for finding f given g7

Yes, there is, it is called the Green Function approach. The basic idea is to find the
“impulse” response function for the differential equation: the generalized potential one
gets if one has a point-like source. Given the impulse response function, and the
linearity of O, one can obtain the generalized potential for an arbitrary source
function by convolving the impulse response function with that source function.
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Mathematically, the impulse response function, or Green Function, is the function
G(F,F") that solves the equation

0-G(7,7') = 6(F — 7') (3.37)

meaning that G(F, F’) calculates the generalized potential at the point 7 for a point
source of size ¢ = 1 at the position 7/ (i.e., the total source charge recovered by
integrating over the source function is 1). If such a G exists, then, for an arbitrary
source function g(F), G gives us the following solution f(7) to the generalized linear
partial differential equation, Equation 3.36:

F(7) = /dT’G(F’, ) &(7') (3.38)

We can check that Equation 3.36 is satisfied by this solution by applying the operator:
0:(1) = 07 [ dr'G(R. ) g(7") = [ dr' [0-G(7.7)] (') (3.39)
- /dT’é(F’— ) e(7') = g() (3.40)

Note how this check relied on the linearity of O, which allowed us to bring it inside
the integral. Assuming solutions to the generalized linear partial differential equation
are unique (true for Poisson’s Equation), the Green Function is the only solution we
need to find.
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General Discussion of Green Functions for Poisson’s Equation

Let's consider the simplest possible case, that in which there is no bounding surface
and the potential vanishes at infinity. We can read the Green Function off by rewriting
our usual expression for the potential for this boundary condition, Equation 2.47, in
the same form as Equation 3.38:

V(r) = / dT’ = 3 / dr’ G(F, F') p(F") (3.41)
Ameo Jy —r
Therefore, the Green Function for Poisson’s Equation is
- 1 1 .
G(rr)= ———— if V = all space, V(r — o0) — 0 (3.42)

dmeo |F— 1|

Section 3.4.3 General Discussion of Green Functions for Poisson’s Equation Page 130



Section 3.4 Advanced Electrostatics: Formal Solution to Poisson’s Equation: Green Functions

More generally — i.e., for a more complex boundary condition — Poisson’s Equation
implies that its Green Function must decompose into the form

1

- dmeo |[F— 17|

G(7, 7 + F(7 7))  with  V2F(FF)=0 (3.43)

where the first term provides the right side of Poisson’s Equation but the second term
is not only allowed by Poisson’s Equation but, we will see, is crucial for satisfying the
boundary conditions for any situation except the trivial one noted above, that of the
potential vanishing at infinity. The F term plays multiple roles, depending on the type
of boundary condition, and we will explain those roles later. Finding G thus consists of
finding F.

We note that both G and F are symmetric in their arguments, G(F',r) = G(r,r")
and F(F',F) = F(F,F"), for reasons we will explain later.
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Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary
Conditions

To apply the concept of Green Functions to Poisson’s Equation, we start by taking
o(F') = V(F') and ¢¥(F') = —eo G(F, F') in Green's Theorem (Equation 3.13) and
assuming

—eoV2, G(F,F) = 6(F— F") (3.44)
Note that this equation does not match Equation 3.37, which had the Laplacian
acting on 7, not /. We will recover Equation 3.37 later. We then apply the same

kinds of manipulations we did to obtain the integral equation for the potential,
Equation 3.35 (these manipulations rely on Equation 3.44), giving

= /v dr’ p(7') G(7,7") (3.45)
e %s(v) 62’ [G(7. Y R(F) - S V(F) — VE) AP - G0 67 7)]

We see that, if we can find the appropriate G for a particular boundary condition and
force the term involving the other boundary condition to vanish, our integral equation
for V/(F) reduces to an integration over the source distribution with the Green Function
and over the boundary condition with the Green Function or its normal gradient.
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We also see that, even though we assumed Equation 3.44 instead of Equation 3.37 for
the equation defining the Green Function, the result we obtain above is consistent
with Equation 3.38, which states that the source function p(F’) should be convolved
with the Green Function, integrating over its second argument, to obtain the potential
function in its first argument. We will resolve this apparent inconsistency shortly.

Note that the equation we obtain for V/(7) is different from the integral equation for
V(F), Equation 3.35, because there we could not impose such a condition on V/(7),
since it is set by the situation under consideration, or on |7 — 7|~} (obviously).
G(F,F") is, on the other hand, our tool for solving that integral equation, so we may
design the tool to do its job as long as it respects its defining equation.

We can be more specific about what we mean by “forcing the other BC term to
vanish” by picking a type of boundary condition:

» Dirichlet boundary condition

In this case, V/(F) is specified for 7 € S. Therefore, A(F) - V7V(F) should be left
unspecified — it should be determined by the solution itself — so we need for it
to not appear in the integral equation. We can eliminate the term containing
this normal derivative if we require the Dirichlet Green Function, Gp(F, '), to
satisfy

Gp(F,7)=0  for F'eS,FreV,S (3.46)
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Note that we want the above condition to hold for not just ¥ € V but also for
F € S so the expression is usable for calculating the potential on the boundary
to ensure the boundary condition remains satisfied (i.e., the expression for V/(r)
is self-consistent).

Using the interpretation implied by the convolution of the charge density with
the Green Function in Equation 3.45 (admittedly, an interpretation not
obviously consistent with the defining equation, Equation 3.44), the above
condition is equivalent to requiring that charge on the boundary (7’ € S) yield
no contribution to the potential elsewhere on the boundary (7 € S) or in the
volume (¥ € V). In one sense, this is what we expect, as the Dirichlet boundary
condition specifies V/(F) on the boundary, so any charge that appears on the
boundary to enforce that boundary condition had better do so in a way that
does not modify the boundary condition.

However, in another sense, it is the opposite of what we expect: how can the
induced surface charge on the boundary not affect the potential on the surface
or in the volume? Wasn't that the whole idea behind the method of images,
that one calculates the additional potential of the induced surface charge on the
boundary by replacing it with an image charge? We resolve this confusion below.

With the above condition, the solution for V(F) reduces to

(7) = /V dr' p(7) Gol7.F) ~ o V() A() - FrrGo(R7) | (3:47)

S(V)
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Section 3.4.4

This form allows us to resolve our confusion above:

> The first term calculates the potential due to the real charge, including
the potential due to the “image” charge induced by it on the boundary.
(We'll start being sloppy about the use of the word “image” and drop the
quotes.) The latter contribution must come from this term (and not the
surface term) because the image charge and its potential ought to be
linear in the real charge density: there is no image charge without real
charge. The defining condition does not contradict this: Gp(F,F’) # 0 is
allowed for 7,7’ € V, Gp(F,r’) =0 is only required for 7’ € S (and
Fev,Ss).

> The second term adds a contribution to the potential for surface charge
that appears on the boundary in order for the boundary to sit at the
nonzero potential given by the boundary condition. This is not image
charge because it is not induced by real charge and it appears even if there
is no real charge in V (this term’s presence does not depend on whether p
is present or not). In the case of the point charge near the sphere, this is
the charge go = 4 €, Vo R that appears so the sphere sits at V = V. It
has nothing to do with the point charge q. The condition Gp(F,7’) =0
for 7/ € S is the sensible condition that this additional surface charge does
not induce its own image charge. It is sort of amazing that this simple
term does all that work — figures out the surface charge required to
realize the Dirichlet boundary condition and calculates its potential in V.
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For a Dirichlet boundary condition, the symmetry of Gp in its arguments can be
proven by applying Green's Theorem with ¢ = Gp(F,X) and ¢ = Gp(F’, X),
where X is the variable that is integrated over, and using the defining equation,
Equation 3.44, and the defining boundary condition Gp(7,X) = 0 for X on the
boundary and 7 in the volume and on the boundary (which also implies the
same for Gp(7’,X)). Symmetry of Gp implies symmetry of Fp given that their
difference is symmetric in 7 and 7.

When this symmetry property is applied to Equation 3.44, and we also use the
symmetry of the delta function, Equation 3.37 is recovered (after relabeling

F <> F'). This resolves the apparent inconsistency between wanting the Green

Function to satisfy Equation 3.37 but having to assume Equation 3.44 at the

start to get Equation 3.45.

We can use the symmetry requirement to reinterpret the condition

Gp(F,F') =0 for 7/ € S. We can now think of the unit charge as being at

F € V,S and the potential being calculated at ¥/ € S. Thus, this condition
requires that Gp yields zero contribution to the potential on the boundary from
charges in the volume or on the surface. For charges in the volume, this
statement is the requirement that the image charge induced by the real charge
cannot modify the boundary condition. For charges on the surface, it is the
requirement that charge on the surface cannot induce its own image charge and
generate a potential contribution from that image charge.
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Section 3.4.4

We can also now provide an interpretation of Fp(F, 7’) in the Dirichlet case.
Because 1) Fp(F,F’) satisfies Laplace’s Equation in the volume V, and 2) when
added to the potential of a unit point charge at 7/ (the first term in our
expression relating Gp and Fp, Equation 3.43), the sum satisifies the specified
boundary condition on S, Fp(F, F’) can be interpreted as the potential function
in the volume due to the image charge induced on the boundary by the real
charges in the volume with the boundary grounded. This image charge depends
on where the charges in the volume are, hence the integration over 7/ € V to
calculate this effect of this term.

What remains a bit mysterious or magical is how the second term in

Equation 3.47 works. Clearly, that term calculates the surface charge density on
the boundary needed for the Dirichlet boundary condition to be satisfied and
then calculates the potential in the volume due to that surface charge density. It
requires both terms in Gp (i.e., |F— 7/|~! and Fp) to do that. It seems this
part just falls out of the mathematics.

Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary Conditions Page 137



Section 3.4 Advanced Electrostatics: Formal Solution to Poisson’s Equation: Green Functions

» Neumann boundary condition

In this case, n- §V(F) is specified for ¥ € S, so we need to render irrelevant the
term containing V/(7) because we should not have to simultaneously specify it.
While we might be inclined to require A(7’) - V Gy(F, 7’) = 0 for 7/ € S to
make this happen, this requirement is not consistent with Equation 3.44 defining
G: if one integrates this equation for Gy over 7/ € V(S), and turns it into a
surface integral using the divergence theorem, one obtains the requirement

760?{ da A(F') - Vr Gu(FF) =1  for FEV,S
S(V)

Thus, the simplest condition we can impose on Gy is
-1

) - ¥ G (F F') = — eo?{ dal for FEV,S,F' €S (3.48)
S(V)
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Applying this condition, the solution for V(F) reduces to

V)= [ o7 o GuE ) o | a Gu(F PR V) + (VP

Section 3.4.4

fs(v) da’ V(7')
§S(V) da’

with <V(F)>S(V) (349)

While V(F) on the boundary has not been completely eliminated, its only
appearance is via its average value on the boundary. This makes sense, as the
Neumann boundary condition does not specify the potential offset since it only
specifies derivatives of the potential. The appearance of this term reflects the
freedom we have to set the potential offset for problems with Neumann
boundary conditions. Recall that the Uniqueness Theorem only showed
uniqueness up to an overall offset.

What is the interpretation of a Neumann Green Function? Since
A(F') - V7 V(F') specifies the surface charge density on the boundary, Gy (7, 7’)
simply calculates the potential at a point 7 in the volume due to this boundary
surface charge density at 7. Note that Gy is convolved with the volume charge
density and the surface charge density in the same way, reinforcing this
interpretation. A Neumann Green Function thus has a simpler interpretation
than a Dirichlet Green Function. There is no interpretation of Gy or Fy as

calculating contributions from image charge.

Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary Conditions
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What is the interpretation of Fy/(F, 7’) for the Neumann case? One can show
that it has no effect (one needs to make use of symmetry of Fy in its
arguments, see below). Not that it is identically zero, but that all terms
involving it vanish. This makes sense: if we specify the surface charge density
everywhere in the volume and on the surface, we should be able to just use
Coulomb’s Law to calculate the potential everywhere, which just requires the
Coulumb’s Law part of Gy.

The triviality of the Neumann Green Function may seem to render pointless the
extended discussion leading to this point. Recall, however, that Dirichlet
boundary conditions are far more common: we tend to specify potentials on the
boundary in real situations, not the charge density. We derived the Neumann
Green Function for completeness, not because it is really needed.

For a Neumann boundary condition, the symmetry of Gy and Fp is not a result
of the boundary condition, but it may be assumed without loss of generality; see
K.-J. Kim and J. D. Jackson, Am. J. Phys. 61:1144 (1993). As with the
Dirichlet Green Function, this symmetry property allows Equation 3.37 to be
obtained from the assumed defining equation, Equation 3.44, closing the loop
on that apparent inconsistency.

To make further progress in obtaining a functional form for the Green Function, we
must specify the boundary conditions in more detail. We will consider examples of this

next.

Section 3.4.4

Green Functions for Poisson’s Equation with Dirichlet or Neumann Boundary Conditions
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Obtaining Green Functions from the Method of Images

We mentioned earlier that the component Fp(7, ) of the full Dirichlet Green
Function Gp(F,F’) can be determined by the method of images in some cases. Let's
see how this works for the two cases we have considered:

» Point charge near grounded conducting plane

Section 3.4.5

The full potential at a point 7 for the point charge at dZ is

V(R = — { g g } (3.50)

dre, [|[F—d2| |F+d3|

We can see by inspection that the Dirichlet Green Function is given by taking
q = 1 and by replacing d Z in the first term with 7/ and —d Z in the second
term with 7/ mirrored through the x’y’ plane:

1 1 1
Go (7, 7') = [ﬂ 1 A} (3.51)
dmeo L|F— 7| |F— (XX + y'y — 2'Z)|

One can test this by plugging into Equation 3.46 with p(7’") = q6(F' — d 2).

The second term accounts for the fact that induced charge appears on the
grounded conducting plane and calculates the contribution to the potential due
to it; it is the F(7, F’) term while the first term is the usual Coulomb'’s Law term.
The first term solves Poisson’'s Equation while the second term solves Laplace’s
Equation. Both terms depend on the position of the point charge at 7.

Obtaining Green Functions from the Method of Images
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This Gp is not manifestly symmetric under exchange of 7 and F’, but one can
rewrite it so it is:

1 1
Gp(F,7') = 7
Ameo [[(x = x4 (y =y + (2 = 2
1
[(x=x)24(y—y)2+(z+ Z/)2]1/2
One can now also see how G(z = 0,7’) = 0 always: the two terms become

identical in this case.

It is also important to notice that, for our boundary condition V(z =0) =0,
there is no term in V/(F) for the surface term because it vanishes in this case.
That is, in the Dirichlet case, we expect a surface term from Equation 3.47

—607( da V(7Y A(F') - ¥ 71 Go (7, ') (3.52)
sW)

Since the Dirichlet boundary condition is V(z = 0) = 0, this integral vanishes
and we indeed only have the volume integral term from Equation 3.47
convolving the original charge distribution with Gp.
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» Point charge near conducting plane held at Vj

Section 3.4.5

Suppose our boundary condition had instead been V(z = 0) = V, a constant
(and also V(r — oo) = Vg for consistency; we will elaborate on this later). Is
the above Green Function still valid? Yes! We have not changed the charge
distribution in V or the type of boundary condition; all we have done is change
the value of the boundary condition. We can check that the new value of the
Dirichlet boundary condition is respected when we apply Gp derived on the
basis of the Vy = 0 case.

This is an important point about the Dirichlet Green Function: while one may
find it using a special case, it is, by construction, valid for any Dirichlet
boundary condition for the same geometry. It does not care about the details of
either the charge distribution or the boundary condition. Of course, the special
case used must be general enough that one can find the entire Green Function.
When we later do an example using Separation of Variables in Cartesian
coordinates to solve Laplace's Equation, we will see how that example
determines a portion of the Dirichlet Green Function but not all of it.

Returning to the matter at hand: because V(7)) = V; for 7/ € S(V), we can
pull it outside the integral, so we just have the surface integral of the normal
gradient of Gp over the surface:

—6074 da V(F'YR(F') - Vs Go(F, F) = _eovojf da A7) - 5 o G (7, ')
S(V) S(V)
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Section 3.4.5

i

We recall that, by definition, Gp(7, 7”) is the potential at the point 7 due to a
point charge of unit magnitude (g = 1) at /. By the symmetry of its
arguments, it is also the potential at the point 7/ due to a unit point charge at
7. Earlier, when we did the method of images solution for the grounded
conducting plane, we calculated the surface charge density at 7 due to the point
charge at d  from —e, V#V/(F,d 2). In this case, —e, V7 Gp(F, ') is the
surface charge density at 7/ due to a unit charge at 7. Since V{ has come
outside the integral, our surface integral is now just the integral of this surface
charge density over the boundary, or the total induced charge on the boundary.
We calculated this when we did the method of images and found it was

Qind = —q, so, in this case, it will be —1. That is:

760}( da' V(F')A(F') - Vi Gp(F, 7') fvoyf da’ojng(F,q = 1)
S(v) S(V)

~VoQind(g=1)=Vo  (3.53)

So, we see that the surface term serves to add the potential offset that the
boundary condition V(z = 0) = V; requires. Therefore, the solution is now

1 9  q
dmeo ||[F—dZ] |F+dZ|

V(F) = + Vo (3.54)

This solution has V(z =0) = Vg and V(r — c0) = V.

Obtaining Green Functions from the Method of Images
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Section 3.4.5

This example serves to highlight the fact that one has to be careful about the
self-consistency of boundary conditions, especially when they involve a condition
at infinity. Consider two alternative, invalid BCs:

> One cannot set V(z =0) = Vg and V(r — co) = 0 because that is not

self-consistent for z = 0, (x,y) — oo: should the BC be V; or 0 for this
part of the boundary?

One cannot even require V(z =0) = Vg and V(z — o0) = 0 because it
leaves unspecified the boundary condition for V(z,y/x2 + y2 — o). If
one then thinks about what type of BC to specify there, one finds that it
should be impossible to specify something that is consistent with

V(z — 00) = 0. Think about the case of the conductor held at V4 and
no point charge. We know the solution is a uniform sheet of surface
cbarge on the conductor, and we know that the field is then a constant
E(F) = (0/€0) Z and the potential is V(F) = —(o/€o) z. This potential
does not vanish as z — oo. If one knows that a set of boundary
conditions is not self-consistent for the case of no point charge, then
linearity /superposition tells us there is no way to fix the inconsistency by
adding charges to V: one would have to add a potential that is also not
self-consistent to cancel out the self-inconsistency of the g = 0 potential!

Obtaining Green Functions from the Method of Images
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» Point charge near grounded conducting sphere

The full potential at a point 7 for the point charge at aZz was (Equation 3.25):

1 q g%
V(F) = — 2 3.55
" 47 e, {|Fa?| |f_f§2§|] (3.55)

Thus, the Dirichlet Green Function is given by letting 7/ = aZ and taking ¢ = 1:

1 1 R/r!

- dmeo | |F—F| B ‘7_ 71 _R?

(3.56)

(,/)2

Again, the second term accounts for the potential due to the charge induced on
the surface of the sphere and is the term that solves Laplace's Equation in this

situation (the Fp(F, F’) term). And again, one can this test form for Gp by

plugging into Equation 3.46 with p(F’) = q§(F' — aZ)
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It is perhaps not so obvious that the second term in this Green Function is
symmetric in its arguments. Let's rewrite it:

R/r' R B R 257
> = R2 | |Frr! — R27/ - 72 4 _ TR27. 7/ (3.57)
|7 r(,/)2| | | Vrr 2+ RY—2rr'R2F-T

Now the symmetry is manifest.

The same point about the surface integral term as for the conducting plane
holds here: that term vanishes because V(7’) =0 for 7’ € S.

Section 3.4.5 Obtaining Green Functions from the Method of Images
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» Point charge near conducting sphere held at fixed potential

Section 3.4.5

In this case, we can see the effect of the surface integral term in Equation 3.47
because V() on the boundary does not vanish. The integral term is, from
Equation 3.47:

760?{ da V(F')A(7") - ¥ Go (F, ') (3.58)
s)

When we encountered this nonvanishing surface term for the prior case of a
point charge near a conducting plane, we recognized that V/(F’) = V4 could be
pulled outside the integral and that the integral of the normal gradient of the
Green Function gives the total charge induced on the boundary for a unit charge
at 7. To calculate that total induced charge, we invoke the theorem (based on
Gauss'’s Law) we discussed earlier. In this case, the surface encloses the image
charge, so the total induced charge is equal to the image charge. That is:

= R
—60?{ da' V(F')A(F') - Vi Gp(F, F') = =VoQind = —VoGimage = Vo —
S(v) r

(3.59)

This is again just the potential due to a point charge at the origin whose
magnitude is such that the potential at radius R is V.

Obtaining Green Functions from the Method of Images
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Section 3.4.5

With this integral evaluated, the full solution for V/(7) is given by summing the
term that involves the integral with p, which we calculated already for the
grounded sphere case, with the boundary term:

V(7 = q 1 R/a

dre, | |F—az| |7F— B3
a

R
+ Vo
p

This is what we found earlier when we discussed the same problem using the
method of images.

Point charge in the presence of a charged, insulated, conducting sphere

The prior situation is identical to this one: specifying the charge on a conductor
is the same as specifying its potential. So the result for V/(F) is the same, where
we must take Vo = (Q + (R/a)q)/(4meo R). Note that, even though we are
talking about a boundary condition in which charge is specified, it is not a
Neumann boundary condition because we do not specify o(F’ € S), we are still
effectively specifying V(F’ € S). This case is like the third special case of the
Uniqueness Theorem we discussed earlier.

Obtaining Green Functions from the Method of Images
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Introduction to Separation of Variables
General Points on Separation of Variables

Griffiths makes this seem harder than it is. In separation of variables, we assume that
the solution of Laplace's Equation factors into functions of single coordinates. This
allows us to reduce the partial differential equation to a set of ordinary differential
equations, which can be solved by standard techniques. Constants of integration
appear that help to define the solutions. We apply the boundary conditions as defined
by the voltages and/or the charge densities (normal derivative of voltage) at the
boundaries. Once we find a set of solutions, we know from Sturm-Liouville theory that
they form a complete set, so we are assured that we can write any solution to
Laplace’s Equation for the given boundary conditions in terms of these solutions.

We will only develop separation of variables for Laplace’s Equation and, in the near
term, we will only apply it to solving problems with specific types of boundary
conditions rather than trying to use it to find the F piece of the Green Function.
(Recall, F satisfies Laplace’s Equation while G satisfies Poisson’s Equation.) We will
see later, at the tail end of our discussion of separation of variables in spherical
coordinates, that this technique will actually be sufficient to obtain the Green
Function for an arbitrary geometry, which then provides us the solution to Poisson’s
Equation. (One will be able to see that it is not feasible to do separation of variables
for Poisson's Equation in the same way we do it for Laplace's Equation: the process
very much relies on the vanishing of one side of the equation!)
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Digression on Orthonormal Functions

The general topic of the properties of solutions to second-order linear differential
equations is beyond the scope of this course; it falls under the name Sturm-Liouville
theory, and it is covered in ACM95/100. We will simply quote some results that are
important for this course.

Sturm-Liouville theory consists of recognizing that the second-order linear ordinary
differential equations we encounter in many places in this course are self-adjoint
(Hermitian) operators on the Hilbert space of functions that satisfy the differential
equation. You know from linear algebra that Hermitian operators are guaranteed to
have a set of eigenvalues and eigenvectors (in this case, eigenfunctions), and that the
eigenvectors form an orthonormal basis for the space under consideration (here, again,
the space of functions that satisfy the differential equation). The same results apply
here. What this means is that, for such equations, there are a set of solution functions
{fp(w)} that are the eigenfunctions of the operator, and there are corresponding
eigenvalues {\p}. These eigenfunctions form a complete, orthonormal set. (Note: w
is intended to represent any coordinate, one- or multi-dimensional.)
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Orthonormality is written mathematically as

t
/ dw £ (w) fo(W) = Spg (3.60)
S
where integration over the interval of interest [s, t] is the Hilbert space inner product.

Completeness is defined to be

Z fr(w') fp(w) = 6(w' — w) (3.61)

p

where the sum is over all eigenfunctions of the differential equation.
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Completeness, as its name indicates, enables us to show that any function g(w) on
[s, t] can be expanded in terms of the eigenfunctions {f,}:

g) = [ dw' gl 5w~ w) = [ o’ g(w') 3 15 W) 6o(w)
s s P
= fo(w) tdw' fx(w)g(w)
36 et

That is, we have the expansion:

g(w) =" Apfp(w) (3.62)
P

with coefficients given by

Ap :/ dw’ £ (w') g(w') (3.63)

We could have derived Equation 3.63 also by applying orthornomality to the expansion
Equation 3.62; this is the usual way we think of finding the {A,} as we will see below.
They are of course equivalent derivations.
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Separation of Variables in Cartesian Coordinates

We assume that the function V/(F) can be factorized as

V(R) = X(x) Y(v) 2(2) (3.64)
Plugging this into Laplace's Equation, we obtain
d’X 2Y d’z
Y(1) 2(2) 5 + X0 2(2) S5 + X0 V() S5 =0
2 2 2
1 d°X 1 d?y 1 dZ:O (3.65)

X)) 2 TY) a2 T Z(z) 42

We have three terms, the first a function of x, the second of y, and the third of z
Given these mismatched dependences, the only way the equation can hold is if each
term is a constant. That is, it must hold that
d’y 1 d*’z
— =K3 (3.66)

1 d°X 1
— =K o N Jus = K
X(x) dx2 Y(y) dY2 Z(z) dz?

with K1 + Ko + K3 = 0.
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We know that the solution to these ordinary differential equations are exponentials,

X(x) = A exp(x/K1) + B exp(—x\/K1) (3.67)
Y(v) = C exp(yv/Ka) + C exp(—yv/Kz) (3.68)

Z(z) = E exp(zy/—(K1 + K2)) + F exp(—z+v/—(K1 + K2)) (3.69)

We have not specified which of Ki, K3, and K3 are positive and which are negative
(clearly, they cannot all be the same sign). That will be determined by the boundary
conditions. Note that we are also neglecting linear solutions that also satisfy the
individual ordinary differential equations; we will see they are not necessary in the
examples we consider here (though they may be needed more generally).

At this point, we cannot make further generic progress; we need to apply a set of
boundary conditions. These will place constraints on the allowed values of the
exponents and coefficients and restrict the family of solutions. There are a number of
examples in Griffiths. To avoid duplication, we use a different one here from Jackson
§2.9.
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Example 3.4: Empty box with five walls grounded and one held at a potential

Consider a box with side lengths a, b, and c in the x, y, and z dimensions and with
one corner at the origin. The boundary conditions are

V(x=0)=0 V(y=0)=0 V(z=0)=0 (3.70)
V(x=a)=0 V(y=b)=0 V(z=c)=¢(x,y) (3.71)

where ¢(x,y) is a function that is given. In SoV, we always apply the homogeneous
(vanishing RHS) BCs first because, we will see, they restrict the functional form of the
solutions. The homogeneous BC in the ith dimension (e.g., y) can only be satisfied if
the ith function (e.g., Y(y)) satisfies it alone because it must be satisfied for all
values of the other coordinates. Let's do x, y first for convenience (with
foreknowledge of solution):

X(0)=A+B=0 X(a) = A exp(ay/K1) + B exp(—ay/K1) =0 (3.72)

Y(0)=C+D=0 Y(b) = C exp(bv/Ka) 4+ D exp(—b/Ka) =0 (3.73)
Reducing,

A [exp(av/K) — exp(—ay/K1)| = 0 (3.74)

C [exp(bV/Kz) — exp(~by/Kz)| = 0 (3.79)
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There is no solution to these equations for K1 > 0 and K, > 0: the unit-normalized
decaying and rising exponentials are only equal when their arguments both vanish, and
they do not. Therefore, let's take K1 = —a? and K> = —3? so these become
oscillating exponentials. We thus obtain the conditions

sin(wa) =0 sin(Bb) =0 (3.76)
This places conditions on the allowed values of a and §3:

an = >y Bm = e n, m positive integers (3.77)

where n and m may only be positive integers because negative values are redundant
with the positive ones and n = 0 and m = 0 yield vanishing functions. Thus, we have

oo oo
X(x) = Z Ap sin apx Y(y) = Z Cm sin Bmy (3.78)
n=1 m=1
where the {A,} and {Cn} are constants to be determined. These solutions clearly

respect the V = 0 boundary conditions at x = 0, a and y = 0, b because they vanish
at those points.
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Now, let's apply the remaining homogeneous BC to Z(z). At z =0, we have

ZO)=E+F=0 = F=-E (3.79)

Therefore, Z(z) is of the form
2(2) = Eun [exp(a/0} + 53) — exp(-zy/a + 73)| (380)

= E},.sinh(ypmz) with Ynm = 1/ a2 + B2, (3.81)

(sinh not sin because we know o2 + 32, > 0.) Our solutions thus have the form

Vom(X,y, z) = Anm sin(anx) sin(Bmy) sinh(yamz)  with  vam = /a2 + 82, (3.82)

where we have combined all the arbitrary coefficients A, C,, and E}, into a single
coefficient Apm. Each V,m(F) satisfies all five homogeneous BCs.
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Now, we want to apply the last boundary condition, V(x,y,z = ¢) = ¢(x,y). How?
Not the same way as we applied the previous ones. The prior boundary conditions
were homogeneous, meaning that they forced the solution to vanish somewhere. The
remaining one is inhomogeneous because it requires the solution to take on a particular
functional form on a boundary. These must be treated differently, for two reasons.

»  The first involves linearity and uniqueness. Because the right-hand side of a
homogeneous BC is zero, the BC is satisfied by any linear combination of
functions that satisfy the BC. The same is not true of inhomogeneous BC. If it
were possible for two different functions to satisfy the inhomogeneous BC, then
only a subset of linear combinations of them would satisfy the same BC: the
linear combinations in which the coefficients sum to unity. This condition
violates linearity. The only resolution is for there to be precisely one solution to
the inhomogeneous BC. This requirement is consistent with uniqueness: the
inhomogeneous BC is applied last, and it completes the application of the BC,
so the solution should be unique once it is applied.

» From the purely calculational point of view, requiring the solution for a given n,
m to satisfy the inhomogeneous boundary condition would imply

Vom(x,y,z = ¢) = ¢(x,y) (3.83)
Anm sin(anx) sin(Bmy) sinh(vamc) = ¢(x,y) (3.84)

There simply is not enough freedom in the functional form on the left to satisfy
the boundary condition for arbitrary ¢(x, y).

Page 160



Section 3.6 Advanced Electrostatics: Separation of Variables in Cartesian Coordinates

The only way to have enough freedom to satisfy the inhomogeneous boundary
condition is to consider a linear combination of the individual n, m:

V(r) = Z Anm sin(anx) sin(Bmy) sinh(vnmz) (3.85)
n,m=1

where Apm, are now constants to find based on requiring the above linear combination
solution satisfies the inhomogeneous boundary condition at z = ¢, which now becomes

o(x,y) = V(x,y,z=c) = Z Anm sin(anx) sin(Bmy) sinh(vYamc) (3.86)

n,m=1

This condition will let us determine the A,m,, but how, and why are we certain they
exist? We make use of the theory of orthonormal functions we cited earlier.

Page 161



Section 3.6 Advanced Electrostatics: Separation of Variables in Cartesian Coordinates

We will use the fact (not proven here) that the functions {\/2/asin(anx)} for n >1
form a complete, orthonormal set on the x € [0, a] interval (with the given boundary

conditions at x = 0, a), as do {+/2/bsin(Bny)} for m > 1 on y € [0, b] (again, with
BC). Therefore, we may recover the A,, by multiplying by them and integrating:

[o [ avovny] 2 in(ap) 2 sin(6e)
:/ dx/ dy Z Anm sinh(ynmc) Sm(apx)\/gs'“(o‘"x)5'“(5my)\/%sin(ﬁqy)

n,m=1
. Va
Z Anm sinh(yamc) f{)pn —0gm = 2 ) (3.87)

n,m=1

Now, be aware that we did more work than necessary above. Once we are told that

the {y/2/a sin(anx) \/2/b sin(Bmy)} form an orthonormal set, we do not need to do
the integrals on the right-hand side! We only need write the right-hand side of the

original equation in terms of the orthonormal functions, then use orthonormality
(Equation 3.63) to obtain the equations for the individual coefficients; i.e.:

o(x,y) \/7 Z A,,m\/>sm(a,,x)\/>sm (Bmy) sinh(yamc) (3.88)
— / dx / dy\f sin(apx) \Esin(ﬁqymx,y):\/a;”qusinh(quc) (3.89)
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Next, we move the coefficients to one side to obtain (replacing pg with mn):

/ dx/ dy - sm(a,,x) — sin(Bmy) ¢(x,y) (3.90)

= smh('ynmc

Our full solution for the applied set of boundary conditions is

sinh(vnmz)

sinh(ynmc)

/dx/ dy’¢(x",y") sin(anx’) sin(Bmy’)

(3.91)

V() = % Z sin(anx) sin(Bmy)
n,m=1

Summary: The homogeneous boundary conditions restricted the solutions to a specific
orthonormal set, and the single inhomogeneous boundary condition set the coefficients
of the appropriate linear combination of that orthonormal set.

A good exercise is to write down the solutions for the five other inhomogeneous
boundary condition cases (especially the ones with the inhomogeneous condition on
the x, y, or z = 0 planes) “by inspection” — i.e., by simply changing the solution we
already have by replacing z with x, y, or a— x, b — y, or ¢ — z — rather than by
rederiving. Clearly, these other problems are not different in any conceptual way, they
are only different calculationally, and only barely. There is no reason to redo all that
calculation from scratch!
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If we had used a more general boundary condition, specifying V to be nonzero on all
six sides of the box, then we could solve the similar problem for each of the six faces
independently (i.e., let V be nonzero and arbitrary on that face and zero on all the
other faces) and then sum the solutions since each individual solution does not affect
the capability of the other solutions to satisfy their boundary conditions. (Of course,
the boundary conditions themselves must be consistent with each other at the edges
and corners where they meet.) In fact, we would have to do this; the separation of
variables technique provides no way to satisfy two generic, independent
inhomogeneous boundary conditions simultaneously. Rather, to solve problems
involving multiple inhomogeneous boundary conditions, one must use the property
that an inhomogeneous boundary condition solution can always be summed with an
arbitrary number of homogeneous boundary condition solutions and still satisfy the
inhomogeneous boundary condition.

It is interesting to consider the intermediate case, consisting of the same geometry
with constant potentials ¢g at the z = ¢ face and —¢g at the z = 0 face. As stated
above, one can solve the two cases of ¢p and —¢g separately and add them. One can
also solve the problem directly by simultaneously applying the two boundary
conditions, and one can show that the two solutions are the same (using some
hyperbolic trigonometry identities). This is possible because the
double-inhomogeneous boundary condition in this case is very simple, having only one
free parameter, ¢g. A generic double-inhomogeneous boundary condition problem
cannot be solved in this way.

Page 164



Section 3.6 Advanced Electrostatics: Separation of Variables in Cartesian Coordinates

Referring back to our discussion of Green Functions, the above solution is the surface
term in Equation 3.47 for the particular boundary condition we have applied. By
comparison of the two expressions, we infer (not derive!)

—en(F') Vi Gp(F P = X%+ y'y + c2) (3.92)
oo .
-4 Z sin(apx) sin(Bmy) M sin(anx’) sin(Bmy’)
ab = sinh(vnmc)

Note that this expression does not fully specify Gp (or Fp)! The above information is
sufficient for the particular physical situation we have set up, which consists of no
physical charge in the volume and the above boundary condition, because:

» The term consisting of the integral of the charge density in the volume
convolved with Gp is zero in this case because the charge density vanishes in
the volume. Therefore, we do not need to know Gp (or Fp) completely.

» The above surface term is the only one needed because V = 0 on the other
boundaries.
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For the more general problem of an arbitrary charge distribution in the volume and
arbitrary Dirichlet boundary conditions on the surfaces, we would need to find the full
Gp. It may seem like one could do as suggested earlier, finding the solution for each
option for which face is held at nonzero potential, then using the results analogous to
the above as six Neumann boundary conditions on Gp, and applying separation of
variables to find Gp. But one would have to require that Gp solve Poisson’s Equation
for a unit point charge, not Laplace's Equation. This, as we noted earlier, is not
feasible with separation of variables because of the nonzero right side of the equation.
There is a way to deal with this, which we will show a bit later when we develop the
spherical harmonic expansion for the Green Function in spherical coordinates.

Another approach that does work would be the method of images with the condition
V = 0 on all the surfaces. It is left as an exercise for the reader to think about what
set of image charges is appropriate; the situation gets complicated for a charge at an
arbitrary position in the box, but it is solvable. Certainly, from the resulting Gp, we
could compute the normal gradient of Gp on any surface and thus obtain the general
solution for V in the volume for any Dirichlet boundary condition. We should find that
the normal gradient of Gp on the z = c¢ surface is what is given above.

It may seem like separation of variables is unsatisfactory for this reason — the
procedure does not give you the full Green Function, while the method of images
does. But, as we have seen, the method of images is not a systematic procedure —
one has to guess the correct image charge distribution. By contrast, separation of
variables is an entirely algorithmic procedure to give you a solution if a separable one
exists for the particular boundary condition you are applying. It is less general but
more reliable. More importantly, we will show later how, by applying separation of

variables in a more sophisticated way, we can in fact find the full Green Function.
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There is, nevertheless, no guarantee that there will be a separable solution; this
depends on the geometry of the boundary conditions. The boundary conditions need
to respect the separability assumed. For example, a boundary condition on a spherical
boundary would not likely yield a solution via separation of variables in Cartesian
coordinates!

Note also that the method of images technique is not appropriate for a Neumann
boundary condition because the method of images solution generally solves the V =0
Dirichlet BC problem. One needs a technique like separation of variables for such
cases.
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Separation of Variables in Spherical Coordinates: General Theory
Doing the Separation in Spherical Coordinates

We do this in a slightly more general manner than Griffiths, dropping the assumption
of azimuthal symmetry until it is time to solve the separated differential equations.

Laplace’'s Equation in spherical coordinates is:

1.0 (,0V 1 9 (. oV 1 9%V
—- — —_— — 0 — —F =0 3.93
r2 or (r or ) + r2sinf 00 (sm o0 ) + r2sin? 0 0¢? ( )

If we assume a separable form

V(r,0,¢) = R(r)©(0) ®(¢) (3.94)

then, after dividing through by V/(r, 8, ¢) and multiplying by r? sin2 0, we have

o[ L d(pdRY 1 1 d /. dO 1 d?
s Q[R(r) dr (r dr>+@(9) sin0 do (Sme d0)}+¢(¢) dgz 0 (399
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We see that first term depends only on r and 6 while the second term depends only on
¢, so we can immediately assume they are each equal to a constant:

1 d’¢ 5
—_—— == (3.96)
®(¢) dg?

The choice of the form of the constant is motivated by what will come next, but we
can see why it needs to be of this form. As we saw in Cartesian coordinates, the above
differential equation is solved either by growing/decaying exponentials (right side
positive) or oscillating exponentials (right side negative). Since ¢ is a coordinate that
repeats on itself (¢ = 2 nm are the same physical coordinate) the solutions ®(¢) must
also be periodic, forcing the choice of the oscillating exponential. (For the same
reason, the linear solutions we ignored in the Cartesian case are disallowed here.) We
saw before that it is convenient to define the constant to incorporate a squaring.

The solutions of this equation are straightforward:

®(¢p) = Aexp(ime) + B exp(—imo) (3.97)
Periodicity in ¢ with period 27 requires m be an integer. One can either require
m > 0 and keep the {An} and {Bm} or allow m to be any integer and drop the {Bn,}

(which would be redundant with the {Ay,} for m < 0). In either case, only one of Ag
or By is required.

Section 3.7.1 Doing the Separation in Spherical Coordinates Page 169



Section 3.7 Advanced Electrostatics: Separation of Variables in Spherical Coordinates: General Theory

Returning to the other term, we now have

sin?0 [ 1 d (r2 ﬁ) + 1 i 4 (sine @)} = m? (3.98)
R(r) dr dr O(0) sind do do
2
1 d <r2 ﬂ) + [i 1 d (sinGﬁ) - } -0 (3.99)
R(r) dr dr O(0) sin6 do do sin” 0

Now, we see that the first term depends only on r and the second only on 6, so we can
separate again by setting the two terms equal to constants that sum to zero. Here, we
rely on prior knowledge of the result to choose the constant to be 4(£ + 1) so that

1 d/,dR
(P ) = +1 3.100
R(r) dr (r dr) (€+1) ( )

1 1 d de m?
— = (sing =) — =—t+1 3.101
0(0) sinf do (s'" de) gnzg ~ D (3.101)

Note that the radial equation does not depend on m. This implies that the R(r)
functions will not depend on the azimuthal properties of the problem, in particular
whether it has azimuthal symmetry. But R(r) depends on 4, so it will depend on the
polar properties of the problem. ©(6) depends on ¢ and m, so its behavior depends on
both the polar and azimuthal properties of the problem. ®(¢) looks like it may only
depend on the azimuthal properties because it depends only on m, but m is tied to ¢
through the polar equation, so there will be some relationship.
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Solving the Radial Equation

Here, we add another item to our “bag of tricks” and define U(r) by R(r) = U(r)/r
and plug in. (This is motivated by the r? that the second d/dr must act on: assuming
this dependence gets rid of the extra terms arising because of that factor.) We find

d?U  £(L+1)
e U(r)=0 (3.102)

Since the two derivatives would reduce the exponent of a power-law solution by 2, and
the second term does the same by dividing by r?, the above equation suggests U(r) is
a power law in r. (Or, try making it work with a transcendental function: you can't.)
If we plug in such a form U(r) = r?, we find

ala—1)r* 2 4+ 1)r""2=0 = ai={4+1 or aa=-¢ (3.103)

U B
— R(r) = —Er) =Ara 14 Br2 = Aff 4 sy (3.104)

There is no constraint on ¢ yet.
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The Polar Equation and the Generalized Legendre Equation

We may rewrite the polar angle equation as

1 d 4o m?
2 (sin0 2 4 e +1)— 0(0) =0 3.105
sin0 do (s'" d9)+{( - 57 0 (3.105)

Motivated by the fact that sin 6 d6 = —d(cos @), we add another trick to our bag of
tricks by writing

X = cos 0 ©(0) = P(cos ) = P(x) 1—x%=sin%0 (3.106)

Then we may rewrite the polar differential equation as

— — | P(x) =0 (3.107)

4 [(1—)(2)%} + {e(e+ 1) - 1'"

This is called the generalized Legendre equation.
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As you have seen in ACM95/100, differential equations of this type can be solved by
assuming the solution is a polynomial in x and requiring termination after a finite
number of terms. That is, one assumes

PP(x) = arx* (3.108)
k=1

and then, plugging the above form into the differential equation, one requires the
series to terminate (ax = 0 for some k). This condition forces £ to be a nonnegative
integer and —¢ < m < £. (We already know m is an integer to ensure ®(¢) is
single-valued.) These polynomials are the associated Legendre polynomials.

Mathematically, there should be a second solution for each £, m because the equation
is second order. These are the solutions one finds by not requiring termination but
simply convergence for —1 < x < 1 (corresponding to 0 < 6 < ). If one has a
geometry that excludes the z-axis (where these solutions diverge), these solutions
must be considered. If the z-axis is in the space, then these solutions are unphysical
and can be discarded.
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Separation of Variables in Spherical Coordinates with Azimuthal
Symmetry

The Polar Equation Solution with Azimuthal Symmetry: the Legendre
Equation and Legendre Polynomials

Consider the special case of azimuthal symmetry, for which m = 0 and ®(¢) =
constant. The generalized Legendre Equation reduces to the Legendre Equation:

qa
dx

[(1 - x2)£:| +L(£+1)P(x)=0 (3.109)

The same series solution applies here with m = 0, so £ must still be a nonnegative
integer. These solutions are the Legendre Polynomials. One can show they obey
Rodrigues’ Formula:

L
Po(x) = i (i) (2 -1)" (3.110)
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Properties of the Legendre Polynomials

One can see by inspection or prove the following properties:

> Py(x) is a £th-order polynomial in x.

» Py(x) has only even powers of x if £ is even and only odd powers if £ is odd.
=> Py(x) is an even function of x for £ even and an odd function for £ odd.

» The Legendre polynomials are a complete, orthonormal set: any function on the
interval [—1, 1] can be written in terms of them. Their orthonormality relation is

! 20+1 1
/ dx/ % Pe(x) Py (x) = 8¢ 0 (3.111)
-1
and their completeness relation is
2 28+1
Z—*P( YPo(x) = 3(x — x') (3112)

> Py(1) =1and Py(—1) = (-1)%.
> Py(0) = [(—1)"(2n — 1)11]/2" n! for even £ = 2n. P;(0) = 0 for odd £.
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Full Solution to Laplace’'s Equation with Azimuthal Symmetry

Combining our radial and polar equation solutions, we have that, for any problem with
azimuthal symmetry and in which the z-axis is included, the potential must have the

form
> By
V(ro)=>" (Ag rf M) Py(cos 8) (3.113)
£=0

The coefficients {A;} and {B;} are set by the boundary conditions. If the volume
includes the origin and the boundary conditions imply the potential must be finite
there, the {By} may be eliminated, and, if the volume includes infinity and the
boundary conditions require the potential be finite (usually zero) there, the {A;} may
be eliminated. In other cases, some or all of the {A;} and {B; } can be nonzero.
Usually, application of the boundary conditions on V will require use of the
orthonormality relations for the Legendre polynomials.

We note that, in the process of doing separation of variables, we have proven that the
angular solution satisfies the eigenvalue-eigenfunction equation

z(£+ 1)

V2Py(cosh) = — Py(cos0) (3.114)

For the angular equation, r acts as a constant and so appears in the eigenvalue.
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Examples of Separation of Variables with Azimuthal Symmetry

We will start first with a case in which the boundary condition is quite obviously
Dirichlet and the application is very much like what we did in Cartesian coordinates.
Generally speaking, however, boundary conditions are not always so obvious. One has
to use whatever information one is given and turn it into boundary conditions of the
type that we know provides uniqueness.
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Example 3.5: Dirichlet Boundary Condition on a Spherical Boundary with
Azimuthal Symmetry

Suppose V(R,0), the potential as a function of 6 on a sphere of radius R, is specified,
where the sphere is either the outer boundary or the inner boundary of the space.
What is the explicit form for the resulting potential?

Let's consider the two cases together. If the space is r < R, then we require the {B;}
to vanish to ensure a finite potential at the origin. (There is no charge in the volume,
so we are assured that the potential cannot be infinite there.) If the space is r > R,
then we require the {A;} to vanish so the potential goes to zero at infinity. That is:

oo oo B
V(r,0) =Y AgrtPy(cost)  or  V(r,0)=) rTfl Py(cosf)  (3.115)
£=0 £=0

To apply the boundary condition at R, we evaluate the above equations at that value:

oo oo B
V(R,0) =3 A(R'Py(cost) or V(RO = RTL Py(cos®)  (3.116)
£=0 £=0
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Then, to find the coefficients, we apply orthornomality to both sides, as we did for
separation of variables in Cartesian coordinates. For the case of r < R, we have:

2041 [T
; / sin 0 d0 V(R, 0) Py(cos ) (3.117)

0
> [T 20+1

= Z Ay R / sing do 2 - Py(cos ) Py (cos 6) (3.118)
/=0 0 2
s ’

=Y Ay R 6y = AR (3.119)
/=0

which we can solve for Ay. Or, based on the orthornormality relation Equation 3.111,
we can just state by inspection (yielding the same result as the above calculation):

2 11 T
_ 2t 7/ sin 0 d0 V(R, ) Py(cos 0) (3.120)

A
¢ 2 RCS,

Notice how R¢ appears in the formula for A,. This is analogous to the same way that
sinh(vnm ¢) appeared in the solution for the coefficients A,m in the Cartesian case
(Equation 3.90).
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Similarly, for the case r > R,

2041 7
By = % R“l/ sin6 df V(R,0) Py(cos ) (3.121)
0

Therefore, the solutions are

el £ ™
V(r<R,0)= ,;é Pg(cos@)/ sinf’ d9’ V(R,0") Py(cosf’) (3.122)
=0 0
el 2/ RZ+1 T
V(r>R,0)=> T Pg(COSG)/ sinf’ do’ V(R,0') Py(cos ') (3.123)
r 0
=0

Notice how the units of the coefficients cancel the powers of r in the solution so our
result has the same units of electrostatic potential as the boundary condition.
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Let's make some other observations, connecting to separation of variables in Cartesian
coordinates.

» In our Cartesian example, we had five homogeneous boundary conditions and
one inhomogeneous one. The five homogeneous ones determined the form of
the individual terms in the solution: they created relationships between the
coefficients, and also imposed quantization requirements, that reduced the form
from being a product of three sums of two exponentials with six arbitrary
argument coefficients and four arbitrary normalization coefficients to being a
product of two sines and a hyperbolic sine with quantized argument coefficients
with one overall arbitrary normalization coefficient. The same happened here:
the homogeneous boundary condition at r = 0 or r — oo eliminated one of the
two coefficients in each term. (Why five homogeneous boundary conditions in
the Cartesian case and only one here? Requiring single-valued behavior in ¢ and
at the poles imposes another three boundary conditions, and azimuthal
symmetry is a fourth. So we effectively already applied four in the form for the
solution we assumed.) In the Cartesian case, those conditions had the effect of
both “quantizing” the argument coefficients (restricting the freedom in the
arguments of the exponentials) and restricting the normalization coefficients
(showing we had only sines and hyperbolic sines, eliminating cosines and
hyperbolic cosines). In this case, the “quantization” is imposed by the geometry
and azimuthal symmetry from the start, yielding the “already-quantized” form
we started with.
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» In our Cartesian example, we applied the homogeneous boundary conditions

Section 3.8.4

term-by-term and then finally we were forced to consider a sum of them to
match the inhomogeneous boundary condition. In this case, we started off with
the sum and applied the homogeneous boundary conditions to the sum. But one
can see that, by use of orthonormality, this process really was applied
term-by-term. In the Cartesian case, we could not write down such a sum so
early because we had not yet obtained the quantization conditions on the
argument coefficients: in Cartesian coordinates, those conditions come from the
specific geometry of the problem and its homogeneous boundary conditions
rather than from the coordinate system. At the end of the general derivation,
we did not even know whether the argument coefficients were purely real or
purely imaginary numbers! Any sum would have had to be written down as an
integral over an unspecified domain. So, we had to apply the homogeneous
boundary conditions first to even be able to write down a sum.

In both cases, the application of the inhomogeneous boundary condition is done
to the entire sum, and the result even looks quite similar, involving an
integration of the inhomogeneous boundary condition over the surface with the
orthonormal functions of which the solution is composed.

Examples of Separation of Variables with Azimuthal Symmetry
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Example 3.6: Dirichlet Boundary Conditions at r = 0 and oo, Neumann
Boundary Condition at r = R

Griffiths does an example in which a surface charge density is specified at r = R and
the potential has to be found over all of space. This is almost a Neumann boundary
condition, but not quite, since the surface charge density specifies the change in the
normal derivative of V at r, not the normal derivative of V itself. By solving for V
over all of space, one effectively turns it into a Neumann boundary condition by using
the solution in one region to specify the condition on the normal derivative as one
approaches the surface from the other side. One writes down different solutions for
the two regions: the {B;} vanish for the r < R solution to avoid a divergence at the
origin, and the {A;} vanish for the r > R solution to ensure the potential vanishes at
infinity (as we saw above). Then, one applies the conditions that the potential must
be continuous at R and that the normal derivative must change by the surface charge
density (divided by —e,). The first condition is effectively the specification of (V)g,
which we recall from our generic discussion of Green Functions for Neumann boundary
conditions. The second condition is the actual Neumann boundary condition. This
first condition relates the {A;} and {By} at each £. With now just a single set of
coefficients to determine, the Neumann boundary condition can be used with the
orthonormality relation to find a formula for the coefficient for each £.

Note the use of two different solutions in the two regions: this is a generally useful
technique.
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Example 3.7: Uncharged Metal Sphere in a Uniform Field: Unusual Dirichlet
Boundary Conditions

Griffiths does the example of an uncharged metal sphere in a uniform electric field in
the z direction, E = EoZz. The boundary condition is a bit mixed again. Because the
sphere is metal, it is an equipotential. But that doesn’t specify the value of V on the
sphere. Since the field is uniform, we cannot set V to vanish at infinity. Instead,

V(z =0) =0 is chosen. From that choice and the fact that the equipotential sphere
is in contact with z = 0, we can conclude that the sphere satisfies V = 0. But now V
at infinity is not specified, so we don't yet have a Dirichlet boundary condition. The
sensible thing to do is to require the potential approach V/(F) = —Epz at infinity:
whatever induced charge the sphere picks up, its contribution to the potential and
field must fall off at infinity, leaving only the uniform field. Now we have a Dirichlet
boundary condition. Because the potential is allowed to diverge at infinity, we cannot
eliminate the {A;} in this case. But it is easy to see that only A; is nonzero: for

£ > 0, the behavior goes like rf, and since the potential must go like z = r cos 6 at
large r, all the £ > 1 terms must vanish. This large r behavior sets A; = —Ey. Ap =0
because the potential has no offset. That leaves the {By} to be determined.
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Applying the boundary condition V = 0 at r = R gives:

0= AR cosf + Z RM Py(cos 8) (3.124)
s 14
—AiR cos = Z s Py(cos0) (3.125)
£=0

Since the left side has a £ = 1 term, and the Legendre polynomials are orthonormal,
there can also be only a £ = 1 term on the right side, implying B, = 0 for £ # 1 and
Bi/R? = —A1R or By = EgR3. Thus, the solution is

V()= -k (r — f—;) cos 6 (3.126)

Note the use of a nontrivial boundary condition at infinity and the need to realize that
the sphere has the same potential as the z = 0 plane; without these boundary
conditions, it would have been impossible to start the problem.
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Example 3.8: Separation of Variables for a Point Charge near a Grounded
Conducting Sphere

Let's reconsider the situation we looked at before via method of images, the point
charge near the conducting sphere. The setup is as before, with the point charge at
aZ and the sphere centered on the origin with radius R and V = 0 on its surface. One
difficulty is that the presence of the point charge implies Laplace’s equation is not
satisfied in the full volume! It is, however, satisfied separately in the regions R < r < a
and a < r < oo, and we have the charge density at r = a, so we should somehow solve
separately in the two regions and then join the solutions together (as we did before for
the spherical shell of charge, which we recast as a Neumann boundary condition
(Example 3.6)).

Since we have seen how the method of images can provide the Green Function for a
system, the aforementioned equivalence suggests that we may be able to use
separation of variables to find the full Green Function for a system in the “sum over
orthonormal functions” form rather than in the “system of point charges form.” This
is indeed true and we will do this in general fashion for spherical coordinates later in
§3.9.4 using a technique similar to the one we use for this example.
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We may guess that the appropriate way to write the charge density at r = a is

q
—— 4
21 a%sinf (

a(0,9) = (3.127)

The rationale for this guess is that a?sin @ cancels the r? sin 6 portion of the volume
element and 2 7 cancels the ¢ integral. It has the right units, too, surface charge
density, charge/length?; remember, §(0)/sin 6 is unitless because 6 is unitless. One
can see the form is correct because integration returns q:

T 27 e 27
dac(0,¢) = in0do dpa®—3 500 3.128
/0 [ dao0.0) /0 /0 ba (6) (3.128)

2masind

1 ™ 27
E/o d@/0 dpqd(0)=q (3.129)

Notice that no 6(¢) is required.
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We can largely apply what we did in the case of the Example 3.6 except that we
cannot eliminate the {By} for r < a because the inner boundary is at r = R, not
r =0. Let's apply the (homogeneous) boundary condition V(r = R) = 0:

o Bin
5 ( ar R+ 2 1) Py(cos ) (3.130)

£=0

where we use the ™ superscript to indicate these are the coefficients for the solution in
the region inside of the charge at r = a; i.e., the R < r < a region. Since this a
homogeneous boundary condition, we know from prior discussion we can apply it
term-by-term. Perhaps easier to remember/justify is to apply orthonormality to the
sum, which forces the coefficent of P, at each ¢ to vanish independently:

e Bé" e i . R2£+1
ARE = R = V(r<af)=> Ay (r -~ ) Py(cosf) (3.131)
£=0

For r > a, we start with the same form for the solution, but of course now with
different coefficients {A9"'} and {Bg“'}. Do not confuse these coefficients with the
{Ain} and {B["'} determined above: these are solutions in different regions, so they are
different functions and there is no reason to expect the coefficients are the same! The
{A2“'} must all vanish so the potential vanishes at infinity. So we have

out

B
V(r>a,0)= Z r;ﬁ Py(cos0) (3.132)
£=0
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Next, we join the solutions at the boundary between them by applying the Neumann
boundary condition there, which requires that V' be continuous at r = a and that
OV /Or be continuous there except at § = 0, where it has a discontinuity specified by
o(0). We apply the first (homogeneous) condition, term-by-term like any
homogeneous boundary condition or via the orthonormality of the Py:

i 4 R2£+1 BZOUt t i 2041 20+1
in _ out __ Ain 4 _
Al (a - ) =45 = B=A (a RH) (3133)

Let's put everything we have so far together in a suggestive form:

0 ¢ R <Rj)[
i i r a a
Vi(r0) = V(r<a6)=> Aya" P e Py(cos6)  (3.134)
£=0
SRR T()
VUt (r,0) = V(r > a,0) =Y Apa‘t! T~ ar | Peleosd)  (3.135)
£=0

Notice the length—! units of the portion in parentheses, implying that Ag’ will have
units of €5 *(length)~(¢*1) . Next, we apply the derivative matching (Neumann)

condition:
(avout 3 8vin>
or or
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The derivatives are

2\ £
dvm o ln Z+1 ré g (RT>
Z g +(Z+1)T Py(cos0)
2=
R (R2)'
o0 Y4 EAS LA,
- 2 ( - ) Py(cos 0)

8vout
:Z ln £+1(€+1)

— + [
Fer2 012

r\

Evaluating at r = a gives

. R (R2)!
avin > ¢ B
o =" Apattt i (e+1)ﬁ Py(cos )
r=a e:o
R (R2\*¢
2| Sy [, S )
o r:a:ZA‘[a (+1) | =5 + 7 | Pelcoso)
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(3.140)
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When we difference the two, the second terms in the expressions cancel, leaving

q4(9)

_— 3.141
27 aeo sin @ ( )

— Z(Zé + 1AM S 1Py (cos ) = —
£=0

This is our inhomogeneous boundary condition so, as usual, we must use
orthonormality to obtain a formula for the coefficients in terms of an integral of the
boundary condition with the orthonormal functions. We can multiply by

Py (cos ) sin @ and integrate over 6§, or we can just apply orthonormality. (Recall the
orthonormality relation: [2/(2£ + 1)] [y sin 6 d6 Py(cos 8) Py (cos ) = 6,4/). This

extracts the AZZ term we want, and it also simplifies the right-hand side:

H 4 T Py

—2 ANt 1 = —L/ sin6 do M (3.142)

2w aeo Jo sin 6

- q . . q
= ——— Py(cos (60 =0)) = — (3.143)

3260 3260

; 1

Al = d (3.144)

'+l Are,
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Writing the full solution, we have

- R (R?)*
V(r<ab)= il Z i — ﬂ Py(cos0) (3.145)
’ 4eo — aft1 rl+1
o R (R\*
V(r>a0)=-——%" A ﬁ Py(cos ) (3.146)
’ 47es —~ ré+1 rétl

The form is hardly one we would have guessed! Separation of variables is more
algorithmic than method of images, but it is also less intuitive. We will connect the
two next.

Recognize that the integral over the boundary condition that we expect from past
experience with separation of variables has already been done on the prior page, so it
is not visible here. Also, that integral did not include an integral over ¢ as we might
have expected. We could have integrated over ¢ on both sides if we wanted, yielding a
closer analogy to Equation 3.90, but it would have just yielded a common factor of 27
on the two sides since neither side has ¢ dependence. We did not need to do this
because the problem is azimuthally symmetric and thus we know the solution must
include only the m = 0 term.
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Connecting Method of Images to Separation of Variables via a Useful
Expansion in Legendre Polynomials

We have two techniques — method of images and separation of variables — that we
can evidently use for the same problem. By the Uniqueness Theorem, the solutions
must be the same. Comparing Equations 3.145 and 3.146 that we just obtained via
separation of variables to Equation 3.25 obtained via method of images, the
connection is hardly obvious! To see it, we must first prove a theorem.

We will show

_ ->/| Z LT Py(cos~) (3.147)
=0 ">
with r< = min(|7, |F’]) rs = max(|7], |F’]) cosy=7F-F

This will let us go back and forth between separation-of-variables solutions and
functions that look like the Coulomb potential (e.g., point charge near the grounded
sphere!). Griffiths sort of derives this, using a far less interesting and powerful
technique. He also does it in §3.4.1, after the discussion of separation of variables, so
he is unable to use this theorem to connect the method of images and separation of
variables solutions for the point charge near the grounded, conducting sphere.
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To prove this, orient the coordinate system so 7’ = r’ Z. The function on the
left-hand side of Equation 3.147 is the potential at 7’ of a point charge g = 47e, in
magnitude (not units!) at r’ along the z-axis. It satisfies azimuthal symmetry and
thus is expandable in terms of the above solutions of Laplace’'s Equation in spherical
coordinates with azimuthal symmetry (because these solutions form a complete,
orthonormal set!):

1 = B,
7|F7 = = E (Ag r‘ 4+ ZH) Py(cos ) (3.148)
£=0

Consider two cases separately:

> r<r!
We must eliminate the By coefficients to keep the function finite as r — 0. To
find the Ay, let's consider the point = rZ (i.e., cosy = 1), which implies

11 7°°A[
= - > Acr (3.149)
£=0

r’'—r

(Recall, Pp(1) = 1.) Thus, the A, are just the coefficients of the power series
expansion of the left side, which we know (recall: (1 —x)"1 =1+ x+x%>+---

for0 < x<1)is
1 1 1 1 °°<r>e
== == — (3.150)

r’'—r r’1—r% r’ r’

The series converges because x = r/r’ < 1. Thus, A, = 1/(r’)**!. This now
sets the {A,} for arbitrary 7 (i.e., arbitrary cos~ rather than the special case
cosy = 1 we have considered).
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> r>r’
We must eliminate the A, coefficients to keep the function finite as r — oo.
Again, consider F = rZ, which implies

1 1 . By
— = =7 — ; o (3.151)

For this case, we consider an expansion in r’/r rather than r/r’ because now
0 < r’/r < 1 while, above, 0 < r/r’ < 1. Again, the B, are just the coefficients
of the power series expansion of the left side, which we know is

1 1 1 1 /r'\*
LI - ,Z(L> (3.152)
r r

r—r’ ri1—r

Thus, B, = (r’)%.

Combining the above two cases, and generalizing back from cos 8 to cos~y, yields
Equation 3.147.
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A few notes on the above derivation:

> Note some elements of technique: without loss of generality, we: a) set
F/ = r’Z so cosy = cos; and b) evaluated the expression at cos@ = 1, similar
to the manner in which we applied the boundary conditions for the point charge
near the grounded sphere. These are useful techniques to keep in mind for the
future.

» Note also that this was effectively separation of variables, separately in the
r < r’ and r > r’ spaces (like our separate consideration of r < R and r > R in
the previous example) but with an unusual boundary condition: Rather than
specifying a condition on the function (the “potential”) on the boundary r = r’,
we used the fact that we knew the solution along the line 7= r ¥’ (which we
took to be = rZ in this case). That is, we specified the potential for a locus
of points in the volume V rather than on the surface S(V). We do not have a
general theorem about such boundary conditions because the derivation of the
Uniqueness Theorem used Green's Theorem, which involves S. Evidently,
though, appropriate specification of the potential on some locus of points in V is
also sufficient to yield a unique solution!

» In the prior example of the point charge near the conducting sphere, we saw an
alternate approach to this derivation problem, treating the point charge at 7/ as
a surface charge density that yields a Neumann boundary condition. That
approach is a bit more cumbersome but benefits from the Uniqueness Theorem
and the full separation-of-variables machinery. We did not do that here because
we knew ahead of time the solution on the 7= r7’ locus.
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With that theorem proven, we can make the advertised connection. If we compare
Equations 3.145 and 3.146 from separation of variables for the point charge near the
conducting sphere to Equation 3.147, we see that all four terms in the former are of
the form used in the latter. The first term of the first equation has r« = rand rv = a
as appropriate for r < a, while the first term of the second equation has r« = a and
r> = r as needed for r > a. The second terms of both equations are of the same form
with r« = R?/a, r~ = r and the charge multiplied by —R/a. Thus, we recover

q 1 R/a

T 47e, | |F—aZ - ‘-'_R;/Z\‘

V() (3.153)

F

which matches Equation 3.25. Remarkable! This is a case where we were able to use
separation of variables to recover the full potential and thus the full method of images
solution, which we know then gives us the Green Function: it is possible!

Could we have done a similar thing if we had a point charge in the five-sides-grounded
box problem? There is no reason to think it would not work.

In fact, we will later show how to use a similar technique to find the Green Function in
spherical coordinates for systems without azimuthal symmetry.
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Separation of Variables in Spherical Coordinates without Azimuthal
Symmetry
The Full Polar Equation Solution: the Associated Legendre Polynomials

There is a relation yielding the associated Legendre polynomials for m > 0 from the
Legendre polynomials:

PPG) = (~1)"(1 =)™ 0 Py () (3.154)

which, using Rodrigues’ Formula (Equation 3.110), implies

- —1)m m d£+m
PI(x) = (2£ z! (1 —x?)m/? o (x? —1)¢ (3.155)

which is now valid for all m. It should be clear that Pg = Py. It should also be clear
that parity in x (evenness/oddness) of the associated Legendre functions is given by
(—1)t™ (where —1 implies oddness): the parity of Py is given by (—1)¢, and each
derivative changes the parity by a factor of —1 (note that the powers of (1 — x2) have
no effect on the parity because it is an even function). There are a number of other
properties of these functions, but it is more useful to consider them together with the
¢ solutions.
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The Full Solution to the Angular Piece of Laplace's Equation: the Spherical

Harmonics

When one combines the P}’(cos ) and the e™? solutions of the polar and azimuthal
equations, one obtains the Spherical Harmonics

Yem(97 ¢) =

— m)!
2041 (£ —m)! pr

41

£+ m)!

(cos 0) e™m?

(3.156)

They are an orthonormal, complete basis for functions on the sphere (6, ¢) (assuming
the z-axis is part of the sphere; recall our comment about a second set of solutions to
the Legendre equation if it is not). They satisfy numerous important and useful

conditions:

» Conjugation:

YZ(fm)(ev ¢) = (_1)mYZ*m(97 ¢)

» Orthonormality:

27 T
[ do [ sin0d8Y;,0(6.6)Yim(6,6) = S0 b
0 0
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» Completeness (cos @ is the argument because the differential is
sinf df = —d(cos 0)):

oo L
> Z Y50, 6")Yem(0,¢) = 6(¢p — ¢')(cosd — cos0’) (3.159)
=0 m=—

» m = 0 devolves to Legendre polynomials:

7
Yoo(0,0) = 1/ > 4: ! py(cos0) (3.160)

This should be obvious from Equation 3.154, the relation between the Legendre
and the associated Legendre polynomials.

» The 6 = 0 behavior is simple given Equation 3.154 (the (1 — x?) factor):
PU£1) =0 = Yimw(0=0,¢) = Yimu(®=m¢)=0 (3.161)

This condition ensures the Yy n« are single-valued at the poles.

(Single-valuedness is automatic for m = 0 because /()¢ =1.) Recall that we
also stated Py(1) = 1, Pp(—1) = (—1)¢, which implies

20+1 2041
2 Yeo(0 =, ¢) = (-1)°
T 47

Yeo(0 =0,¢) = (3.162)
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» The above implies that any expansion in terms of Yy, simplifies at § = 0, 7:

oo

¢
given g(0,¢) = Z Z AvmYem(0, )

£=0 m=—¢

> [20+1
then g(9:07¢):Z\/ yp Aco
20+1
and  g(0=m,¢)= Z( D'y S Aco

(3.163)

(3.164)

(3.165)

» The Addition Theorem for Spherical Harmonics: Given ¥ and ¥’ pointing in the

Section 3.9.2

directions (0, ¢) and (6’,¢’), respectively, then

PP = 5 Z Yin(®',6") Yin(6,9)

(3.166)

where 7- 7/ = cosy = cosf cos 0’ + sin 0 sin0’ cos(¢ — ¢'). The proof of this

can be found in Jackson §3.6.

The Full Solution to the Angular Piece of Laplace’'s Equation: the Spherical Harmonics
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» An important corollary of the Addition Theorem can be obtained by combining

Section 3.9.2

the above with Equation 3.147, the formula for the inverse of the relative
distance between two points in terms of the Legendre polynomials:

DI 51 Pel(cos)

|r_r — >

Plugging in the Addition Theorem gives us

7

oo 4
|» P3P 2€+1 St Yinl0' 0 Yin(6.0) | (3267)

The utility of this relation is even more obvious than that of Equation 3.147,
especially for doing integrals over charge distributions with the relative distance
function (i.e., calculating the potential due to Coulomb’s Law): decompose the
charge distribution in terms of spherical harmonics and integrate the charge
distribution in a particular spherical harmonic Y, over r’ with weighting by
(r")* to obtain the component of the potential at a distance r from the origin
with spatial dependence Y;,(0, ¢)/rt*!.
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The Full Solution of Laplace’'s Equation in Spherical Coordinates

Putting it all together, we see that the most general solution to Laplace’s Equation in
spherical coordinates is r

oo

¢
(r6,9)=>_ > (Af"” + Tﬂ) Yem(0, 9) (3.168)

£=0 m=—¢

Again, the coefficients {Agp,} and {Byn,} are set by the volume under consideration
and one or the other entire set may vanish. As well, application of the boundary
conditions will require the orthonormality relations for the spherical harmonics.

As with the case of azimuthal symmetry, we note that, in the process of doing
separation of variables, we have proven that the angular solution satisfies the
eigenvalue-eigenfunction equation

V2 Yim(0, ¢) = — Yim(0, 6) (3.169)

o(e+1)
I’

As before, the appearance of r? on the right side is not surprising. Note also that m
does not appear in the angular equation. This is because Laplace’'s Equation itself is
spherically (and therefore azimuthally) symmetric. The charge distribution and
boundary conditions are what may break the spherical symmetry.
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Expansion of the Green Function in Spherical Coordinates in Terms of the
Spherical Harmonics

The fact that the spherical harmonics combined with the usual power laws in radius
solve Laplace’'s Equation for problems that are separable in spherical coordinates can
be used to show that the Green Function for such problems will have a convenient
expansion in terms of the radial solutions and spherical harmonics, like

Equation 3.168. It is convenient to recall at this point that a Green Function is
specified (is unique) once one specifies the geometry and the type of boundary
condition; the value of the boundary condition does not affect the Green Function.
So, once we have specified a geometry and type of boundary condition, the expansion
can be determined and is unique. Alternatively, one can think of this expansion as a
generalization of the corollary of the Addition Theorem, Equation 3.167. It is shown
by using the completeness property of the spherical harmonics and the
eigenvalue-eigenfunction equation for the angular solution. But let's see that this is
true explicitly for a couple example geometries first:

» Free space
The corollary of the Addition Theorem above is the desired expansion of the
Green Function for charge in free space with no finite radius boundaries and
with the condition V — 0 as r — oc.
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» Point charge near a grounded, conducting sphere
For this geometry, we saw that the Green Function can be written as sum of the
Coulomb potential of two point charges, the original one at r’Z and the image
charge ¢’ = —qR/r’" at ZR?/r’:

1 1 R/r’!
G(7, ') = . /" (3.170)
dmes | |F—F| F—F’(ﬂ)zl
r/

Using the same corollary of the Addition Theorem, we can immediately write
(using the fact r’ (F\’/r’)2 < r’ always because the the image charge is always
at radius < R while the true charge is at r’ > R):

- e
0o 4 r’ = ] .
=ty Y |58 | (Zﬂ) Yinl0': ') Yin(0.9)
‘o r r r 20+1
£=0 m=—¢ >
- (3.171)
¢ T P .
=530 D ECEY Ky ] Yip(6,8") Yin(,6)
€o o m——¢ _réﬂ R \rr’ 2041
(3.172)

Note also the symmetry in 7 and 7’ is manifest.
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In both cases, we finally have forms for the Green Function that could plausibly come
from separation of variables. Note, however, that we did not use separation of
variables to obtain it; we used the method of images combined with the corollary of
the Addition Theorem.

Earlier, we solved for the potential of the latter configuration using separation of
variables with azimuthal symmetry, Equations 3.145 and 3.146 reproduced here but
rewritten using the r<, r~ notation:

0 = B(E)Z
a a
< Pe(

V(r,0) = - cos 6
(r.0) 4meo 1= rﬁ“ ré+l )
with  r< = min(r, a) r> = max(r, a) (3.173)

Why was this not enough to give us the full Green Function? Because this solution for
the potential in terms of Legendre polynomials assumed the point charge was along
the z-axis.

What we can do is generalize this solution by replacing cos @ with cosy =7-7’ and a
with r’ followed by application of the Addition Theorem. Then the solution would be
in a form where we could read off the Green Function expansion in spherical
coordinate not assuming azimuthal symmetry. But that is not the same as obtaining
the solution directly, and clearly the above approach does not generalize to a system
that does not respect azimuthal symmetry.
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The general approach to the problem of finding the Green Function for an arbitrary
(spherical) geometry is to go back to the definition of the Green Function:

—eoVEG(F, ') = §(F—F') (3.174)

and decompose both sides in terms of spherical harmonics. We do not know the Green
Function yet, so its expansion is the arbitrary general form, which here we write

G(77') =

JIDM%%

L
Z {m I" ) YZm(e’ ¢) (3-175)

where the coefficients in the expansion Ay, depend on r, as usual, and they also
depend parametrically on 7’/ because it is a parameter in the differential equation.
(We do not know the solutions for the radial dependence of the Ay, yet for the
general case we are trying to solve (which is not Laplace’s Equation!), so we cannot
assume they are the power laws we saw for solutions to Laplace’s Equation.)
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The right side can be rewritten using the breakdown of the delta function into delta
functions in each spherical coordinate followed by completeness of the spherical
harmonics. The breakdown of the delta function is:

§(F—F') = (rr ) 56— ") 6(cosd — cos6”) (3.176)

The 1/r? on the radial component is required to cancel the r? in the volume element
in spherical coordinates. The fact that the delta function in € is a function of cos @
and cosf’ is because the volume element contains sin 6 df = d(cos ). One could
have instead written 6(6 — ')/ sin @ as we did when rewriting the point charge near
the grounded, conducting sphere as a surface charge density o(0), Equation 3.127.
Using completeness of the spherical harmonics, we have

7\ oo 4
=) SN S v (07,67) Yen(0, ) (3.177)

£=0 m=—¢
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Thus, our differential equation for the Green Function becomes

o 4 S(r—r' 0o 4
~aTEY 5 A7) Yonl0:) = XSS 30 Y0761 Yent0:6)

(3.178)

Note that the Laplacian acts on the unprimed coordinates only. When we evaluate the
action of the Laplacian, a cross term ﬁ,—Agm(rW’) . ﬁrng(é,(z)) appears, but it
vanishes because the first term points along ¥ while the second is along 0 and $
leaving only V% acting on each factor in the product individually. We wrote down
earlier Equation 3.169, the eigenvalue-eigenfunction equation satisfied by the angular
solutions of Laplace's Equation, which we use here to evaluate V%ng(ﬁ,d)):

e g m_ﬁé [(v2= 22 A1) Yim(0,0) (3.179)

S(r—r') & ‘ Y
= 722 Z Yﬁm(g 7¢ )Yﬁm(ov ¢)

r =0 m=——t

Note that the Laplacian on the left side is now acting with its radial derivatives only
on Agm; its action on the spherical harmonics has yielded the £(£ + 1)/r? term.
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The coefficients of the individual Y, (0, ®) on the two sides must be equal because of
the orthonormality relation for the spherical harmonics, implying

o [(vi— @) Agm(rlF’)} = w Yim(0',0) (3.180)

Now, given that we have Y/ (8',¢") on the right side (from applying completeness),
and again the spherical harmonics are orthonormal functions, the dependence of
A¢m(r|F") on its I’ angular coordinates must be proportional to Y5 (6',¢').
Therefore, we may write (with go(r, r’) still to be determined)

Alm(rlrl79/7¢/):gl(r»r/) Y;m(9/7¢/) (3181)

Plugging in this form to the above reduced version of Laplace's Equation and
canceling Y, (6',¢"), we get:

—eo (v%- @) gu(r,r') = w (3.182)

Only the Laplacian’s radial derivatives yield a nonzero contribution here, so we have
(also multiplying both sides by —r?/e,):

d d
— | P—gu(r,r)| —Ut+ 1) g(r,r') = -
dr dr

o(r—r’)

€o

(3.183)
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We see that, when r # r’ (r’ is a parameter, not a variable, here), go(r, r’) satisfies
the radial ODE in r from separation of variables in spherical coordinates,

Equation 3.100. Therefore, in the two separate regions r < r’ and r > r’, the
solutions to that ODE are also our solutions here:

n_ [ APt 4 Bir(r!) rm (D) r<r’
ge(r,r’) = { At (r) o+ Bout(r’) PG PR (3.184)

Because r’ is a parameter of the differential equation, the coefficients and therefore
the solutions depend on it parametrically. Therefore, the general form for the
expansion of the Green Function in spherical harmonics is

Yem(0,¢) Y5 (0',¢') | (3.185)

4 in
r<r’:G(F F’):i Z A""(r')rl+7Be (')
N k] ) 0 re+1

=0 m=—
oo £
r>rl i GRF) =)0 D (APt By, (0,0) Yin(0',¢")
. ) - 4 rt+1 £m\Ys £m ’
£=0 m=—¢

(3.186)
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To determine the coefficients, we need to apply boundary conditions. Since we have
not yet specified the geometry and boundary conditions, the only generic boundary
condition we can write down is the one at r = r’, which we obtain by integrating
Equation 3.183 from r = r’ — e to r = r’ 4+ € and letting € — 0:

/

r'+e d d r'te o
/ dr{— [r2—gg(r,r')} —Z(Z—l—l)gg(r,r')} :—/ drM
r—e dr dr r—e €o
(3.187)

The first term is the integral of a total differential, so it is trivially integrated. For the
second term, the form of gy(r,r’), where it is sum of two terms, each of which
includes a power law in r and some function of r’ not dependent on r, ensures it
cannot diverge at r = r’. Therefore, the second term is an integral of a function with
no singularity at e = 0 (i.e., at r = r’) and thus, as e — 0, that integral vanishes. The
right side gives —1/eg when integrated. Therefore, we have

’
d r=r'"+e€ 1
lim |:r2—gg(r,r'):| = _—
e—0 dr r—rl e €o
g° = ! (3.188)
— g -__ - .
=r’ r=r’ €0 (I’/)2

where g2Ut(r,r') is the r > r’ solution and g"(r,r’) is the r < r’ solution. This is a
Neumann-type boundary condition as we had for the examples of the arbitrary charge
density on a sphere o(R,0) and for the point charge near the conducting sphere
o(a,0) = 5(cos9) /27 a°.
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We note, as an aside, that we derived the above matching condition Equation 3.188 in
a somewhat different way here than when we considered the above examples. In the
examples, we used the fact that we knew the boundary condition on the normal
derivative of the potential from Gauss's Law. Here, we effectively rederived that
boundary condition for the special case of a radial boundary because we have only to
determine the radial function g(r,r’). We could have gone back a step and written
down the boundary condition on the normal derivative of the potential and derived the
same condition above, but it would have required going back to the full potential and
applying orthonormality and completeness again. We circumvented that step by
rederiving the boundary condition considering only the radial function.

Evaluating the above condition explicitly using the r < r’ and r > r’ pieces of the
solution, and multiplying both sides by (r’)?, we obtain

e[ = A (O ) B - BRG] () = 2 (3389)

Since A, Bé", AZ”t, and Bg”t all depend on r’, all the powers of r’ match up.

Section 3.9.4 Expansion of the Green Function in Spherical Coordinates in Terms of the Spherical Harmonics Page 216



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

The finite discontinuity in the radial derivative of gy(r, r’) implies that go(r,r’) itself
must be continuous at r = r’: the derivative would have to have a singularity in order
for there to be a discontinuity in g¢(r,r’). Therefore, we also have the condition

g (r=r'r")—g/(r=r"r')=0 (3.190)
Explicitly evaluating this condition, again using the two portions of the solution, yields
|:A2n(r/) _Agut(r/)] (r/)25+1 + [Bé‘n(r/) _ Bgut(r/)] -0 (3-191)

The above two matching conditions, along with application of the boundary conditions
that define Dirichlet or Neumann Green Functions (Equations 3.46 and 3.48), provide
four conditions for the four unknowns Ai(r'), Bi"(r’), AS“t(r"), and Bg"*(r’), which
should fully specify them. We finally have a completely algorithmic way to obtain the
full Green Function! What a powerful technique! This general approach can be
applied for any coordinate system in which Laplace’s Equation and the boundary
conditions are separable.

We also note that the above two equations imply the solutions Al"(r’), Bi"(r’),
A%Ut(r’), and Bg"*(r’) will be power laws in r’. This is sensible: because we expect
the Green Function to be symmetric in 7 and 7/, the functional dependences on 7 and
F’, and thus on r and r’, must be the same, and, so, because G has power-law
dependence on r, it must also for r’.
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Example 3.9: Expansion in spherical harmonics for the Green Function for
R < r < oo with Dirichlet boundary conditions at r = R and r — oo

These boundary conditions impose the requirement Gp(7,7’) =0 for F€ S, V,

F’ € 8. We use the symmetry of the Dirichlet Green Function to convert this to the
requirement Gp(F,7’') =0 for F€ S, 7/ € S,V because we do not know the
dependence of the coefficients on r’ and we want to obtain relations between the
coefficients of the expansion that are valid at all r’, not just values on the boundary,
because those full dependences are needed to use the matching conditions at r = r’
that we just derived. One can check that applying these conditions at 7/ € S does not
result in useful information.

Our condition implies

oo 14
0=Gp(FES, P €SV)=>_ > g(reS,r' €S,V)Y/(0",¢") Yem(0, )

=0 m=—2¢
(3.192)
Applying orthonormality of the Y;,(0',¢'), we obtain
0= g(r € 8,r" €5,V) Yum(0,6) (3.193)

Since Yim(0, ¢) is in general nonzero, this condition can only hold for all 0, ¢ if

g(reS,r'es,v)=0 (3.194)
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We will apply the above condition at the boundaries first, then the matching conditions
at r = r’, because the Dirichlet BC are simpler algebraically (this is the same order of
steps we used when we solved this problem using separation of variables).

First, consider the boundary at r = R. Since r’ > r = R for all 7/ € V, this implies
that we should require go(r = R, r’) = 0 for the r < r’ solution, yielding:

AZn(r/) RE + Bén(l’l) R*(Frl) =0 — Bén(r/) — _R2[+1 AZn(f,) (3'195)

The other Dirichlet boundary condition is that gg(r — co,r’ € V) = 0. Here, it is the
r > r’ solution that applies, which implies A%“*(r") = 0 for all r’.

Next, we apply the matching conditions at r = r’. Continuity of g¢(r,r’) at r = r’
(Equation 3.191) implies

Agn(r/)(r/)2f+l + { [_Agn(r/) R2Z+1] _ Bgut(r/)} -0

= BP() = AP() [P - R (3.196)

The condition on the change in the radial derivative at r = r’ yielded Equation 3.189,
which we plug into to obtain

CAP(EY (r)E 4 (04 1)AN(r) [(r1)2z+1 _ R R2z+1] (r')"t = ei
— A= - (3.197)

20+1 € (r')HL
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Putting it all together, we have that the Green Function for this Dirichlet boundary
condition, expanded in terms of spherical harmonics, is

1 ¢ £ 1 R\ Yem(0,0) Y568 ")
Lo G =0 im=—r (r'r)i“l_ﬁ(ﬁ) e <
CRM=1 | e ()1 R\ Yem(0,0) V(67,0 ,
To 2020 Zame—t | ST _F<rr'> L
(3.198)

=) £ ¢ 2\ ¢+l * ¢’
B 1 Z Z L 1 (i) Ylm(ezd)) Yém(e ’¢) (3199)

+1 p
< R \rr’ 20 +1

This solution is of course consistent with Equation 3.172, where we used the Addition
Theorem for Spherical Harmonics to rewrite the Green Function for this geometry and
type of boundary conditions in terms of the spherical harmonics, except now that we
used separation of variables from the start rather than relying on the method of
images and the Addition Theorem.

Note that, as predicted, the solution consists of sums of power laws in r’ as well as r
and is of course symmetric under exchange of Fand r”’.

Interesting exercises would be to see that the above expression approaches |F— F’\_l
as F— r’ (use the Addition Theorem to recover the method of images solution) and
also to recover the defining differential equation, Equation 3.174.

Section 3.9.4 Expansion of the Green Function in Spherical Coordinates in Terms of the Spherical Harmonics Page 220



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

Examples of Using the Expansion of the Green Function in Terms of the
Spherical Harmonics

We did a lot of gymnastics to get the expansion of the Green Function in terms of
spherical harmonics. Let's see how it can be used. For each of the examples we will
consider, it would be possible to solve for the potential without explicitly using our
expansion by splitting the volume into regions on two sides of 7/ and using separation
of variables with application of boundary conditions (including matching conditions at
the chosen internal boundary). The advantage of using the Green Function is that it
obviates re-solving the same kind of problem many times by simply providing integrals
that need to be done.
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Another point: in separation of variables, we always end up using orthonormality of
the specific set of solutions to Laplace's Equation for the geometry to obtain the
solution coefficients from the inhomogeneous boundary condition(s), Dirichlet or
Neumann, and the matching conditions, if any. That general approach will become
codified here in the way the Green Function is integrated with the charge distribution
and boundary conditions in Equations 3.46 and 3.48. In particular, the Green Function
connects particular spherical harmonic modes of the charge distribution and/or the
voltage (Dirichlet) and/or charge (Neumann) boundary conditions to the
corresponding spherical harmonic modes of the potential. This correspondence makes
the structure of the solution much easier to understand. The effect of a spherical
harmonic mode in charge distribution and/or the boundary conditions at one radius r’
on the potential at another radius r is just a function of the two radii, the g(r,r’)
function (charge distribution in volume or Neumann boundary condition) or its radial
derivative (Dirichlet boundary condition).

The application of the Green Function is like a propagator in QM, propagating from
the initial condition to later times. We have to do less work to obtain the QM
propagator because the solution to the time piece of Schrodinger's Equation is trivial
once one has the eigenvalues of the space piece.
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For our examples, we will consider charge distributions inside a conducting sphere. We
quote the general result from Jackson for the Green Function expansion in spherical
harmonics for a geometry consisting of the volume between two spheres at r = a and
r = b with Dirichlet BC on the two surfaces:

Gp (7, F') (3.200)
() [ ()] e el
m=——t a\r< &t b [1

2 26+1
b - (3 @e+)
where, as usual, r« = min{r,r’} and r~ = max{r, r’}. Obtaining this more general
result is a matter of doing the same thing as we did to obtain the result for a spherical
conducting boundary at r = R except that the Ag”t term cannot be assumed to vanish.

Next, taking the limit a — 0, we get the result we will need for our work below where
we want to solve for the potential inside a sphere at r = b with Dirichlet BC:

- ) 1 e Y (0',9") Yem(0, )
Gp(F, Z Z re { w13 (E) ] ‘ 2€+1[ (3.201)

602 0 m=—/{ r~>

You will also be able to read off this simpler result from a method of images problem
you will do in homework. On to our examples!
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Example 3.10: Potential inside a conducting sphere of radius b due to an
arbitrary Dirichlet boundary condition potential at b but no charge in the
volume

With no charge in the volume, we just need to calculate the surface term in
Equation 3.47, for which we need the normal gradient of Gp at the surface
(remember, i points out of V):

A(F') - Ve Gp(F, F') rres
_liz 9/¢)Yém(0¢)gd 1 71(”7/>[
23 =F=FE I ar [T\ ],
11 oo £
:7:72 3 ( ) Y7, 07,6") Yem(6, 6) (3.202)
=0 m=—~¢
Therefore, the potential in the volume for the Dirichlet B.C. V/(b, 0, ¢) is
0o 4
r\¢
V(F) = N v, d'Y; (07,6")V(b,0', ' 3.203
1=3 3 (5) Yind 6) [ 4 Vi (0,0 V(b0 0")  (3:209

We see that the spherical harmonic component ¢m of the potential at r is determined
by the spherical harmonic component ¢m of the potential on the boundary: very
simple and consistent with the QM propagator picture.
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Example 3.11: Potential inside a grounded spherical conductor with a ring of
charge of radius a in the xy plane

This time, we do the volume integral but there is no integral over the surface. The
charge density due to the ring is

p(F') =

oy 5(r" — a)d(cosf’) (3.204)

Again, one can check that the charge density is correct by integrating it: the a—2
cancels the (r’)? factor in the volume element and the argument of the 0/ delta

function is cos @’ because the volume element contains d(cos6’).

We use Equation 3.47 as usual, in this case with no surface term because the
boundary has V = 0. The potential is then

V() = / dr'o(7") G (7, 7)

=5—— Z Z Yom(8, ) (3.205)

27r€° =0 m=—¢
11 ] ve (o, 0)
dr's(r! — E) o' L _ (= £m ’
></v T'o(r a)d(cos@’) rc [r£+1 b(b2>} 20+ 1
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Because the charge density has no azimuthal dependence, the ¢’ integral picks out
the m = 0 term. Recall that Yy = /(2¢ + 1)/4 wPy, so we may rewrite as

V() = 47rfoaz ZP@ cosH)/ d(cos0’) 6(cos ") Py(cosb’) (3.206)
N2 g1 ’ Y 1 1 /r-\¢
X/O(r)dré(r _a)r<[r£+1_b(b?):|
_ Q > ¢ 1 1 r- 2
v ;Pe(cow) P(0) r {éﬂ ~ % <§) ] (3.207)

where now r« = min{r,a} and r~. = max{r, a} because the § function does the r’
integral for us, effectively replacing r’ with a. (The next example will show the case of
a more complex charge distribution for which the radial integral is not done so easily.)
Now, recall P;(0) = 0 for odd £ and P¢(0) = [(—1)" (2n — 1)11]/2" n! for even £ = 2 n,
so we may reduce the above further to (replacing ¢ with 2 n so n runs over all
nonnegative integers rather than £ running over all nonnegative even integers):

V()= -2 3¢ 1)"(2n—1)”,§n[ 1 _1(5)2"] Pan(cosf)  (3:208)

4-7reo pr 20 pnl ri”+1 b \ b2

where r« = min(r, a) and r~ = max(r, a) again: i.e., not surprisingly, the solution has
a different form depending on whether one wants to know the potential inside the ring
(r < a) or outside the ring (r > a). This is now the complete solution.
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To get some intuition for the solution, let’s calculate the induced surface charge .
density at r = b. We obtain it from the normal gradient of V, which, recall, is just E,
and the change in its normal component at a boundary gives the surface charge
density. Since the normal gradient is just d/dr for this particular geometry, it does not
act at all on Py,. In calculating this gradient, r« = a and r~ = r since we will in the
end evaluate at r = b > a. Therefore:

dv

€0 —
dr

o(7)

rs=r=b,r«=a

QS En+n(yEn- (2)"" Pan(cos)
n=0

T 4nb? 27 nl b
__._Q . (4n+1)(=1)"(2n — 1)1l 7ay2n
=g [1 + ; o () Pzn(cose):| (3.209)

The expression is written in the above suggestive form on the last line so that it is
easy to obtain the total induced surface charge. Since Py(cosf) = 1, the integral of
the n > 0 terms over cos @ can be viewed as integrating P, with Pg; by
orthonormality of the Legendre polynomials, these terms all yield zero. The first term
yields —Q when integrated over the sphere. This is what we would expect from
Gauss's Law applied just inside the r = b boundary.

Section 3.9.5 Examples of Using the Expansion of the Green Function in Terms of the Spherical Harmonics Page 227



Section 3.9 Advanced Electrostatics: Separation of Variables in Spherical Coordinates without Azimuthal Symmetry

We have seen in this example how the integration of the charge density with the Green
Function breaks the charge density down into its spherical harmonic components,
calculates the potential due to each component individually (and fairly trivially, just
multiplying by a function of the radius of the source charge and the radius at which
the potential is desired) and then sums up those components. The same kind of
correspondence clearly holds for the induced surface charge density.

Note that the additional 4n + 1 factor implies the 6 dependence of the induced surface
charge density is different from that of the original ring charge; i.e., the induced
surface charge is not just a ring.
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To get some intuition about the surface charge distribution, let's go back to the
potential and rewrite it into a method of images solution. Using Equation 3.147 (the
expansion of |F— F”|71 in Legendre polynomials), we can imagine that the first term
arises from the convolution of |7 — 7|1 with the ring charge distribution (though we
won't prove it explicitly). What about the second term? Let's manipulate it a bit:

_nl (2)2” o __b r2ng2ntl _ b r2n (3.210)
< p\p2 rears—r pan+1 a bAnt2 3 (b2/a)2n+1
b rin note: meaning of
= T3 ol (3.211)

N a rg r< and r> changed!

re=r,r~=b2/a

Thus, we see the second term has the right form for the potential at r« = r due to an
image charge at radius r~ = b2/a and normalization —b/a relative to the true charge.
(Note that the meaning of r< and r- change between the initial and final expression
above.) The ring shape comes from the weighted sum over Legendre polynomials,
which is the same as the corresponding sum for the potential of the true charge, the
first term.

Seeing that the image charge is a ring at radius b?/a explains the induced surface
charge density distribution via its proportionality to the field lines from the true charge
to the image charge at the r = b surface. Drawing a picture using the image charge
configuration should make this clear.
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Example 3.12: Potential inside a grounded spherical conductor with a line
charge density along the z axis

This is done in Jackson Section 3.10. We reproduce it here because it has some
calculational twists.

The first twist is figuring out how to write down the charge density in spherical
coordinates. One could probably rigorously derive the form by writing down the charge
density trivially in Cartesian or cylindrical coordinates and then applying Jacobian
transformation to convert it to spherical coordinates, but there is an easier, more
intuitive way.

It is all present at cos@® = 1 and cos® = —1, so clearly delta functions for these
positions need to be included. It has azimuthal symmetry, so there will be no ¢
dependence, only a factor of 1/2 7. The charge is distributed in radius, so there is
some to-be-determined radial dependence f(r). To figure out f(r), let's write down
the requirement that the integral be the total charge Q:

p(F) = % f(r) [6(cos @ — 1) + §(cos 6 + 1)] (3.212)
Q= /V dr p(F)
_Q

1 27
2 — Ccos
=g [ f(r)(/ild(cose) [6(cos® — 1) + & 9+1)]/0 dé

b
:2Q/ dr r? £(r)
0
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If we choose f(r) = c/r? where c is a constant to be determined, then the remaining
integral becomes trivial and yields b, which we can use to find c:

1
QR=2Qch = c:% (3.213)
== p(F) = [6(cos® — 1) 4 d(cos 6 + 1)] (3.214)

4mbr?

Now, since the sphere is grounded, we just need to do the integral of the charge
density with the Dirichlet Green Function:

1
v = = / dr’ o(7') Go (7, 7') (3.215)
€o Jy
_ > é /d’ (cos@’ — 1)+ §(cosO’ + 1)
47reo ==, (r")?

Yé*m(e/? ¢/) Yfm(ea ¢)
20+1

| d )
< | 1 p\p2
rs b \b
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We apply azimuthal symmetry as we did in the previous example, selecting the m =0
terms that we can write as Legendre polynomials. The normalization of the spherical
harmonics cancels the factor of 2/ 4+ 1 in the denominator but adds a factor of 47 in
the denominator. The ¢ integral cancels a factor of 27 in the denominator. The 6’
integrals can be done trivially, selecting P;(1) and Py(—1). Note also that the (r’)?
from the d7’ cancels the (r’)? in the denominator from the charge density. Thus, we
have

0 b
V(7 = Sﬂfob ZP@(COSG)/(; dr' it {relﬂ % (bQ)Z} [Pe(1) + Pe(~1)]
>

£=0

We know Py(1) = 1 and Py(—1) = (—1)*, so the term containing these two factors
yields 2 for even £ and 0 for odd ¢. Thus, the above reduces to

V(”)* Z Py(cos ) / dr'rt |:r_z<;>2>£]

l even
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The integral over radius must be broken into two pieces, one for r’ < r and one for
r’ > r, because the r« and rs variables take on different values for these two regions
(by definition!). Doing so, and doing the integrals (they are straightforward) yields

b 1 1 ¢ 20411 r\?
dr'rt | —— -2 (Z) | ==—"= |1 (- 3.216
/0 r"<|:ri+1 b<b2):| (41 €|: (b>:| ( )

The second portion of the above quantity is well-defined for £ £ 0, but not for £ = 0.
We need to use L'Hépital’s rule to evaluate it for £ = 0:

d r\¢ e d
1 ¢ i [1 - (%) } ) (ing) &e b
lim = 1= (1) | = Jim a7 ]y, B g Gl b (3.217)
(=0 ¢ b £—0 d oy £—0 d g r

de de
Therefore, we may write the full solution as, separating out the £ = 0 term and
rewriting in terms of £ = 2n,

0= s [t S an [ () ] o
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Let's calculate the induced surface charge density and the total induced charge again:

ov
or

o(f) = e

Q N 4n+1
_ 1+ P 0 3.219
, anb? { +n:1 any 1 2n(cost) (3.219)

r=
Note again how the surface charge density has a different n-dependent weighting than
the potential. Finally, integrating over the sphere to get the total induced charge, all
n > 1 terms vanish, yielding

Qind = / b?>dpdcosfo(f) = —Q (3.220)
r=b

as we expect from Gauss's Law. It would again be interesting to rewrite the solution
in the form of a method of images solution, which you have the tools to do. It clearly
should look like a line charge at the north and south poles. Its density will presumably
fall off as 1/z% because the true charge density is uniform (in linear units, z) and the
image charge magnitude and position both scale as 1/z.
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Multipole Expansions

Dipoles: Quick Review

Recall from Phlb the idea of an electric dipole: two charges of equal and opposite
magnitude +q spaced very close together at 7 and 7—. The net charge cancels
almost perfectly, so, rather than the potential falling off like 1/r at large radius, it falls
off as 1/r? with functional form

1 p-r r r r
= as — Y ———— 5 (3.221)
4me, r? [P F-| | P — e

V() =

where p = q(Fy — F_) is the dipole moment.

This idea generalizes. When one has a charge distribution with vanishing net charge,
but inside of which there is a variation in the charge density, that variation is still
noticeable at large distance as a set of potentials that fall off more quickly than 1/r.
The first additional term is the dipole, falling as 1/r2, the second is the quadrupole,
falling as 1/r3, the third is the octupole, falling as 1/r*, and so on. The nomenclature
comes from the minimum number of different source charges one must have to obtain
that moment: one for monopole, two for dipole, four for quadrupole, etc.
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Multipoles: Full Derivation

We derive the full form by considering the potential due to a charge distribution near
the origin as viewed at a point r such that r is much larger than the extent of the
charge distribution. This the key assumption! We begin with

V(F) = 4:60/Vd7-’ o) (3.222)

7= 7|

We now use Equation 3.147, taking r« = r’ and r~ = r because r is outside the
charge distribution. Thus,

1 - ol r’ 4
- /vd’T p(F )Z (r£+)1 Py(cos ) (3.223)

where cosy = 7 -’ is the angle between the two vectors. There is a common 1/r we
can factor out, leaving

V(F) = Z ] / dr’ p(F )l Py(cos ) (3.224)

47‘('60

This is the multipole expansion of the potential of the charge distribution. One can
see that the successive terms fall off as successively higher powers of 1/r.
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The Monopole, Dipole, and Quadrupole Terms

Let's write out the first three terms more explicitly to get some physical intuition:

» Monopole term
The first term is

WA= O = (3.225)

47eo Ae, r

This is the standard Coulomb'’s Law term due to the total charge. Far enough
away, all charge distributions look pointlike. But, if @ = 0, this term vanishes
identically and the higher-order terms must be considered. Even if Q # 0, if one
is close enough to the charge distribution to see its non-pointlike nature, the
higher-order terms will be important corrections to the monopole term.
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» Dipole term
The second term is

PPN

1 1 1 1
Vo(F) = dT p(F')r' cosy = —/ dr'p(F')r' v -7
47e r2 4mes 1?2 Jy

1
= dr’ 3.226
47e, r2 / T e(r ( )
1 ~ = — / =\ =/
or Vo(F) = —7-p where p= [ dr'p(F')r (3.227)
4meo r? %

is the dipole moment vector. It is the generalization of 5= q (F — 7-). It can
be written in component form (which is how you would actually calculate it) as

pj —/ dr’ p(F’ rJ =7r-p (3.228)
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» Quadrupole term
The third term is

V3(F) = 47r€o 7/ dr'p(F) (r')? %(3(:05 y—1)
= o5 [ RS 6 ) (7P - )
:4;6 =T [/ dr'p(F) (r')?= (3?’?’—1)} > (3.229)
or v3(?)_4mo %%?‘g? where 8:/‘}d7/p(?/) [3?’?’—(#)2;]

(3.230)
is the quadrupole moment and 1 = diag(1,1,1) is the identity tensor with ones

along the diagonal. Because it is composed of 7 7 and 1, Q is a tensor,
implying that one can take a dot product with a vector on each side. Written

out in component form (which is again how you would calculate it):

Q= [ d' o) [31/n — (r"Pou] =7 Q-7 (3.231)
s Q

It is now obvious that ij is symmetric in its indices.
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Origin Dependence of the Dipole Moment

Suppose we take a charge distribution and shift the origin by a vector & such that the
charge distribution is now centered around 3. Then the new dipole moment is

o' = [ )7 = [drpr) @+ =aQ+p (3232)

where we define the charge distribution in the new coordinate system p’(7”) in terms
of the original charge distribution p(F) to be such that p/(F’) = p(F = F’ — &) when
F’ = F+ 3. Thus, an origin shift can induce an artificial dipole moment for a charge
distribution that has a monopole moment. This part of the dipole moment is not real:
it is a reflection of the fact that the multipole potentials are written in terms of
distance from the origin under the assumption that the charge distribution is centered
around the origin. When it is not, this is an unnatural coordinate system to use,
requiring corrections to the standard monopole term (o< Q/r) to handle the fact that
the charge distribution is displaced. The above tells us the correction term has the
same form as a dipole term. Obviously, one should choose the origin wisely to avoid
such complications.

Note also the somewhat counterintuitive implication that, if @ = 0, then the dipole
moment is independent of origin! This happens because of our assumption

r, r’ < distance to the observation point, which implies that a must also be small so
that no corrections are required.
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Field of an Electric Dipole

This is simply a matter of taking the gradient. If we let = pZ, then this is easy:

0
Va(7) = P20 (3.233)
4eor?
o V- 2 0
= E(M=-2=-222 (3.234)
or 47 r3
10V, psinf
E(f)— _L190V2 _ psind 3.235
o(7) r 00 47y r3 ( )
1 9oV
Es(F) = —— 2=0 (3.236)
rsin@ 0¢
- P N ~ .
or E(F)= ——— (2r cosf + 6 sin 6‘) (3.237)
4eor3
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To generalize this result for an arbitrary orientation of g requires some vector algebra.
We have Equation 3.227 for the dipole potential in generic form, which we write out as

1 1, . 1 1
Vo) = e 5 7P = EP (3.238)
!

Now, we take the gradient, first noting

9 r

on_29 _
8rj B arj (r2)3/2 =

ri 3 r or? S 3 djj
> 5=, 50+ 3

hai 3.239
(r2)*/2 or; 13 2 r ( )

Where we used r3 = (r2)3/2 and r2 =3, r2 to more easily calculate the partial
derivative. Therefore, with rj and 7; being the jth Cartesian coordinate and unit vector,

= oV,
E2(F’):7VV2 ZJ 2 ,52"1')‘ 3r‘rjf5ur}
7

47r€

1 = =~ 2
Z[(Z)}
J i

- 1
— |BO =BG A7 A (3.240)
Ameor3
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Electrostatic Potential Energy of a Multipole Distribution in an External
Potential

The general expression for the potential energy of a charge distribution in an external
potential is

U:/vp(?') V(7 (3.241)

Under the assumption that V/(7”) varies slowly (but need not be constant!) over the
spatial extent of the charge distribution, we can rewrite this in terms of moments of
the charge distribution and derivatives of the potential. To do so, we need to expand
V/(7) about some point in the distribution. Without loss of generality, assume the
charge distribution is centered on the origin, around which we will expand. We use the
multidimensional Taylor expansion of V/(7):

3
- oV 1 v
VE) =V =0+ S5 5 > o (3242)
j=1 i lrr=g Jrk=1 79Tk T =g

We can already foresee how integrating the above form for V(7’) with p(F’) is going
to result in a dipole moment in the first term and quadrupole moment in the second.
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Using E; = a—y we may simplify
J
, - L1 g 2V
V(r')= V(0 -E(0 3 3.243
()= V@ 7 @+ ¢ S35 | (3243)
Jrk=1
1< %
= V(@0 -E(0 3r/rl — o (3.244
(0) - ‘”eJ;(” (85) G| 0 (3290
where we were able to add the (r’)2§; term because
S | = (v = 0) =0 (3.245)
J or; Ory '

ik
because the charge distribution sourcing V is not present near the origin. Remember,

p(F) is not the distribution sourcing V; V is provided to us and is due to some charge
distribution far away from the origin.
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With the above expansion, the electrostatic potential energy is now (note that E(0)
and 62 V/BrJ-Brk|6 are constant with respect to r’, so they come outside of the r’

integral)
U= V(6)/ dT’p(r')fE(a)-/ dr’ p(F') P’ (3.246)
\% v
3
1 2V /
+ - dr'p(F') |3r/r) — 8u(r')| + - -
I 2V
=QV(0)—p-E(0)+ _ Qjk 3 (3.247)
6j,k:1 1 Ork |5
or, more generally, if the charge distribution is centered around r,
3
= 1 %
U =QV —p-E — K —— 3.248
(= QV(A) 5 EN+ ¢ > Q5o (3.248)
Jyk=1 r
. 1. -
:QV(F’)fﬁ-E(F’)+6V,~-Q-V,~V(F)+--- (3.249)

where we have written the last term in tensor dot product form. There are now
contributions to the potential energy from the relative alignment of 5 and E and from
the orientation of Q's principal axes relative to the principal axes of the potential’s

curvature matrix. Note that V acts on the spatial dependence of V(7); 7/ has
already been integrated over to obtain Q.
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Force on a Multipole Distribution in an External Field

We can calculate the force on the charge distribution by taking the derivative of U

—

with respect to the charge distribution’s nominal position 7, now replacing one
derivative of V with the electric field E in the quadrupole term:

/E(F)—fﬁum—Q(fﬁv(r“))+§(*-I?(F))+1 23: n Q; OE_ ..
- - P 6, 2=, " M ormon,
= R S-S 0%E;
:QE(F)—'r(p-V)E(I")-&-ng(’Zm:lerjkm-i-
:Qé(a+(ﬁ-€)ﬁ(a+%ﬁ[ﬁ-(g.E‘(f))}Jr-.. (3.250)

In going from the first to the second row, we used the vector identity
v (5- F(F)) = (5’- 6) f(7) when Fis a constant vector and £(F) has no curl. Note

that all V are with respect to 7 (since 7/ has been integrated over already).

We see that the total force is a sum of contributions from the interaction of the
monopole with the electric field, the dipole with gradients in the electric field and, the
quadrupole with the local curvature (second derivatives) of the electric field.
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Torque on a Multipole in an External Field

Let's also calculate the torque. To calculate a torque, we need to take the gradient of
the potential energy in spherical coordinates with respect to the orientation of the
charge distribution relative to the electric field.

The monopole term yields no torque because there is no orientation angle involved: Q
and V/(F) are scalars.

Considering the dipole term, we understand that there are only two vectors involved, p
and E, and the potential energy only depends on the angle between them. So the
torque will be given by the derivative with respect to this angle, which we call 6, to
differentiate it from the 6 coordinate of the system in which we consider E. This angle
will be measured from E to p. Then,

Noee = — -2 (—ﬁ~ l::(F)) (3.251)
P

%p ‘E(F)‘cosep =—p ‘E(F)‘ sin 6,
b

= px E(7) (3.252)

This is a result you are familiar with from Phlb, indicating the torque acts in a
direction to align the dipole moment with the field direction.
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Moving on to the quadrupole term, we recognize from Ph106a that any symmetric
tensor can be diagonalized via a rotation. Let's write

Q =TR(¢q,00:¥q) Q [R(dq,0q. %)l with Q = diag(Q1, @, Qs) (3.253)

where the Q; are quadrupole moments along the principal axes of the quadrupole
tensor and R(¢q, 0@, q) is the rotation matrix that rotates from the frame in which
the coordinate axes align with the quadrupole tensor's principal axes to the arbitrary
frame we started in, with the three Euler angles (¢¢,0q,%q) defining the orientation
of the principal axes of Q relative to the this arbitrary frame. This kind of
diagonalization should be familiar to you from Ph106a, with R rotating from the
“body” frame (the one fixed to the charge distribution’s quadrupole principal axes) to
the “space” frame. The quadrupole potential energy term is then

Us =~ 9+ {R(60,00,40)  [R(60,00,4)] } - E(7) (3.254)

Section 3.10.8 Torque on a Multipole in an External Field Page 250



Section 3.10 Advanced Electrostatics: Multipole Expansions

To calculate the torque, we need to take the gradient of Us with respect to the
orientation of the quadrupole. This amounts to taking gradients of R and R7 with
respect to this orientation. As you know from the case of the symmetric top, the Euler
angles are particularly useful angles with respect to which these derivatives can be
taken. 0/0¢q gives the torque about the z-axis of the space frame. 0/96¢ gives the
torque that causes motion in the polar angle direction with respect to the space
frame's Z. And 0/0v¢q calculates the torque about one particular principal axis of the
quadrupole, chosen at will. You are familiar with symmetric tops, with /1 = l,. Here,
we can have symmetric quadrupoles, with Q1 = Q. In this case, the 1 angle is the
angle about the 3 axis of the quadrupole (the principal axis that aligns with the z-axis
in the body frame). We do not take this further because, as you know from the study
of tops in Ph106a, the phenomenology can be quite rich.
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Polarizability and Polarization

Review of Polarizability of Materials

Griffiths §4.1 does a good job of providing physical motivation for the study of the
polarizability of materials, and also reviews material you saw in Phlb, so we only
summarize the basics here.

» Atoms and molecules are polarizable, meaning that they can acquire a dipole
moment when an external electric field is applied because of the separation of
the positive and negative charge in response to the applied field. The charge
distribution that results is such that its field is in the opposite direction as the
applied field at the location of the atom or molecule.

» We assume that this polarizability is a linear process, so that the induced dipole
moment is linear in the applied electric field, though the response may be
anisotropic. The polarizability tensor « relates the induced dipole moment to
the applied field: B

(4.1)

T
Il

[
m
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» As we showed in our discussion of multipoles, dipoles can experience torques

Section 4.1.1

and forces in an electric field. If a dipole is placed in an electric field, it feels a
torque (Equation 3.252)

N=pgxE (4.2)
If the electric field is nonuniform, the dipole feels a force (Equation 3.250)
F= (5- 6) E (4.3)

If a medium consists of polarizable atoms or molecules, then that medium can
become polarized under the application of an electric field. The polarization (or
polarization density) of the medium is

P=np (4.4)

where n is the density of polarizable atoms or molecules and g is the induced
dipole per atom or molecule.

Review of Polarizability of Materials



Section 4.1 Electrostatics in Matter: Polarizability and Polarization

Bound Charges and the Potential of a Polarizable Material

When a medium is polarized and acquires a polarization vector P, then it can generate
its own electric field. This comes from the superposition of the dipole fields of the
individual polarized atoms or molecules. In Phlb, you saw how the polarization could
be interpreted as yielding bound charge densities: when the medium polarizes, the
positive components of some dipoles are cancelled by the negative components of
nearby dipoles, but there can appear a net effective charge: on the boundaries, where
the cancellation fails, and in the bulk if the dipole density is not uniform, also causing
the cancellation to fail. This argument was made in Purcell in Phlb to derive the
bound charge densities, and Griffiths makes it in §4.2.2. Here we derive the
relationship between the polarization vector and the bound charge density in rigorous
fashion.
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The total electric potential generated by a polarizable medium is found by summing
up the dipole potentials of the individual dipoles:

V() = — /vdT'iP(F:)'(f*F/) (45)

47 e |F—rF'3

We use the identity (F— 7')/|F—F'|3 = 6?1(1/|F— F’]) (note: no minus sign because
this is V;/, not V7, and we have F— 7’ in the numerator, not 7’ — F) to rewrite this as

V(F) = i /VdT' B(F') - Vs (ﬁ) (4.6)

F—r
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We can integrate by parts to obtain

V(F) = 4“0 {/ dr 'vﬂ,.<;£ﬁ;)/> /vdT’ |F_1F,| (6;,./5(#))] (4.7)

The first term can be converted to a surface integral via the divergence theorem

, A(F') - P(ﬁ/) , 1 = B =
i = 47rea US(V) T /vdT (Vo PO )ﬂ o

We thus see that the potential appears to be that of a surface charge density op(F’)
on S§(V) and a volume charge density pp(F’) in V with (A is the outward normal from
the polarizable material):

ob(F') = a(?’) B(F') po(F) = =V - P(F') (4.9)
, ou(F") + Pp(F")
v(n = 47reo [/S(V) @ |F— 7| +AdT |F— dll] (410

These charges are called “bound charges” because they are bound to the polarizable
medium.
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Example 4.1: Potential and Field of a Uniformly Polarized Sphere

This problem from Phlb is much easier to solve with our knowledge of solutions to
Laplace’s Equation than it was without such techniques. The polarization density is a
constant P = PZ. The bound volume charge density vanishes because P is constant.
The bound surface charge density on the surface at radius R is

op=n(F)-P=7-PZ= P cosf (4.11)

This is a problem Griffiths solves in Example 3.9 for a generic o(6), and we talked
through the solution earlier. The generic solution was

oo
V(r<R,0) =) AprPy(cost)  V(r>R,0) Z M Py(cos®)  (4.12)
£=0

with A, = / d’ sin@’ a(0') Py(cos8’) By = A, R2“F1 (4.13)

2EORZ 1

Since 0(0) = P cosf = P P;(cos @), the orthonormal functions do their job and we get
(making sure to include the normalization factor 2/(2¢ + 1) = 2/3):

P PR3
V(r<R,0)= 210y o g gy = PRIcost

= 4.14
3¢ 3eo r? ( )
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We can write these more simply. We recognize z = r cos 6 and that the total dipole
moment of the sphere is 5 = 4w R3P Z/3, yielding

P p-T
2 V>R ="
3eo 47 e r?

V(r < R,0) = (4.15)

Thus, the field inside the sphere is uniform, E = —P/3 o, and the field outside the
sphere is that of a dipole p. Note that the field outside the sphere is a perfect dipole
field all the way to r = R; this is not an approximation (until you get so close to the
surface that you can see the discretization of the dipoles).

We remind the reader of the Phlb technique, where we obtained this same result by
treating the sphere as two spheres of uniform charge density p = q/(4 7 R3/3) with
their centers displaced by d= P/q. The field inside a uniform sphere of charge is
proportional to the radial vector outward from its center, so the two vectors 7 — 3/2
and 7+ J/2 end up differencing (because the two spheres have opposite charge) to

yield d, yielding the uniform internal field. Outside the spheres, they look like point
charges, so the system looks like a point dipole p.

One could also use this argument to figure out that the charge density on the surface
is 0 = P cos 6 and evaluate the potential and field of that charge distribution.
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The Electric Displacement Field
Definition of the Electric Displacement Field

We proved earlier that the potential due to a polarization density IS(F') is

V() = — / g )P [y =V P (4.16)
S(v) | !

T 4re F—F| v |F—F|

These are analogues of Coulomb’s law for pj, so the potential and field due to the
polarization density satisfy

1 . -1 1~ =
VZVb:—:pb V~Eb:6—pb:——V~P (4.17)
o o

€o

If there is a free charge density ps (which will contribute to V and E') then we see
that the total potential and field satisfy

1 - - 1 [
V2V:—6—(pf+pb) V‘E:*<ﬂf_V‘P) (4.18)
o

€o
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We will see later that it will be convenient to have a field that depends only on the
free charge density. Thus, we define the electric displacement field by

D=eE+P (4.19)

We immediately see that Gauss's Law can be written as
6 -D = pr — %5‘ dan-D = eree,encl (4-20)

The Helmholtz Theorem tells us that any vector field can be written as the sum of a
curl-free component (sourced by the divergence of the field) and a divergence-free

component (sourced by the curl of the field). Thus, to fully understand 5 we also
need to determine its curl:

- - —

VxD=eVXE+VxP=VxP (4.21)

Because the right side may not vanish, the left side may not vanish. This possibly
nonzero curl is an important distinction between D and E.

While Gauss's Law does indeed hold for D, the possibility that ¥ x D = 0 implies that

the standard symmetry assumptions we make to apply Gauss's Law to find the field
may not apply.
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However, if one knows that, due to symmetry or some other consideration,

V x P =0, then one can apply the standard techniques for using Gauss's Law
combined with symmetry to calculate the displacement field. (6 x P = 0 should be
interpreted as also requiring that any boundaries be normal to P because we will see
below that, unlike for l::, the tangential component of D is not continuous if P has a
tangential component.)

When the above is true, D provides a calculational convenience: if a free charge
density pr and a polarization field P are specified, then we should calculate D from
the free charge density using Gauss's Law and then obtain the electric field from

E = (D - P)/eo. This simplification is possible only because of the particular form of
the bound charge density, pp = -V.-P, which parallels the mathematical form of
Gauss's Law, along with the condition V x P=0.

Note the extra condition ¥V x P = 0 that has to be specified; this reflects the fact that
P has more degrees of freedom than a scalar field pp, so those extra degrees of
freedom need to be specified (via the curl-free condition) for pp, to tell the whole story
(and thus for D to be derivable from pf).

The situation will simplify somewhat when we consider linear, uniform dielectrics

where P o E; then V x B =0is guaranteed, though the requirement that P be
normal to any boundaries may still create complications.
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Boundary Conditions on the Displacement Field

We derived boundary conditions on E earlier, Equations 2.55 and 2.57:

i (B-B)=—0 5 (B-E)=0 (4.22)

€o

where 7 is the normal vector pointing from region 1 into region 2 and s is any
tangential vector (i.e., $- 7 = 0). We derived the equation for the normal component
using the divergence of E. So, here, we can use the fact that V - D = p¢, which yields

7. (52 - 51) =of (4.23)

Note that, by definition, we have o, = n- P where 7 is the outward normal going from
a region with a polarization density to vacuum. Therefore, by superposition,

A (/32 - /31) — (4.24)

We could also have used pp = —V - P and followed the same type of derivation as
used for E and_D. The sign on the right side of the boundary condition enters because
of the signin V- P = —py,.
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In general, we know nothing about V x P, so the boundary condition on the
tangential component of D just reflects the fact that its curl is the curl of the
polari_gation field. We obtain this condition by inserting the relation between E 5
and P into the above tangential condition:

3 (52 - 51) —3. (ﬁz f ﬁl) (4.25)

Note that, even in the case of linear dielectrics, the right side can be nonzero, as we
will see below.
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Linear Dielectrics

So far, we have considered situations where P has been specified for us. But, it is
usually caused by an external field, and so what we really want to do is figure out
what observed potential and field arise by summing the externally applied

potential /field and that due to the polarization of the dielectric in response to that
external potential/field. For most substances, at least at low fields, the relation
between the two is linear and there is a simple scalar constant of proportionality:

P=¢coxeE (4.26)

where Y. is the electric susceptibility. Such materials are called linear dielectrics. An
immediate implication of the above is:

-

D=cE+P=co(1+xe)E=¢E (4.27)

where € = ¢, (1 + xe) is the permittivity of the material and ¢, = 1 + xe is the relative
permittivity or dielectric constant of the material.

A very important point is that E above is the total field, not just the externally
applied field. You can think of polarization as an iterative process: an applied field l::o
causes polarization Po, which creates its own field E1, which the polarization responds
to by adding a contribution P1 which creates its own field E2, and so on. The process
converges to the final total electric field E and polarization P.
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Example 4.2: Conducting sphere with dielectric shell around it

Consider a conducting sphere of radius a with (free) charge Q on it surrounded by a
(thick) shell of dielectric € with inner and outer radii a and b. Because the system is
spherically symmetric and contains a linear dielectric, we know that E 5 and P all
have the form

E=E(r)f? D=D(r)F  P=P(r)7 (4.28)
This ensures that the curl of all three vanish and that, at the boundaries, we have no

tangential components of D and P. We have now satisfied all the conditions required
for us to be able to derive D directly from the free charge by Gauss’s Law, which yields

Q

r
47r2

D(7) = r>a (4.29)

(5 —E=P=0forr< a.) Then we just apply the relation between D and E:

2 Q Q/4mer’)T a<r<b
E(F)_Wr_{ EQ/47rsor2)? b<r (4.30)

The electric field is screened (reduced) inside the dielectric and unchanged outside.
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Let's calculate the polarization vector and bound charge density:

B(7) = coxe(r) E(7) = (e(r) — o) E( = L= _Q 7
e(r) 4mr?
=€ _Q 7 a<r<bh
:{ 0 € 4mr? ber (4.31)

pp=—-V-P=0 (4.32)
—FP(r=a)=—%_9 -,

op = - [3 (: b ): —ey € Q47ra2 — b (433)
r (r ) € 4mb? r

Note the € in the denominator! We see that P is radially outward and decreasing with
r like 1/r2 as E does. Note that, even though P is position-dependent, its divergence
vanishes, so there is no bound charge density. There is surface charge density, negative
at r = a and positive at r = b. This is to be expected, as the dielectric polarizes so
the negative ends of the dipoles are attracted to Q on the conducting sphere and the
positive ends are repelled, leaving uncancelled layers of negative charge on the inner
boundary and positive charge on the outer boundary.

The electric field is reduced inside the dielectric because the negative charge on the
inner boundary screens (generates a field that partially cancels) the field of the free
charge on the conducting sphere: the total surface charge density o + 0 at r = a'is
less than Q/47r32, and it is the total charge that determines E.
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Note that, because of the neutrality of the dielectric, the total surface charge on the
outer boundary cancels that on the inner boundary, so the net charge enclosed inside a
sphere of radius r > b is just Q: outside the dielectric, no screening effect is present.

It is worth thinking about the above a bit: it occurs both because the dielectric has no
net charge and the problem is spherically symmetric. In contrast, we will see a
dielectric sphere can polarize in an external field and generate a field outside itself in
spite of having no net charge, which is possible because spherical symmetry is broken
in that case. But there is no monopole field, only a dipole field.

Note also that, once you have calculated o, and pj, you can ignore the presence of
the dielectric: as we stated earlier, the total field is sourced by the sum of the free and
bound charge densities and the dielectric has no further effect, which one can see here
from noticing that E in the dielectric is what one would have calculated if one had
been given of 4+ op at r = a.
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Finally, let's calculate the electric potential from E (not 5!):
V(r) = / ds’ / dr’E(r
r 1 1
V(r>b)= @ U dr’ } . (4.34)
47 | /oo €o 2 47 €eor
b 1 r 1
Q dr’ +/ dr’ —
47 | Joo €o r? b er?
1 [P 1/1 1 1
= 8 + — E |:, <7 _ ,) + 7:| (4‘35)
47 | €0 47 | b \ e € er
1/1 1 1
V(r<a)=V(r=a)= E |:f (— — 7) + :| (4.36)
47 | b \ e € €a

Via<r<b)=——

r

1
er

b

where V is constant for r < a because r < a is occupied by a conductor.
A final comment: if one takes the ¢ — oo limit, one can see that one recovers the
behavior one would have if the entire region r < b were filled with conductor. A

conductor can be considered to be an infinitely polarizable dielectric, with E=0
inside, which requires xe — 0.
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Example 4.3: Parallel plate capacitor with dielectric

You all know from Phlb that filling the volume between the plates of a parallel-plate
capacitor increases the capacitance to C = ¢, Cyac Where Cy,c is the capacitance with
vacuum between the plates. We remind you why this is true.

Let the capacitor plates lie parallel to the xy-plane at z = 0 (negative plate) and

z = a (positive plate) so Z is the unit vector pointing from the negative plate to the
positive one. In such a geometry, we know from symmetry that E, D, and P are all
parallel to Z and independent of xy, assuming we ignore the capacitor edges. Thus, at
the interfaces at z = 0 and z = a, all these vectors are normal to the interface and so
no tangential components are present. These features of the fields imply that we can
apply Gauss's Law to the free charge density to find D.

The free charge density is of = £Q/A where Q is the charge on the plates (+Q at
z=aand —Q at z =0) and A is the plate area. Gauss's Law for an infinite sheet of
charge (Griffiths Example 2.5) tells us that the field of a single sheet is E = 0 /2 ¢,.
Therefore, we have for this case
5:{—%? 0<z<a (4.37)
0 z<0,z>a ’

because the fields of the two plates cancel for z< 0 agd z>abutadd for0 < z < a,
and there is no €, because we are calculating D, not E.
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This implies:

= 197 0<z<a 5 —<=© Q97 0<z<a

= A = A

E {06 z<0,z>a {0 ‘ z<0,z>a (4.38)
pp=—-V-P=0 (4.39)

~ B 7Pz = a) z=a —= Q0 S,

=f.P={ %"\ — < A 4.40

=" { 7. Pz=0) z=0 { == Q™ ;o0 (4.40)

We have negative bound surface charge near the positive plate and positive bound
surface charge near the negative plate. Finally, the voltage is

V(0<z<a):f/zd§’-E(F’):f/zdz’ (f% %) =%%z (4.41)
0 0

From this, we can calculate the capacitance, which comes out as expected:

Q Q

A
C:E: mzeg = €/ Crac (4-42)

C is increased because AV is reduced because the surface charge densities screen the
electric field inside the dielectric. The electric field inside the dielectric is the field one
expects from surface charge densities of + o), = +(e0/€) (Q/A).
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Example 4.4: Parallel plate capacitor with two-layer dielectric

Let's repeat, but now with a capacitor that has two slabs of dielectric with different e:
€1 for 0 <z < aand e for a < z < b, where the top plate is now at z = b. Because
the interface is normal to P, we can apply Gauss's Law for D as we did before,
yielding no change in D, but now the € quantities in E and P depend on z.

The volume bound charge density vanishes again. The surface charge density at the
top and bottom has the same expression, but again with € being evaluated for the
particular value of z. The surface bound charge density at the z = a interface is

ab(z:a):ﬁl~ﬁl+ﬁg~ﬁ2:3-51—2~52:9 (_@Jrg) (4.43)
A €1 €

Depending on which dielectric constant is greater, this can be positive or negative. Of
course, it vanishes if € = e2. The potential and capacitance are

1 1 1
V(O<z<a):—gz V(a<z<b):—ga+—9(2—a) (4.44)
€1A €1A €2A

Q a b—a\ ! A
c=-—=(=2 A= e — = erry Cy 4.45
INY; (614- €2> Ceff - = €effr Crac (4.45)

where 1/e.r = [a/e1 + (b — a)/e2]/b is the thickness-weighted inverse mean of the
dielectric constants and €., = €er /€0. This is the same as two capacitors in series,
which is not surprising since that problem has the same equipotential surfaces. The
total field is that of three sheets of surface charge of + o}, with of = 0 at the
interface between the two dielectrics.
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Example 4.5: Capacitor with two side-by-side (parallel) dielectrics

Now, allow the capacitor to have plate spacing a but with two different dielectrics
side-by-side, with €; occupying A; and V; and e occupying Az and Vs. ltiis a
reasonable guess that one should treat this as two capacitors in parallel so that

1
C=CG+G= ; (61A1 + 52A2) (4.46)

But let's derive this from scratch, appreciating the subtlety at the interface.

Because the voltage difference between the two plates is independent of € (they are
equipotentials), it is reasonable to guess that E is the same in €1 and e this is the
key insight! Because the dielectrics are uniform in z, it is also reasonable to assume it
is independent of z as one would have in the single-dielectric case. So, our guess for
the form of the fields is:

—€1 E()E in Vl 5 - (61 - 60) Eof in Vl
—0 Bz in Vs P‘{ (2N EyZ inv, 440

E- _Ez 5:{

We see this form respects the tangential boundary conditions at the interface between
the two dielectrics, as it has to:

z. (Ez - El) -0 z (52 - 131) —(e1—e)E=2- (ﬁ2 - ﬁl) (4.48)
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Because D and P are different in the two volumes, we must allow the free (and bound)
charge densities to be different. This provides us a set of equations to solve for Ep:

€1 Eg = Of1 e Eg = Of 2 Ap or1+ Ao Of2 = Q (4.49)
1 Q €1 A1 + €2 As
— Ey = — — = - = A=A A 4.50
o= €eff AL A 1+ A2 (4.50)
Q Q A
C= AV TEO = €eff 37 €eff,r Cvac (4.51)

which matches our parallel-capacitor expectation. The displacement field, polarization
field, and free and bound charge densities are

5 —L %z inn 3 e 87 inW . Fo
— el = el = — . =
297 iV, —2= 0% iny,
(4.52)
&1 Q €1—€ Q=5
=L X inV Xz inV
of| = cor A opl = et A" 4.53
| fI { :;7 % in Vo | bI { ezeeffeo %Z in Vs ( )

oy always has the opposite sign as o¢. For Q > 0, the sign of o is positive at z = a
and negative at z = 0. Note that, because P is different in V; and V3, so too does o}

differ between the two dielectrics.
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Finally, if one calculates the total charge density of + 0, at z =0 or z = a, one gets
(1_61—%)9,1
Eeff Eeff A Eerr
(3 _ ﬂ) Q_
Eeff Eeff A e
This makes sense: since the electric field is the same in Vi and Vs, the total (free +
bound) surface charge density sourcing it should be the same. The total charge
density is a factor €o/¢.fr smaller than would be present in the absence of dielectrics
because the bound charge density screens the free charge density. The free charge
density is different in the two regions because the opposite-sign bound charge density
is different because of the different dielectric constants. In contrast to our naive
expectation, the free charge density is not uniform on the conductor; rather, it
redistributes itself so the fundamental condition, that the conductors be
equipotentials, is satisfied when one includes the effect of the dielectric. Instead, the

total charge density is uniform, which yields a field independent of (x,y), which is
what ensures the equipotential condition is met.

Ot1 =0f1+0p1

(4.54)

Ot2 =0f2+ 0p2

>0 »|O

(4.55)
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Boundary Value Problems with Linear Dielectrics
General Conditions for Linear, Homogeneous Dielectrics

In linear, homogeneous dielectrics,

% P % (6‘60 5) :_(6—60)6.5:_(6—660)pf (4.56)

€ €

(Homogeneity is required so the gradient does not act on ¢.) Therefore, if there is no
free charge density in a linear, homogeneous dielectric, there is no bound charge
density either. Thus, the dielectric volume satisfies Laplace's Equation. All our
machinery for solving Laplace’'s Equation applies here.
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We always need boundary conditions, though, and we can use the ones we derived
earlier (the tangential E and D conditions will yield the same condition on V/, so we
start with the simpler one):

7 [52 - 51] =0 & [Ez - El] =0 (4.57)
Writing this in terms of the potential, we have
A [e2€v2 - eﬁvl] =—0of & [ﬁvz - 6v1] =0 (4.58)

And, we always require Vi = V5: the potential must be continuous. While we have
three conditions, in general the continuity and tangential gradient conditions will be
redundant: the normal gradient condition must be independent because it depends on
the free surface charge density while the two others do not. The continuity condition
is the simpler and so is the one that should be used.
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Example 4.6: Spherical cavity in a dielectric medium with uniform field applied
Let's apply the above to a spherical cavity of radius R in a medium with permittivity €

with a uniform field E = Eoz applied. There is no free charge anywhere. Our
boundary conditions therefore are

V(r — o0) = —Eyz = —Eg r P1(cos ) (4.59)
and, with Vj,(r) = V(r < R) and Vou(r) = V(r > R),

0 Vin
or

0 Vout
=€

and Vin(r = R) = Vout(r = R) (4.60)
r=R or

€o

r=R

We also choose the zero of the potential to be at z =0, V(z = 0) = 0, by symmetry
as in the case of the conducting sphere in a uniform electric field.
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As usual, we begin by writing our generic solutions to Laplace’s Equation in spherical
coordinates:

o . S Bout
Vin(r) = Z Ainrt Py (cos 6) Vout(r) = Z (A"”tre + —) Pe(cosf)  (4.61)
£=0

£=0

where we have applied the requirement that V be finite at the origin to eliminate the
1/r[‘*'1 terms for V;,. Recall that we cannot eliminate the r terms for V,,: because
the potential does not vanish at infinity.

Let's first apply the r — oo condition. We did this before in the case of a metal
sphere in a uniform field, and we found

At = —F Azgfl = (4.62)
Next, we apply the continuity condition at r = R, making use of orthonormality of the
Py:
. Bout . Bg;fl
AR = —EoR + - AR = et (4.63)
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Finally, let's take the radial derivative and apply the matching condition on it, again
using orthonormality:

. 2 Bf;‘itl
oAl = (Eo + o Bouf) WAl (R = e ZL(E+1)  (464)

Doing the algebra, we find

; — ; 3e
An, =Bt =0 Bt = _ "% pRS A E 4.65
o = Bl o, o 1 rere, o (4.65)
Thus, the potential is
3e 3e
Vin(r) = V(r<R)=-— Egr cos = — E 4.66
in(r) ( ) 2¢+ €0 0 2e+ €0 0z ( )
R3
Vout(r) = V(r > R) = —Ep r cos — Eo— cos @ (4.67)
e+eo
p-r 3éo .
= —F —— — with f=—— R3 E -
0Z+47reor2 with P = %2ct e (e-e)Z

Page 281



Section 4.4 Electrostatics in Matter: Boundary Value Problems with Linear Dielectrics

The potential inside the cavity is that of a uniform electric field in the same direction
as the applied field but multiplied by the factor 3¢/(2¢€ + €,) > 1, while the potential
outside is that of the uniform field plus that of a dipole whose orientation is opposite
the uniform field and whose magnitude is given above. It is as if the cavity acquired a
polarization density in the negative z direction, though of course that cannot happen
because xe(r < R) = 0 there and thus P(r < R) = eoxe(r < R)E(r < R) = 0. The
polarization density outside the cavity is just the total (not the applied uniform) field
times € — €, (which is not particularly illuminating).

The (bound) surface charge density is

ob=0-P(r=R)=7"(c — €0) Eout(r = R)

-~ 0 e— R3 —
= (e —¢o) —r~Eoz——QEo—cosé‘ :—3soiEocose
Or 2e+ e r2 =R 2¢+ €0
(Notice that " = —F because 7 is taken to point out of the dielectric medium in the

definition of o,.) We see the boundary of the cavity acquires a surface charge density
with the same magnitude and cosine dependence as the bound charge on the surface
of a uniformly polarized sphere, though with opposite sign (so there is negative charge
at the +z end and positive charge at the —z end). The sign follows naturally from our
arguments about cancellation of dipole charge.

The field is enhanced in the cavity for two reasons: first, there is no polarizable
material to screen the electric field, and, second there is surface charge density on the
cavity's boundary that creates an additional field in the direction of the uniform field.
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For reference, we note that the solution for a dielectric sphere (Griffiths Example 4.7)
in a uniform field looks very similar:

3eo p-r

Vir<R)= —— E V(r>R)=—E _— 4.68
(r ) 2¢o + € 0% (r ) Oz+47r€or2 ( )
ith p— 2T RIE—( 2= 2T R B(r < R) (4.69)

wi = — — € — € zZ=— .

P e e ° 3
€ — €

op =3¢ T—Fl Ep cos 6 (4.70)

Basically, exchange €, and € everywhere to go between the two results. In this case,
the sphere acquires a polarization density 3 eo(€ — €0)/(2 €0 + €), now in the direction
of the applied field. The surface charge density is also of same form as the cavity case
with the € <+ ¢, exchange. That exchange flips the sign so that the +z end acquires a
positive charge, again as expected from the dipole charge cancellation argument. The
field amplitude is reduced (screened) in the dielectric.

From the polarized sphere, one can recover the case of a conducting sphere in an
external uniform field by taking € — oo as noted earlier.
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Electrostatic Energy in and Forces on Linear Dielectrics

Electrostatic Potential Energy due to an Assembly of Free Charge in the
Presence of Dielectrics

It turns out that electrostatic potential energy in the presence of dielectrics is a subtle
topic because of the existence of the charges forming the dielectric. There are
different kinds of electrostatic potential energy: that needed to assemble the free and
bound charge distributions versus that needed to assemble the free charge distribution
and polarize the preexisting dielectric. It is generally the latter we are interested in, so
we consider that case.

Suppose we have a system in which an electric field E(F) and its potential V/(F) have
already been set up and we want to bring in additional free charge dps from infinity
(assuming the potential vanishes at infinity). In this case, the change in potential
energy is

sU= / dr’ [5p¢(F")] V(7") (4.71)
\4
The free charge density is related to the displacement field by V-D= pf, so a change
dpf corresponds to a change in the divergence of the displacement field & (ﬁ . 5)

Linearity of the divergence lets us rewrite this as dpf = V- 8D.
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Then, we may integrate by parts and apply the divergence theorem:
6U:/ dr’ [6-55(?')} V(7)
v
:/ dr'v - [V(f’)m(?’)] —/ dr’ [55(?’)] V()
% v
:7§ da’ A(7") - [V(?')sﬁ(F/)] +/ dr’ [55(7/)] E(7) (4.72)
S(V) v

Assuming the potential falls off at infinity, the surface term can be taken out to
infinity to vanish. So, we are then left with

U:/OB/V dr' E(7') - dB(7") (4.73)

There are two integrals here, one over volume and one over the value of D from zero
to its final value. E is of course tied to D and they vary together.
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For the case of a linear (but perhaps not homogeneous) dielectric, we may use
D(F) = e(F)E(F) and therefore

u=[" /"dTeu £(7') - dE(7)
/ /dfe ) d [E(7)- E(7)]

—/ 1 = =
2/d7- o(F') EX(F') = 2/dT E(7)- B(7) (4.74)

If the medium is linear and homogeneous, one can pull ¢ outside the integral at any

point, yielding
U= 5/ dr’
2)y

We may infer that the energy density, neglecting the energy density intrinsic to the
creation of the dipoles, is

1
2¢

_ 2
E(F")

(4.75)

€ | = 2 1 _ 2
u(r) =5 |E(| = 5= |57 (4.76)
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By contrast, if we wanted to know the total electrostatic potential energy stored in the
assembly of the free and bound charge, we would just do the usual volume integral of
E? with ¢, instead of €. That energy is smaller because € > €,. The reason for this
difference is that assembling the medium in the first place, which consists of bringing
positive and negative charges together, creates a system with negative potential
energy, and thus the total potential energy of the system would be lower if we
accounted for the energy of assembling the medium. But we will never pull the
dielectric apart, so it is natural to treat that component of the potential energy as an
offset that is inaccessible and neglect it in the electrostatic potential energy.
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Energy of a Dielectric in an External Field

A topic naturally related to the above is the electrostatic energy of a polarizable
material in an external field.

Suppose we start with a system with a free charge distribution pr that sources a field
E; in a dielectric medium €3, yielding a displacement D; = €; E;. The initial energy is

1 O
v = /dT E . B (4.77)

Now, with the charges sourcing El held fixed, let's introduce a piece of dielectric
occupying the volume V> and having dielectric constant ey, replacing the dielectric of
dielectric constant ¢; there. The remainder of space outside V; is occupied by €; in
both configurations. The electric field and displacement field everywhere change to E
and D, where Dy(F) = €(F) Ex(F). Note that Ey and E; are not identical outside V5,
and the same is true for 51 and 52. The dielectric affects the field everywhere, not
just inside V>. The energy is now

1 -
v =3 /dT [ (4.78)
The difference in energy between the two configurations is therefore

1 Lo L
U2—U1:§/dT[E2~D2—E1~D1] (4.79)
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Let us rewrite the energy difference as
1 | L2 e =
b= =3 [dr [Eg Bi—E - Dg] +5 [ar [Ez T El] : [Dz - Dl] (4.80)

It holds that ¥ x [EQ + l::1] =0, so it can be derived from a potential V, so the

second integral becomes
1 . .
—E/df (vv) : [02 - Dl} (4.81)

We integrate by parts (the surface term vanishes because it depends on 52 — 51,
which should vanish as one goes far from the dielectric) to obtain

% / dr v [B - Bi] (4.82)

This divergence vanishes because the free charge has not changed between the two
configurations (recall, V- D = pf).
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So the second term in the energy vanishes, leaving
1 S O
Up— Uy = E/dr [Eg By E - Dg] (4.83)

Now, outside V3, it holds that 52 = qE} (remember, € only changed inside V»), and

recall also 51 = 6151 everywhere, so the two terms cancel each other there and the
integrand vanishes outside V,. Therefore, we can restrict the integral to Vs:

1 Lo
Up— Uy = _7/ dr(es—a) B - B (4.84)
2 )y,

This is already interesting — even though the field changes in all of space, we need
only look at the before and after fields in the volume V; rather than the entire system.
If €1 = €0 (vacuum outside Vs> and in V, before the introduction of €2), then we can
use P = (e2 — €5) E> to rewrite as

1 5 2 1 - -
W:UQ_Ulz_* d7'P~E1 < W:—7P‘E1 (4.85)
2 Jy, 2

where we recall that El is the electric field in the absence of the dielectric and P is the
polarization density of the dielectric, and w refers to an energy density. This is just
like the energy of a dipole in an external electric field, except that the factor of 1/2
accounts for the integration from zero field to actual field, from the fact that the
dielectric polarizes in response to the applied field. We see that the introduction of
the dielectric into an existing electric field in vacuum, holding the source charges fixed,
reduces the overall electrostatic energy.
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Why is the integrand not P. I_Eg or 52 . 52? Because we are asking what the difference
in energy is between the field configuration without the dielectric present and the
configuration with it present. There was field in V), before the dielectric was placed
there, so we have to subtract off that original field energy density, and we also need to
consider the field energy density difference between the two configurations outside the
dielectric. It turns out that the above integrand correctly accounts for the differencing
relative to the no-dielectric starting condition. We can see this by trying to evaluate
the potential alternate expressions:

1 L. - N1
_7/ dTP-Eg:——/ dT<D2—60E2)-E2:7/ dr {eo
2 Vs 2 Vo 2 Vo

This is some sort of difference between the total electrostatic potential energy in Vs
and the electrostatic potential energy neglecting that associated with the assembly of
the dielectric medium. The expression has two problems: there is no differencing with
the initial configuration, and it neglects the energy stored in V. It is part of the
energy difference we are interested in, but not all of. The use of D; - E» would suffer
the same problems.

- 12
E2(

B 5}
(4.86)
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Free Charge Fixed

Let us first consider the force on the dielectric in the case that the free charge is held
fixed. There are no batteries involved, so we need only consider the electrostatic
energy of the field. We take the negative of its gradient with respect to some
generalized displacement £ to find the generalized force Fe:

G (F),(E e

oC o€
where we made the second step because, if Q is held fixed, the variation of the system
energy is given entirely by the variation of the capacitance. £ can be a spatial
displacement coordinate like x, y, or z, or it can be an angular orientation coordinate,
in which case the generalized force is actually a torque.

Any system of conductors can be reduced to a capacitance matrix, so the above can
also be written using Equation 2.77 (recall, D = C™1)

aD;; 1 o _
Flo=- 21> a0 =13 00 - lor[2c]a
ij=1 Q ij=1
(4.88)

(We have intentionally avoided using the confusing notation CU*l, using Dj; instead.)
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Example 4.7: Force on a Dielectric Slab in a Parallel Plate Capacitor, Free
Charge Fixed

Let’s consider a parallel-plate capacitor with plate separation d, plate side dimensions
£ and w, and with a slab of linear, homogeneous dielectric partially inserted between
the plates, with vacuum from 0 to x and dielectric from x to £ with 0 < x < .

Let's do this by calculating the total energy of the slab in the capacitor, with E
dependent on the position of the slab. The energy is (using the calculation of C from
the earlier example)

2 _
wol@ L ol fwxtew(l—x) (4.89)
2 C d
Therefore,
1 @2\ dC 1 Q2 (€0 — €)W 1., w
Felo=—(—=X ) T =2 X o799~ 2 _¢) 2 4.90
lo ( 2 c2> & 2C  d o Vleme) g (4.90)

which matches Griffiths Equation 4.65 (recall, eoxe = € — €0).
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Intuitively, the dielectric is pulled in because it lowers the energy of the configuration:
the field energy density is proportional to ¢|E|?, and |E| & €1, so the field energy
density is oc €71 larger e implies lower energy.

Microscopically, what is happening is that the fringing field of the capacitor polarizes
the dielectric, leading to bound charge on the surface. The bound charge on the
surface is attracted to the free charge on the capacitor plates, causing the dielectric to
be pulled in. It's a runaway effect, with the movement of the dielectric into the
capacitor leading to greater polarization of the fringing field region, increasing the
bound surface charge density and thereby leading to a greater attractive force. The
system only reaches equilibrium when the dielectric is maximally contained in the
capacitor. (It would be interesting to calculate the trajectory, in particular the
harmonic oscillations that would occur around the equilibrium position because the
slab will have been accelerated and thus have some kinetic energy when it gets to the
equilibrium position.)
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Force and Torque on a Linear, Homogeneous Dielectric in an External Field
with Voltages Fixed

In general, we do not encounter the above situation. Rather, we hold the voltages
constant on a set of electrodes while we consider the work done during a virtual
displacement d§.

Before we get into it, though, let's ask ourselves what we expect to have happen.
Should the force change depending on whether we hold the voltage or the charge
fixed? No, because the force is due to the arrangement of charges on the conductors
and the dielectric at the current instant in time, not at some point in the future that
is affected by whether the charges or voltages are kept constant.

Let's model the fixed voltage situation in two steps, first disconnecting the batteries
and holding the charge fixed while we move the dielectric as we did above, then
reconnecting the batteries so that charge flows on to or off of the electrodes and
restores them to their original potentials.
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Since we are now focusing on a situation with voltages on electrodes, it makes sense
to think about a set of electrodes i = 1...NN with voltages V; and charges Q;. The
electrodes have a capacitance matrix C. Let’s first consider the change in electrostatic

energy for the first step with the charges held fixed (again, using D = gfl):

N N
1 1
dWeid| g = d > E QQD;| = > E QiQ; dD;; (4.91)
ij=1 0 =1

The change in the inverse capacitance matrix results in a change in the voltages on
the electrodes given by

N
dVilg = dD;Q; (4.92)
j=1
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Now, let’s return the voltages to their original values by allowing charge to flow on/off
the electrodes from batteries while holding the dielectrics fixed (i.e., Dj; held
constant). The charge transfer required to undo the above voltage changes is

N N
dQuly =Y G (—dVi)g = — > Cu QdD; (4.93)
i=1 =

The change in the electrostatic energy of the configuration (energy flowing out of the
battery into the field) due to this flow of charge is

N N N
ST VidQuly =— > Vi G QdDj=—> QQdD;

k=1 i k=1 ij=1
=2 dWhieid| o (4.94)

bat
dWﬁeId v

where we used Ck,' = Cjk and 221:1 Vk C;k = Q,‘.
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Therefore, the total infinitesimal change in energy is
dWiieidly = dWeidl o + dWZ3, v dWetdlg — 2 dWietd|l g = — dWieia| g (4.95)

As we explained earlier, the force cannot depend on whether the charge is held fixed or
the voltage is held fixed. To ensure we get the same force in the two cases, we
therefore must conclude

O Wield ) ( 0 Wrielq )
F, _ — [ Z_"held = F, 4.96
E|V ( 3 v o€ Q §|Q ( )

That is, when the battery is involved, we must consider the energy of the entire
system and take the positive gradient of the field energy, rather than considering only
the energy of the field and taking the negative gradient of that energy. The reason
these two gradients are different, with a sign between them, is because the derivative
is calculationally different depending on whether V or Q is held fixed.
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We can see this works mathematically by trying it:

N N
awﬁe,d) 8 |1 1 aC;;
Zfeld ) = =2 ViViCi| == V; V;
(%5 -5 22, VVG] =3 VY
1 )
=-vT|=c|V 4.97
27 {85:]* (4-97)

Since 82*1/85 = —g*l[ag/ag]gfl (one can see this by evaluating
agg—l]/ag = 01/9¢ = 0), this form yields Equation 4.88 for F§|Q. Thus,

O Wielq O Wrield
F§|V:(7a'e ) :*(7616 ) = Felg (4.98)
S Jv $ Jo

One can check this result using the parallel plate capacitor example by starting with
W = C V?/2 instead of W = Q?/2 C. Taking the positive derivative at fixed V gives
the same result as taking the negative derivative at fixed @ because C is in the
numerator in the first case while C is in the denominator in the second.
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Study Guidelines

As with basic electrostatics, you have seen much of the material in this section before
in Phlc. As with electrostatics, we will use more rigor here. We will also consider
some more advanced topics such as the multipole expansion of the magnetic vector
potential, off-axis fields for azimuthally symmetric configurations, etc. As with basic
electrostatics, we won't do any examples in lecture or the notes where they would
duplicate Phlc. But you should be review the examples in Griffiths Chapter 5 and
make sure you are comfortable with them.
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Lorentz Forces and Current Densities
Force on a Moving Point Charge in a Magnetic Field

The magnetic force on a point charge g moving with velocity V in a magnetic field B
is given by the Lorentz Force Law:

Frog = q (\7 x é) (5.1)

If an electric field is present, the total electrostatic and magnetostatic force on q is
ﬁ:q<E+\7xl§) (5.2)
Note that the electrostatic force on g is not modified by the fact that it is moving.

See the nice examples in Griffiths of cyclotron and cycloid motion (Examples 5.1 and
5.2). These are at the level of Phlc, so we do not spend time in lecture on them.

Section 5.2.1 Force on a Moving Point Charge in a Magnetic Field
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Magnetic Forces Do No Work

Because I-:mag x V X E it holds that I-:mag 1 V. Since the differential of work done by
aforceis dW = F.dl = F - V dt, we thus see that dW = 0 for magnetic forces. This
may seem counterintuitive. In cases where it appears work is being done, there is
usually a battery involved that is doing the work, while the magnetic force is
redirecting the force doing the work (in the same way that a constraint force in
mechanics does no work).

The one exception to this is the case of intrinsic magnetic moments of fundamental
particles, which emerge from quantum field theory. In such cases, the magnetic
moment is not identified with a current loop, it is just an intrinsic property of the
particle. Since our proof above requires the Lorentz Force Law, and such moments are
not assocated with a current that experiences the Lorentz Force, the proof does not
apply. In cases concerning such moments, work can be done by the field of the
moment or on the magnetic moment by an external magnetic field because no battery
is required to maintain the magnetic moment.
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Line Currents

A current carried by a wire can be modeled as a constant line charge density A that is
moving at fixed speed v:

I=Av (5.3)

For the sake of the generalizations we will consider below, let us write this as a
position-dependent vector

I(F) = \(7) #(7) (5.4)

where V(F) is a function of position and its direction follows the wire. By conservation
of charge, the only position dependence of T(F') can be its direction. This implies that
any position dependence in A(F) must be canceled by the position dependence of the
magnitude of V(7). If A is position-independent, then only the direction of ¥V may
change with position.

For magnetostatics, we assume that such a line current, and the surface and volume
current densities that follow below, are time-independent, or steady: they were set up
an infinitely long time ago and have been flowing at their current values since then.
We also ignore the discretization of the charge density (in this case \) and consider it
to be a continuous quantity. This is called the steady-state assumption or
approximation.
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Force on a Line Current

It is straightforward to calculate the force on a line current by integrating the Lorentz
Force Law over the wire:

Fonog —/dq (7) x B()] /dK/\ 7(7) x B(7)] (5.5)

Frnog = /C de [i(7) x B(7] (5.6)

where we have used the fact that dZ v, and T are all in the same direction at any
point on the wire because the current flows in the wire. Now, realizing that I is
independent of position along the wire (due to conservation of charge as noted
above), we can pull it out in front of the integral, yielding

Frnag = I/c [d[x é(?)] (5.7)

Griffiths Example 5.3 is a nice example of calculating the force on a current loop and
also illustrates the point of the battery supplying the energy to do the work that
appears to be done by the magnetic field. The magnetic field acts like a constraint
force to redirect that work.
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Current Densities

Just as we generalized point charges to line, surface, and volume charge densities, we
can generalize single moving point charges to line, surface, and volume current
densities. We have already made the first generalization, which is straightforward to

understand since one intuitively thinks of a current as an ensemble of point charges
moving through a wire.

A surface current density is a current flowing in a sheet; think of water flowing over
the surface of an object. The surface current density K is defined by

di(7) = K(F) de, = (Rm x d[‘ K(7) (5.8)

where df, is an infinitesimal length perpendicular to K and dEiE an arbitrary .
infinitesimal length. The cross-product takes the projection of d¢ perpendicular to K.

If one thinks about the surface current density as a moving distribution of a surface
charge density, then

K(7) = o() 7(7) (5.9)

where o (F) is the surface charge density at 7 and V(F) is the velocity of the surface
charge density at 7.
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A volume current density is a current flowing in a bulk volume; think of water flowing
in a pipe or in a river. The volume current density J is defined by

di(7) = J(7) da, = ‘](F) : ﬁ’ da J(7) (5.10)

where 7 is the normal to the area element da. (If we had defined a normal 7 to the

line element d7 in the plane of the sheet, we could have used a dot product instead of
a cross product in the definition of the surface current density. But it is conventional
to do it as we have done it.)

If one thinks about the volume current density as a moving distribution of a volume
charge density, then

J(7) = p(A (P (5.11)

where p(7) is the volume charge density at 7 and V(F) is the velocity of the volume
charge density at 7.
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Forces on Current Densities

We can integrate the force over the current densities just as we did for the line current:

Froag = /dq (") x B / dao(7) [7(7) x B(P)] (5.12)

Finag = /S da [R(f) x é(r)] (5.13)

Fnag = / dq [7(7) x B(7)] = /v dr p(7) [7(7) x B(P)] (5.14)

Frnog = /v dr [I(F) x E(F)] (5.15)

It should be clear that we could have considered Equation 5.15 to be the fundamental
statement of the Lorentz Force Law and derived the lower-dimensional versions by
inclusion of appropriate delta functions in the definition of p or J. Such a reduction
would be cumbersome because the sheet or line carrying the current may not be easy
to parameterize, but the reduction is conceptually straightforward.
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Conservation of Charge and the Continuity Equation

We defined the current densities above in terms of the infinitesimal current passing
through an infinitesimal line element (for a surface current density) or through an
infinitesimal area element (for a volume current density). Let’s integrate the latter
over a surface to obtain the total current passing through that surface:

Is :/ daA(7) - J(F) (5.16)
s
If we take S to be a closed surface, we may apply the divergence theorem to the above:
}{ daA(7) - J(F) :/ dr ¥ - J(7) (5.17)
s V(S)

where V(S) is the volume enclosed by S. By conservation of charge, the current is
just the time derivative of the charge enclosed by S, with the sign such that if a
positive current is exiting S, then the charge enclosed must be decreasing, assuming
that the surface itself is time-independent. With this, we have

d d Ap(F)
Te — — - _ d = — dr —~ 5.18
s 5 Q) dt Jos) 7 p(F) /v(S) T o (5.18)
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Thus, we have

/ dT§~j‘(F):7/ LG (5.19)
V(s)

V(S) ot

Since the surface S is arbitrary, it must hold that the integrands are equal everywhere:

_9e(1)

V-J(r) = ot

(5.20)

This is the continuity equation and is effectively the differential version of conservation
of charge.

With this equation, we can define our steady-state assumption more mathematically:

it corresponds to dp/dt = 0, which then implies V-J=0. The interpretation is that
the charge density at any point cannot change with time, which implies that the net

current flow into or out of any point vanishes.
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Fields of and Magnetic Forces between Currents
Biot-Savart Law

For a steady-state current distribution — one in which the current densities are
time-independent — it is an empirical observation, validated by the Lorentz force that
moving charges or currents experience, that the magnetic field at 7 due to the current
distribution is given by

é(a:&/dg/w_ﬂl/w (5.21)

47 |F—F'3 47 |F—rF'3

1o = 4m x 1077 N A=2 is the permeability of free space. The magnetic field carries
units of teslas, T = N/(A-m). The Biot-Savart Law is the analogue in magnetostatics
of Coulomb’s Law in electrostatics, and it has the same 1/r2 dependence.

You are well aware of the result that the field of a straight wire along the z-axis
carrying current I at a transverse distance s from the wire is

. I~
B =124 (5.22)
27s
where 9/5 is the azimuthal unit vector in cylindrical coordinates. The field forms circles
around the wire with orientation set by the right-hand rule. This is derived in Griffiths
Example 5.5, which we will not repeat here since you saw it in Phlc.
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Force between Two Current-Carrying Wires

We can combine the Lorentz Force Law and the Biot-Savart Law to calculate the force
between two current-carrying wires; this force is the empirical basis for magnetostatics,
as it is much easier to measure the force between two wires than it is to create ideal
test charges and measure their motion in the magnetic field of a wire. We just plug
the Biot-Savart Law into the Lorentz Force Law for a line current distribution,
Equation 5.6, to find the force on the first wire due to the field of the second wire:

Freg =11 | dlx B(P) (5.23)
C1

_ 71112/6 /C di(7) x dé( 7Y x (F— F/)] (520

R

Consider the special case of both wires running parallel to the z axis separated by s§
in the xy-plane, with the first wire on the z-axis itself. Then d¢ = Zdz, d¢' = zZdZ’,

F=zz ' =ss+ 2z
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Therefore,
di(7) x [dZ’(r') X (F— F’)] =dzdZ Zx [Zx (z—2)2—s3)] (5.25)
=dzdz' ss (5.26)
and  [F—FP=[(z—2)+s? (5.27)
Th X _ - oo oo 1
ue Finag = &Illzss/ dz/ df — (5.28)
4 oo Jeoo  [(z—2')2+ 2]
Lo [ 2 ©
= —1I ss/ dz 5.29
4n L? [(z—z/>2+s21“2} L

oo 2 I;I R
_ Mo mzsg/ dz 2 = Fo 2?/ dz (5.30)
47 2 27 s oo

— 00
where we did the integral using the trigonometric substitution z/ — z = s tanf. The
total force is infinite, but we can abstract out of the above expression the force per

unit length on the first wire, which is attractive (pointing towards the second wire) if
the currents flow in the same direction:

R LI
= feo 12¢ (5.31)
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General Expressions for Fields due to Current Densities

The obvious generalizations of the Biot-Savart Law are

-

[ KO b [ g A7)

- o
B(r) = —
(") |F— 73 47 |F— 73

4

(5.32)

Griffiths notes that a line current distribution is the lowest-dimensional current
distribution one can have because the zero-dimensional version — a point charge
moving with velocity Vv — does not constitute a steady-state current: the charge
passing a given point in space is time-dependent.

As with the Lorentz Force Law, it should also be clear that one could consider the
volume version to be the fundamental statement of the Biot-Savart Law and one can
derive the lower-dimensional versions by including delta functions in the definition of
J. This does not apply to a reduction to zero dimensionality, as noted above.

There are good examples of the use of the Biot-Savart Law in Griffiths. Again, these
are at the level of Phlc, so we do not spend time in lecture on them.
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Another Form for the Biot-Savart Law

We begin by using Equation 2.49 to rewrite the Biot-Savart Law expression for the
magnetic field:

117 =z
é(r—):&/ gr VX)) ko [ o (7)< 9 (%) (5.33)
ar Jy |F— 7|

|F—F'|3 4

We use one of the product rules for the curl, V x (f3) = f(V x &) — & x (Vf), and

notice that V7 x J(7') = 0 because J{7') is a function of 7/ while V7 is with respect
to 7, to obtain

é(?):ﬁx /dr |rf ,F)I (5.34)

where we have brought 6,- outside the integral over 7/ because it acts with respect to
7. We also dropped the 7 subscript since now, being outside the integral, it must act
only on 7. This form is obviously suggestive of the idea of B being derived from a
vector potential, which we will return to shortly.

We note that, while our derivation of this equation did not appear to require any

assumptions about the way the current behaves at infinity, we will see later that the
steady-state assumption does imply the net current through any sphere must vanish.
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Curl and Divergence of the Magnetic Field; Ampere's Law

Curl of the Magnetic Field

From the field of a current-carring wire, Equation 5.22, we get the clear impression
that B has curl and that the curl is related to the current sourcing the field. Here, we
explicitly calculate this curl from the Biot-Savart Law. Griffiths Section 5.3.2 provides
one technique for this; we use Jackson's technique instead to avoid duplication.
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We take tbe curl of Equatlonﬂ5.34 and apply the BAC — CAB rule for Ehe triple vector
product, V x (V x d) = V(V - 3) — V23, writing the coordinate that V acts on
explicitly:

117
Vix B(F) = Vi x [ﬁ;x o [ g ) ] (5.35)

- - Jj7
Ve | dr Ve (2 / dr' V2 () (5.37)
47 v - ’| F—F|
We were able to bring ﬁ,- and V% inside the integrals because ﬁ; is with respect to 7’

and the integral is over r’. Similarly, because 6; is with respect to 7" and Jis a
function of F’, J passes through the divergence in the first term and the Laplacian in
the second one, preserving the necessary dot product in the first term and the
vectorial nature of the second term:

ﬁ,axémf”"{ /dTJ : (Ir—r) /dTJ (l?—l*’l)}

(5.38)
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We know from electrostatics that

v ! =-V !

=) =
1

v (m) = —4m(F-T)

The first equation may seem surprising if one considers the exchange 7 <> F’, but one
can see it is true by simply evaluating the gradient on both sides or by defining
§=F— r’ and applying the offset and inversion tricks we used in electrostatics. The
second is Equation 3.34 with the exchange F <> F’ (where here there is no sign flip
because the Laplacian is quadratic in the derivatives and the delta function is
symmetric in its argument). Applying them, we obtain

v x B(F) = [ /dT JF (‘ﬂ_lﬂ,l)+47r/ dr' J(7') 6(F — F')

(5.39)
The second term just becomes 471'JYF'), yielding
. R 1 ~
V x B(F) = & {*V,/ dr’ J F) VF (ﬁ)] + to J(F’) (540)
47 v |F— 7
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— -

We can apply the product rule V - (£f3) = 3- Vf

.
[oreren () - /dfv-,<,f<;> o S

(5.41)

:% da’ n(r’) - fL? =0 (5.42)
s(V) |F— 7|

We used the divergence theorem to transform the first term into a surface integral,
and then we take the surface to infinity. Assuming the currents are localized, the
integrand vanishes on thgt surface, causing the first term to vanish. The second term
vanishes because 6;/ - J(F") = 0 under the steady-state assumption by the continuity
equation with 9p/0t = 0. Thus, we obtain, under the steady-state assumption,

3 to rewrite the first term:

B(P) = 1o J(F) (5.43)

This equation is the differential version of Ampere’s Law, which we will return to
shortly.
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Let's discuss some subtleties in the above derivation connected to the vanishing of the
V(V - &) term. There are two points to make:

>

Section 5.5.1

When we get to the definition of the vector potential /_\‘ we will be able to
interpret the vanishing of that term as implying V - A =0 for the form of the
vector potential implied by Equation 5.34. V - A will not vanish for any other
form of the vector potential that yields the same field. Just keep this point in
mind, we'll provide more explanation later.

We assumed that the currents are localized (confined to a finite volume) to
make the surface term vanish. This is not the minimal condition required. We
only need the integral to vanish. If we let the surface go off to infinity while
keeping the point 7 at which we want to know the field at finite distance from
the origin, then 1/|F — F/| — 1/r’. Thus, we can also make the integral vanish
by simply requiring that the net flux of jthrough a surface of radius r’
vanishes. Griffiths notes this subtlety in Footnote 14 in §5.3.2. It explains how
Ampere's Law works for an infinitely long wire: for any sphere at large radius, as
much current flows in as out of that sphere, so the integral vanishes.

Do we have to make this requirement? It may seem that we do not; we would
just get a nonstandard Ampere’'s Law if we did not. But we do have to make it
to be self-consistent with our steady-state assumption. If there were a net
current through some sphere, then the charge contained in that volume would
be changing with time, violating our steady-state assumption. This is the point
we made in connection to Equation 5.34.
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Divergence of the Magnetic Field

The vector identity v- (6 x &) = 0 combined with Equation 5.34 immediately implies

v

B(7) (5.44)
The magnetic field has no divergence. This immediately implies there are no magnetic
point charges: magnetic fields are sourced by currents only. It should be realized that
this apparent fact is really an assumption inherent in the Biot-Savart Law. If we had
added to the Biot-Savart Law a second term that looks like Coulomb’s Law, due to
magnetic monopoles, then the above divergence would have yielded that density of
magnetic charge on the right side. It is an empirical observation that there are no
magnetic monopoles, and hence we assume that magnetic fields are only sourced by
currents via the Biot-Savart Law. That magnetic fields are sourced by currents at all is
also an empirical observation; the Biot-Savart Law simplify codifies that observation.
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General Thoughts on the Curl and Divergence of the Electric and Magnetic
Field

Considering the corresponding expressions for electrostatics, we recognize that the
electric field has divergence equal to the charge density because of the empirical
observation of Coulomb’s Law describing the electric field. It has a vanishing curl
because of the empirical absence of a current that sources electric fields in the way
that electric currents source magnetic fields; if there were a Biot-Savart-like term that
added to Coulomb’s Law, then the electric field would have curl. We can in fact guess
that, if magnetic monopoles existed, moving magnetic monopoles would generate an
electric field in the same way that moving electric monopoles generate a magnetic
field.

The key point in all of the above is that the nature of the divergence and the curl of
the electric and magnetic fields reflect empirical observations about the way these
fields are generated. These are not derivable results: they are inherent in the formulae
we wrote down for the electric and magnetic fields, which themselves are based on
observations.

We will see later that we can replace the assumption of Coulomb’s Law and the
Biot-Savart Law with an assumption about a potential from which the electric and
magnetic fields can be derived. But, again, we can only make that assumption because
it yields the correct empirical relations, Coulomb’s Law and the Biot-Savart Law.
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Integral form of Ampere's Law

We obtained the differential version of Ampere's Law above by taking the curl of the
Biot-Savart Law for the magnetic field. We may obtain the integral form of Ampere's
Law from it. We begin by integrating over an open surface S with normal (7):

/dan(?) VXB(F) /dan J@ (5.45)

The left side can be transformed using Stokes’ Theorem into a line integral around the
edge of S, which we denote by the closed contour C(S), while the right side is just
total current passing through C(S), Leng:

7{ A7 B(F) = ptolones (5.46)
c(s)

yielding the integral version of Ampere’s Law.

As before, there are a number of examples in Griffiths that are at the level of Phlc, so
we do not spend time on them here.
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Magnetic Vector Potential
Form for the Magnetic Vector Potential

We saw (Equations 5.43 and 5.44) that the magnetic field has no divergence and has
curl. You know from vector calculus (Griffiths §1.6) that this implies the magnetic
field can be written purely as the curl of a vector potential. Equation 5.34 gave us its
form:

(5.47)

B =V xAn  An=Le [ ar ‘J—)

7

But this form, implied by the Biot-Savart Law, is not the only form. We had freedom
with the electrostatic potential to add an offset. Here, we can add any curl-less
function to A without affecting B. The form above corresponds to the additional
condition

A(R) =0 (5.48)

If one tries to test this requirement on the above form for /K one will find oneself
doing the same manipulations needed to derieve Ampere's Law, Equation 5.43. In
repeating those manipulations, which is possible for this form of A only, one sees that
V-A=0is the representation of the steady-state assumption and that the net
current through a surface of any radius vanishes (and also how the latter implies the
former). For a different choice of A (and thus of V - A), the mathematical
manlfestatlon of this physical requirement will be different. In fact, it must be,
because V- A =0 is unique to this form.
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Explicit Proof that V-A=0Can Always Be Obtained

It is interesting to prove “mechanically” that the choice V-Alis possible even if one,
for some reason, started out with a form that did not satisfy this condition. Suppose
one has a vector potential Ap that is not divergenceless. We need to add to it a
function that makes the result divergenceless. For reasons we will see below, let's add
a function VA(F):
A=Ay +VA (5.49)

Then

V- A=V A+ V2 (5.50)
If we require the left side to vanish, then we have a version of Poisson's Equation:

VA= -V - A (5.51)

One thus sees one of the motivations for the assumed form V.
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Let's choose boundary conditions that place the boundary at infinity with the field
falling off at infinity. For these boundary conditions, we know from Coulomb'’s Law
that the solution to Poisson’s Equation is

A7) = ﬁ /vdT'm (5.52)

|F— 7

The vector calculus identity ¥ x VA = 0 implies that V x A =V x Ag and thus the
magnetic field is the same for the two vector potentials (our second motivation for the
choice to add 6/\) We thus have an explicit formula for the term that has to be
added to A‘o so that the resulting form Alis divergenceless while leaving the magnetic
field unchanged.

The above explicit formula may not be valid if we assume different boundary

conditions, but we know Poisson’s Equation always has a solution, so we are
guaranteed that the desired function A(F) exists.
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Let us make a final point about how the above relates to the connection between

V A = 0 and the behavior of the currents at infinity. It is not true that starting with
V- Ao # 0 corresponds to a different physical assumption about the currents at
infinity: changing V - A has no effect on the fields and thus can have no effect on the
currents. Our standard formula for Ais only valid under the assumption V-A=0,
and so the relation between V - A and the assumption about how the currents behave
is only valid for that form. If one assumes a different form for A, one that has

V - A #0, then taking its divergence will not necessarily result in the particular
expressions that we encountered before in deriving the differential form of Ampere’'s
Law, so the interpretation of V- A =0 will be different, and the mathematical
manifestation of the currents vanishing at infinity will also change. One benefit of the
choice V - A = 0 is that this mathematical manifestation is simple.
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Alternate Proof of the Form for the Magnetic Vector Potential

We can arrive at Equation 5.47 via a slightly different path, which makes uses of
Ampere's Law and the same triple vector identity we used to prove Ampere’s Law,
V x(Vxa)=V(V-a)-Va

Ampere's Law: VX(VxA)=VxB=pJ (5.53)
use vector identity: V(V-A) = V2A=poJ (5.54)
set V-A=0: VA= —poJ (5.55)

Note that the vector components of A and J line up. Thus, the last equation is a
component-by-component Poisson’s Equation. Again, under the assumption that the
currents are localized and for appropriate boundary conditions (as we assumed in
providing the alternate version of the Biot-Savart Law that we previously used to
define A), we know the solution:

QA‘(F) = o J-’(F) Iocalizggjrrents A(j _ Ho / dr {rj
r

= (5.56)

This is just Equation 5.47 again. Essentially, we can think of the three components of
the current density as sourcing the three components of the vector potential in the
same way that the electric charge density sources the electric potential.
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The Vector Potential for Line and Surface Currents

We can consider the specific cases of line and surface current densities as volume
current densities that include delta functions specifying the localization to a line or
sheet. When one does the volume integral, the delta function reduces the
three-dimensional integral over the volume to one- or two-dimensional integrals over a
line or sheet, yielding:

A =22 [ ar f(ﬁ'3,| A=t [ g K@) (5.57)

47 |7 47 |F—F

Note that the units of the vector potential are unchanged: the change in the units of
the current densities are canceled by the change in the units of the measure of
integration.

Section 5.6.4 The Vector Potential for Line and Surface Currents Page 331



Section 5.6 Magnetostatics: Magnetic Vector Potential

Example 5.1: Spinning Sphere of Charge (Griffiths Example 5.11)

The calculation of the vector potential for a spinning spherical shell of charge is a
straightforward application of the definition of the vector potential. The only
complication is the vector arithmetic. So please take a look at Griffiths to get some
familiarity with handling the vectorial nature of the integrand.

Example 5.2: Solenoid (Griffiths Example 5.12)

The calculation of the vector potential for a solenoid, which is the equivalent of a
spinning cylinder of charge if one ignores the small axial current contribution, is more
interesting because one cannot do it by brute force application of the definition of A
Instead, one must use some intuition along with the combination of Stokes’ Theorem
and the relation between B and A:

7§ dZ-/T:/daﬁﬁx/T:/daﬁﬁ (5.58)
c(s) S S

The intuition part is to recognize that, because Bis along the z-axis inside the
solenoid and vanishing outside and because A ‘wraps around” B, it is natural to
assume A is along d) Then one can do the calculation in the same way as one applies
Ampere’s Law, except that instead of current through a surface (“enclosed current”),
we have enclosed magnetic flux, and, instead of a line integral of magnetic field
around the edge of the surface, we have a line integral of vector potential. Please
study the details in Griffiths, as a variant on this problem will be given in homework.
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Uniqueness Theorem for Magnetic Fields

This is Griffiths Problem 5.56.

Just as we did for electric fields, we can show that, given a current distribution and a
well-defined set of boundary conditions, the magnetic field obtained is unique. We
assume that a current distribution Jﬂ(F) in a volume V is specified. We will see later
how specific we must be about the boundary conditions.

First, we need something analogous to the Green's Identities we used in the case of
electrostatics. Using the vector identity V- (3x b) = b-V x 5— -V x b, letting &
and V be two arbitrary vector fields, and applying the identity with &= & and

b=V x ¥, we may write

/Vd‘r§-(ﬁ‘><(§><V)):/Vd‘r[(§><V)-(ﬁxﬁ)fﬁ-(ﬁx(ﬁxﬂ)] (5.59)

Since the expression on the left-hand side is a divergence, we may turn it into a
surface integral using the divergence theorem:

?{ daf- (@ x (¥ x 7)) :/ 47 [(V x 1) - (¥ x 7) - (F x (¥ x 7)] (560)
s(V) v
We will use this below.
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Now, suppose that we have two different magnetic fielc_{ configurations §1 #* §2,
derived from two different magnetic vector potentials A; # Ay, that both satisify
Ampere s Law for the same current distribution: V x 81 vV x By = po J. Let
A3 = A2 A1 and B3 82 — Bl We apply the above vector identity with
0i=v= A3:

?f da (A x (¥ x As)) = / o7 [(9 x As) - (V x As) — As - (V x (¥ x A3)]
S(V) v
(5.61)

We have that V x (V x A3) =V x B3 =V x By =V x By = po(J— J) =0 by
Ampere's Law and the assumption that both field configurations are sourced by the
same current distribution, so the second term on the right side vanishes. Exchanging
the two sides, plugglng in 83 Vv x A3, and using the cyclic property of the triple
scalar product, 5- (b x &) = &- (3% b) = b - (€ x 3), we have

o |12 - - — -
/ dT’B3‘ :7{ dafi- (A3 x Bs) :?f daBs - (7 x As3) (5.62)
% S(v) sV)

:?{ daﬁg-(égxﬁ):f?{ da Ay - (7 x Bs) (5.63)
SW) sv)
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From the above equation, we can see what (minimal) boundary condition information
we must have to obtain uniqueness of B: we must have that, at any given point on
the surface A B n X A or | nx B is specified. If this is true, then A} = A} — ﬁl =0
where A is speqfled B3 = B2 — Bl = 0 where B is specified
n><A3_n><(A2—A1)_OwherenXAlsspecn‘led and N x B3_n><(Bg—Bl)_O
where Ai x B is specified. Requiring one of these four conditions at every point on
S(V) ensures the integrand on the right side vanishes at every point on S(V) and thus
the right side vanishes. Since the integrand on the left side is nonnegative, it must
therefore vanish everywhere: §3 = 0. Hence, §1 = §2 and the fields are identical and
the field solution is unique.

Specifying A'is like a Dirichlet boundary condition where we specify the electrostatic
potential on the boundary, and specifying n x B = n X (? X ﬁ) is a lot like a
Neumann boundary condition where we specify the normal gradient of the
electrostatic potential n - vV (which is proportional to the normal component of the
electric field, n- l::) In fact, we will see via Ampere’s Law that this is equivalent to
specifying the surface current density flowing on the boundary. The other two types of
conditions, specifying n x A or specifying B, have no obvious analogue.
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Uniqueness of the Vector Potential?

We have already discussed how the A that generates a particular Bis unique up to the
gradient of an additional function if its divergence is left unspecified. The above
theorem for the uniqueness of the magnetic field therefore now tells us that
specification of jin the volume and of ﬁ é nx /_\‘ or i x B on the boundary gives a
vector potential that is unique up to the gradient of an additional function if its
divergence is unspecified. But what do we need to know to completely determine the
vector potential?

Obtaining a unique vector potential is the equivalent of being able to also know the A
function (up to an offset). We showed that X satisfies Poisson’s Equation with V - A
as the source, Equation 5.51. So, clearly, to obtain a unique E we would need to
specify V - A. We also would need appropriate boundary conditions for this Poisson
Equation. We may conclude from our proof of the uniquess of the scalar potential (up
to an offset) that we must either specify X or i - VA on the boundary to obtain a
unique X\ (again, up to an offset) and thus a unique A.

Which of the above conditions provide the necessary boundary condition on A7 Only

speC|f|cat|on of A on the boundary is certain to be sufficient. This gives VA and thus
fi- VA, a Neumann boundary condition for A and thus sufficient to render A unique.
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We can see specifying i x A would only be sufficient in special cases. Doing so
specifies A X VA, which gives the component of VA tangent to the boundary. If the
boundary is either at infinity or is a single, closed boundary, it seems likely one could
then construct A on the boundary by doing the line integral of i x VA, much like one
constructs the scalar potential from its gradient, the electric field. (It is ok that we
would only know the component of VA tangent to the boundary, as - VA will have
zero dot product with the line element dZ involved in the line integral.) As with the
scalar potential, the offset is not important. However, if the boundary is not simply
connected, then there is no way to connect A\ on different pieces of the boundary
without specifying its value on at least one point on each of those pieces. But we do
not speafy A anywhere j if we are given A X A and thus A x VA on the boundary. So
specifying X A (and V - A) is sufficient to make A unique only if the boundary is
simply connected.

We can be assured that specifying B or A x §Js entirely insufficient: because Bis
unaffected by A, providing information about B cannot give us any information about

A

Lastly, we remind tlle reader that, even if Alis specified on the boundary, one also
needs to know V - A in the volume. Providing the former without the latter is
equivalent to having a boundary condition but no differential equation to solve: the
source term in the latter is unspecified.
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The Magnetostatic Scalar Potential

If one considers current-free regions, then we have V x B =0 and the magnetic field
should be derivable from a scalar potential:

B(F) = —VU(P) (5.64)

One must take some care, though: in addition to being current-free, the region under
consideration must be simply connected. Griffiths Problem 5.29 shows a situation
where the current in a region may vanish but Vv x B # 0 because the region is not
simply connected and the enclosed volume outside the region contains current.

With the above assumptions, and noting V.B= 0, we can infer that U satisfies
Laplace’'s Equation:

V2U(F)=-V-B(A) =0 (5.65)
Our usual assumption of simple boundary conditions — everything falls off to zero at
infinity — yields a trivial result here, U(F) = 0, so we must assume less trivial

boundary conditions to obtain a nonzero U. We will return to the use of the
magnetostatic scalar potential in connection with magnetically polarizable materials.
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Boundary Conditions on Magnetic Field and Vector Potential

We will use techniques similar to those we used in determining the boundary
conditions on the electric field. We will not immediately apply these conditions to
boundary value problems for currents in vacuum because there are no nontrivial
boundary-value problems of this type. That is because there is no way to directly set
the vector potential, unlike for the electostatic potential. There is also no equivalent
to the perfect conductor, which yields equipotential surfaces in electrostatics. One
only has Neumann boundary conditions, with current densities on surfaces, from which
one can calculate the field directly via the Biot-Savart Law rather than solving
Laplace's or Poisson's Equation. We will find the boundary conditions more useful in
the context of magnetically polarizable materials.
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Boundary Conditions on the Magnetic Field

Recall that Gauss's Law, V.E= p/€o, implied that the normal component of the

electric field satisfied Equation 2.55

() [B) - B(7)] = = o()

Since V - B = 0, we can conclude by analogy that

A |Ba(7) — Bu(R)| =0

(5.66)

(5.67)

That is, the normal component of the magnetic field is continuous at any boundary.
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For the tangential component, we return to the derivation leading to Equation 2.57.
In that case, we considered a contour C that consisted of two legs C; and Cy parallel
to the interface and to each other and two legs normal to the interface whose length
would be shrunk to zero. We saw

Lo Bh-ARNE L A% L
fde- E(7) = —/ E\(F)- d + Ey(7) - di (5.68)
c CLi—A(R§ Ca, oA %
dso [Pz = 7
i [Ez(f) - El(F)] - di (5.69)
Ca,15

where the ends of the loop are near 7, and 7y, 1 is the normal to the surface (parallel
to the short legs of the loop), t is the normal to the loop area, =t x 7 is the unit
vector parallel to the long legs of the loop, and ds is a line element along 5. In the
electric field case, the left side of the above expression vanished. In the case of the
magnetic field, Ampere’'s Law tells us that it is the current enclosed flowing in the
direction t. Therefore, the magnetic field version of the above equation is:

Lo /CZ dst(7) - K(F) = /c:~ [§2(F) - §1(7)] -dl (5.70)

where C; — C> in the plane of the interface as dz — 0. We neglect any volume
current density passing through the area enclosed by the contour C because the
integral of that volume current density vanishes as dz — 0.
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Since the contour Cy is arbitrary, the integrands must be equal
[B2(7) = Bu(P)] - 3(7) = no E(F) - R(7) (5.71)
Next, we use £ = A X S
[Ba(P) = Bu(P)] - 5(7) = wo [A(7) x 5(7)| - R() (5.72)

Finally, using the cyclic nature of triple vector products ,
F-(bxc)=c-(dxb)=b-(Cx a):

[B2(7) — Bu(P)] - 5(7) = wo [K(P) x (7] - 5(7) (5.73)

Note that this condition holds for any s tangential to the interface. To give some
intuition, A x K has the magnitude of K (because # L K always) but points in a
direction perpendicular to K while still tangent to the interface. The sign is set by the
cross-product right-hand rule.
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We can combine the conditions on the normal and tangential components of B to
obtain one compact expression for the boundary condition on the magnetic field. By
the definition of the cross product, K x n is always perpendicular to n and thus has no
component along n. Therefore, the expression

Bo(F) — B1(F) = p1o K(7) x A(F) (5.74)

captures both boundary conditions: the projection of B normal to the interface (along
n) is continuous because the projection of the right side along that direction vanishes,
and the projection of B along any s parallel to the interface can be discontinuous by
the projection of po K x n along that direction. This is a very nice relation: given K,
it provides a way to calculate the change in the entire magnetic field across the
interface, not just the change of a component.
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We can rewrite the above in another way. Take the cross product of both sides with
n(F) from the left. The right side becomes a triple vector product, which we can

rewrite using the BAC — CAB rule, 5x (b x &) = b(3- &) — &&- b). The second term
has n - K which vanishes, while the first term has n- 7 = 1. Thus, we have

A7) x [Ba(F) = Ba(P)] = 1o K(P) (5.75)

The earlier form is more useful when Kis specified, and the second form would more
easily yield K if the fields are specified. Note, however, that this form does not
preserve the information about the normal component of B because the contribution
of that component to the left side vanishes.
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Boundary Conditions on the Vector Potential

As one might expect by analogy to the electrostatic case, the vector potential itself
has to be continuous across a boundary:

A (F) — Ay(F) = 0 (5.76)

This is seen easily:

» We have chosen the divergence of A to vanish, so the normal component of A
must be continuous, just as we found the normal component of B is continuous
for the same reason.

» The curl of A does not vanish, vV x A= B. This implies the line integral of /i
around the contour C used above is nonzero and equals ®scy = fs(c) dan- B,
the magnetic flux of B through the surface S(C) defined by C. But, as the area
of the contour is shrunk to zero, the magnetic flux vanishes via an argument
similar to the one we used to show that the flux of the electric field always goes
to zero as the area through which it is calculated goes to zero: while the field
can be quite singular (1/r?), there are always cancellations that cause the flux
to vanish. Therefore, the tangential component of A is also continuous.
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While the vector potential itself is continuous, its_)derivatives are not necessarily
continuous because its derivatives are related to B, which is not necessarily continuous.
Evaluating these discontinuities is a bit harder than in the case of the electric potential
because the derivatives are not related in a trivial component-by-component way to
the field. We need an expression involving second derivatives of A if we want to obtain
boundary conditions on the first derivatives of A. Let's use Equation 5.56:

V2A(F) = —po J(7) (5.77)

Consider a projection of this equation in Cartesian coordinates by taking the dot
product with a Cartesian unit vector on the left and then passing it through the
Laplacian, rewritten so the divergence is clear:

~ 77

Vv (y Zm) = —po%- J(P) (5.78)

We have used Cartesian coordinates rather than a coordinate system using A, t and s
because the latter vary in direction depending on where one is on the surface; their
derivatives do not vanish, so we would not have been able to pull them inside the
Laplacian as we did with X.
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Given the above, we now apply the same kind of geometry we used to derive the
boundary condition on the normal component of E. That yields

A [6 (? /Tg(f)) -V (9 Al(a)] = —po % K(F) (5.79)

Y [;A(f) s ﬁl(r)] (5.80)

where X - K is what is left of X - J as the Gaussian volume used in that proof shrinks to
zero thickness in the direction normal to the interface, just as p reduced to o in the
case of the electric field.

The above argument holds for the y and Z projections of A and K also, so we may
combine them to obtain

-V [Aa() = AR = —po R(7) (5.81)

Thus, we see that the normal derivative of each component of the vector potential has
a discontinuity set by the surface current density in the direction of that component of
the vector potential. This is a lot like the discontinuity in the normal component of
the electric potential being determined by the surface charge density at the boundary.
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We may derive, from the above, conditions in the normal and tangential directions by
recognizing that

(ﬁﬁ)ﬁ:o (ﬁﬁ)?:o (5.82)

These relations should be intuitively obvious: the direction of 1, 5, and ?change as
one moves transversely along the surface (along § or t), but they simply are not
defined off the surface and thus they can have no derivative in that direction. This
implies that the normal derivative of the normal component of A has no discontinuity
since there can be no surface current in that direction:

VA [A(7) - A@)} =0 (5.83)

It also implies that the normal gradient of the vector potential in a particular direction
parallel to the interface changes by the surface current density in that direction:

i V{5 [Aa() - AR } = —nos R() (5.84)
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Next, let’s consider the tangential derivatives of the vector potential. Here, we use the
vector identity

V x VA() =0 (5.85)
where again we consider each component of A as a scalar function and the above
equation holds for all three components. If we again project by Cartesian components;
e.g.

VxV(x-AR) =0 (5.86)

then we can apply the same type of argument as we applied for calculating the
boundary condition on the tangential components of E, which in this case yields

s [ﬁ (;-A‘z(f)) -V (y-ﬁl(r))] =0 (5.87)
Y [y-ﬁz(f)—;.ﬁlm]

(5.88)
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Since the argument again generalizes to any Cartesian component, we may combine
the three expressions to obtain

5V [A(f) - AR)] =0 (5.89)

for any S parallel to the interface: the tangential derivatives of A are continuous across
an interface.
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Magnetic Multipoles
Derivation of Magnetic Multipole Expansion

Since the vector potential is sourced by the current distribution in a manner similar to
the way the charge distribution sources the electric potential, it is natural to develop
the same multipole expansion. We follow Jackson for the sake of generality and
variety; you can of course read the derivation in Griffiths, too. We continue to make
the steady-state assumption, and now we also make the assumption the currents are
localized. We start with the equation for the vector potential in terms of the current
distribution:

J#
A=t [ ar 200 (5.90)
v |F—
We recall Equation 3.147:

Z o1 Py¢(cos ) (5.91)

‘r_r = >

where r< and r~ and the smaller and larger of r and r’.
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As with the multipole expansion for the electrostatic potential, we will take r > r’:

we want to know what the potential looks like far away from the current distribution.
Therefore, re =r’ and r~ = r:

A o T = r' ¢
AP = %/\jw G )Zz:; (r£+)1 Py(cos ) (5.92)

where cosy = 7- 7/ is the angle between the two vectors.

There is a common 1/r we can factor out, leaving

oo

A(F) = 57% g rie /V dr' J(7') () Py(cosn) (5.93)
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Now, consider the first term, which is just the volume integral of the current density.
Under the steady-state assumption, it is intuitively clear this |ntegra| must vanish. To
prove this explicitly, we first use the vector identity V - (fa3) = fV -5+ 3VF with

F=Jand f=r; any of the Cartesian coordinates:
3 9 3
v-(r,-J):r,-V~J+J-vr,»:o+ZJj8—rr,-:ZJ,-&,,-:J,- (5.94)
j=1 j j=1
where the first term vanishes because of the steady-state assumption and so continuity

implies V - J=0. With this, we can compute the integral using the divergence
theorem:

/vdf’ J(7) = /Vdr’ v [r,' “(F’)] = %S(V) da’ A(F') - [r/f(r*’)] =0 (5.95)

where the surface integral in the last term vanishes because the current distribution is
localized.
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So, we are left with

A7)

47rrzr€/d7— J(# )ZPg(cosv)

(5.96)

This is the multipole expansion of the vector potential of the current distribution. As
with the multipole expansion of the electric potential, one can see that the successive
terms fall off as successively higher powers of 1/r.

It makes sense that there is no monopole term because V- B = 0: if there were a way
to make a current distribution look like a monopole from far away, then one would

have a field configuration with a nonzero Gauss's law integral of magnetic flux through
a closed surface containing the current distribution, which is not allowed by V-B=0.

Section 5.8.1

Derivation of Magnetic Multipole Expansion
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The Magnetic Dipole Term

Let's consider the first nonzero term in more detail, which we subscript_‘with an
because it will look like the electric dipole potential, and let's expand J in terms of its
components so it is easier to work with:

B, 1 . 1 o
Ao(F) = L= [ dr' (7Y Po(cosy) = Ko = [ dr J(F) PP (5.97)
4 r2 i 4 r3 \
Mo 1 > ~ ’ —/ ’
e Z T g dr’ Ji(F') rr; (5.98)
ij=1

We must first prove an identity. We start with the same vector identity as before, now
with f =rirj and 3= J:

§~(r,-er—§:r,-rjﬁ~J_)+J_‘~§(r,-rj):0+rjf~§r;+r;J~§rj (5.99)
=rJi+rJ; (5.100)

where we have again used V-J=0. We apply the same technique of integrating over
volume and turning the left side into a surface term that vanishes, so we are left with

[ [0y + 5 0] = o (5.101)
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We can use this identity to rewrite the A, term as:

Ax(7) 47”3 Z r,r,/ dr’ = Ui )rj’—Jj(F’)r,.’] (5.102)

ij=1

where we split out half of the J; r/ factor and used the identity to exchange the
indices. You have learned in Ph106a and hopefully elsewhere that the cross-product
can be written

3 1 for cyclic index permutations
(&% b)k = Z €kmn am bn  with  €xmp = —1 for anticyclic index permutations
m,n=1 0 when any two indices are identical
(5.103)

where €jmp, is the Levi-Civita symbol. Multiplying this definition by ¢;; and summing
over k gives

3 3

Zeuk ><_‘ Z e,-jkek,,,,,amb,,: Z ek,-_,-ekm,,amb,, (5.104)

k,m,n=1 k,m,n=1
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There is an identity for the Levi-Civita symbol

3
E €kij €kmn = Oim Ojn — Oin Ojm
k=1

(this is the identity that produces the BAC — CAB rule,
Fx (bx & =b(3- &) — &a&- b)) which lets us rewrite the above as
3 3
Ze,'jk(3>< E)k = Z am bn (5im 6j,, — (5,',, (Sjm) = a; bj — aj b,'
= m,n=1

This is exactly the expression we have inside the integral above.

Using the above identity, we may rewrite the /Tg term as

/_\‘2(17)—47”’3 Z r,g/d-r ~€ijk J(r)><r]

i,j,k=1

:_%%;ZE{FXAdT’ [F’xJ(F’)]}i
:_&ilm/ dr' [7 x J(7)]
%

Section 5.8.2 The Magnetic Dipole Term
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If we define the magnetization density ./\Z(F) and the magnetic dipole moment ni by

1 - 7 = I A (2
M) = 5 7x 7 and m:/vdr (7' (5.110)

then the » term is the magnetic dipole vector potential

- Ho M X F
Ar(r) = —
2(7) 47 3

(5.111)

Interestingly, this form has the same radial dependence as that of the electrostatic
potential of a dipole, but the cross-product in the numerator differs from the dot
product in the numerator of the electric dipole potential. However, because the
magnetic field is obtained from the curl of the vector potential, while the electric field
is obtained from the gradient of the electric potential, we will see that the two forms
result in the same field configuration (up to normalization)!
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Specialization of Magnetic Dipole Potential to a Current Loop

Now, let us consider a current loop. The only assumption we make is that the current
throughout the loop is the same so that we can extract it from the integral. The
volume integral reduces to a line integral over the loop contour:

. 11 S 1 P! x di’ (7
Ag(l"):f&—ff'xf?' xIdZ’(F’):f&—FXI?{ P dlr)  (5.119)
47132 c 47 r3 c 2

The integral is now just a geometric quantity that has units of area. Separating out
the magnetic moment, we have

+loop Mo rﬁ/o(,p X r R _ 7! x d[/(F/)
AYP(F) = 5 Mo =1 ) (5.113)

Section 5.8.3 Specialization of Magnetic Dipole Potential to a Current Loop Page 360



Section 5.8 Magnetostatics: Magnetic Multipoles

For the case of a loop confined to a plane that contains the origin, the quantity

P! x d[’/2 is the differential area element for the loop: it is the area of the triangle
formed by 7/, the vector from the origin to a point on the loop, and d[’, the line
element tangent to the loop at 7’ and in the direction of the current, and this cross
product has the standard right-hand-rule orientation. The integral thus calculates the
area of the loop! Thus, for a planar loop, the above reduces to

o 1
Ay = —1° ~ Fx1fa (5.114)

where a is the loop area and 7 is the normal to the loop with orientation defined by
the current via the right-hand rule. Therefore, for this case, we have

A flat loo Ho ’ﬁflat loop X r — —~
A, P(F) = P S Miflat loop = 1N a (5.115)
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Field of a Magnetic Dipole

If we let M = mZ, then the dipole vector potential is

Lo mMsinf ~

Ay(F) = = d=Asd (5.116)

47 r2

This form offers some intuition about how A}(F) behaves. In general, A} “circulates”
around i using the right-hand rule in the same way that A “circulates” around B or
B “circulates” around J’ using the right-hand rule. Since we are considering the
distribution from far enough away that it is indistinguishable from a simple circular
current loop in the xy-plane, the direction of A2 just results from the fact that Ais
the convolution of J with a scalar function: the direction of A always follows that of J.

If we take the curl of this in spherical coordinates, we obtain

1o} fo m cos@
B>, = 6 A =2 — 5.117
2.(F) = rsing 90 g 50 A2.0) = 47 3 ( )
10 o msin@

B =—-—(rA = — 5.118

2.0(7) r Or (rz,) 47 13 ( )

By 4(F) =0 (5.119)
=3 Ho M

or By(F) = (2r cos @ + 0 sin 9) (5.120)
4mr

which matches the form of Equation 3.237 for an electric dipole.
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Let's derive the more generic result by releasing the condition i = mZz:

3 3
. n 0 myr,
By(r) = Z €t —— ﬁ > fijkﬂ'(;ékm( r3m) (5.121)
J.k=1 ij,k,t,m=1 J
_ P Z cikekemP [m“sf"’ _ 3 mefm (2r-)] (5.122)
dm o ik Ekcbm i r3 2 5 J '

We use the cyclicity of the Levi-Civita symbol in its indices and the identities
Zi:l €kij€kem = 0i¢djm — dimdjp and E? k=1 Ejki€jke = 28jp to rewrite the above in a
form identical to that of the electric dipole, Equation 3.240:

3
, | 2m;
BZ(F):%Z” 3 L= m,ZrJrjfr,ijrj (5.123)
i=1
3 S S
Ho N~ 31 (M- 7)—mj(7-F)
= - 5.124
47r§r' rs ( )
= |By(R) = Ho 3(m-1)F—m (5.125)
47 r3
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Force on a Magnetic Dipole (a la Jackson)

As we did for electric multipoles, let's consider the problem of the force and torque on
a magnetic dipole. However, because there is no magnetic potential energy function,
we must begin from the Lorentz Force on the current distribution, which is given by

Frog = /v dr J(7) x B(P) (5.126)

As we did in the case of the force on an electric multipole, we Taylor expand é(F’)
Again, as we did for electrostatics, we place the multipole at the origin and will
generalize the result later. The expansion is

3 8Bk

By(F) = Bk(F=0) + Z

(5.127)
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Thus, the Lorentz Force is

Frmag = Z €ijk r,/dTJ(F)Bk r) (5.128)

i, k=1
)/ drJirm+-

We have done both these integrals before. The first one contains the monopole of the
current distribution, which vanishes as in Equation 5.95. Since we will see that the
second term is in general nonzero and is proportional to the magnetic dipole moment,
let’s call it Fgj, and focus on it, dropping the higher-order terms. It is very similar in
structure to what we encountered in calculating the dipole term in Equation 5.98.
Applying the same tricks we used there to obtain Equation 5.107, we may rewrite it as

(5.129)

Z €Uk?i[Bk /dTJ r)+z(88k

ij k=1

3
= . { 0B 1 - i
Fap= > euh ( o 5) AdTEEJmn [J(r") x r]n (5.130)
1 m

isJ,kym,n=

3

. [ 0Bk
= — Z €ijk€jmn Ti 78[‘"1

ij k,m,n=1

6) mn with = %/Vdr [Fx f(r*)]
(5.131)
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We use the vector identity Equation 5.105, 213‘:1 €jik€jmn = OimOkn — Oindkm, and also
use €k = —¢€jik to adjust the indices to match this expression, yielding

3
R _ (0B
Fip="_ (5imOkn — SinSkm) Fi ( . q) mn (5.132)
i.k,m,n=1 Im 10
3
B B
—ZEKB K >mk—(a k >m,} (5.133)
Pt or; G or, G
- V(m-B)‘O— m(V-B)‘a (5.134)

The second term vanishes. Generalizing the first term to a dipole at an arbitrary
position, we have

Fuip =V [rﬁ~ é(?)] with = %/v dr [F/ x J F’)] (5.135)

The force causes the magnetic dipole to move to a local maximum of i - B. Note how
it is identical to the force on an electric dipole in an electric field, Equation 3.250.
We'll address below the implication that the magnetic field can do work on the dipole.
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Torque on a Magnetic Dipole (a la Jackson)

We may obtain from the Lorentz Force Law on a current distribution the
corresponding torque:

Nimag = /vdTFx 77 x B(7] (5.136)

where we have just added up the torque volume element by volume element in the
same way we summed the force. When we Taylor expand the magnetic field, we have

Nimsg = /vdrfx [77) x B@©)] + - (5.137)

Because of the ¥ X inside the integrand, the zeroth-order term no longer vanishes and
so we do not need to consider the next order term in the Taylor expansion. We will
write the zeroth-order term as N, below for reasons that will become clear.
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To get the above expression into a familiar form, we need to repeat the same kinds of
vector arithmetic tricks we have used before. First, we apply the BAC — CAB rule,
Fx (bx & =b(3-&) — &a- b), which we can do without having to write things in
terms of indices because there are no derivatives floating around:

Ndip:/ o7 7x [J(7) x BO)] :/ o7 J(7) [7- B(0)] - /dTB( 0) [7- J(7)]
v v (5.138)

We can make the second term vanish by the same kinds of tricks we used earlier
during the vector potential multipole expansion:

7o(F) = [rﬁr] JR) = % [%2] JP) = % {ﬁ- [rzf(?)] - r2§-f(?)} (5.139)

In this expression, the second term vanishes under the steady-state assumption, and
the first term can be turned into a surface integral with integrand r2J(F) Since we
are consndfrmg a localized current distribution, the surface can be taken far enough
out that J(F) vanishes on the surface.
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The first term looks again like the expression we have encountered in Equation 5.98
which becomes apparent when we write it out in component form

3

Ny = 3 7 B(0) /v dr 5(7) 1

(5.140)
ij=1

We again apply the same tricks used to arrive at Equation 5.107:

_ 1 .. ~
Ny Z 7 B;(9) / e [J7) x 7] =~ BO) x / drix J(7)  (5.141)
fap) k 2 v
L1 I
— _B@) xm  with A= / o7 [7x 7] (5.142)
2Jv
Generalizing to a multipole distribution centered on an arbitrary point, the
zeroth-order term in the torque is (and hence the g, subscript)
yi = =3 . = 1 1| = 17 2!
Nop = x B(F)  with  m=_ [ dr [r x J(7 )] (5.143)
v

The magnetic dipole feels a torque that tends to align it with the magnetic field (the

torque vanishes when i is aligned with l§) again like the situation for an electric
dipole in an electric field.
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Potential Energy of a Magnetic Dipole

We can do the line integral of the force or the angular integral of the torque to
determine that we can write a potential energy

U(F) = — - B(P) (5.144)

This form for the potential energy expresses two features of magnetic dipoles: they like
to be aligned with the local magnetic field, and they seek the region of largest i - B.

The thing that should be concerning about this expression is that we argued earlier
that magnetic fields can do no work, yet here we have the possibility of such work.
That is because we are assuming i is held fixed. For a finite current loop, there must
be a battery doing work to keep the current fixed as m moves or turns relative to B:
such motion yields changing magnetic fields, which, as you know from Phlc, generate
voltages around the loop in which the current for ni flows. The battery will be the
thing doing the work to counter these voltages and keep the current flowing. If i is a
property of a fundamental particle, then there is no explicit battery: it is simply an
empirical fact that || cannot change, and one that we must incorporate as a
postulate.
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Paramagnetism and Diamagnetism

See Griffiths Sections 6.1.1 and 6.1.3 and Purcell Sections 11.1 and 11.5 for
discussions of paramagnetism and diamagnetism. This will be discussed in class
briefly, but there is little to add to their discussions.

Page 373



Section 6.2 Magnetostatics in Matter: The Field of a Magnetized Object

The Field of a Magnetized Object

Bound Currents

Suppose we have an object with a position-dependent macroscopic density of
magnetic moments, or macroscopic magnetization density M(F), where the magnetic
moment of an infinitesimal volume dr is

dm = M(F)dr (6.1)

M is not to be confused with the magnetization density M(F); the latter can be for
some arbitrary current distribution, while the former is specifically to be considered to
be a density of magnetic dipole moments. M(F) should give M(F) for this special case
of pure dipoles. We will, confusingly, drop “macroscopic” from here on out. Assuming
we are looking at the dipoles from a macroscopic enough scale that the dipole
approximation is valid, we may use our expression for the vector potential of a
magnetic dipole, Equation 5.111, to calculate the contribution to the vector potential
at 7 due to the above infinitesimal volume at 7’:

A7) = Pe di(F') x (F=7') _ po dr’ M(F') x (F—F") (6.2)

ar  [F—7P 4= F— 73
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Integrating over the volume containing the magnetization density, we have

AR = e /V dr' M(F) x (F =) (6.3)

47 |F— 73
Now, we use (F— 7’)/|F— 7|3 = V|F— 7/|~! (note that the gradient is with

respect to 7/, not F!), which allows us to apply the product rule for curl,
V X (fd) =fV x3d—3x Vf:

N . - 1
A(R) = &/ dr' M(F') x Vo (ﬁ> (6:4)
41 Jy |F—F|

o x N7 5 [ M@
_ Mo dr’”ﬂxif,(r) _ &/vdf’v,-, X <|H(r3|> (6.5)

C4rmy |F— 7| 4 F—r
= Bo Wi@@m+&/ g M) XA o
47 Jy |F— 7| ar Jsw) |F— 7|

where, in the last step, we have used a vector identity that we will prove on the
following slide.
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Let's prove the vector identity we just used, which is a corollary of the divergence
theorem for the curl. Let 4(F) be an arbitrary vector field and let ¢ be an arbitrary
constant vector. Then the divergence theorem tells us

/dTﬁ.[s(axa]:j[ da A7) - [3(7) x €] (6.7)
v S(V)

Now, apply the cyclicity of triple scalar products (along with the fact that ¢ is
constant and can thus it can be moved past V) and bring ¢ outside the integrals
(since it is a constant vector):

5./ o7 [V x a9 = 5.75 da [A(F) x 5(7)] (6.8)
v S(V)
Since € is arbitrary, the expression must hold for any ¢ and thus:
/ dr [ﬁ x a“(F’)] :?{ da [A(F) x &(7)] (6.9)
v S(V)

which is what we wanted to prove.
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Making some definitions, we recognize that the vector potential can be considered to
be sourced by a bound volume current density J,(F) and a bound surface current

density Ky(F):

() =V x Ni(R)  Ru(P) = Fi(7) x () (6.10)
v o [, Jo(F) | o » Ro(7)
A0 =32 [ T o o 1)

The way in which these current densities source A is identical to the way in which free
current densities do. Moreover, we can see the clear analogy to bound volume and
surface charges in the case of polarized materials.

Griffiths Section 6.2.2 gives a nice discussion of the physical interpretation of bound
currrents that will be presented in class, but there is not much to add here.

Section 6.2.1 Bound Currents Page 377



Section 6.2 Magnetostatics in Matter: The Field of a Magnetized Object

Example 6.1: Uniformly Magnetized Sphere

Center the sphere of radius R at the origin. Let M = MZ. Then

WA=V XMzZ=0 Ky (A)=MEZxA=MZxF=Msin0¢ (6.12)
We need to calculate
N 27 T M si 0//\
AF) = RQ/ dqs’/ do’ sing’ M SN0 ¢ (6.13)
4 0 0 |F— 7]
1?2/27r dqﬁ’/ﬂ do’ sing’ M0 (EXsng +ycosdl) gy
47'(' 0 0 |r—r |

(The R? out front is because an area integral, not just a solid angle integral, needs to
be done.) This is done in Griffiths Example 5.11 via explicit integration. For the sake
of variety, let's use a different technique. We use Equation 3.167, the Spherical
Harmonic Addition Theorem Corollary, which expands |F— 7’| =1 in terms of spherical
harmonics, recognizing |F’| = R because the integral is over the sphere of radius R:

1 [eS) 4 1 ¢
=42 N sy Yl V(@) (619)
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Let's consider the X piece of the above angular integral; the other term will be similar
in spirit. We will write the numerator in terms of spherical harmonics and use the
expansion. We abbreviate [77 d¢’ [7df’ sin@’ = [ dQ’ and recall

Yo,-m= (—l)mYZ’im. Applying these facts yields

/dQ' sinf’ —sm¢) (6.16)

7=l
)[BT Y107, 0) + Y1, (0", 9") , 5 ‘
/dQ \/; 210 Zo Z 244_1 £+1 ng(G ¢ )Ylm(9»¢)

The integral over Q' gives 0¢,16m,1 and 0 16m,—1, eliminating the sum and yielding

0’ (—sing’) 8w 1 rt
gy SN0 (Zsing’) < [vi1(0 Yi_1(6 6.17
/ TR LSRR IOt L
= 74—71-% sin @ sin ¢ (6.18)
3 rs

where the 1/3 came from 1/(2¢ + 1). We get back the same type of angular
dependence, but with the 1/|F— 7’| turned into the prefactor shown, which has the
correct dimensions.
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We can repeat the same kind of manipulation for the y term, yielding

4

0 ! 4
/dQ' sm‘ims;(f)) _ T r—j sin 6 cos ¢ (6.19)
F—r| 3 rg
Therefore,
A’(F) = PRy ?ﬂ— é sinf [—X sin¢ + y cos ¢] = “O .‘5\’21\/1—7T —g sind ¢ (6.20)

Recall that |F/| = R because the surface integral was over the sphere of radius R, so
r~ (r<) is replaced by R in the first (second) expression above.

Either way you do it, the result is

A(r<R.0.9)="2Mrsin0g  Ar=R.0.0)= " (4{ R*M ) 195 (6.01)
™

Note that A(F) is continuous at r = R, as we expect.
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Evaluating the curl of the first term to obtain the magnetic field, we have inside the
sphere

_ . 1 " 2
B(r<R)=V x A(r<R)= EMOM[Z’FCOSG—GsinG] =SuM (622

which is a uniform field pointing in the same direction as the magnetization.

For r > R, we have

A(r>R) = = = R*M (6.23)

which is the vector potential (thus yielding the field of) a pure dipole with magnetic

moment given by integrating the uniform magnetization density over the sphere. This
form is exact for all r > R.
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Let's compare to the case of a uniformly polarized dielectric sphere:

_ 1 = — 2 .
r<R E(F)=— P B(F)==poM (6.24)
3¢eo 3
1 g7 - o MXT
>R %4 = — A = — 6.25
r= () e, r? (") 47 r? ( )
L, 4Am 5= L AT 3.~
p:?RP m:?RM (6.26)

Inside the sphere, the difference is a factor of —2 and the exchange of 1/¢, for po.
Outside the sphere, the two potentials result in fields identical up to the replacement
of P by M and again 1/€, by po. The difference in the r < R expressions reflects the
fact that the magnetic field of the bound surface current (i.e., of M) is aligned with M
while the electric field of the surface bound charge density (i.e., of ﬁ) is opposite to

P. This sign difference is a generic phenomenon, resulting in the very different
behavior of electrostatic and magnetostatic fields in matter.
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The Auxiliary Field H and Magnetic Permeability
Definition of the Auxiliary Field
We saw that A is sourced by the bound current density fb =V x M in the same way

it would be sourced by a free current density Jr. Therefore, Ampere's Law is satisfied
with the sum of the two currents:

ol

1o = = oL
—VxB=Ji+l=J+V x M (6.27)

Mo
If we want to write an Ampere’s Law in terms of the free currents only, in the same
way that we wanted to write Gauss's Law in terms of the free charges only, then we
can define the auxiliary field

B
Ho

H -M (6.28)

In contrast to electrostatics, where the displacement field was the sum of the electric
field and the polarization density, here the auxiliary field is the difference of the
magnetic field and the magnetization density. The sign flip comes from the differing
signs in the_definition of the bound charge and current densities: p, = —V - P while
Jb =V x M which itself comes from the commutative vs. anticommutative natures
of the dot and cross product.
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With this definition of Fi, we then have
- — 1 - _ - — - - — -
VxH=—VxB-VxM=Ji+J,—Jp=J; (6.29)
Ho

Therefore, we have a modified Ampere's Law

—

VxA=Ji }{ di- H(7) =/ dai(7) - JH(F) = lronc | (6.30)
c S(C)

Thus, as intended, we have an Ampere's Law in terms of the free currents only, which
(partially) source H. The fact that H satisfies Ampere's Law in the free current leads
some to use the name applied field for it. That may be misleading, though, because
the free current does not tell one everything one must know to determine H (in the

same way that ps does not completely determine the displacement field 5)

To fully specify H, we need to know its divergence, which is given by applying
V-B=0:

V-H=-V.-M (6.31)
This nonvanishing of V-His analogous to the nonvanishing of V x D in electrostatics.

There is an example of how to calculate A using the above Ampere’s Law in Griffiths
Example 6.2.

Section 6.3.1 Definition of the Auxiliary Field Page 384



Section 6.3 Magnetostatics in Matter: The Auxiliary Field A and Magnetic Permeability

What Sources H? When Does It Vanish?

Considering the uniformly magnetized sphere example we just looked at, we see

A(r<R) =

A(r>R) =

B(r<R) - 2. _ 1

=2 _ M= M-M=-M (6.32)
Lo 3 3

B(r > R) field of the magnetic dipole m = Tﬂ R3M

(6.33)
Mo Mo

This example highlights the importance of the nonvanishing of V - H. There is no free
current in this problem, so one might be inclined to think H vanishes by analogy to
the fact B would vanish if there were no total current. But the nonzero nature of

V - H means that H has another sourcing term that is not captured by Ampere's Law
alone. In this case, this sourcing term manifests as a discontinuity of the normal
component of M at r = R. This is analogous to the way that, even if there is no free
charge, there may be a dlsplacement field D, sourced by VvV xP and/or a discontinuity

in the tangential component of B. An example was the spherical cavity in a dielectric
with uniform field applied, Example 4.6. To have H vanish identically, one needs to
have V- M = 0 and also trivial boundary conditions on M (no change in - M).
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This all makes sense given the Helmholtz theorem: since V- H does not vanish, His
not just the curl of a vector potential, but must be the sum of the gradient of a scalar
potential and the curl of a vector potential. Ampere’ s Law for H tells us that the free
current density sources the vector potential, while —V - M sources the scalar potential.
We will see later that the latter point allows us to use our electrostatic boundary value
problem techniques.

In particular, in the example of the uniformly magnetized sphere, we see that His
identical in form to E from the uniformly polarized sphere up to the replacement
P/eo — I\/I so the scalar potential that yields M will have the same form, up to this
replacement, as the scalar potential that yields E. we'll pursue this analogy in detail
when we discuss boundary value problems for magnetostatic systems.

We can make the same point about ps not being the only source of D; when V x P is
nonzero, then D receives an additional sourcing term. It was not convenient to make
this point when we discussed D initially because we had not yet learned about vector
potentials and how to discuss sourcing of D by a vector field, V x P. But now we do,
and so it should be clear that D received a contribution that is sourced by V x Pin
the same way that H receives a contribution that is sourced by V x H=1J.

In particular, in Example 4.5, the capacitor with two side-by-side dielectrics, we saw

such a situation, manifested by the discontinuity in the tangential component of P at
the interface between the two dielectrics.
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Who Cares About H?
Is H any more useful than D was?

The thing that limits the utility of D is that, in practice, one rarely controls free
charge, the most obvious source for D. In practice, one sets potentials using batteries
or other voltage sources. Potentials specify E, not D. Consider the example of the
parallel-plate capacitor with S|de-by side dielectrics: o ended being an output of the
calculation after calculating E rather than an input that yielded D.

On the other hand, H is sourced by the free currents, which is the thing one explicitly
controls in the lab. For that reason alone, we expect H is of greater utility than D.
We will see this more clearly when we consider specific types of permeable materials.

The other reason we will find H more useful is that, in reality, we frequently come
across ferromagnets, where M is provided and thus we are given the V M source for
A, but we rarely encounter ferroelectrics, where P and thus the V x P source for D
are provided. We would find D useful as a calculation tool if we were given a system
in which ¥V x P were nonzero or, more likely, P were tangent to boundaLies between a
ferroelectric and vacuum or between different ferroelectrics. Then V x P and any
discontinuity in A x P would source D in the same way that J and a boundary K
source B.
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Boundary Conditions on H

From the boungary conditions on B at an interface, we can derive boundary
conditions on H. The continuity of the normal component of the magnetic field
(Equation 5.67) along with Equation 6.28 implies

A7) - [FaP) = Fa(P)] = =) - [Wa(7) — W (P)] (6.34)

Applying the same arguments using Ampere's Law for H as we did using Ampere's
Law for B, we can also conclude the analogy of Equation 5.73:

[Fa() = Fu(P)] - 3(7) = [Re(7) < (7)) - 3(P) (6.35)

where Kf is the free surface current density at the interface.
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Recall that we found alternative forms of the corresponding boundary conditions for
B, Equations 5.74 and 5.75:

Bo(F) — Bi(F) = po K(7) x A(F)
A7) x [Bal) = Ba(P)] = 1o K(P)
There is no trivial analogue of the first one because it relied on the normal component
of B being continuous. However, we can obtain the anal_ggue of the second equation,

though we have to do it in a different way because, for B, we used the first equation
above to obtain the second one.
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We start by using § =t x i and then applying the cyclicity of the triple scalar product
on both sides:

[Fo = Fu] - [Ex ] = [ x 3] Kr (6.36)
?- (ﬁX |:f:i2 — ﬁ1]>

The same equation holds trivially with t replaced by n: the left side vanishes because

n is perpendicular to any cross product involving 1 and the right S|de vanishes because
Kf is always perpendicular to A. This, combined with the fact that % in the above can
be any vector in the plane of the boundary, implies the more general statement

—

Tt Kr (6.37)

A7) x [Fa(7) — Ay ()] = Re(7) (6.38)

which is the analogue of the second equation on the previous slide._But note that this
equation provides no information about the normal component of H because it is
related to the normal component of M.
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Magnetic Permeability in Linear Materials

Many magnetic materials we will consider have a linear relationship between the field
and the magnetization. The magnetic susceptibility of a material is defined to be the
constant of proportionality between M and A:

M = xmH (6.39)

(One can see why H is sometimes called the applied field!) Since B = o (I:i + M)

we have
é:uo<ﬁ+A7l):po(l+Xm)ﬁEpﬁ (6.40)

where we have defined the magnetic permeability i = po(1 + xm). The quantity

wr =1+ xm is the relative permeability. The definition of x, and p follows a
different convention than the definition of x. and €. This is for the reason we
discussed above: we experimentally control the free current and thus H, whereas in
electrostatics we control the voltages and thus E. We define the permittivity and the
permeability to be the constant of proportionality relating the thing we do control to
the thing we do not control.
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Paramagnetic materials have xm > 0 because the magnetization is in the same
direction as the field and so the field due to the free currents is added to by the field
from the magnetization.

Diamagnetic materials have xm < 0 because the magnetization is in the direction
opposite the field and so the field due to the free currents is partially canceled by the
field from the magnetization.

For electrostatics in matter, we were concerned entirely with dielectric materials:
because every atom has some polarizability, every material is dielectric to some extent.
In that case, the “di” prefix went with xe > 0 (in contrast to xm < O here) because of
the different convention for the relation between E and D.

Diamagnetic materials exist via the same kind of classical argument, now involving the
response of currents in materials to applied fields.

The analogous paraelectric materials (xe < 0) do not exist for the most part — it is
hard to understand how one can get an electrically polarizable material to have xe < 0.
Metals can have negative permittivity at high frequencies (optical), but not DC.

Paramagnetic materials exist only because of quantum mechanics — the existence of
magnetic moments not caused by an applied field. There are no such
quantum-mechanics-caused electric dipole moments, mainly because such moments
violate time-reversal symmetry while magnetic moments do not. They work differently
because the “current” sourcing a magnetic dipole moment reverses sign under time
reversal while the charges sourcing an electric dipole moment do not.
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Boundary Conditions for Linear Magnetic Materials

With the linear relationship between H IW and é we can rewrite the boundary
conditions we derived earlier in a somewhat simpler form.

The continuity of the normal component of B implies

A7) - 1A (P) — 2 Fa(P)] = 0 (6.41)
) [ W ()~ L2 )] =0 (6.42)
Xm,l Xm,2
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We saw earlier that the tangential component of H changes by the free surface current
density (Equations 6.35 and 6.38). That implies

[W—W’ 57 = [Re(@) x (7)) -7 (6.43)
M2 H1
or | A(F) x B _ Bu(r) = K¢(P) (6.44)
M2 H1
and
[Mzm Ml(”] () = [Re(7) x (7] - 509 (6.45)
Xm,2 Xm,1
or |(7) x [MQ(F’ MO | _ g.# (6.46)
Xm,2 Xm,1

Vanishing of K¢ will of course simplify these expressions, yielding the continuity of the
tangential component of B/u and I\/I/Xm
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Example 6.2: Magnetizable Rod with Uniform Current

Let's consider a rod of radius R whose axis is in the z direction and which carries a
current I distributed uniformly across its cross section. Assume the material is linear
with magnetic susceptibility xm. Let's find H, M, and B.

Let's first see how far we can get without using xm. Ampere's Law for A tells us

fﬁ-di:/ dan-Js (6.47)
c S(C)

This system has azimuthal symmetry as well as translational symmetry in z, so we can
guess A= H(s) where s is the radial coordinate in cyllndncal coordinates. By the
right-hand rule and the z translational symmetry, we expect A= H(s)¢ This
eliminates any concern about V- M or n M: we know M = XmH o H, therefore we
know, for the assumed forl‘n of H, V - M = 0 inside the cylinder and n'- M = 0 at the
surface of the cylinder. (M = 0 outside the cylinder.) Adding in that we know

J; = Z1/7 R?, Ampere’s Law in J? and H tells us

)
—

s<R: 27rsH(s):7r527rR2 = H(s):27rsR—$ (6.48)
I - I ~
s>R: 2nsH(s)=mR? —; <  H(s)= é (6.49)
™ R? 27s
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If we do not know xm, we do not know M inside the materiaJ and so we cannot
calculate B for s < R. For s > R, we have vacuum and so M =0 and B = p, H:

B(s > R) = po A(s > R) = :WIS 3 (6.50)

Note that B(s > R) is unaffected by the presence of the magnetizable material. We
will see why below.

Next, if we use the linearity of the material with susceptibility xm,, we have

. - I 2 p—pe I %~
M(s < R) = H(s < R) = — ¢ = — 6.51
(s<R)=xmH(s <R) Xm27rs R2¢ fo 275 R? ( )
and therefore
- - pl s2 ~
Bls<R)=pH(s<R) =15 (6.52)
27s R?

All three fields are azimuthal inside and outside R. For paramagnetic materials,
Xm >0 (1> po), so M is parallel to H and |B| > ,uo|H| inside R. For diamagnetic
materials, Xm < 0 (1 < o), so M is antiparallel to A and |B| < uo|H| inside R.
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Let's check the boundary conditions. All the fields are tangential at the boundary, so
the normal conditions — continuity of the normal components of B, m H, and

I I\7I/Xm — are trivially satisfied. There is no free surface current density, so we
expect the tangential components of I-7 é/,u and M/Xm to be continuous. We see
this indeed holds, with them taking on the values

$-I—7(5:R):$.‘§(5:R):aI\7l(s:R)7 I

= 6.53
o Xm 27 R ( )

The last one is a bit tricky because both the numerator M and the denominator Xm
vanish for s > R, but L'Hopital’s rule allows evaluation of the ratio in the limit
xm — 0. The Z tangential components are trivially continuous since they all vanish.
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For the sake of completeness, let's calculate the bound surface current and check that
the boundary conditions on B are correct. The bound surface current is Kb M xfA
(Equation 6.10). In this case, n = 5, the radial unit vector in cylindrical coordinates, so

- ~ I
M(s =R S=— rm—
(s ) x5 Xm27rR

&
0
I
2
I

z (6.54)

For a paramagnetic materials (xm > 0), the surface current points along —Z while, for
diamagnetic materials (xm < 0), it points along +Zz. One can see this physically by
considering the direction of alignment of the dipoles and which direction the
uncancelled current on the boundary flows. From the direction of this surface current,
one can then see that the field of this surface current adds to the field of the free
current for the paramagnetic case and partially cancels it for the diamagnetic case.
Finally, let's check the boundary conditions on B. It has no normal component in
either region, so continuity of the normal component is trivially satisified. The
discontinuity in the tangential component matches Equation 5.75:

Lo I - T .
X [BZ - Bl} =5 X [po — 4 7R ¢ = THoXmo e 2= Ho Kp (6.55)
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Let's also calculate the bound volume current density, fb =V x M from
Equation 6.10. It is

/

ﬁ(nzﬁXM:Xmﬁxl‘:i:ijf::XmWf (6.56)
7r

For paramagnetic materials, Jz is parallel to _I; and thus its field adds to the field of
the free current, while, for diamagnetic materials, it is antiparallel and it partially
cancels the free current’s field.

Note that the integral of J_Z, over the cross section and the integral of Kb over the
circumference are equal in magnitude and opposite in sign, canceling perfectly. This is
why the magnetic field outside the wire is only that due to the free current.

A modest extension to this problem would be to include a free surface current in the z
direction, which would then cause a discontinuity in the <z§ component of H, B/u and
I\/I/Xm. You should try this on your own.
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Boundary Value Problems in Magnetic Materials

Griffiths does not really consider boundary value problems in magnetostatics, so we
follow Jackson §5.9-5.12.

General Conditions for Linear, Homogeneous Magnetic Materials

In linear, homogeneous dielectrics, we showed pp o pr. We just saw that a similar
relation holds for linear, homogeneous magnetic materials, which we can derive
generally:

Jo= ¥ x i =¥ x (M@:(M)ﬁxﬁz(m)ﬁ (6.57)
Ho Ho Mo

In particular, if there is no free current in a linear, homogeneous magnetic material,
then there is no bound current either. In such situations, the magnetic field is
derivable from a scalar potential and Laplace’s Equation holds everywhere there is no
free current! Boundary conditions, and matching conditions between regions, will
determine H. We'll explore such situations shortly.
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The General Technique

In general, it always holds that

I

B=VxA =H(B) VxH=1J (6.58)
Therefore, one can always write the differential equation

-,

x A) = Ji (6.59)

<

vV x H(

If the relation between H and B is not simple, the above equation may be difficult to
solve.
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For linear magnetic materials, though, the above reduces to

. 1. 2 .
V x <7V><A) = Jr (6.60)
o

If we further specify that u is constant over some region, then in that region we have

Vx (VxA) =¥ (V-A) - v2A=pJ; (6.61)

Finally, if we specify V- A=0, this simplifies to a component-by-component Poisson
Equation:

VA= —pl; (6.62)

In principle, one can apply the same techniques as we used for solving Poisson’s
Equation in electrostatics to solve this component by component. Boundary
conditions must be specified either directly (recall that we proved that if any one of A
é, nx /T orix Bis specified at every point on the boundary, then the resulting field
(though not necessarily the vector potential) is unique) or by matching using the
conditions on the normal and tangential components at boundaries.
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Another technical challenge associated with the above equation is that it only
separates cleanly into component-by-component Poisson Equations in Cartesian
coordinates. If the current distribution it not naturally represented in Cartesian
coordinates (e.g., even a simple circular current loop), then separation of variables
may not be feasible. Method of images may work, or one may have to resort to other
techniques or numerical solution. None of this technical complication takes away from
the fact that there will be a unique solution for each component independently. The
technical complication just makes it hard to actually obtain that solution.
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Hard Ferromagnets (/\71 fixed and J; = 0): Magnetostatic Scalar Potential

If there are no free currents, then vV x H= 0 and we are assured that H can be
derived from a magnetostatic scalar potential. Here, we use B = Lo (I—?—i— I\7I> with

M fixed. Then V- B =0 gives

V- o (F/+I\7l =0 (6.63)
V2V +V-M=0 (6.64)
V2Vy = —py  with py=-V-M (6.65)

(note the canceling minus signs in the definitions!) where py is termed the
magnetostatic charge density. Note the close similarity to the definition of the bound
charge density pp = —V - P for dielectrics. This equation can be solved by the
standard techniques for solving Poisson’s Equation.
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In particular, if the boundary is at infinity and we require the fields to fall off to zero
there, we know the Green Function for the above equation, which yields

= (2!
Vu(F) = b / dr’ Vi M(7) (6.66)
i Jy |
Assuming M is well behaved (has no discontinuities or infinite derivatives except at
well-defined boundaries) and using similar techniques as we have used before, we use
the product rule for the divergence to do an integration by parts of the above
expression, which yields the integral of a divergence and the complementary
expression. The integral of the divergence can be turned into a surface integral and
the surface can be taken to infinity. With our assumption that M falls off at infinity,
the surface term vanishes, leaving us only the complementary term

Vi /dT Wi(F (Ir 1%/‘) (6.67)

We change variables on the gradient from 7/ to Fin the usual way, picking up a sign:

vM(r)__f/dT Wi(F") - (ﬁ) (6.68)
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We then apply the product rule again, which allows us to bring @p outside the integral
since it does not act on M(r’):

(6.69)

If we want to know the potential and field far from the region that is magnetized, and
we can assume the magnetization M is confined to a finite region (localized), we can
make the approximation |F— 7/|~1 ~ r~1 and pull this factor outside the integral,
which gives

1. 1 _
Vin(7) = —— V- {7 dr’ (F’)} (6.70)
47 rJy
Lo .
= =TT ith rﬁ:/ dr’ M(F") (6.71)
a7 v

That is, the scalar potential is equal to that of an electric dipole with g = e,m,
implying the field is equal to that of a magnetic dipole . (The factor of uo will

reappear when one calculates B instead of I-7) Any magnetized object looks like a
dipole from far enough away, which is not surprising.
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If we consider a case where there is a boundary — such as the boundary of the
magnetized region, with M = 0 outside — then we know that the solution to
Poisson’s Equation has a surface term due to the charge density on the boundary. By
analogy to our consideration of surface charge densities at boundaries in electrostatics,
we see that we need to add a surface term:

- - M(F' ~=2I\ . NP
VM(F) _ _i / dr! Vi M(I’ ) + i % da’ n(r ) M(r ) (6.72)
ar Jy \ s(V)

F—F| 47 |F— 7|
This second term looks like the bound surface charge density term in the corresponding
expression in electrostatics, so we define a magnetostatic surface charge density

ow(7) = A7) - M(P) (6.73)

and see that it sources the magnetostatic scalar potential in the same way that py
does. Together, both terms look identical to Equation 4.8. One must take some care
about the sign of the surface term. 7 is defined to be the outwardly directed normal
from the magnetized region out into vacuum. This is why o), has the sign definition
that it does. This convention is consistent with the definition of o}, which also used
the outwardly directed normal.
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Example 6.3: Uniformly Magnetized Sphere, Again

Let's apply the above kind of formalism for the uniformly magnetized sphere, which
satisfies the hard ferromagnet condition. Again, M = Mz. This implies

oM = —V-M=0and om=n"h- M = M cos . We solved this same problem before for
the uniformly polarized dielectric sphere via separation of variables in spherical
coordinates, which yielded Equation 4.15. Making the replacement P — M and noting
that €, is not present in Equation 6.72, we obtain

M : 4 _
Vu(r <R) = —=2 VM(rZR)::’ © with rﬁ:?ﬂwRaM (6.74)

3 mr2
.- _m
H=-Vvy={ -3 r<R (6.75)
H field of a magnetic dipole M r > R
. I, . 1. o 2 .
B:uo<H+M) = BUr<R)=po(-—3M+M)=ZpM (6.76)

B(r > R) = puo H = B field of a magnetic dipole i
(6.77)

This matches our previous solution for the magnetic field of this system that we
obtained by calculating the vector potential of the bound surface current.
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Hard Ferromagnets (M fixed and J; = 0) via Vector Potential

We have already done this analysis, yielding Equations 6.10 and 6.11:

TP =V x Ni(F)  Ro(7) = N(7) x A(7)

N T (= R’ =1
A7) = &/ ar Jo). +&7§ da’ Fo7)
47 Jy |F—F'|  4x S(V) |F— 77|

We can, in fact, directly calculate the field from the bound currents using the
Biot-Savart Law. The approach described above of using the magnetostatic scalar
potential for such cases will in general be calculationally easier if the problem is
amenable to the techniques for solving Poisson’s Equation, but the Biot-Savart Law is
certainly always guaranteed to work.

Example 6.4: Uniformly Magnetized Sphere, Again

We don’t need to do this again: the above vector potential based on the bound current
density (in this case, only a bound surface current density) is exactly how we solved
this system before. We used the spherical harmonics technique to do the integral,
which is different from what Griffiths did, but the starting point was the same.
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No Free Currents, Linear Materials via Scalar Potential

If there are no free currents, then V x H = 0 and again we are assured that H can be
derived from a magnetostatic scalar potential

A=—-VVu(P (6.78)

—

Again, if we know the relationship B=8
equation:

(H), then we can use the divergence

v.B (fﬁvM) =0 (6.79)

Again, if the relation between H and B is not simple, the above equation may be
difficult to solve.

Section 6.4.5 No Free Currents, Linear Materials via Scalar Potential Page 411



Section 6.4 Magnetostatics in Matter: Boundary Value Problems in Magnetic Materials

Again, though, for the case of linear magnetic materials, we have
V. (uﬁ VM) -0 (6.80)

In a region where p is constant, it can be passed through the divergence and we can
reduce this to

V2V =0 (6.81)

We now have Laplace’s Equation. Again, boundary conditions and/or matching
conditions will allow one to solve for Vjy. In a region where p is constant, we could
equally well write B = —VUn and solve V2Up, = 0 with appropriate boundary
conditions. Which one should be used should be determined by which has the simpler
boundary and matching conditions; in general, it will be V), because its boundary
conditions depend only on free currents, which are externally specified, while knowing
the bound currents requires knowing the full solution.

The importance of boundary conditions should be even more clear in such cases: since
there is no source term in the equation, the boundary conditions entirely determine
the solution.
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Example 6.5: Magnetically Permeable Sphere in External Field

This is now a “soft,” linear material, where we cannot take M to be fixed. But it is a
situation with no free currents, so Laplace’s Equation holds (except at the r = R

boundary, but we develop matching conditions there).

Fortunately, we do not need to solve the boundary value problem from scratch because
this problem is directly analogous the case of a dielectrically polarizable sphere in an

external electric field. We have the following correspondence:

eoE: —€o vV A= —ﬁvM
V2V =0 V2V =0
P=C"%F M=H"F g
€o Mo
D=c,E+P B/uo=H+M
eoE_)r2>o €o Eo A= ég/uo
D=% e B B/po =3 Bo/pio

(6.82)
(6.83)

(6.84)
(6.85)

(6.86)
(6.87)

We have carefully avoided making correspondences in the above between p, and py
and between o}, and o) because, in both cases, these quantities are not specified

ahead of time: there is not permanent polarization, there is only polarization in

response to applied field.
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Let's also compare the matching conditions. We want to use the matching conditions
that incorporate only the free charge densities because we do not know the bound
charge densities ahead of time. For the electrostatic case, we used

7 [5>(R) - 5<(R)] =0 =0 (6.88)

s [eo E-(R) - ¢o E<(R)] -0 (6.89)

The corresponding matching conditions for the magnetic case are

A [T-%ﬁm —ioﬁ. [B-(R)~ B-(R)] =0 (6.90)
5. [PI>(R) - FI<(R)] -3 [Kf x ﬁ] -0 (6.91)

Thus, not only is there a perfect correspondence between fields, potentials, and

r — oo boundary conditions in the two problems, there is also a correspondence
between matching conditions at r = R. Thus, we can just apply the solution to the
electrostatic problem with the substitutions €, E—H eV— Vm, P — M, and
D — B/,uo
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Applying this correpondence to Equations 4.68 and 4.69 gives us

3 3 B
Vn(r<R)y=——>t° Hyz=__>Ho 20, (6.92)
2p0 + 1 2po + 1 po
- g L2
Vi(r>R) = —Hoz+ o = 20,4 M7 (6.93)
472 Ho 47 r2
4 _ 4 - 4 B -
rﬁElR3M(r<R):lR3HOM3:lR3JME
3 3 2po + p 3 Ho 2po+p
(6.94)

From the above, we calculate the fields and the magnetostatic surface charge density
(pm = 0 because M is uniform):

_ By By M R
fi(r < R) = 3 o o Bo (r<R)

2227 (6.95)
2po+ 1 po o 3
_ - B - B
M(r<f_\’)=:’)&f0 UM:3M—OCOSH (6.96)
2p0 + 14 o 2p0 + 1 o
. . . By M(r<R) _
B(r<R):uo[H(r<R)+M(r<R)]:uo[°('3)+M(r<R)
Mo
- 2 . 3p -
=By+ S poMir<R)=(——)8 6.97
v 2ot < R) = (525 ) B (6.97)
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Explicitly, we find that:

> Like £, H is uniform inside the sphere and points in the direction of the uniform
field. For xm > 0, like for xe > 0, it is smaller in magnitude than the uniform
field at infinity.

> The magnetization density is in the direction of the uniform field for X, > 0 as
it was for P and x. > 0.

» The magnetostatic surface charge density has a cos 6 dependence and is positive
at the north pole for x, > 0, as it was for the electrostatic surface charge
density and xe > 0.

> B is enhanced relative to the uniform field for xm > 0. We did not calculate D
in the electrostatic case, but we would have found that it, too, was enhanced
relative to the uniform field.

We again see the fact that H corresponds to E and B to D. In the electrostatic case,
we noted how the field of the polarization counters the uniform field so that the total
field inside the sphere is smaller in magnitude than the uniform field. That is true here
too, but for H, not for B. B itself is enhanced inside the sphere! This difference in the
behavior of the “true” fields arises directly from the above somewhat unexpected
correspondence of H rather than B to E.
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There is a shortcut method that is much faster, so good to know from the point of
view of technique. It makes the ansatz that the sphere magnetizes uniformly so then
the total field is the superposition of a uniform field and a uniformly magnetized
sphere (Equation 6.22). This assumption is made initially without relating M and H.
It then uses the relation M = Xm H (equivalently, B= I 1-7) to relate the two and
solve for the fields.

The ansatz based on superposition gives

- - - - 2 .
B(r < R) = Buniform + Bsphere = BO + 5 Mo M (698)
i 7 7 7 Esphere v
H(r < R) = Huniform + Hsphere = Huniform + T — Misphere
o
By 1 -
==L --M (6.99)
Ho 3

Then we apply B(r < R) = p A(r < R) to relate the above two equations and solve
for M. One finds one gets the same result. One can then calculate the field at r > R
from superposition. Admittedly, this technique is somewhat backhanded; when trying
to understand things for the first time, reapplying the scalar potential to the full
problem is more straightforward.

Section 6.4.5 No Free Currents, Linear Materials via Scalar Potential Page 417



Lecture 19:

Magnetostatics in Matter I11:
Boundary Value Problems in Magnetostatics (cont.)
Nonlinear Magnetic Materials

Date Revised: 2023/03/09 10:00
Date Given: 2023/03,/09

Page 418



Section 6.4 Magnetostatics in Matter: Boundary Value Problems in Magnetic Materials

Example 6.6: Magnetically Permeable Spherical Shell

Consider a spherical shell of inner radius a and outer radius b consisting of a highly
permeable (11/po >> 1) material placed in a uniform external field By. We shall see
that this shell shields its inner volume from the external field by a factor p/po. This
technique is of great importance for magnetically sensitive experiments and equipment.

There are no free currents, so we may use the magnetostatic scalar potential
technique. Furthemore, V-H =0in each region since p is constant in each region.
So the scalar potential V), satisfies Laplace's Equation, allowing us to apply our
techniques for the solution of Laplace’s Equation from electrostatics.

In particular, given the azimuthal symmetry, we may assume the solution in each of
the three regions is of the form given in Equation 3.113:

Vin(r < a,0) = Vi(r,0) = ZA[ r* Py(cos ) (6.100)

Vi(a < r<b,0)=Vo(r,0)=> (cZ o+ m) Py(cos ) (6.101)
£=0

Vi(r > b,0) = Va(r,0) = —Ho r cosf + Z m Py(cos ) (6.102)

where we have already applied the requirements that V), be finite as r — 0 and that
it yield the uniform field as r — oo with Hy = By /0. We have also assumed that Vyy
has no constant offset as r — oo.
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There are no free currents, so our matching conditions are (as for the magnetically
permeable sphere, Equations 6.90 and 6.91) that the normal component of B and the

tangential component of H be continuous. Using A=-v VM, we thus have the four
conditions
ovy oV, oV, oVs
_ ——Z| = — 6.103
Ho"ar 5 or |, K or b Ho"ar b ( )
A% oV, oV, oV
ol _ 9v2 gvel _9Y3 (6.104)
o0 |, a0 |, a0 |, a0 |,

Note that we do not impose continuity on V). In the electrostatic case, we imposed
continuity of V and the boundary condition on the normal derivative, ignoring
continuity of the tangential derivative. In electrostatics, continuity of V comes from
constructing it as the line integral of the electric field, which we in turn were motivated
to write down in order to calculate the work done by the electric field on a point
charge. Since H does not do such work, writing down the line integral is not physically
motivated, though it is mathematically reasonable to do so because H = —V V). So,
here, we instead use continuity of the radial and tangential derivatives. This is an
arbitrary choice driven by our physical intuition. We will see below that continuity of
Vi would yield information redundant with tangential derivative continuity.
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Before we dive into a lot of calculation, let's see what we can figure out without doing
much work. The radial derivative equations only connect terms on the two sides of the
equations with the same £ because they do not modify the orthonormal P;(cos6).
What about the angular derivative equations? Recall Equation 3.154:

Py (x) = (=1)"(1 - 2)"1/2 Pe(X) (6.105)
Let's write W using this:
OPy(cos®)  dPy(cosf) dcosb P}(cos 0) .
= = - —sin@ 6.106
06 dcosf do (—=1)}(1 — cos? §)1/2 (=sinf) ( )
= P}(cos 0 6.107
4

where we note that, since 0 < 0 < 7, there is no sign ambiguity and thus

sinf = (1 — cos? §)1/2. The P}(cos 0) are also orthonormal polynomials (the PJ" over
all £ at fixed m form an orthonormal set in order for the Yj,, to form an orthonormal
set), so the same point we made above about the equations connecting terms at the
same £ holds for these equations also. Note however that, for £ = 0, the §/96
matching condition yields zero.

Note also that, for £ > 1, these equations are the same as one would have obtained by
requiring continuity of V), since 9/96 doesn’t modify the radial factor of each term.
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Taking the necessary derivatives for the radial derivative equations and then equating
the two sides of all six equations (four for £ > 0, only two for £ = 0) term-by-term

gives us:
£>0: polApat ™t =ptCratt —p(t+1) — M (6.108)
Dy
plCo bt —p(0+1) — pirz = —HoHodu — o (E+1) 175 bm (6.109)
D
¢ _ ¢ {4
Ag a = Cga + ﬁ (6110)
D, E,
¢ (. ¢
Ceb'+ 777 = —Hobdn + 777 (6.111)
) Do Do Eo
£=0: Ozfu? “Hy = THo by (6.112)

We explicitly write out the £ = 0 equations because they yield qualitatively different
conditions than the ¢ > 0 terms.
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For £ > 1, solving for Cp and Dy results in both vanishing, so then A; and E; vanish
for £ > 1.

For £ = 0, the radial derivative matching equations imply Dy = Eg = 0. We expect
Ep = 0 because it would yield a magnetic monopole potential for r > b, which we
know is physically disallowed.

There are no equations that explicitly determine Ay and Cp, which correspond to
offsets of V) for r < a and a < r < b. We actually don't need to find them, since
they do not affect H when the gradient is taken. (Recall, there is no issue of this
potential being related to work or a potential energy, so we do not need to worry
about discontinuities due to offsets.) But we can specify them by applying a restricted
version of continuity of V), which is that we require V), have the same offset in all
regions. The lack of an offset for r > b then implies Ag = 0 and Cy = 0.
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For ¢ =1, we can do a lot of algebra to find explicit formulae for all the coefficients
(you can find the