CHAPTER 5. ROTATING SYSTEMS

5.1 The Mathematical Description of Rotations

We develop the theory of rotations, progressing from infinitesimal rotations to finite rotations, in
particular considering the group-theoretic aspects. Some of this material is found in Hand and
Finch Chapters 7 and 8, but much is not.

We want to understand how rotation of the coordinate system affects the position vector 7.
Such rotations will be of interest to us in two physical situations:

e Apparent motion in a rotating coordinate system of a point that is fixed relative to an inertial
coordinate system.

e Rotation of a rigid body about some axis. Recall that a rigid body is a body for which the
relative distance between any pair of points is fixed. Such a body may still rotate about any
axis. A point P in the body follows rotational motion about the axis of motion relative to
the non-rotating system.

We will consider the physical systems in the sections following this one. This section focuses on
the mathematical language and general properties of rotational transformations.
5.1.1 Infinitesimal Rotations

Vector Cross-Product Version

Consider the following figure:
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7 points in an arbitrary direction in the non-rotating frame. The vector 7 is rotated by an
angle 60 about the z axis. We are allowed to take the rotation axis to coincide with the z
axis because 7 is arbitrary. If we define a vector 66 that points along the axis of rotation
(the z axis) and has magnitude 66, then the change 7 in 7 is related to 56 by

57 = S0 xT

where X indicates a vector cross-product, and the rotated vector in the non-rotating system
is

— PO



5.1. THE MATHEMATICAL DESCRIPTION OF ROTATIONS

The cross-product gives the correct direction for the displacement 7 (perpendicular to the
axis and 7) and the correct amplitude (|07] = Rd0 = rdfsin«). If we then divide by the
time dt required to make this displacement, we have
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where w is the angular frequency of rotation about the axis and & points along the axis of
rotation also.

Matrix Version

A more generic and therefore more useful way to look at a rotation is as a matrix operation
on vectors. The infinitesimal rotation can be viewed as a matrix operation:

x —ydo
P =F+802x7=| y+x0 =Ry, 7
z
with
1 =40 0 0 -1 0
Ry;=| o0 1 0 ] =149d0M, M,=[1 00
0 0 1 0 00

where we have defined the infinitesimal rotation matrix R&é and the matrix M,. More
generally, one can show that an infinitesimal rotation about an arbitrary axis can be written
in matrix form using

Ry =1+ (60 &M, +00- M, +60-2M.) =1+ 60 M

with
0 0 0 0 01 0 -1 0
M,=( 0 0 -1 M, = 0 00 M, = 1 0 0
0 1 0 -1 0 O 0 00

M is called the infinitesimal rotation generator because, obviously, it can be used to
generate any infinitesimal rotation matrix R ; when combined with the rotation vector 6.
A simple way to write the generators is

(M) jj, = —€ijie

where €;;, is the completely antisymmetric Levi-Civita symbol (see Appendix A). It is useful
to know that the above matrices satisfy the following relations:
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CHAPTER 5. ROTATING SYSTEMS

Combining Infinitesimal Rotations

It is straightforward to see how to combine two infinitesimal rotations, even if they are not
about the same axis. Clearly, our formula 67 = §6 x 7 holds regardless of the orientation of
060. So we obtain the result of two successive infinitesimal rotations d6; and 46y by

7y o= 7+ 00y x 7

= P4 00, X 7+ 60 x (74 660, x 7)
= 7+ (001 + o) x 7
where in the last line we have dropped terms quadratic in the infinitesimal rotation angles.
Thus, we see that the effect of two infinitesimal rotations 467 and 46, is found simply by
obtaining the result of a rotation by the sum rotation vector 6 4+ d05. Obviously, if §6; and
00 are aligned, then the angles sum simply. But if the two rotation axes are not aligned,

addition of the angle vectors describes the correct way to combine the rotations. In terms
of matrices, we have

o= (1400 M)
= (1+5§2‘M)(1+5§1‘M)F
- (1+[5§1+5§2}.1\71)f

The implication of the addition rule for rotations is that angular velocities add in simple
fashion also:

Wiot = W1 + W2

NOTE: The simple addition rules for infinitesimal rotations and angular velocities do not
in general hold for finite rotations, discussed in the next section.

5.1.2 Finite Rotations

There are two different ways of determining the appropriate form for finite rotations — integration
of infinitesimal transformations and direct evaluation via direction cosines.

Integration of Infinitesimal Transformations

First, consider a finite rotation about a single axis, g. That rotation can be built up as a
product of infinitesimal rotations:

1. _\N
R; = lim <1+N9-M)

N—oo

where 00 = % g, which is infinitesimal in the limit N — oco. This can be rewritten (expand
out the infinite product, or just realize that the above is one of the definitions of the
exponential function):
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5.1. THE MATHEMATICAL DESCRIPTION OF ROTATIONS

The second equality is not much use since an exponential with a matrix argument only has
meaning as a power series expansion. If we now specialize to a rotation about the z axis,
we get § - M = 6 M,. Using the relation above for M2, we can rewrite the sum as

0 0 O oo 1 0 0 1 00
9271 —1)" 92n+1 —1)"
R - OOO+Z2(')010+2(1?010MZ

001/ | @) 00 0 @+ \ g o o
0 0 O 1 00

= 0 0 0 |+ (cos@+sinéM,)| 0 1 0
0 0 1 0 0 O
cos —sinf 0

= sin 6 cost 0

0 0 1

Of course, similar forms hold if the rotation is aligned with the x or y axis. For more general
rotations, the parameterization in terms of the components of 6 is not particularly clear;
we will develop a simpler parameterization, Euler angles, later.

Direction Cosines

Consider our rotation of the vector 7 to be a rotation of a frame F in which 7 is fixed
relative to a nonrotating frame F’. In Hand and Finch, these are termed the “body” and
“space” coordinate systems, respectively. The original vector has components (x,y, z) in
the nonrotating frame. The transformation 7/ = R 7 gives the components of the vector in
the nonrotating F’ frame after the rotation; denote these components by (2’ v, 2’). In the
F frame, the vector retains its original components (z,y, z) after rotation because the F'
frame rotates with the vector. Thus, the rotation matrix R provides a linear relationship
between the components (z,y,z) and (2/,y,2’). There are 9 obvious coefficients of this
relationship, the 9 components of R. One way to parameterize these 9 components is to
consider how they relate to the angles between the F’ coordinate axes &', ’, and 2’ and
the F' coordinate axes Z, g, and 2. It turns out that, in fact, R is the matrix of these dot

products:
@z &g 3z
_ /\, A /\, A /\/ A~
R=1|v9"-2 9y 9 -2
ez 2y 2z

That this form works can be seen by applying it to the unit vectors of the F' frame; we get
back the unit vectors of the I’ frame written in terms of the unit vectors of the I’ frame.
Since rotation is a linear operation,

R(ac’i+ﬁ5> —aRd+ARD

the same matrix is valid for rotating an arbitrary vector . In the case of a simple rotation
about the z axis, the above direction cosine form is obviously consistent with the matrix
operator form given above. The two forms must be consistent in general since the linearity
of the relationship between 7 and 7’ allows there to be only one such rotation matrix.
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CHAPTER 5. ROTATING SYSTEMS

Orthogonality of Finite Rotation Matrices

Coordinate rotation matrices are very much like the rotation matrices we obtained for
transforming between generalized and normal coordinates in the coupled oscillation problem
(Section 3.2). In particular, rotation matrices must be orthogonal matrices (RT = R™1)
because they must be norm-preserving. It is intuitively obvious that rotation of a vector
about an axis must preserve its length, but it can be seen to be explicitly true by considering
an infinitesimal rotation:

7| = (7F+ 67) - (7 + 67) = |71* + 267 - 7 + |671* = |71
where the second term vanishes because 7 is normal to 7 and the third term has been
dropped because it is of second order in §+. If infinitesimal rotations preserve length, then
so do finite rotations. If we require this condition to be true, we obtain
Plr=fTF = RAHTRAH =FTRTR7 = R'R=1 — R'=R"!
(We have used the T notation for displaying dot products of vectors.) Hence, we obtain the
orthogonality condition.

Orthogonality implies that the columns of R, treated as vectors, are in fact orthonormalized:

6ij = (R'R),, ZRMRM

(We refer to the components of R by R, dropping the boldface notation because each
component is just a number.) There are 6 conditions implied by the above, leaving only
3 independent components of R. As we will see later, these 3 degrees of freedom can be
parameterized in terms of the Euler angles.

One can easily see that the “transposed” relation also holds. Norm preservation also implies
7T =T = (R7#) (RT#) =#'TRRT# = RRT =
That is, R is the “right inverse” of R also.! Written out in components, we thus have

6ij = (RRT),. ZRZkR]k
The rows of R also are othonormal.

5.1.3 Interpretation of Rotations

We at this point should comment on the two different possible physical interpretations of the
rotation matrices R. We made a similar distinction when considering coordinate transformations
in Section 2.1.10.

Active transformations

In an active transformation, we think of the transformation as actively rotating the particle
whose position is given by the vector 7(¢) relative to the coordinate axes. The rotations of
the form & x 7 that we began with are really of that form. The coordinate system that the
rotation is relative to is inertial, the coordinate system in which the rotating vector is fixed
is noninertial.

"We could have used the fact that, for square matrices, left inverses and right inverses are always the same. But
it’s nice to see it directly.
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5.1. THE MATHEMATICAL DESCRIPTION OF ROTATIONS

Passive transformation

We think of a passive transformation as simply a relabeling of points in space according to
a new coordinate system. In this picture, the coordinate system in which the particle is at
rest is inertial and the rotating system is not.

Why there can be confusion

The difficulty arises because the transformations relating the two systems are mathemat-
ically identical in the two cases, but the physical interpretation is very different. We use
the mathematical equivalence to relate one type of transformation to another to allow us
to write down the rules. But, the definition of which system is inertial differs between the
cases, so we must be very careful.

5.1.4 Scalars, Vectors, and Tensors

We have so far discussed rotations only in terms of their effect on vectors, objects that we have
an intuitive feel for. But the link between rotations and vectors is much deeper, leading us to the
generic concept of tensors.

Vectors and Vector Coordinate Representations

As hinted at in the discussion of the interpretation of rotations, there are multiple concepts
described by the same mathematics. As indicated above, we tend to think of a rotation
as actively rotating a vector from one position in physical space to another. The rotating
coordinate system is noninertial and thus physics is modified there.

But, regardless of which coordinate system is inertial, we are frequently required to trans-
form vectors from one coordinate system to another. This is the passive sense of a rotation
transformation. The vector is not undergoing any dynamics, it is simply being looked at
in a different frame. The vector, as a physics entity, does not change by looking at it in
a different coordinate system. But its coordinate representation — the set of numbers
that give the components of the vector along the coordinate axes — does change. Rotation
matrices thus not only provide the means to dynamically rotate a vector about some axis,
but they also provide a method to obtain the coordinate representation in one frame from
that in another frame.

It is important to recognize the difference between a vector and its coordinate representation:
a vector is a physical entity, independent of any coordinate system, while its coordinate
representations let us “write down” the vector in a particular coordinate system. To make
this clear, we will use the standard vector notation 7 to denote the “coordinate-independent”
vector and underlined notation 7 and 7’ to denote its coordinate representations in the F
and F’ coordinate systems.

Formal Definitions of Scalars, Vectors, and Tensors

We have so far relied on some sort of unstated, intuitive definition of what a vector is.
We may, on the other hand, make use of the properties of the coordinate representations
of vectors to define what is meant by the term “vector.” A vector ¢ is defined to be an
object with coordinate representations in different frames that are related by our orthogonal
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rotation matrices:
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where in the second line we have written out the relation between coordinate representations
in the two frames component-by-component. One might worry that the above definition of
a vector is circular because rotation matrices are to some extent defined in terms of vectors.
This worry can be eliminated by taking the direction cosine definition of rotation matrices
— that definition rests only on the idea of coordinate systems and direction cosines.

We will use as a convenient shorthand the following;:
vi = Rij v

Let us explain the shorthand carefully. First, repeated indices are defined to imply summa-
tion (the Einstein summation convention), so Y symbols are not given explicitly. Second,
as noted earlier, the quantity R;; refers to the ij component of the matrix R. Finally, the
quantity v; is the jth component of the coordinate representation ¥, v; = (%) j Similarly,
vj = (¢');. That is, the vector object is referred to with an arrow as @ while the coordi-
nate representations are underlined with an arrow, @ and @’, and the components of the

representations are referred to using subscripts but no underlines or arrows, a; and a; 2

We have an intuitive definition of a scalar as an object whose coordinate representation is
independent of frame. Explicitly, the transformation property of a scalar s with coordinate
representations s and s’ is

/
s =S8

for any pair of frames. Since the representation of s is independent of frame, there is no
distinction between s, s, and s'.

We can see, for example, that the norm of the position vector is a scalar by relating its
values in two different frames:

! =/ /W) = =
T=rpry = Ryjrj Rygrg = djprjry =151 =7 F

1=y

where we have used 7 = R” 7/ and the orthonormality property R;j Rji, = 0jx- In general,
the dot product @ - b of two vectors is a scalar by the same argument.

The generalization of scalars and vectors is tensors, or, more specifically, rank n tensors.
A rank n tensor 7 is an object that has coordinate representation 7 with N™ components
T;,...i, (where N is the dimensionality of the physical space, N = 3 for what we have so far
considered) with transformation properties

n;"'in = Riljl e Rln]nT‘Jljn
A vector is a rank 1 tensor and a scalar is a rank 0 tensor. A rank 2 tensor has coordinate
representations that look like square N x N matrices; what distinguishes a rank 2 tensor

2We note that there is no need for underlines for the coordinate representation a; because a subscript without an
arrow implies consideration of a coordinate representation.

264



5.1. THE MATHEMATICAL DESCRIPTION OF ROTATIONS

from a simple matrix is the relation between the coordinate representations in different
frames. It is important to remember the distinction!

An alternate, but equivalent, definition of a rank n tensor is an object whose product
with n vectors is a scalar for any n vectors. That is, if we claim 7 is a rank n tensor

with representation 7Tj,..,, in a particular frame, then, for n arbitrary vectors {d;} with
components {a; j, } in that frame, if we calculate in each frame the quantity

s="Tj .., Q14 *** Qni,

it is required that s be the same in every frame regardless of the choice of the {a@;}. We can
see the equivalence of the two definitions by equating the component representations of s
calculated in different frames:

/

s = s
/ / / .
Tzlzn 14, Onyg, — Tpypn Qlpy ** Onypy
/ _
T;, iy, Rivjiarjy - Rig g, = Tpiop, Gip, - Gnp,

Since the above must hold for all possible choices of the {@;}, we may conclude

/ — . .
Ti i Rivgy - Ring, = Tjijn

1°0n
/ — . . . .
Rkljl o Rkn]n J—Yllln Riljl U Rzn]n - Rkl]l T Rkn]n ]}1“']71
/
Ty i Okin = Ok = Bhyji - R Ty
!
Tiyoky = Brigy Bijn Thiojn

where we have used the “transposed” orthonormality condition Rj; R;; = dx;. Thus, we
recover our other definition of a rank n tensor.

Rank 2 tensors are special because their coordinate representations 7 look like simple N x NV
matrices. In particular, the transformation of a rank 2 tensor has a simple matrix form:

T!; = Rix Rji Ty = Ry Tiy Ry
T =RTRT=RTR"!

where 7 and 7’ are N x N matrices. The last expression is the similarity transformation
of the N x N matrix 7 by the orthogonal matrix R.

Examples of Tensors

e Omne obvious rank 2 tensor is the outer product of two vectors:
T%j:aibj or TZJET

Since each vector transforms as a rank 1 tensor, it is obvious that the above product
transforms as a rank 2 tensor.

e More generally, if we take a rank m tensor with coordinate representation components
Ui,...i,, and a rank n tensor with coordinate representation components V},..;, and
contract over — i.e., match up indices and sum, the generalization of a dot product —
any p pairs of indices, then the resulting set of quantities is a rank m + n — 2p tensor.
Proving it is clearly a tedious exercise in index arithmetic relying on the rotation
matrix orthogonality relation Ry; Ri; = 0;; and its transpose relation R;; Rj, = d;5.
Taking p = 0 as a special case gives us the simple outer product of the two tensors,
which gives the previous example when both tensors are rank 1.
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CHAPTER 5. ROTATING SYSTEMS

e The identity matrix is a rank 2 tensor and, in fact, it is isotropic, meaning that its
coordinate representation is the same in all frames. Let’s just try transforming it to
see this:

1/; = R Rji 1)y = Ry, Rji 0p1 = Rip Ry = 04

(We used the “transposed” orthonormality condition R Rj, = dij.) So, we see that
the identity matrix has representation J;; in any frame and that the representations in
different frames are related by the appropriate transformation relations.

e We can demonstrate that the ¢;;; Levi-Civita symbol is an isotropic rank 3 tensor.
Let’s explicitly calculate the effect of the transformation rule on it:

/
€ijk = Ril ij Rkn €lmn

We may evaluate the above by recognizing that the “transposed” orthonormality con-
dition on R implies that the rows of R look like N mutually orthonormal vectors in
N-dimensional space. (Here we use the term vector more loosely — we have no need
to prove that these rows behave like vectors in rotated frames, we only need the fact
that their component representations in a given frame looks like that of N orthonor-

mal vectors.) Denote these “vectors” by 1:_{27", where (ﬁ{) = Ryj. (The " superscript
J

indicates we are treating the rows, rather than the columns, of R as vectors.) With
this notation, the above product looks like f{[- (ﬁ; X f{,z ) In N = 3 dimensions, the

expression will only be nonvanishing when the triplet ijk is a cyclic or anticyclic combi-
nation; and the expression will have magnitude 1 and take the sign of the permutation
(cyclic or anticyclic). These are exactly the properties of €;;i, so we have

€ijk = €ijk
So the Levi-Civita symbol is an isotropic rank 3 tensor for N = 3 (and for arbitrary
N, though we will not prove it here). Note that this implies some properties of M:
1. When treated as a single rank 3 tensor M with coordinate representation compo-
nents M;j, = (1\_/11) " = —€;jk, M is clearly an isotropic rank 3 tensor. For this
J

particularly 1nterest1ng case, we will take the symbol M to stand for the rank 3
tensor M. Since M is isotropic, there is no distinction between M and M.

2. Given a vector d@, the quantity @ - M has in frames F and F’ coordinate represen-
/ - -
tations @-M = @- M and ( ) =a’ -M, = a’-M, where the last step in each
case is possible because M is isotropic. Thus, only the coordinate representation
of the vector @ need be changed to write @ - M in different frames.

e With the above, we may show that the operator @ x is a rank 2 tensor. We are referring
to the operator, not just the vector @. The operation @ x b is written as

<c_i X l;) = €k Qj by = (Q’jk aj) by = (C_i' 1\7[) " br

which shows that @ x looks like the operation of a matrix on a vector. Since we know
a is a vector and M is a rank 3 tensor, the contraction over one index must yield a
rank 2 tensor as discussed above. But, since we did not explicitly prove the general
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5.1. THE MATHEMATICAL DESCRIPTION OF ROTATIONS

relation, let’s prove this specific case explicitly using the transformation properties of
@ and M:

N/
— !/
(a-M)”:—akekij = —Rpa; Rim Rin Rjp €mnp

)
= —dma Rin ij Emnp

= —Ri ij Qm Emnp

= RinR; (5. M)

np

So, indeed, a - 1\7[, and thus @ x, transforms like a rank 2 tensor. This last fact will be
useful in the next section on dynamics in rotating systems.

5.1.5 Comments on Lie Algebras and Lie Groups

We make some qualitative comments on Lie algebras and groups. Such concepts are not incredibly
useful here, but serve to allow analogies to be made between the physical rotations we have talked
about here and transformations in more complex systems. We progress through some definitions
of mathematical objects that lead up to Lie algebras and Lie groups.

Groups

A group is defined to be a set of elements with a binary operation rule that specifies
how combinations of pairs of elements yield other members of the group. The set must be
closed under the operation — binary combinations of members of the set may only yield
other members of the set — to be called a group. In addition, the binary operation must be
associative, a (bc) = (ab) ¢, there must be an identity element 1 such that a1 = a, and each
element must have an inverse such that a='a = aa~" = 1. Note that the group operation
need not be commutative.

Fields

A field is a group that has two kinds of operations, addition and multiplication. It is
a group under each of the operations separately, and in addition satisfies distributivity:
a(b+c)=ab+ac.

Group Algebras

A group algebra is a combination of a field F' (with addition + and multiplication -) and
a group G (with multiplication *), consisting of all finite linear combinations of elements of
G with coefficients from F', a g 4+ bh, where a and b belong to F' and g and h belong to G.
The group operations on F and G continue to work:

ag+bg = (a+b)yg

G'Zazgi = Z(a'ai)gi

i

(Zaiw)* S bihi | o= (ai-by)(gi*hy)
i J

i’j
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Lie Algebras

A Lie algebra is a group algebra with the additional conditions that the group elements
{7} belonging to G satisfy the commutation relations

[TZ',T]‘] = Ty Ty — T5T = CZ'Tk
The {cfj} are called the structure constants of the Lie algebra. They satisfy cfj = —c?i.
(Actually, the real definition of a Lie algebra is slightly more generic, allowing for definition
of a commutator without G being part of a group algebra.) A Lie algebra may have a finite
or infinite number of group members, though in general we will only consider finite ones.

The matrices M, My, and M. defined earlied form a Lie algebra with the real numbers
as the field F'.

Lie Groups

A Lie group is the exponential of the Lie algebra, consisting of all possible elements

A = €xXp (Z anTk>

k

where the 6% are members of the field F' and the 7, are members of the group G. The
exponential is defined in terms of its infinite power series expansion, which is well-defined
for a group. Note that the members of the Lie group are not members of the Lie algebra
because, by dint of the power series expansion, they are infinite linear combinations of
members of the Lie algebra. The Lie group is entirely separate from the Lie algebra. The
Lie group is, as its name indicates, a group. Moreover, thanks to the method of definition,
the group is differentiable with respect to the members of the field.

Representations

Our rotation matrices are a particular representation of the rotation group in three di-
mensions, O(3), which is a Lie group. The M matrices are a representation of the Lie
algebra that generate the Lie group. The word representation is used because the matrices
are not really necessary; it is only the group and field rules that are fundamental. The
representation in terms of matrices provides one way that those rules can be realized, but
not the only way.

Significance

These definitions serve only to illustrate that there is a fundamental structure underlying
rotation matrices, that they form a Lie group can be generated from a small set of el-
ements forming a Lie algebra. Lie algebras and groups are found everywhere in physics
because they are the means by which continuous transformations are performed. As we
saw in Section 2.1.10, continuous coordinate transformations under which a Lagrangian is
invariant are of great significance because they give rise to conserved canonical momenta.
The continuous parameters of such symmetry transformations are the field members 0,’%, SO
the conserved momenta are given by the group members 7. When rotations are symmetry
transformations, we thus naturally see that angular momentum [ = ﬁTMF is conserved.
We will see another Lie group, the Lorentz group, in connection with special relativity.
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