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Plan of Attack

We will study the problem of rotations and orbital angular momentum in the following
sequence:

I Rotation Transformations in Two Dimensions
We will first review classical rotation transformations in two dimensions, derive
the formula for the active rotation transformation of a quantum mechanical
state, and show that the generator of the transformation is the quantum
analogue of the classical z-axis angular momentum, Lz .

I The Lz Eigenvector-Eigenvalue Problem
Lz will be a Hermitian, observable operator. For Hamiltonians for which
[H, Lz ] = 0 – i.e., Hamiltonians with rotational symmetry in two dimensions – H
and Lz are simultaneously diagonalizable. Therefore, eigenvectors of H must
also be eigenvectors of Lz , and so the eigenvectors of Lz will be of interest. We
calculate the eigenvectors and eigenvalues of Lz and see how the requirement
that eigenvectors of H be eigenvectors of Lz reduces the Schrödinger Equation
to a differential equation in the radial coordinate only.

I Rotation Transformations in Three Dimensions
We then generalize classical rotation transformations to three dimensions and
use correspondences to identify the three angular momentum operators Lx , Ly ,
and Lz , as well as the total angular momentum magnitude L2.
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Plan of Attack (cont.)

I The L2-Lz Eigenvalue Problem
In three dimensions, we shall see that Lx , Ly , Lz , and L2 are all Hermitian,
observable operators. But no two of Lx , Ly , and Lz commute, while each of
them commutes with L2, so it becomes clear that useful set of operators to
work with for Hamiltonians that are rotationally invariant in three dimensions is
H, Lz , and L2. We therefore consider the joint eigenvector-eigenvalue problem
of L2 and Lz and determine how it reduces the Schrödinger Equation to a
differential equation in the radial coordinate only.

We will refer back frequently to material on continuous symmetry transformations
that we covered in Section 12, so please review that material.
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Rotations Transformations in Two Dimensions

Passive Classical Rotation Transformations in Two Dimensions

A passive coordinate system rotation in two dimensions by an angle θ
counterclockwise yields the following relationship between the components of a vector
~a in the untransformed system (ax , ay , az ) and its components in the transformed
system (ax ′ , ay ′ , az ′ ):

ax ′ = ax cθ + ay sθ ay ′ = −ax sθ + ay cθ az ′ = az

where cθ = cos θ and sθ = sin θ as usual. The x ′ and y ′ axes are obtained by rotating
the x and y axes counterclockwise by the angle θ. The rotation is termed passive
because we are not changing the vector ~a, we are simply writing its representation in
terms of a new set of coordinate axes. The above may be written as a matrix
operation: 24 ax ′

ay ′

az ′

35 =

24 cθ sθ 0
−sθ cθ 0

0 1

3524 ax

ay

az

35 ≡ RP,θbz
24 ax

ay

az

35
where we use the P subscript to indicate a passive transformation (as we did in the
QM case) and the θbz subscript to indicate the rotation angle from the untransformed
to the transformed system.
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Rotations Transformations in Two Dimensions (cont.)

Let us emphasize here the concept of coordinate representations of classical vectors.
The unprimed and primed coordinate systems are just two different ways of labeling
space. The vector ~a has not changed by relabeling space. However, the components of
~a in the two coordinate systems are different. We thus call (ax , ay , az ) and
(ax ′ , ay ′ , az ′ ) two different coordinate representations of the same vector ~a. This is
very much the same idea as our discussion of different position-basis representations of
a state |ψ 〉 depending on whether we project it onto the position-basis elements for
the original coordinate system {|x , y 〉} or those of the transformed coordinate system
{x ′, y ′}, giving position-basis representations 〈x , y |ψ 〉 and 〈x ′, y ′ |ψ 〉, respectively.
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Rotations Transformations in Two Dimensions (cont.)

Active Classical Rotation Transformations in Two Dimensions

The classical analogue of an active coordinate transformation is to change the vector;
that is, to fix the coordinate system and to change the vector by changing its
coordinate representation (components) in that coordinate system. If we denote the
new vector by ~a ′, then the coordinate representation (components) of ~a ′ are related
to those of ~a by24 a ′x

a ′y
a ′z

35 =

24 cθ −sθ 0
sθ cθ 0
0 1

3524 ax

ay

az

35 ≡ RA,θbz
24 ax

ay

az

35
or

a ′x = ax cθ − ay sθ a ′y = ax sθ + ay cθ a ′z = az

where both are being represented in the untransformed coordinate system. This
transformation corresponds to physically rotating ~a by θ CCW about bz. ~a ′ is a
different vector than ~a because its coordinate representation in this fixed coordinate
system is different from that of ~a. Again, this is in direct analogy to our active
transformations in QM, where we kept the position basis unchanged but transformed
the state, |ψ ′ 〉 = T |ψ 〉, and saw that the states had different position-basis
representations in the same basis, 〈x , y |ψ 〉 and 〈x , y |ψ ′ 〉.
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Rotations Transformations in Two Dimensions (cont.)

Passive vs. Active Classical Rotation Transformations

The key difference between active and passive transformations is that the active
transformation rotates the vector ~a, creating a new vector ~a ′, while the passive
transformation rotates the coordinate system so that the representation of the vector
~a changes from (ax , ay , az ) to (ax ′ , ay ′ , az ′ ), but the vector ~a is unchanged. This is in
exactly analogy to what we considered for QM states: for a passive transformation, we
consider the projection of the untransformed state |ψ 〉 onto the transformed position
basis {|q ′ 〉 = T |q 〉} by looking at 〈q ′ |ψ 〉, while, for an active transformation, we
consider the projection of the transformed state |ψ ′ 〉 = T |ψ 〉 onto the untransformed
basis {|q 〉} by looking at 〈q |ψ ′ 〉.

It may be helpful to realize that the unit vectors of the transformed system, bx ′, by ′,
and bz ′, are obtained by performing an active transformation on the unit vectors of the
untransformed system, bx , by , and bz.
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Rotations Transformations in Two Dimensions (cont.)

The mathematical difference between the passive and active transformations is just
the change of sign of the sθ terms; that is RP,−θbz = RA,θbz . This sign flip tells us that
the coordinate representation of ~a in a transformed coordinate system is literally equal
to the coordinate representation in the untransformed coordinate system of the vector
~a ′ that has been obtained from ~a by active rotation by −θbz. Of course, in spite of this
equality, we know ~a and ~a ′ are different vectors because the coordinate
representations that are equal are coordinate representations in different coordinate
systems (the transformed and untransformed systems). This is analogous to the
situation in quantum mechanics of a passively transformed state having the same
position-basis representation in the transformed basis as an actively transformed state
has in the untransformed basis when the actively transformed state has been
transformed using the inverse transformation as was used for the passive
transformation (see Section 12.3).

It is convention to use Rθbz for RA,θbz and to never use RP,θbz . We will follow this
convention.
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Rotations Transformations in Two Dimensions (cont.)

Generators for Classical Rotation Transformations in Two Dimensions

Since we are going to be considering generators in the quantum case and for the
three-dimensional classical case, it is worth showing how the above transformation can
be written as an operator exponential of a generator. As we did in connection with
identifying the generator of a continuous coordinate transformation of quantum
mechanical states, we will begin by considering an infinitesimal version of the above
coordinate transformation:

Rδθbz =

24 cos δθ − sin δθ 0
sin δθ cos δθ 0

0 1

35 ≈
24 1 −δθ 0
δθ 1 0
0 1

35
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Rotations Transformations in Two Dimensions (cont.)

The generic relationship between a classical coordinate transformation and its
generator is

Tε = I + εG

Instead of relating Hermitian generators to unitary coordinate transformation
operators, we must relate antisymmetric generators to orthogonal coordinate
transformation operators. (The generator must be antisymmetric, not symmetric,
because we have no i in the argument of the exponential as we do for the QM
version). Thus, it makes sense to rewrite our infinitesimal rotation operators as

Rδθbz = I + δθMz Mz ≡

24 0 −1 0
1 0 0
0 0 0

35
Thus, Mz is the classical generator of rotations about bz. The use of the z subscript of
course foreshadows similar operators for rotations about bx and by .
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Rotations Transformations in Two Dimensions (cont.)

We of course recover the finite classical rotation transformation by the appropriate
infinite product, yielding an exponential:

Rθbz = lim
N→∞

„
I +

θ

N
Mz

«N

= exp (θMz )

We may evaluate the above using the fact

M2
z = −

24 1 0 0
0 1 0
0 0 0

35
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Rotations Transformations in Two Dimensions (cont.)

This yields

Rθbz =
∞X
n=0

θn

n!
Mn

z = I + θMz +
∞X
n=1

„
θ2n

(2n)!
M2n

z +
θ2n+1

(2n + 1)!
M2n

z Mz

«

=

24 0 0 0
0 0 0
0 0 1

35+
∞X
n=0

24 1 0 0
0 1 0
0 0 0

35„ θ2n(−1)n

(2n)!
+
θ2n+1(−1)n

(2n + 1)!
Mz

«

=

24 0 0 0
0 0 0
0 0 1

35+

24 1 0 0
0 1 0
0 0 0

35 (cθ + sθ Mz )

=

24 cθ −sθ 0
sθ cθ 0
0 0 1

35
as expected.
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Rotations Transformations in Two Dimensions (cont.)

What is the significance of the Mz matrix? See:

−~rT Mz~p =
ˆ

x y z
˜ 24 0 −1 0

1 0 0
0 0 0

3524 px

py

pz

35
= x py − y px = lz

That is, Mz can be used to compute the z component of the angular momentum
when combined with the ~r and ~p vectors. Mz is in some nontrivial way connected to
the z component of angular momentum.
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