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Abstract

We discuss various aspects of the Sunyaev-Zeldovich effects relevant to the CCAT. We review
the frequency spectrum, make predictions for signal levels and angular sizes from various kinds
of objects, and discuss the expected confusion levels.

1 Frequency Spectrum

The thermal Sunyaev-Zeldovich (tSZ) effect consists of a non-thermal distortion of the spectrum of
the CMB by Compton scattering through a gas of hot electrons, such as the intracluster medium
in galaxy clusters. The thermal SZ effect has now been detected and mapped for about fifty
clusters [1]. The spectral signature of the effect (in surface brightness Bν and thermodynamic
temperature TCMB) is
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where x = h ν/k TCMB is set by the observing frequency and y is the Comptonization parameter of
the scattering medium. k is Boltzmann’s constant, me, ne, and Te are the electron mass, density,
and temperature, σT is the Thomson scattering cross section, and the integral is along the line of
sight. The above expression is valid for nonrelativistic electrons. In most cases, small relativistic
corrections are needed. These do not substantially affect our discussion, so we will stick with the
simple nonrelativistic expressions.

The kinetic (or kinematic) SZ (kSZ) effect arises from the motion of the scattering medium
relative to the CMB rest frame. The scattered radiation experiences a Doppler shift, resulting in a
thermal distortion of the spectrum

∆Bν

Bν
= h(x)

∆TCMB

TCMB
= −h(x)

v

c
τ τ =

∫
ne σT dl (3)

where v is the peculiar velocity of the scattering medium, c is the speed of light, and τ is the optical
depth for Thomson scattering in the ionized medium. Note that the kinetic effect is “thermal” in
the sense that the thermodynamic temperature fluctuation is independent of frequency; hence, the
kinetic effect is spectrally indistinguishable from primary CMB fluctuations.

1



Figure 1: CMB and SZ frequency spectra. Solid curve: CMB. Dashed curve: CMB temperature anistropy
at ∆TCMB/TCMB = 10−4 (comparable to primary anisotropy on 1 degree angular scales). Dash-dot curve:
thermal SZ (tSZ) effect for y = 10−4 (τ = 0.005 and Te ∼ 10 keV ≈ 0.02 me c2), typical of a massive,
nearby cluster. The dashed curve also holds for kinetic SZ (kSZ) with (v/c) τ = 10−4 (a massive cluster with
τ = 0.005 and v = 600 km/s, larger than expected by a factor of a few). Right: power incident on a receiver
assuming 25% fractional bandwidth and single-optical-mode design.

The frequency spectra of the above two effects, as well as of the microwave background itself,
are shown in Figure 1. Note that the spectrum of CMB temperature anisotropy (and similarly of
the kinetic effect) differs from that of the CMB itself because the latter is BCMB

ν while the former
is proportional to dBCMB

ν /dTCMB. The figure also shows a more practically useful quantity, the
power incident on a single-moded receiver with 25% fractional bandwidth. This incorporates two
facts: the optical throughput for a single-moded system is proportional to λ2 and thus decreases
with increasing frequency; and fixed fractional bandwidth yields increasing absolute bandwidth
with increasing frequency. The message of the second plot is that one should not be misled by the
first plot: though the surface brightness of CMB and SZ fluctuations peak at roughly 220 GHz
and 370 GHz, respectively, the received power peaks at smaller frequencies, 150 GHz and 95 GHz,
respectively. Since receiver noise-equivalent power for ground-based receivers tends to degrade with
increasing frequency (due to increased photon noise from the atmospheric optical loading), one tends
to be pushed to lower frequency to obtain the best CMB and SZ sensitivity. This is in contrast to
galactic or extragalactic dusty sources, whose surface brightess spectra increase sufficiently steeply
with frequency to beat the effects of decreased throughput and increased photon noise.
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2 Generic Discussion of the Calculation of Cluster Parameters

Obviously, to gauge the detectability of various SZ signals, we need some idea of what clusters look
like in the SZ, and thus relations between SZ profiles and cluster mass, redshift, etc. This requires
some simplistic modeling of clusters, in the same way that modeling of galaxies provides us with
expected number counts in the submillimeter.

Since we are doing a feasibility study, we are less interested in detailed profiles than we are
in typical signal levels and angular scales and how these observables scale with halo mass, forma-
tion redshift, etc. These will help us understand how to make tradeoffs to optimize the telescope
for specific science goals. So, rather than trying to summarize the most accurate expectations
for cluster profiles obtained from the latest simulations and observations, we model the halo dark
matter and gas profiles simplistically and “prescriptively” – that is, using perhaps somewhat un-
motivated prescriptions that are found to reproduce current simulation work well. The advantage
of this approach is that we obtain results that clearly display the dependences of the tSZ signal
on halo parameters. We pin our calculations to reality using simulations that relate the integrated
thermal SZ flux to the cluster mass, which essentially provide a normalization for the gas and
Comptonization profiles.

2.1 Dark Matter Profiles

We begin with the standard technique of using the Navarro-Frenk-White profile [2] of the cluster
mass density (derived from simulations):

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 (4)

rs is the “scale radius”, where the density function changes power-law slope. ρs is just a normalizing
parameter. The total mass of a NFW profile diverges logarithmically, so it is necessary to put in
a cutoff radius to obtain a finite mass. It is conventional to use the virial radius as the cutoff; the
virial mass is obtained by integrating the profile out to this cutoff, giving

Mv =
4
3

π ρs r3
s

[
log (1 + ch)− ch

1 + ch

]
(5)

here ch = Rv/rs is the halo “concentration” parameter. The halo is entirely specified by rs, Rv,
and Mv, or alternatively ch, Rv, and Mv (or alternatively, a parameter set involving ρs instead).

The freedom in the NFW profile is greatly reduced by applying what we know about gravita-
tional collapse. Simple spherical collapse relates the virial radius to the virial mass via1

Mv =
4
3

π R3
v [1 + δcoll,non(Ωm0,ΩΛ0, zf )] ρb0 (1 + zf )3 (6)

where ρb0 is the current (z = 0) average mass density of the universe, zf is the redshift of formation
of the cluster, and δcoll,non(Ωm0,ΩΛ0, zf ) is the nonlinear density constrast at the time of formation

1The formula arises as follows. ρb0 (1 + zf )3 is the physical density at the time cluster formed. δcoll,non is the
nonlinear overdensity at the time of virialization. It is calculated by tracking the evolution of a collapsing sphere
of matter in a particular background cosmology.; it is the traditional 18 π2 ≈ 178 in a Ωm = 1 flat universe. Thus,
[1 + δcoll,non] ρb0 (1 + zf )3 is the physical density at the time of collapse, which gives us the density to multiply against
the virial volume to obtain the mass. Once virialization occurs, the cluster’s density and virial radius remain fixed
(the halo has decoupled from the expansion of the universe).
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for an object that forms at redshift zf in a universe whose z = 0 matter and vacuum energy density
parameters are Ωm0 and ΩΛ0.2

Many authors have studied the behavior of the halo concentration parameter. It seems that
the best understanding is provided using full simulations of halo formation [4, 5], wherein the
halo concentration parameter ch is seen to obey ch = K (1 + zf ) / (1 + zo) where zf and zo are
the redshift of formation of the object and the redshift at which it is observed. K is a constant,
dependent on the cosmology. Thus, the concentration at formation is a universal constant (for
the given cosmology), and variations in concentration arise due to evolution of the halo between
formation and observation. The problem with using this form is that the formation redshift zf is
defined in [4, 5] using the full accretion history of the halo under study; it is not simply the redshift
at which the overdensity reaches the critical value for collapse. It is thus difficult to apply their
analysis to our rather simplistic picture of cluster formation.

Bullock et al. [6] take a different approach. They find that, at any given redshift of observation,
the halo concentration parameter of the ensemble of halos has a well-defined mean value with some
scatter. The mean value is mildly dependent on mass. As quoted by Cooray [7], the mean value is

ch (zo) =
K

1 + zo

(
Mv

Mcoll(zo)

)−0.13

(7)

where zo is the redshift at which the halo is observed and K = 9. Mcoll(zo) is, heuristically,
the typical halo mass that is forming at the redshift zo.3 Along with this mean value, the halo
concentration parameter is seen to be log-normal distributed with σlog ch

= 0.18. The scatter
in halo concentration parameters has been understood to reflect primarily variation in formation
redshift [4, 5].

Seljak [8] used a similar approach but found a simpler behavior was satisfactory. As quoted by
Komatsu and Seljak [9], the concentration parameter obeys

ch (zo) =
K

1 + zo

(
Mv

1014h−1 M�

)−1/5

(8)

with K = 6. For our purposes, we will use this form, neglecting the scatter in the halo concentration
parameter.

Using the halo concentration parameter, the NFW scale radius is therefore related to the mass
by

Mv

(
Mv

1014h−1 M�

)1/5

=
4
3

π K3 r3
s [1 + δcoll,non(Ωm0,ΩΛ0, zf )] ρb0

(
1 + zf

1 + zo

)3

(9)

2A fitting formula for this collapse overdensity for the case Ωm0 ≤ 1, Ωm0 + ΩΛ0 = 1 is given in [3]

and is δcoll,non(Ωm0, ΩΛ0 = 1 − Ωm0, z) = 18π2
ˆ
1 + 0.4093 x2.71572

˜
with x =

`
Ω−1

m0 − 1
´1/3

/ (1 + z). One

frequently sees the approximation δcoll,non(Ωm0, ΩΛ0 = 1 − Ωm0, z) = 18π2 [Ωm(z)]−0.55, with Ωm(z) =ˆ
Ωm0 (1 + z)3

˜
/

ˆ
Ωm0 (1 + z)3 + ΩΛ0

˜
(also valid only for a flat universe!), which is good to 5-10% at low z, bet-

ter at z > 1.
3More technically, Mcoll(zo) is obtained from Press-Schechter theory as follows. At any given redshift zo, we may

smooth the linear density field with a top hat of radius Rt. The smoothed density field will have some rms value
σ(Rt; zo) = σ(Mt; zo) where Mt = 4 π

3
R3

t ρb(zo) is the typical mass associated with the top hat radius Rt and σ is
determined by the details of the primordial power spectrum and the structure growth function for the given cosmology.
This smoothed density field has a Gaussian distribution of overdensities. There is a critical linear overdensity for
collapse, δcoll,lin(z), which is redshift- and cosmology-dependent, but is exactly (3/20)(12 π)2/3 ≈ 1.686 in an Einstein-
deSitter universe and negligibly different in other universes. Excursions of the smoothed density field with overdensity
greater than this value collapse and form halos. For the given redshift, there is exactly one Rt for which the rms of
the overdensity distribution exactly matches the linear collapse overdensity. The mass of the collapsing objects on
this length scale (with mass M = 1.686 Mt) is Mcoll(zo).
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Thus, the algorithm for obtaining a full halo profile for a cluster of a specified virial mass Mv,
formation redshift zf , and observation redshift zo is:

1. Specify the virial mass Mv and a redshift of formation zf .

2. Obtain Rv from Mv, zf , and Equation 6.

3. Obtain rs from Rv, zf , zo and Equation 8.

4. Obtain ρs from Mv, Rv, rs and Equation 5.

2.2 Gas Profiles

Since the SZ effects arise from Compton scattering of the CMB by the intracluster plasma, we
next require some information about the gas profile of the cluster. One that is typically used is
the isothermal beta profile with β = 2/3, which approximates well the actual profile obtained by
assuming hydrostatic equilibrium if one takes rc = 0.2 rs for the relationship between the beta
profile core radius rc and the NFW scale radius rs.4 We define the “gas concentration factor” to
be cg = rs/rc. While the details of the relation between the beta profile and the “true” profile
will of course vary as one includes more astrophysics, we use the simple β = 2/3 and rc = 0.2 rs

profile in the general spirit of our approximation. We keep the parameter cg explicit until we make
numerical calculations. More physically motivated profiles can be found in [10, 7, 11, 9, 12].

A beta model gas density profile obeys

ρg(r) = ρg0

[
1 +

(
r

rc

)2
]−3β/2

(10)

=
ρg0

1 +
(

r
rc

)2 for β = 2/3 (11)

The normalization is set by requiring that the total gas mass enclosed within the virial radius
be related to the total halo mass by the universal baryon fraction fb.5 For the beta model, the
Comptonization parameter has the analytical form [13]

y(r) = y0

[
1 +

(
r

rc

)2
](1−3β)/2

y0 = τ0
k Te

me c2
τ0 =

ρg0

µmp
σT rc

√
π

Γ(3
2β − 1

2)
Γ(3

2β)
(12)

which, for the simple β = 2/3 model, reduces to

y(r) = y0

[
1 +

(
r

rc

)2
]−1/2

τ0 =
ρg0

µmp
σT rc (13)

We will see later that it is useful to also have the integral of y over radius. This can be calculated
analytically:

Y (r) = 2 π

∫ r

0
y(r′) r′ dr′ = 2π y0

∫ r

0

r′ dr′[
1 +

(
r′

rc

)2
]1/2

= 2π y0 r2
c

[
1 +

(
r

rc

)2
]1/2

(14)

4It turns out that assuming this relationship rc = 0.2 rs only affects the central part of the profile, making the y
and τ profiles’ core radius smaller and increasing their peak value. At large radii, the two effects largely cancel, so
the SZ signals in the wings of the cluster only weakly depend on what relationship one assumes between rc and rs.

5Again, a prescription. This ratio is expected to hold in the outer wings of the cluster (Komatsu and Seljak [9]),
but we assume it holds true globally for simplicity.
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So, in particular, integrating y out to the virial radius gives

Yv = Y (Rv) = 2 π y0 r2
c

[
1 +

(
Rv

rc

)2
]1/2

= 2π y0
R2

v

c2
h

1
c2
g

√
1 + c2

hc2
g (15)

where we have obtained the second form so that the relationship is parameterized in terms of Rv,
the halo concentration parameter ch, and the gas concentration parameter cg. Rv is determined
only by the halo mass and the background cosmology. ch is determined by the details of dark matter
halo collapse and is obtained from simulations. The gas concentration parameter cg depends on
details of the gas physics. The second form thus makes it easy to see where changes in physical
assumptions would have an effect.

Yv can also be rewritten in a suggestive form by rewriting only in terms of Rv and rc:

y0 =
Yv/2
π r2

g

r2
g = rc

√
r2
c + R2

v ≈ rc Rv (16)

That is, y0 can be interpreted as the mean value of y obtained by taking half of Yv and spreading
it over a disk whose radius is approximately rg, the geometric mean of rc and Rv, or, alternatively,
spreading all of Yv over a disk whose radius is

√
2 times rg. The geometric mean, rg, of the two

radii can thus be interpreted as the effective radius of the signal. It is a more appropriate radius
than either rc or Rv, which are, respectively too small (containing only the peak of the profile) and
too large (containing the entire y profile, but most of the area has low y).

Let us convert the various radii we have calculated to angles so we get an idea of the angular
scales of interest. We simply apply the angular diameter distance to Rv and obtain θc and θg from
θv via the halo concentration parameter ch and the gas concentration parameter cg. Note that
we calculate the angular diameter distance to the redshift of observation, zo, not the redshift of
formation zf :

θv =
Rv

dA(zo)
=

1
c/H0

c/H0

dA(zo)
M

1/3
v

(1 + zf )

[
3

4 π ρb0 (1 + δcoll,non(Ωm0,ΩΛ0, zf ))

]1/3

(17)

=
1.5

3000
h

c/H0

dA(zo)
(1 + zf )−1

(
Mv

1014 M�

)1/3

(18)

= 1.2
c/H0

dA(zo)
(1 + zf )−1

(
Mv

1014 M�

)1/3

arcmin (19)

θc =
1
cg

θv

ch(zo)
=

1
cg

θv
1 + zo

K

(
Mv

1014h−1 M�

)1/5

(20)

= 0.03 h1/5 c/H0

dA(zo)
1 + zo

1 + zf

(
Mv

1014 M�

)8/15

arcmin (21)

θg ≈
√

θs θv (22)

= 0.18 h1/10 c/H0

dA(zo)
(1 + zo)

1/2

1 + zf

(
Mv

1014 M�

)13/30

arcmin (23)

The factor (c/H0) /dA(zo) is in the range 2.5 to 5 for z > 0.25 in a ΛCDM universe, taking on its
largest value at z = 0.25.
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2.3 Normalization of the Gas Density and Optical Depth Profile using the Uni-
versal Baryon Fraction

For normalization of the gas density profile (and therefore the optical depth), we can simply require
that the gas mass of the cluster match the universal baryon fraction.

The central optical depth was found earlier (Equation 13) to be

τ0 =
ρg0

µmp
σT rc (24)

where ρg0 is the central gas density. The central gas density can be found by integrating the gas
mass and requiring that it be a fraction fb of the total mass, where fb is the universal baryon
fraction (we neglect niceties about whether it should be fb or fb/(1 + fb).) The integral is

Mg = 4π ρg0

∫ Rv

0

r2 dr

1 +
(

r
rc

)2 = 4π ρg0 r3
c [x− arctanx]|Rv/rc

0 (25)

= 4π ρg0 r3
c

[
Rv

rc
− arctan

Rv

rc

]
(26)

= 4π ρg0 r3
c [chcg − arctan chcg] (27)

where ch is the halo concentration parameter, rc is the gas profile core radius, and cg is the gas
concentration parameter. Therefore,

τ0 =
σT

4 π µmp

fb Mv

r2
c

1
chcg − arctan chcg

(28)

rc can be rewritten in terms of rs, and rs in terms of Mv using Equation 9, which allows us to
rewrite τ0:

τ0 =
(

1
36 π

)1/3

σT fb K2c2
g ([1 + δcoll,non(Ωm0,ΩΛ0, zf )] ρb0)

2/3 M1/3
v

1 + zf

1 + zo

M
−2/5
14hinv

chcg − arctan chcg

(29)

=
(

1
36 π

)1/3

σT fb K cg ([1 + δcoll,non(Ωm0,ΩΛ0, zf )] ρb0)
2/3 M

1/3
v M

−1/5
14hinv

1−
arctan cg

K
1+zo

M
−1/5
14hinv

cg
K

1+zo
M
−1/5
14hinv

(1 + zf )

(30)

where M14hinv = Mv/1014h−1 M�. Inserting the numbers (we take fb = 0.06 h−1.5 = 0.10 and fix
h = 0.71 because the dependence on it is weak), we find

τ0 = 1.5 × 10−3

(
M

1014 M�

)2/15 1 + zf

1−
arctan cg

K
1+zo

M
−1/5
14hinv

cg
K

1+zo
M
−1/5
14hinv

(31)

The concentration-dependent factor varies between approximately 1 and 1.2 for zo < 3, so the
redshift-dependent factors do not change the optical depth by much.6

6As a check, we note that CL0016+16 is quoted by Birkinshaw [13] to have an optical depth of about 0.01. The
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2.4 Normalization of Comptonization Profile using Simulations

For the y profile, which is dependent on the electron temperature, we abandon adiabatic collapse
and instead base the normalization on simulations. It is usually found [15, 16] that the central
Comptonization parameter (y at the center of the cluster, usually known as y0) is strongly dependent
on details of cluster astrophysics such as recent mergers, entropy injection, etc. A more robust
observable is the integral of the tSZ signal over the cluster face. This is usually written as the
integral of the tSZ “flux density” over the cluster face (in quotes because it can be a negative flux
density at low frequencies):

Sν =
∫

d2θ ∆Bν(~θ) = Bν(x) h(x) f(x)
∫

d2θ y(~θ) (32)

= Bν(x) h(x) f(x)
∫

d2θ dl ne(~θ, l) σT
k Te

me c2
(33)

= Bν(x) h(x) f(x)
σT

d2
A(z)

∫
d3l ne(~l)

k Te

me c2
(34)

= Bν(x) h(x) f(x)
σT

d2
A(z)

k 〈Te〉n
me c2

Ne (35)

= Bν(x) h(x) f(x)
σT

d2
A(z)

k 〈Te〉n
me c2

M fb

µmp
(36)

where Bν(x) is the Planck blackbody function at x = h ν/k TCMB, f(x) and h(x) are the additional
frequency dependent factors given in Section 1, dA(z) is the angular diameter distance to redshift
z, σT is the Thomson cross-section, 〈Te〉n is the number-weighted mean electron temperature, M is
the cluster mass, fb is the baryonic fraction, µ is the mean atomic weight of the intracluster plasma,
and mp is the proton mass. Basic Press-Schecter theory, as well as numerical simulations, show
that the redshift dependences of Te and dA(z) largely cancel so that there is an approximately one-
to-one relationship between Sν and M .7 This relationship can be modified somewhat by radiative
cooling or entropy injection, but these effects have been checked and seen to affect the relation by
less than a factor of 2 [16, 17].

It is useful to factorize the above expression. Let

YMpc2 = σT

∫
d3l ne(~l)

k Te

me c2
(37)

YMpc2 contains only those pieces of the expression intrinsic to the cluster. The flux density is then
written as

Sν = Bν(x) h(x) f(x)
YMpc2

d2
A(z)

(38)

It is also conventional to use

Y =
∫

d2θ y(~θ) =
YMpc2

d2
A(z)

Sν = Bν(x) h(x) f(x) Y (39)

cluster has a total mass inside 3 Mpc of 2.3 × 1015 M� [14]. The above formula yields 0.0023 for the prefactor,
ignoring the factor with the redshift dependence. The redshift dependence could easily bring in another factor of 2.
The remaining factor of 2 discrepancy could be explained by claiming that the mass estimate is too low. A cluster of
this mass should have ch cg ≈ 17, whereas the gas core radius is only 300 kpc, suggesting the virial radius is at least
5 Mpc, not the 3 Mpc inside of which the mass has been counted. Including the mass out to the larger radius would
push up the mass estimate, resulting in higher τ0. So our formula seems to be not too far off from the data.

7For self-similar evolution (flat, Ωm = 1 universe), we expect T ∝ (1 + z), so S ∝ d−2
A T ∝ d−2

A (1 + z). One sees
empirically that this function varies by less than a factor of 2 over the redshift range z = 0.5 to z = 2.5.
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though we will not find these latter expressions useful here.
We will work with the relation between YMpc2 and M obtained via simulations by da Silva et

al. [17]. Specifically, we will use their “cooling” fit because it is somewhat conservative to do so –
it tends to produce a shallower YMpc2 vs. M relation than “adiabatic” and “preheating” models.8

They calculate Y 200
Mpc2

, which is YMpc2 integrated out to the radius at which the enclosed density
was 200 times the critical density of the universe at the time of virialization.9 They find

Y 200
Mpc2

(M200, zf ) ≈ 10−6 (1 + zf )1.14

(
M200

1014 h−1M�

)1.83 (
h−1 Mpc

)2 (40)

where zf is the redshift of “formation”.10

If the da Silva formula were in terms of Yv and Mv, we could obtain y0 easily and thus have
the full y profile. However, da Silva provides Y 200

Mpc2
and M200, so we have to rewrite these in terms

of virial quantities. M200 and R200 are defined as the mass enclosed within the radius at which the
average density of the enclosed material is 200 times that of the critical density. Thus, the two are
related by (for a flat universe, only!):

M200 =
4
3

π R3
200 [200] ρcrit(zf ) =

4
3

π R3
200 [200]

ρb0

Ωm0

[
Ωm0 (1 + zf )3 + ΩΛ0

]
(41)

Using the NFW profile, they are also related by

M200 =
4
3

π ρs r3
s

[
log

(
1 +

R200

rs

)
− R200

rs + R200

]
(42)

We can rewrite the above in terms of Mv and Rv only by dividing by the analogous relations
between virial quantities

M200

Mv
=

(
R200

Rv

)3 200
1 + δcoll,non(Ωm0,ΩΛ0, zf )

[
Ωm0 (1 + zf )3 + ΩΛ0

]
Ωm0 (1 + zf )3

(43)

M200

Mv
=

[
log

(
1 + R200

rs

)
− R200

rs+R200

]
[
log (1 + ch)− ch

1+ch

] =

[
log

(
1 + ch

R200
Rv

)
− c R200/Rv

1+ch R200/Rv

]
[
log (1 + ch)− ch

1+ch

] (44)

Clearly, we could combine the two equations to obtain a transcendental relationship between R200

and Rv, and thereby find M200. However, for the accuracy of approximation we are interested in,
the distinction between virial and “200” masses is likely small enough to ignore. So we replace
“200” quantities in the da Silva relation with virial ones.

Let us now obtain the normalization of the y profile, y0. Using Equations 40, 6, and 15, we
8Specifically (referring to equations, tables, and figures in [17]), we take Equation 17, use the “cooling” values for

αM and βM from Table 2, and use Equation 12 to give the normalization at z = 0. The behavior of βM vs. zf in
Figure 6 is thereby reproduced. There is no evidence for evolution of αM with z.

9This definition is a bit unexpected – note that the definition refers to the critical density, not the background
density.

10“Formation” of a cluster is equivalent to virialization or collapse, and is conventionally defined to be the time at
which a perfectly spherical mass distribution of the same overdensity would have collapsed to zero radius.
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obtain

y0 =
Yv

2 π R2
v

c2
hc2

g√
1 + c2

hc2
g

(45)

=
1

2 π

c2
hc2

g√
1 + c2

hc2
g

10−6 (1 + zf )1.14
(

Mv
1014 h−1M�

)1.83 (
h−1 Mpc

)2

M
2/3
v

(
4 π
3 ρb0

)−2/3 (1 + zf )−2 [1 + δcoll,non(Ωm0,ΩΛ0, zf )]−2/3
(46)

= 2.2 × 10−9
c2
hc2

g√
1 + c2

hc2
g

(1 + zf )3.14

(
Mv

1014 M�

)1.16

[1 + δcoll,non(Ωm0,ΩΛ0, zf )]2/3 h−0.17

(47)

Now, let’s make some approximations to evaluate the above more easily. We take h = 0.71; it is
known precisely enough, and the dependence on it is weak. We will also take 1+δcoll,non(Ωm0,ΩΛ0, zf ) =
18 π2, its asymptotic value for large zf . For z > 0.25, the deviation from this value is no more than
50%, which gets reduced by the 2/3 power. So we have

y0 = 7.2 × 10−8
c2
hc2

g√
1 + c2

hc2
g

(1 + zf )3.14

(
Mv

1014 M�

)1.16

(48)
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The signal levels at different important radii are:

yc ≡ y(rc) =
y0√
2

(49)

= 5.1 × 10−8
c2
hc2

g√
1 + c2

hc2
g

(1 + zf )3.14

(
Mv

1014 M�

)1.16

(50)

≈ 5.1 × 10−8 ch cg (1 + zf )3.14

(
Mv

1014 M�

)1.16

(51)

= 5.1 × 10−8 h−1/5 K cg
(1 + zf )3.14

1 + zo

(
Mv

1014 M�

)0.96

(52)

= 1.6 × 10−6 (1 + zf )3.14

1 + zo

(
Mv

1014 M�

)0.96

(53)

yv ≡ y(Rv) =
y0√

1 + c2
hc2

g

(54)

= 7.2 × 10−8
c2
hc2

g

1 + c2
hc2

g

(1 + zf )3.14

(
Mv

1014 M�

)1.16

(55)

≈ 7.2 × 10−8 (1 + zf )3.14

(
Mv

1014 M�

)1.16

(56)

yg ≡ y(rg) =
y0√

1 +
√

1 + c2
hc2

g

(57)

= 7.2 × 10−8
c2
hc2

g√(
1 + c2

hc2
g

) (
1 +

√
1 + c2

hc2
g

) (1 + zf )3.14

(
Mv

1014 M�

)1.16

(58)

≈ 7.2 × 10−8√ch cg (1 + zf )3.14

(
Mv

1014 M�

)1.16

(59)

= 7.2 × 10−8 h−1/10
√

K cg
(1 + zf )3.14

√
1 + zo

(
Mv

1014 M�

)1.06

(60)

= 4.1 × 10−7 (1 + zf )3.14

√
1 + zo

(
Mv

1014 M�

)1.06

(61)

where we have used cg = 5 and ch as defined in Equation 8 with K = 6 to obtain the final version
of each formula. It is important to note the fact, visible in the intermediate results before we have
subtituted for ch and cg, that the dependence on concentration parameter differs between the three
y values: yv has essentially no dependence on concentration parameters (as long as ch cg � 1), y0

and yc have linear dependence on the concentration parameters, and yg has square-root dependence
on the concentration parameters. Clearly, predictions of yv will be most robust against variations in
dark matter halo profile and in gas physics. We also summarize the relations between the different
y values:

y0 = 32
yv

1 + zo

(
M

1014 M�

)−1/5

yc =
y0√
2

yg ≈ 5.4
yv√

1 + zo

(
M

1014 M�

)−1/10

(62)

We have referenced all values to yv because yv is independent of concentration parameters for our
normalization method. For the sake of picking a single number to focus on, we take the typical
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signal level to be yg, or

yg = 4.1 × 10−7 (1 + zf )3.14

√
1 + zo

(
Mv

1014 M�

)1.06

(63)

This result is similar to those obtained in the literature from theory11 and from data12.

2.5 Abundances

As important as signal level and angular size is an estimate of the abundance of detectable objects.
The above discussion has shown us how to calculate the observable parameters of a cluster given
its mass, formation redshift, and observation redshift. Since we will primarily be interested in
observations above some mass threshold, let us consider how the number of clusters depends on the
mass cutoff. These abundances are easily calculated using standard Press-Schechter formalism [21],
or, more accurately, using simulations [22, 23]. Since the cosmological parameters are sufficiently
well defined that there are now essentially no free parameters in these abundances, we simply list
the number of clusters per square degree expected above various mass thresholds. Holder et al. [24]
provide calculations of these abundances based on the simulations in [23]. We use these results to
summarize the number of objects in the sky viewable by CCAT 13:

mass limit area density number in 20000 deg2

1 × 1014 M� 40 deg−2 106

3.5 × 1014 M� 6 deg−2 105

1 × 1015 M� 0.25 deg−2 few × 103

3.5 × 1015 M� 0.012 deg−2 2 × 102

11For example, Bartlett [18] obtains the formula (his Equation 11)

y0(M, z) = (6.40 × 10−5 h2) fgas Ωm0
δcoll,non(z)

18 π2
M15 (1 + z)3

c√
1 + c2 − 1

He uses fgas = 0.06 h−1.5. It is not clear whether z refers to formation or observation redshift; we will assume it
is zf . If we make similar approximations to those we have made above, and use c = chcg, we obtain y0(M, z) ≈
2.8 × 10−6 M

4/5
14 (1 + zf )3/(1 + zo), which is very close to the y0 we calculated. Unfortunately, no other authors

provide a similar simple form for y0, so we cannot perform further cross-checks.
12Hughes and Birkinshaw [19] and Reese et al. [20] find y0 = 2.3× 10−4 for CL0016+16 via SZ measurements. Using

the Neumann and Bohringer [14] X-ray mass of 2.5× 1015 M� for CL0016+16, our formula predicts y0 = 8.8× 10−5 for
zf = zo = 0, low by a factor of 2.6. As we mentioned earlier, the X-ray mass measurement may be an underestimate;
and of course, zf > 0 would increase y0 also. The agreeement is reasonable given these uncertainties.

13CCAT can see about 36000 deg2 above local elevation of 30 deg. We very conservatively assume 20000 deg2 are
sufficiently free of galactic contamination to use. For reference, WMAP discards about 20% of the sky in its full-sky
analysis [25].
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3 Signal Levels and Angular Scales for Various Objects

With the relations given in Section 2 in hand, we can gauge the signal levels and angular scales of
interest.

For reference, we will assume a Gaussian illumination of a 25-m diameter primary with a
conservative -10 dB edge taper. The illumination pattern has σ = 5.8 m and FWHM = 13.7 m.
This results in the following beam sizes:

frequency beam FWHM
275 GHz 0.24 arcmin = 14 arcsec
220 GHz 0.30 arcmin = 18 arcsec
150 GHz 0.44 arcmin = 26 arcsec
100 GHz 0.66 arcmin = 40 arcsec

Given the discussion in the previous section, we will focus our calculations on 150 GHz, but the
beam sizes and known frequency dependence of the SZ effects allow one to scale these results to
different frequencies.

3.1 Detailed Mapping of Individual Clusters in the Thermal SZ

For the sake of definiteness, we consider clusters at the detection limit of expected blind tSZ surveys
such as APEX, ACT, and SPT, which we may like to follow up with CCAT. These surveys will
have a detection limit of approximately 2.5 × 1014 h−1 M� ≈ 3.5 × 1014 M� [26]. We do not know
zf and zo, so we conservatively maximize zo by using zo = zf and then also set zf = 0 to minimize
the y signal.

• Equation 63 gives signal levels of y ∼ 3 × 10−7 and larger at the virial radius (Rv ≈ 2.3 Mpc,
θv ≈ 4.5 arcmin), corresponding to a temperature signal at 150 GHz of ∆TCMB ∼ 0.9 µKCMB.
In a 0.44 arcmin FWHM beam at 150 GHz, y = 3 × 10−7 corresponds to a flux density of
6 µJy per beam. Signal levels in cluster cores (yc) are larger by a factor of as much as 25
(∆TCMB ∼ 20 µKCMB, flux ∼ 140 µJy). However, this latter number should be taken with
a large grain of salt because, as we have said before, predictions in the core are not robust.
Also, observationally, beam dilution will reduce the apparent signal: for the same cluster
mass, rc ≈ 80 kpc and θc ≈ 0.15 arcmin, much smaller than the 0.44 arcmin FWHM beam
at 150 GHz. The geometric mean radius rg ≈ 420 kpc, θg ≈ 0.83 arcmin, is a much better
match to the beam size, and we expect yg ≈ 1.8 × 10−6 (∆TCMB ∼ 5 µKCMB, flux ≈ 35 µJy).

• Equations 19, 21, and 23 imply that we need information on angular scales (diameter) from
roughly 0.1 arcmin to 10 arcmin. The beam obviously provides a lower limit that is greater
than 0.1 arcmin, but the 10 arcmin criterion points to the necessary field of view.

Confusion from infrared and radio points sources is an issue at these signal levels; confusion will
be discussed later.

3.2 Kinetic SZ in Individual Clusters

The kinetic SZ effect depends on both the optical depth of the cluster and its line-of-sight peculiar
velocity. Peel [27] finds by simulation the peculiar velocity distribution for cluster-size halos. It
is generically found that the 1-dimensional, 2-dimensional, and 3-dimensional RMS velocities are
311 km s−1, 440 km s−1, and 539 km s−1, with no apparent dependence on cluster mass. Thus,
v/c ≈ 10−3 to good accuracy.

13



For a cluster at the detection limit of the large-area tSZ surveys, M ≈ 3.5 × 1014 M�, we obtain
from Equation 31 a central optical depth of 1.8 × 10−3. Since we saw earlier that the cluster core
is very small compared to our beam, let us instead consider the signal level at θg ≈ 0.83 arcmin
for such a cluster. The optical depth drops by a factor of roughly 5.4 (same as for yg/y0) to
τ(rg) ≈ 3.6× 10−4. Assuming the aforementioned v/c of 10−3, we obtain ∆TCMB/TCMB = 4× 10−7,
∆TCMB = 1 µKCMB, and a flux density of 8 µJy.14 Because of the weak dependence on cluster
mass, larger clusters will not yield much larger signals unless they have enhanced baryon fraction
or concentration. At any signal size, confusion from point sources will again be an issue, to be
addressed later in this document.

3.3 Blind tSZ Surveys for Low-Mass Objects

The large-area blind tSZ survey such as APEX-SZ, ACT, and SPT will have a limiting mass of
about 3.5 × 1014 M�. Blind tSZ surveys have been studied extensively [28, 26, 18, 12, 29, 30, 31];
one general conclusion is that the optimal depth for a survey is that at which the lowest-mass
clusters detected match the beam size. Thus, it might be sensible to conduct a survey to lower
mass with CCAT given its significantly better angular resolution. As an exercise, let us calculate
the angular sizes and integrated flux densities for objects of mass 1012 M�, 1013 M�, and 1014 M�.
The relation for YMpc2 from da Silva et al.used before is known to be valid down to 1013 M�; we
will blindly extrapolate it down to 1012 M�. Let us use Equation 38 for Sν and Equation 40 for
YMpc2 , and specialize to ν = 150 GHz:

Sν = Bν(x) h(x) f(x)
1

d2
A(zo)

10−6 (1 + zf )1.14

(
Mv

1014 M�

)1.83

h−0.17 Mpc2 (64)

=
(

1
c/H0

)2

h−0.17Bν(x) h(x) f(x)
(

c/H0

dA(zo)

)2

10−6 (1 + zf )1.14

(
Mv

1014 M�

)1.83

Mpc2 (65)

= 60
(

c/H0

dA(zo)

)2

(1 + zf )1.14

(
Mv

1014 M�

)1.83

µJy (66)

As a check, we note that the 3.5 × 1014 M� mass limit of the large-area blind surveys corresponds
to about 6 mJy. This value is consistent (to a factor of 2) with Table 1 of the Battye, et al. [30]
tSZ survey optimization paper.

For the objects of the specified masses, conservatively taking zf = 0 and the angular diameter
distance factor to be 2.52, we have (using Equation 21 for θs):

mass flux density θs

1012 M� 0.08 µJy 0.02 arcmin
1013 M� 5 µJy 0.05 arcmin
1014 M� 350 µJy 0.1 arcmin

Note the fast decrease of flux density with mass. The mass-dependence of the flux density is so
strong because the flux density depends on both mass and temperature; the latter goes as Mα,
α = 2/3 to 1. One may get a mild enhancement from the fact that lower-mass objects form earlier

14The fact that this kSZ flux estimate is only a factor of 4 – 5 smaller than the tSZ flux estimate at the same radius
made in Section 3.1 is no doubt surprising, but it can be explained by simply noting that the estimate is being made
for fairly low-mass clusters. One is used to seeing such estimates for 1015 M� clusters. The tSZ signal increases much
more quickly with mass than the kSZ signal because of the former’s temperature dependence. This gives a factor of 3
difference between tSZ and kSZ. The ratio of the two signals becomes roughly 10, which is probably what the reader
expects.
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and thus zf can be as large as 5 to 10, which may allow detection of 1013 M� objects, but 1012 M�
objects are definitely out of reach.

3.4 Primary CMB Anisotropy

Primary CMB anisotropy suffers an exponential dropoff in amplitude for angular multipole number
` > 2000 (λθ < 10.8 arcmin where λθ is the angular wavelength of the mode) due to photon
diffusion at the surface of last scattering (Silk damping). Thermal SZ anisotropy (Section 3.5) is
expected to match primary CMB anisotropy in amplitude at ` ≈ 2000− 4000 (see for example, [7],
though any of the references listed in Section 3.5 will suffice). This is not damning because tSZ is
spectrally distinguishable. Spectrally indistinguishable kSZ anisotropy (see Section 3.5) is expected
to dominate over primary anisotropy for ` > 4000. If we assume a field of view of 20 arcmin, it is
plausible that some primary anisotropy could be detected.

There are two arguments against focusing on primary anisotropy, though. Sky subtraction will
make it difficult to see such FOV-size structure, though perhaps less aggressive sky subtraction (or
none at all) could be used to recover the exponentially rising signal. But, perhaps more importantly,
there are a number of other experiments – APEX, ACT, and SPT – that will be better optimized
for detection of such signals and will take data much sooner. We thus do not include primary CMB
anisotropy as an important science goal for CCAT.

3.5 Distributed SZ Anisotropy Power Spectra

While we have so far discussed detection of SZ effects in individual clusters, one may also consider
trying to detect the distributed anisotropy due to the accumulated SZ fluctuations between today
and the surface of last scattering. The mean comptonization is not easily detectable because it
requires an absolute measurement, but fluctuations are accessible.

Many authors have calculated tSZ and kSZ15 anisotropy power spectra [32, 33, 34, 35, 36, 7, 37,
38]. At 150 GHz, these signals typically have approximately flat bandpowers of about 10 µK2

CMB

(at 150 GHz – the tSZ temperature fluctuation is frequency-dependent) and 1 µK2
CMB (kSZ) in the

angular multipole range ` ∼ 1000− 20000, with variations of a factor of a few in these predictions
depending on the assumptions going into the calculation. No one has done serious predictions for
` > 10000, but it is expected that the signal has a wide peak in `-space at ` ∼ 5000− 10000; there
is, for example, no expected exponential fall-off as with primary anisotropy.

The expected variance due to SZ anisotropy in map-space is obtained by multiplying the ex-
pected bandpower (Cl ` (` + 1) /2 π, in µK2

CMB) against the logarithmic `-space bandwidth, ∆ log `.
Assuming a CCAT SZ instrument is sensitive on length scales from the beam size (σ ≈ 0.2 arcmin
at 150 GHz) to the field of view (≈ 20 arcmin), the latter factor is ∆ log ` ≈ 4.6, so we expect rms
map-space signals of 7 µKCMB for tSZ at 150 GHz and 2 µKCMB for kSZ. Distributed kSZ is surpris-
ingly large compared to distributed tSZ, presumably because it is not so strongly mass-dependent;
though kSZ does suffer an additional line-of-sight cancellation.

Another effect, termed “patchy reionization”, occurs because the ionization fraction of the
baryons is modulated by reionization – regions around large sources of UV photons are more
ionized than the IGM in general. One can obtain a kSZ effect from these regions. The anisotropy

15On the Ostriker-Vishniac effect: the distinction between kSZ and OV effects is purely semantic. kSZ usually
refers to the effect in the nonlinear regime while OV usually refers to the linear fluctuation regime. They are the
same underlying physics. Note that, to first order, any kSZ fluctuation disappears because any fluctuation on the
line of sight with one sign of velocity with have a corresponding fluctuation with the opposite sign. When viewed this
way, kSZ occurs because nonlinear collapse ruins the cancellation and OV occurs due to second-order correlations
between the linear density and velocity fields. We shall subsume OV into kSZ for all our discussions.

15



signal levels are a factor of a few smaller than the standard kSZ mentioned above. We will neglect
patchy reionization.

3.6 Primary CMB Polarization Anisotropy

As with primary temperature anisotropy, primary polarization anisotropy falls off exponentially at
high ` due to Silk damping. For the same reasons as above, we therefore do not consider it.

3.7 Polarized SZ in Individual Clusters

Polarized SZ effects arise in the same manner as primary CMB polarization anisotropy – if a free
electron sees a radiation field with a quadrupole anisotropy, then the scattered radiation exhibits
a polarization related to that anistropy. Such quadrupole anisotropy occurs in three ways: in-
trinsic quadrupole anisotropy in the radiation field incident on the cluster; quadrupole anisotropy
engendered as a result of the peculiar motion of the cluster (second-order in v/c); and quadrupole
anisotropy created by double-scattering of CMB photons in a single cluster (a τ2 effect). The first ef-
fect is by far the most important because it provides multiple measurements of the CMB quadrupole
anisotropy from independent last-scattering surfaces, allowing one to beat cosmic variance. Given
the significant suppression of large-scale CMB anisotropy as compared to predictions [25], this could
be a very important measurement.

In calculating signal levels, we first note that these effects are thermal in that they result in
thermodynamic temperature changes of the CMB; they do not Comptonize the CMB as the tSZ
effect does. So we may speak of ∆TCMB/TCMB signals without ambiguity. The expected signal
levels are:

• Intrinsic quadrupole anisotropy: As first calculated by Zeldovich and Sunyaev [39], this signal
has ∆TCMB/TCMB = 0.1 τ Q where Q is the intrinsic quadrupole anisotropy in ∆TCMB/TCMB,
Q ≈ 6 × 10−6 as measured by COBE [40]. For τ = 10−3−10−2 (reasonable levels for massive
clusters as explained in Section 3.2), we have ∆TCMB/TCMB ≈ 6 × 10−10 − 6 × 10−9, or
∆TCMB = 1.5− 15 nKCMB.

• Velocity-induced quadrupole anistropy. This effect was first calculated by Sunyaev and Zel-
dovich [41] and has size ∆TCMB/TCMB = 0.1 (v⊥/c)2 τ , where v⊥ is the velocity transverse
to the line of sight. Using the 2D velocity dispersion of 440 km s−1 calculated above, and
τ = 10−3 − 10−2, we obtain ∆TCMB = 0.2− 2 nKCMB.

• Double-scattering induced quadrupole anisotropy. This effect was also first noted by Sun-
yaev and Zeldovich [41] and is of size ∆TCMB/TCMB = 0.025 (v⊥/c) τ2, so the signal level is
∆TCMB = 0.03− 3 nKCMB.

These signals are clearly very small. The saving grace is that they are polarized. This will,
first of all, greatly mitigate the effect of sky noise in degrading instrument sensitivity. But it is
certainly expected that radio point sources, and possibly infrared point sources, will show low-level
polarization, so we cannot be guaranteed of polarization-free confusion noise. Further discussion
will be provided later.

3.8 Distributed Polarized SZ Anisotropy

Hu [36] calculates the power spectrum of polarization anistropy due to distributed effects of the
same kind discussed in Section 3.7. These effects are at the few nKCMB level and below. Since we
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will see later that even polarized SZ in clusters is essentially undetectable, we do not discuss this
small signal further.

4 Expected Sensitivities and Integration Times

4.1 Continuum Observations

Given the signal levels predicted above, how realistic is it to do these SZ observations? A first-order
answer can be obtained by simply comparing the signal levels to the expected background-limited
sensitivity. We assume we are in the Rayleigh-Jeans limit of the background optical load. The
background-limited sensitivity is therefore

NETRJ =
NEP/

√
2

2 k η ∆ν
(67)

=
1

2
√

2 k η ∆ν

[
2 Qh ν +

Q2

∆ν

]1/2

(68)

=
1

2
√

2 k η ∆ν

[
4 k T η ∆ ν h ν + 4 k2 T 2 η2 ∆ ν

]1/2 (69)

=

√
T (h ν + k T η)

2 k η ∆ν
(70)

where T is the total optical loading in Kelvins, ν is the central frequency, ∆ν is the bandwidth, and
η is the overall optical efficiency. The division of NEP by

√
2 is the usual conversion from Hz−1/2

to s1/2. Numerically, we have

frequency atmosph. NETRJ NETCMB NEFD
(GHz) transm. (µKRJ s1/2) (µKCMB s1/2) (mJy s1/2)
100 0.93 210 270 2.7
150 0.93 180 310 2.3
220 0.905 170 530 2.2
275 0.86 190 1000 2.5

We have used ∆ν/ν = 0.3, T = 45 K, and η = 0.5. T assumes 10% telescope emissivity at 273 K,
opacities at 1.5 mm PWV, Tatm = 273 K, and zenith angle of 30 deg; all from T. Herter’s sensitivity
worksheet.

Terry’s spreadsheet gives a sensitivity at 150 GHz of 2.3 mJy s1/2, which includes a
√

2 degrada-
tion for chopping. Terry’s calculation uses a smaller beam (22 arcsec) thanks to a more aggressive
edge taper; adjusting the edge taper of our primary illumination to 7 dB instead of 10 dB would
reduce the above NEFD to 1.6 mJy s1/2, which would then match Terry’s number when the

√
2

degradation is applied. For calculations, we use the 2.3 mJy s1/2 number (and its equivalents in
other units and at other frequencies).

If we naively assume that a cluster is covered by the focal plane so that instantaneously one
always obtains the above sensitivity over the entire cluster, then reaching 1 µKCMB rms at 150 GHz
requires 96 ksec, or about 7 eight-hour nights at 50% observing inefficiency. The sensitivity is really
too poor to try to map thermal SZ at high S/N in the virial wings of a 3.5 × 1014 M� cluster (signal
level ∼ 1 µKCMB). Azimuthally averaged radial profiles should be accessible in reasonable amounts
of time, and mapping should be possible for higher mass clusters.
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It is important to note that the sensitivity at these frequencies is largely limited by telescope
emissivity! Reducing the telescope emissivity to 5% and keeping all other parameters fixed would
improve the sensitivity at 150 GHz to 230 µKCMB s1/2 and would reduce the necessary integration
time by almost half to 260 ksec. Using a more reasonable Tatm = 250 K further reduces these
values to 220 µKCMB s1/2 and 240 ksec, and taking data in 1 mm PWV weather would further
bring them down to 190 µKCMB s1/2 and 180 ksec, or about 12 nights. Clearly, the dominant effect
is the telescope emissivity. At 275 GHz, one gets about equal

√
2 improvements in sensitivity from

reducing the telescope emissivity by a factor of 2 to 5% or by reducing the atmospheric opacity by
a factor of 2 to 7%.

It should be noted that the ACBAR receiver on the Viper telescope (an off-axis Gregorian
with a chopping tertiary) at the South Pole measures a telescope emissivity of only 1.5% with a 3-
mirror design at 150 GHz. This is actually 3 times the theoretical value, presumably due to mirror
roughness. Mirror roughness at 150 GHz for the CCAT should really be non-issue, and we expect
to need only one additional reflective optical element prior to entering the dewar (unless flat mirrors
are needed to fold the beam), so achieving 5% emissivity seems feasible as long as care is taken in
the optical design at all steps. Other critical contributors will be feed-leg blockage and diffraction,
cracks between the panels, and reflection from the center of the secondary. These problems can be
addressed by minimization of feed-leg mass and possibly arching the legs so they are only seen once
by the beam, careful matching of panel edges (presumably important at the highest frequencies
also), and opening a hole in or providing an oblique scattering cone at the secondary.

Detection of polarized SZ effects seems unlikely to be successful – even assuming the most
optimistic sensitivities above, reaching signal levels of order 10 nKCMB would take ∼ 109 sec.

4.2 Spectroscopic Observations

Low-resolution spectroscopy of the tSZ effect could be as useful as spatially-resolved observations
in understanding cluster astrophysics as well as in gauging and removing confusion. Resolution of
about 3 GHz would be sufficient (R ∼ 30−100) to see the broadband spectral signatures of thermal
and kinetic SZ, to directly see relativistic effects, and to probe for contamination by point sources.

By way of explanation: Corrections to the tSZ effect due to relativistic motion of the scattering
electrons provide sensitivity to the gas temperature. The first relativistic calculation of the tSZ
spectrum was performed by Rephaeli [42]; there have been further refinements since [43, 44, 45, 46,
47, 48, 49, 50, 51]. Low-resolution spectra taken at various locations and covering the frequency
range from 100 GHz to 300 GHz would be useful in measuring spatially resolved temperature
profiles. The deviation from the nonrelativistic spectrum is of course frequency- and Te-dependent.
At the increment-side peak, the effect is roughly 20% for Te = 15 keV, 10% for Te = 10 keV, and
between 5% and 10% at Te = 5 keV.

We have already calculated flux density levels for the nonrelativistic SZ effects, so we simply
need to determine whether observations over the restricted bandwidth of a spectrometer channel are
sufficiently sensitive to see these signals. As we did above, we assume we are in the Rayleigh-Jeans
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limit for the optical loading. The background-limited flux sensitivity is therefore

NEF = 2
√

2
NEP/

√
2

A η
(71)

=
2

A η

[
2 Qh ν + 2

Q2

∆ν

]1/2

(72)

=
2 Ωb

η λ2

[
2 k T η ∆ν h ν + 2 k2 T 2 η2 ∆ν

]1/2 (73)

=
4 π

√
2

(
FWHM

2
√

2 log 2

)2

η λ2
[k T η ∆ν (h ν + k T η)]1/2 (74)

where we have used the throughput theorem (A Ωb = λ2). The prefactors of 2 and
√

2 are due to
the need to chop and referring back to an unpolarized source (the waveguide spectrometer works in
only one polarization). The calculation of the NEP differs by a couple factors from the analogous
calculation for continuum sensitivity. First, the Bose term picks up an extra factor of 2 because
all the power comes in one polarization. Second, the relation between T and Q loses a factor
of 2 because only one polarization is observed. Note also the units – it is standard to discuss
spectroscopic sensitivities in terms of flux, not flux density. Numerically, we have

frequency atmosph. NEF
(GHz) transm. W m−2 s1/2

100 0.93 5.1 × 10−19

150 0.93 5.3 × 10−19

220 0.905 6.3 × 10−19

275 0.86 7.8 × 10−19

We have used ∆ν = 3 GHz, T = 45 K, and η = 0.5. T assumes 10% telescope emissivity at 273 K,
opacities at 1.5 mm PWV, Tatm = 273 K, and zenith angle of 30 deg; all from T. Herter’s sensitivity
worksheet. The sensitivities calculated above are within a factor of

√
2 of those calculated in Terry’s

worksheet.
For the lowest-mass clusters of interest for detailed follow-up, at 3.5 × 1014 M�, we calculated

that the tSZ flux density at 150 GHz in the virial wings is about 6 µJy per beam, or 1.8 × 10−22

W m−2 in a 3 GHz spectroscopic channel. Detecting this signal at 5σ would require an integration
time of 4.3 × 107 sec, clearly unfeasible. Larger signals are easily available, though:

• In cluster cores, the tSZ signal should be about a factor of 30 higher.

• y is a slightly faster than linear function of mass (Equation 63), so study of higher mass
clusters will be possible – each factor of ∼ 3 in mass would decrease the necessary integration
time by ∼ 10.

A 1015 M� cluster could be observed in the core in < 100 ksec and a 3.5 × 1015 M� cluster in the
core in < 5 ksec and in the virial wings in 20 ksec. These massive clusters are the ones for which
the relativistic effects will be most important, so they are actually the most interesting clusters to
study spectroscopically.

From the instrumental point of view, note that a background-limited spectrometer with higher
R (∼ 300−1000 has been discussed) would have poorer sensitivity per channel, but channels could
be coadded at no loss to obtain degraded resolution and better sensitivity (assuming each channel
is background-limited). However, the instrument becomes proportionally larger as the resolving
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power is increased; a major advantage of a R ∼ 30−100 instrument would be its compactness. The
only reason to build a higher-resolution spectrometer would be if there are interesting line searches
to be done in the 100 – 300 GHz range.

5 Confusion Noise

Clearly, a significant issue for these measurements will be confusion noise. Possible sources to
consider:

• Extragalactic infrared point sources

• Galactic cirrus

• Extragalactic radio point sources

• Galactic synchrotron and free-free

• CMB primary anisotropy

We list here current estimates for these confusion signal levels and discuss how they might be dealt
with.

5.1 Infrared Sources

Diffuse galactic cirrus emission will yield fluctuations smaller than those due to extragalactic point
sources [52, 53], so we neglect cirrus confusion.

A. Blain has calculated confusion levels from infrared sources [52]. Given the conservative edge
taper we have assumed, we cannot use his calculations for a 25-m diameter telescope. Rather, we
find the telescope diameter whose beam sizes matche the ones we obtain with our conservative edge
taper. This turns out to be about 20-m telescope, so we simply use his calculations for a 20-m
telescope. The 1 source per beam confusion levels are:

frequency flux density temperature y parameter
275 GHz 66 µJy 27µKCMB 1.1 × 10−5

220 GHz 89 µJy 21µKCMB N/A
150 GHz 44 µJy 6µKCMB 2.3 × 10−6

100 GHz 21 µJy 2.1µKCMB 5.1 × 10−7

One obvious conclusion is that 100 GHz is really the best place to work vis-a-vis infrared-source
confusion. However, 100 GHz will be covered by the SZA high-frequency channel, so it’s not a
unique application.

Focusing momentarily on 150 GHz, the confusion limit is a factor of a few higher than the
tSZ effects we would like to observe in the lowest-mass clusters accessible by the blind large-area
surveys (3.5 × 1014 M�). Is removal of infrared point sources using higher-frequency or higher-
angular-resolution maps possible?

5.1.1 Cleaning of tSZ Maps using Higher-Frequency CCAT Maps

Let us scale the above confusion limits to 350 GHz and 490 GHz and estimate how much CCAT
time would be needed to detect these point sources at 5σ at these frequencies. It is reasonable to
assume the 350 GHz camera will cover the same FOV as the SZ camera – f λ at 350 GHz is roughly
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10 arcsec, so a 20 arcmin field of view is covered by 3600 pixels at 2 f λ and 14400 pixels at 0.5 f λ.
At 490 GHz, the number of pixels needed to fill the same field of view increases by about 2. We
adopt sensitivities of 5.8 mJy s1/2 and 16.4 mJy s1/2 for 350 GHz and 490 GHz respectively.16 We
scale the 350 GHz and 490 GHz sensitivities to the band of interest using a ν3.7 spectrum (typical
for dust emission, especially at these low frequencies). The resulting sensitivities and time needed
to obtain 5σ detections of sources at the confusion limit over the field of view are

350 GHz 490 GHz
frequency NEFD T for FOV NEFD T for FOV
275 GHz 2400 µJy s1/2 32000 sec 1900 µJy s1/2 21000 sec
220 GHz 1000 µJy s1/2 3400 sec 850 µJy s1/2 2300 sec
150 GHz 250 µJy s1/2 820 sec 210 µJy s1/2 540 sec
100 GHz 56 µJy s1/2 180 sec 46 µJy s1/2 120 sec

So, sources at the 1 source per beam confusion limit can be observed at 350 GHz and 490 GHz in
a very reasonable amount of time.

The above table does not tell the whole story, though. In order to identify and remove a source
from a low-frequency map, one must have a solid detection and flux for the source in the high-
frequency maps. Therefore, the high-frequency maps must be no deeper than roughly the 1 source
per 30 beams, or maybe 1 source per 10 beams, confusion level. These confusion levels are 830 µJy
and 390 µJy at 350 GHz and 1200 µJy and 500 µJy at 490 GHz, respectively. Let us extrapolate
these confusion limits to the SZ bands, again assuming a ν3.7 spectrum:

350 GHz 490 GHz
1 src per 1 src per 1 src per 1 src per

frequency 30 beams 10 beams 30 beams 10 beams
275 GHz 340 µJy 160 µJy 140 µJy 59 µJy
220 GHz 150 µJy 70 µJy 62 µJy 26 µJy
150 GHz 36 µJy 17 µJy 15 µJy 6.3 µJy
100 GHz 8.1 µJy 3.8 µJy 3.4 µJy 1.4 µJy

Clearly, the sensible thing to do is to remove the brighter sources using the 350 GHz data (so the
spectral index extrapolation systematic error is minimized) and remove the dimmest sources using
the 490 GHz data (where the systematic subtraction error will be dominated by the high-frequency
flux error). Removal of sources to a factor of 3 below the 1 source per beam limit is plausible in
the 100 and 150 GHz bands. The infrared source counts are steeper than S−2, so a factor of 3 in
flux gives on factor of at least 9 in source density, so it is plausible that one can push the density of
sources down to 1 per 10 beams at 44 µJy at 150 GHz, low enough to secure reasonable detections
of 3.5 × 1014 M� clusters at θg. We can get to roughly the 1 source per beam limit at 220 GHz
and a factor of 2 above the 1 source per beam limit at 275 GHz.

We would like to go deeper, though – getting down to the 1 source per beam limit prevents
us from studying the virial wings of the least massive clusters. Much of the cluster mass will be
in these wings, so precise study of them would be useful. It may be possible to go deeper by
abandoning one-by-one identification and subtraction of sources. Suppose one integrates down so
far at 350 GHz and 490 GHz to become totally confused. One can still use this map to do removal
at other frequencies because identification of individual sources is not important here. One can
simply regress the high-frequency maps against the 150 GHz map. At large fluxes, variations in

16The sensitivities number is taken from T. Herter’s spreadsheet (2005/03/25 version) and assumes 1 mm PWV
for 350 GHz and 0.7 mm PWV for 490 GHz, 30 deg zenith angle,

√
2 sky removal loss, etc.
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SED from source to source might be a problem, but these sources can be identified and removed
one-by-one. Once one gets down to roughly the 150 GHz confusion limit, the sources merge and
one just gets some average SED of the entire population. This averaging ensures that a single
regression coefficient will serve to remove the high-frequency point sources from the 150 GHz map.
This kind of analysis is planned for ACT [38].

It becomes clear that one can directly remove sources down to y ≈ 2.3× 10−6 at 150 GHz, which
comparable to the expected y value at θg in a 3.5 × 1014 M� cluster. Using the aforementioned
regression technique, removal of sources to a factor of a few lower flux should be possible. Thus, it
is likely that we will be able to obtain some information about the virial wings of 3.5 × 1014 M�
clusters and will be able to study in detail 1015 M� clusters.

5.1.2 Cleaning of tSZ Maps using In-Band ALMA Maps

We may also ask whether observations with ALMA in the band of interest would permit direct
removal of sources (as opposed to to extrapolation from another band assuming a SED). We use
the ALMA integration time calculator [54].17 We find sensitivities, FOV, and inferred total time
needed to map 100 arcmin2 to the aforementioned confusion limits (ALMA 5σ = CCAT in-band
1-source-per-beam confusion limit):

frequency NEFD FOV T for 100 arcmin2

275 GHz 920 µJy s1/2 0.10 arcmin2 5 × 106 sec
220 GHz 730 µJy s1/2 0.15 arcmin2 1.1 × 106 sec
150 GHz 490 µJy s1/2 0.33 arcmin2 1 × 106 sec
100 GHz 320 µJy s1/2 0.74 arcmin2 8 × 105 sec

ALMA is thus not usable for obtaining in-band measurements for confusion removal over large
fields. This difficulty results from ALMA’s small field of view.

ALMA follow-up is useful in two limits:

• When removing the brightest in-band sources, extremely precise flux, position, and shape
knowledge are necessary to avoid systemic subtraction errors in the wings of the beam. Using
CCAT 350 GHz observations and extrapolating will result in systematic errors proportional
to the flux of the source being subtracted. So subtraction will be most problematic for the
brightest sources. But ALMA can be used to obtain in-band – not extrapolated – information
for these brightest sources. In 100 times less integration time than given above, an entire
100 arcmin2 field could be covered by ALMA to 2% precision at 100 times the confusion limit
and 20% precision at the confusion limit. Perhaps integration times could be reduced further
by using the CCAT 150 GHz map to identify bright source candidates and following only
these up with ALMA (though, one has to worry more about bias in using the CCAT in-band
map to select sources for follow-up).

• In some cases – studying core substructure, for example – one is interested only in the cluster
core (out to θg), so one would require removal of infrared sources over only 10–20 arcmin2,
reducing the ALMA time needed to a reasonable amount at 150 GHz. At higher frequencies,
removing sources down to the confusion limit does not help with tSZ: at 275 GHz, the
confusion limit is a factor of 5 higher in y than at 150 GHz, and, at 220 GHz, one has no
sensitivity to tSZ. Thus, one can probe tSZ substructure at 150 GHz, but not at higher
frequencies.

17The calculator is not available for the 150 GHz band, we interpolate between the 100 GHz and 220 GHz sensi-
tivities.
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5.1.3 Cleaning of kSZ Maps

Kinetic SZ has a much weaker mass dependence. The expected flux density for a 3.5 × 1014 M�
cluster at θg was shown earlier (Section 3.2) to be about 8 µJy per beam (1 µKCMB) at 150 GHz.
Note that using such low-mass clusters for the estimate is not unduly pessimistic; since the kSZ
signal scales only as M2/15, one would gain only a factor of 1.4 in signal for a cluster mass a factor
of 10 larger.

This signal level is about a factor 5 – 6 below the confusion limit at 150 GHz. As explained
above, explicit source removal will let us reach roughly this noise level, and it is possible that
cross-correlation of 350 GHz and lower-frequency maps will permit removal to the necessary levels
to detect kSZ with some signal-to-noise.

One must achieve similar sensitivities at 220 GHz and 275 GHz, though, in order to demonstrate
the appropriate spectral signature for kSZ. Removal of confusion at these higher frequencies is much
more difficult because: 1) a given rms in µKCMB corresponds to smaller flux at higher frequency;
and 2) infrared point sources are brighter at higher frequencies, so confusion occurs at a much
higher flux. One thing that makes subtraction easier is that one needs to achieve the same µKCMB

sensitivity at the higher-frequency bands on pixels the size of the 150 GHz beam, not on pixels
matching the beam sizes at 220 GHz and 275 GHz, so the sensitivity requirement is relaxed by
about a factor of 1.5 at 220 GHz and 1.8 at 275 GHz relative to 150 GHz. The result is that the
flux per beam sensitivity that must be achieved at the three frequencies is almost the same; for
example, 1 µKCMB corresponds to 7.5 µJy at 150 GHz and requires 1.5 µKCMB (9 µJy) at 220 GHz
and 1.8 µKCMB (8 µJy) at 275 GHz.

Removal of sources at 220 GHz and 275 GHz using 350 GHz or 490 GHz data cannot reach these
flux levels. ALMA obtains 1σ sensitivity over one field of view (0.15 arcmin2 and 0.10 arcmin2)
matching these flux levels in 6.6 ksec and 13 ksec at 220 GHz and 275 GHz, respectively. Observing
and removing confused sources over a 1 arcmin2 cluster core is feasible, but covering much more
area – e.g., 10 arcmin2 for the core of a massive cluster – requires inordinate integration times.

Obtaining high signal-to-noise kSZ maps is thus not possible, even at θg. However, what about
a lower signal-to-noise detection obtained by integrating over the entire cluster core? This is not
very interesting to pursue because it will essentially be done by ACT and SPT. If we degrade our
subtraction requirements so that we obtain S/N = 1 on the kSZ in each map pixel, we detect kSZ
at reasonable S/N by coadding map pixels, at the cost of degraded angular resolution. Degradation
by a factor of 2.5 yields the same beam size as SPT, degradation by a factor of 4 matches ACT’s
beam size, so we obtain no new information.

However, pursuing a similar approach – aiming for S/N = 1 per beam – for kSZ anisotropy
does probe the level of kSZ anisotropy at angular scales smaller than those accessible by ACT or
SPT. This is possible because the level of anisotropy is (statistically) the same at all points in
the field of view, so one obtains multiple measurements, allowing a high S/N detection without
degrading angular resolution by coadding pixels. Unfortunately, the confusion removal needed to
do even a low per-beam S/N measurement is unattainable. To obtain S/N = 1 for 2 µKCMB rms
kSZ anisotropy, one needs to obtain 3.7 µKCMB in a 275 GHz beam to provide 2 µKCMB when
smoothing to the 150 GHz beam. This corresponds to 9 µJy per beam. ALMA would require 12
Msec to map an entire 100 arcmin2 field to this depth (1σ).

One is prompted to wonder – how is it that CCAT, with its better angular resolution than ACT,
will have such trouble in detecting kSZ when ACT expects to measure the kSZ anisotropy power
spectrum? Because CCAT has better angular resolution and the infrared source counts are steeper
than Euclidean. Were the counts Euclidean, the confusion limit would scale up in flux with the
beam area as the telescope size decreases, corresponding to a confusion limit fixed in temperature
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(surface brightness) units. But, since the counts fall off more quickly than Euclidean, the confusion
limit in flux units does not increase as quickly as the beam size, or, equivalently, the confusion limit
in temperature units decreases as the beam size increases. Ironic.

5.1.4 Use of Low-Resolution Spectroscopy

Low-resolution spectroscopy may be usable to set limits on confusion. As we demonstrated in
Section 4.2, low-resolution spectroscopy should be possible for 1015 M� clusters. We will likely try
to observe the kSZ in these fairly high mass clusters first because of their higher electron optical
depth, the higher signal level in the tSZ, and the availability of X-ray observations. Some detailed
simulation work is needed to determine how useful spectroscopy can be in separating kSZ from
infrared sources.

5.2 Radio Sources

Toffolatti et al. [55] calculate confusion limits using revisions of various previous galaxy formation
models. Their calculations can be easily extrapolated to the angular scales of interest here. We
simply continue the curves given in Figure 4 of their paper as power laws. These give the following
radio point source confusion limits (again, 1 source per beam):

frequency flux density temperature
275 GHz � 1 µJy � 0.4 µKCMB

215 GHz � 1 µJy � 0.2 µKCMB

150 GHz < 1 µJy < 0.13 µKCMB

100 GHz 1− 3 µJy 0.1− 0.3 µKCMB

Radio point source confusion clearly should not be a problem except possibly at 100 GHz.
However, it will be necessary to survey the fields and remove the brightest radio sources – the

above calculation only says that such sources are rare enough that they will not become confused.
A reasonable procedure would be to first cover the entire 100 arcmin2 with VLA or ATCA at
1.4 GHz and follow by observing the brightest sources found at 1.4 GHz with ALMA in the band of
interest – very much like the way we expect to remove the brightest infrared point sources. A quick
visit to the VLA and ATCA exposure calculators18 indicates that obtaining maps of a 100 arcmin2

cluster field at 1.4 GHz to the tens of µJy flux level needed to identify radio point sources should
not be difficult. ALMA follow-up would easily find such sources, and here the cross-calibration is
not so critical because the source fluxes are quite small compared to the SZ signals.

Diffuse synchrotron and free-free emission from the galaxy are expected to be well below
1 µKCMB at the angular scales of interest [53], so we neglect them.

5.3 Primary CMB

Primary CMB anisotropy drops off exponentially on length scales of a few arcminutes, so CMB
anisotropy should primarily be a problem for recovery of large-scale cluster structure. Fortunately,
tSZ is spectrally distinguishable from CMB anisotropy, so it should be possible to remove CMB
anisotropy from tSZ without any problem, provided similar µKCMB sensitivities can be obtained
in multiple millimeter-wave bands. kSZ is spectrally indistinguishable from CMB anisotropy. On
few–10 arcmin scales, we will have to use the cluster structure as obtained from tSZ and possibly
X-ray observations to provide a spatial template for separating kSZ from CMB. On smaller scales

18http://www.vla.nrao.edu/astro/guides/exposure/calc.html and http://www.atnf.csiro.au/observers/docs/at sens/
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– especially in the cluster core – kSZ should dominate thanks to the higher electron optical depth
and the larger spatial scale separation from CMB.

5.4 Polarized Confusion

Since the sensitivity to polarized SZ effects is too poor to expect detection, we do not discuss
polarized confusion sources.

6 Requirements on Telescope and Instrumentation

The above science goals, signal levels, and sensitivity expectations place the following requirements
on the telescope and instrumentation:

• Aperture size: Not a critical requirement directly. For SZ effect measurements that resolve
clusters, it is temperature (= surface brightness) sensitivity that matters, not point-source
sensitivity. Reduction in size to 20 m would have little negative effect. The telescope size could
be increased at no detriment to SZ observations (the SZ camera can always underilluminate)
as long as there is no loss of field of view. But anything that degrades the confusion limit
at higher frequencies will make it harder to remove infrared point-source confusion in the SZ
bands. Indirectly, then, a scaleback to 20 m would degrade SZ sensitivity by a factor equal
to the increase in the confusion limit at 350 GHz and 490 GHz.

• Surface roughness: Not a critical requirement. Certainly will be driven by submillimeter
work. Most important effect is actually on optical loading (see next item).

• Blockage/Loading: At millimeter wavelengths, the sky will be so transparent as to be es-
sentially a non-issue as far as optical loading: according to T. Herter’s sensitivity spreadsheet,
the zenith opacities and expected optical loading (in Kelvins assuming Tatm = 250 K) for
1 mm PWV are

frequency τz Kz

275 GHz 0.05 13 K
215 GHz 0.04 10 K
150 GHz 0.02 5 K
100 GHz 0.02 5 K

Typical internal instrumental loading is about 10 K, and can be pushed down further with
special precautions. To maximize instrumental sensitivity, then, optical loading from telescope
emission, blockage, and diffraction should be kept quite low, at the 10K to 15K level. The
working specification of a 10% emissivity telescope degrades the sensitivity at 150 GHz by a
factor of about 1.5 (a factor of a bit more than 2 in integration time!) relative to 5% emissivity.
Numerically, the sensitivity degrades from 190 µKCMB s1/2 to about 310 µKCMB s1/2, or from
1.4 mJy s1/2 to 2.3 mJy s1/2 in NEFD.

Due to the importance of diffraction, specification of the telescope emissivity is not simply
a blockage requirement; a full physical-optics calculation must be done to evaluate the true
optical loading of any design. Experience with the CSO has shown that telescope loading
actually degrades with decreasing frequency, presumably due to diffraction in the optics,
from the (rather burly) feed legs, and perhaps reflection from the center of the secondary.

25



• Field of View: As explained earlier, the largest angular scale of interest is about 10 arcmin.
It is well known that recovery of signals on length scales larger than the field of view in the
presence of sky noise is difficult. Thus, a field of view of 10 arcmin diameter is desired, with
a goal of 20 arcmin diameter to ensure even the largest clusters can be contained in the field
of view.

• Frequency Coverage: Figure 1 indicates that, from the simple point of view of power
received by a detector, the best bands for detection of tSZ are 100 and 150 GHz.. The
argument becomes more solid when one recognizes that sky emission and sky noise are worse at
higher frequencies. 100 GHz is actually somewhat better than 150 GHz with regard to infrared
point-source confusion. But the angular resolution at 100 GHz will be degraded to about
0.66 arcmin FWHM, and 100 GHz observations will be obtained by the SZA interferometric
array at CARMA, so 100 GHz is not the optimal niche for CCAT. 150 GHz seems the best
choice for the primary tSZ band for CCAT.

For point-source removal and investigation of the kSZ effect, bands at and above the tSZ null
are needed. The null band obviously needs to be at 220 GHz. The higher band could be at
275 GHz or 350 GHz; there is no clear winner because both will be badly IR point-source
contaminated. More detailed study is required to understand better the tradeoffs. Bands at
350 GHz and 490 GHz are desired for point-source removal. Both are desired: removal of
source based on 350 GHz observations will have less systematic uncertainty on the spectral
extrapolation to the SZ bands, but 490 GHz data will go deeper. The brightest sources will
be removed using 350 GHz data and the dimmer ones using 490 GHz data.

• Pointing and Tracking: “On-the-fly” pointing need only be good to about a beam in
order to make sure the target is centered well enough on the array. However, the need for
precise point-source removal using observations at other wavelengths put a more stringent
requirement on reconstructed pointing. This needs to be quantified using simulations, but, to
first order, reconstructed point to better than 0.1 beam FWHM seems necessary.

• Scan Speed: Experience with Bolocam shows that increasing the scan speed in general
improves sensitivity – the atmospheric 1/f noise remains roughly unchanged in frequency
space as the scan speed is increased, but the astronomical signal is pushed to higher frequency.
This occurs because, at the scan speeds used by Bolocam – up to 4 arcmin s−1– the scan speed
is much slower than the expected wind speed. Within the context of a moving screen model,
one expects improvement until the scan speed is comparable to the wind speed, at which
point the motion of the telescope just modulates the atmopheric turbulence more quickly.
Wind speeds are of order 10 m s−1 at 1 km, the characteristic height of the water vapor. This
corresponds to about 35 arcmin s−1. Thus, scan speeds of 0.5 to 1 degree s−1 would be useful
in minimizing the effects of sky noise, but faster scan speeds would not.

• Spillover Fluctuations

• Spectroscopy: Low-resolution (R ∼ 30 − 100) spectroscopy over the frequency range 120–
325 GHz is desirable to observe relativistic spectral corrections to the tSZ effect and to assess
infrared point-source contamination. A single- or few-pixel background-limited spectrometer
with 3 GHz resolution through the 120–325 GHz regime would suffice. This could sensible
be split into two bands, 120-180 GHz and 190-300 GHz, to accomodate the 1:1.6 band-edge
ratio for a ZSPEC-like spectrometer.
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7 Discarded Alternatives

Clearly, this discussion has focused on tSZ follow-up as the main goal of a CCAT SZ instrument,
with kSZ detection and surveys for tSZ and kSZ anisotropy as subsidiary goals. Here we list some
other science topics and technical alternatives that have been discarded due to lack of uniqueness
or sensitivity.

• Underfilling the primary: The confusion problem is aggravated by the very small beams
we get with a 25-m telescope. Since SZ is a surface-brightness source, a smaller telescope
receives the same power on a detector as CCAT, but will receive proportionately less power
from point sources. Would anything be gained by underfilling the CCAT primary for SZ
work? The main difficulty with this idea is that it degrades the angular resolution and thus
makes CCAT non-unique. CCAT’s strength is not in duplicating SPT (a 10-m dish at a better
site), but in complementing the SPT surveys by doing higher angular-resolution follow-up.

• Wide-area surveys: Would it be sensible to conduct a wide-area blind SZ survey to a lower
mass-limit than SPT can reach, making use of the smaller CCAT beams? The difficulty is
that, in survey mode, where one leaves the cluster unresolved and detects total flux, the flux
scales roughly as M5/3 – one factor of cluster mass and one factor of electron temperature.
A factor of 3 improvement in mass-limit over SPT to 1 × 1014 M� is accessible, but it is
not clear if this gains one much in terms of cosmology. Reaching lower masses becomes very
difficult due to the strong dependence of flux on mass and confusion noise.

One interesting idea would be to use CCAT to characterize the SPT mass detection function
very well. This is entirely sensible and is effectively subsubmed into the topic of SZ cluster
follow-up.

• Primary CMB anisotropy: Primary CMB anisotropy is damped exponentially on few-
arcminute angular scales. While some primary anisotropy is probably accessible to CCAT,
it seems sensible to leave that work to APEX, ACT, and SPT, whose angular resolutions
and fields of view are more well-matched to primary anisotropy. Similarly, primary CMB
polarization anisotropy is best addressed by instruments with coarser angular resolution.

• SZ polarization: To all intents and purposes, SZ polarization is undetectable – the signal
levels are 10 nKCMB and below. Even seeing such a signal in one cluster would take 108 sec-
onds. Scientifically, a large catalog of such clusters would be needed to extract any interesting
science (redundant measures of the CMB quadrupole, transverse cluster velocities).

8 Future Work

Obviously, this document is a very simplistic first pass at establishing signal levels and angular
sizes of interest. Detailed simulation work will be needed to optimize instrumentation for SZ work.
Specific goals of a detailed design study should be as follows:

1. Realistic assessment of expected per-pixel sensitivities, including expected opacity distribution
during which long-wavelength instruments will be used and some attempt to model sky noise
and predict residual sky noise levels.

2. Use of analytic and numerical methods to predict expected thermal SZ and kinetic SZ sig-
nals and confusion noise. This should include expected cluster profiles, cluster counts and

27



abundance functions, expected peculiar velocities, and expected anisotropy power spectra.
A realistic assessment of the effect of current theoretical uncertainties, both in predicting
the dark matter power spectrum, predicting the gas physics that yields the SZ effects, and
predicting the confusing source counts, should be included.

3. Optimization of samples or surveys (mass limit or flux limit) for science output.

4. Study of the effect of beam size on science output. To first order, CCAT’s niche is in high-
angular-resolution work, so degradation of the beam size by underillumination of the primary
does not seem like the way to go. But this ought to be studied in some detail before excluding
the possibility. ACT and SPT have, if anything, resolution a bit poorer than one would like;
would much be gained by degrading the beam size to 0.5–0.75 arcmin?

5. More realistic assessment of confusion levels and how much short-wavelength/ALMA follow-
up is needed to reduce confusion noise to reasonable levels.

6. Realistic evaluation of systematic instrumental uncertainties on separation of thermal and ki-
netic effects and on removal of point sources. Obviously, pointing registration, both internally
to the SZ observations as well as to external (CCAT or interferometric) point-source obser-
vations is critical, as is flux cross-calibration between bands of CCAT and to interferometric
measurements.
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