Ay31 - Class #2

How to Construct an Outline
Structure of Scientific Papers
The Astronomical Literature
Astronomical Databases

Assignments

- Due noon today: 1. Format 2. Topic 3. Mentor
- Received from: AR, MF, BC1, BC2, JM, AR, MW, AZ, LF, AH, EC, CD
- Responses sent by email

Due next Friday (by email): Outline for your piece

 Signup for one-on-one meetings in week 4 signup to be distributed by email

Working with Mentors

- Ask them for references to review or introductory articles on your topic. Read these papers and take notes to prepare for your outline.
- Work with them (or ask them) for **3 example** pieces in the same format. The examples should be on different topics from the one that you are writing.

An Outline — Assignment

- Purpose of an outline: to provide structure to help you move to a first draft.
 Most efficient way to write papers.
- Work with your mentor to find 3 examples of similar pieces. (You will probably find most of them.) Read/skim the examples and study the structure. Note for yourself (don't turn in): what are the common elements and structure?
- Choose a target journal or telescope. Look up the 'Instructions for Authors', 'Call
 for Proposals', etc. Read it thoroughly. Your outline should reflect the
 requirements for your piece. Include a link to the instructions in with your outline.
- Outline should contain:
 - 1. Provisional, descriptive title
 - 2. Description (few sentences) of primary audience and possible secondary audience.
 - 3. Structure of the piece list the major sections and ideas for their contents, in skeletal form (details on next slide).
 - 4. Some details and sentences interspersed.
- See, e.g. Alley pp. 239-241 and
 'Writing a Paper' (course website, by G. Whitesides).

Structure of an Outline (for a research paper)

Introduction

- Write first few sentences and possibly first paragraph. Should clearly state objectives and indicate importance.
- Elements
 - * Objectives of work
 - * <u>Justification for objectives</u>. Why is the work important?
 - * <u>Background</u>. Who else has done what?
 - * <u>Guidance to the reader</u>. What should the reader watch for in the paper? What are the high points?
 - * <u>Summary/conclusion</u>. What should the reader expect as a conclusion?

Analysis, Results, and Discussion

- Results and discussion are sometimes combined; look for examples
- Organize subsections according to major topics (depends on research)
- Make subsection headings as descriptive and specific as possible
- Emphasize structure here (little text), but include subsection headings figures, tables, equations, diagrams.

Conclusions

- Summarize the conclusions with short phrases or sentences
- Conclusion ≠ summary
- Add new, higher level of analysis, and state significance of work.

Constraints

Audience

- who will read the document?
- what do they know about the subject?
- why will they read the document?
- how will they read the document?

Break: with partners discuss Audience for your piece

Format

- includes how type is arranged on page, pages are numbered, sources are referenced, length of document.
- formats vary widely based on journal, proposal call, etc.

Mechanics

- rules of grammar and punctuation
- important to get right to not distract from your piece
- consult reference books and style guides

Politics

- stay honest, but know sensitivities of your audience
- be astute in what you include and exclude, and how arguments are formed

Stylistic Tools

Style: The way you cast your thoughts into words and images.

Elements of Style

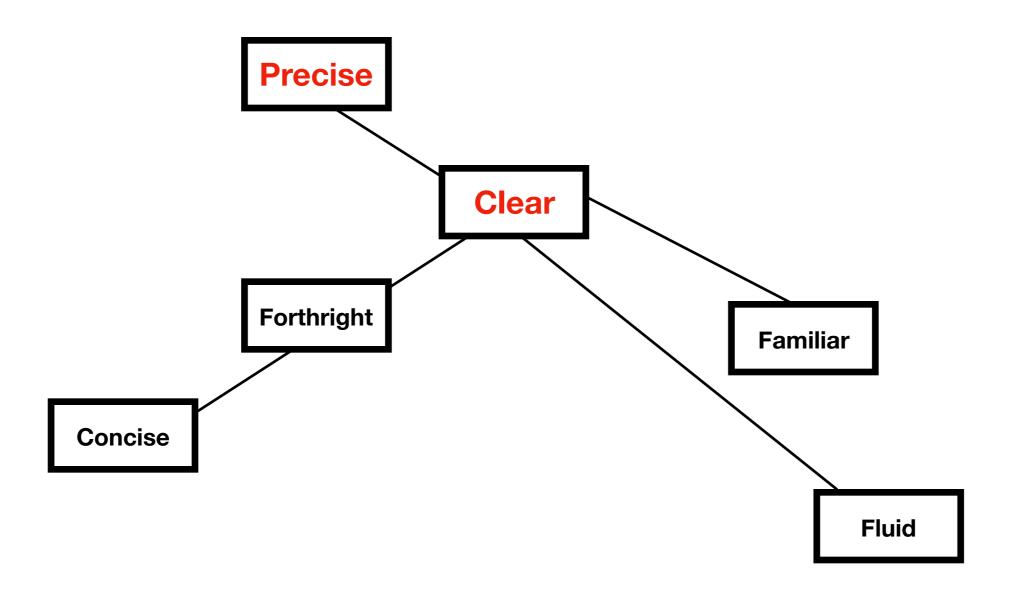
1. Structure

- strategy of a scientific document
- defines sections and flow of ideas
- most important element of style
- templates are helpful, but don't be bound by them

 Questions if you want to break a style convention:

 Is your style effective and communication / persuasion?

 Is it distracting?


Stylistic Tools

Elements of Style

2. Language

- the way words are used
- includes arrangement of words into phrases and sentences, the use of numbers, equations, abbreviations, examples/analogies
- Precision: Say what you mean. Be clear. Be forthright.
- Concise: Every word counts. Fluid writing is smooth writing transitions from sentence to sentence, section to section, etc.

Six Goals of Language in Scientific Writing

Stylistic Tools

Elements of Style

3. Illustration

- Effective figures and tables in document
- meshing of figures/tables with language
- makes reading and writing more efficient

The Astronomical Literature

Prestigious Journals covering science broadly:

Science

Nature

Proceedings of the National Academy of Science

Astronomy Journals:

AAS Journals (AJ, ApJ, ApJL, ApJS)

Astronomy & Astrophysics (A&A)

Monthly Notices of the Royal Astronomical Society (MNRAS)

Proceedings of the Astronomical Society of the Pacific (PASP)

SPIE (instrumentation primarily)

. . .

New Astronomy Journals:

Nature Astronomy

Journal of Astronomical Telescopes, Instruments, and System (JATIS)

. . .

The Astronomical Literature

How to find papers:

- Use NASA / ADS = Astronomical Data Service !! https://ui.adsabs.harvard.edu/
- Google Scholar https://scholar.google.com/
- arXiv https://arxiv.org/

How to use ADS:

- Find specific papers: search by author, first author, year, keywords, etc.
- Find papers on topic: search by keyword
- Sort by citations, read counts, date, etc.
- Cite articles using bibtex
- Use SIMBAD (next topic) to find articles about specific object

Astronomical Databases

Common Features:

- Properties or astronomical objects or observations
- Organized by object or observation
- Searchable

Purposes:

- Provide detailed information about specific objects or observations.
- Maintain a "complete" repository of objects of a particular type, for object discovery and statistical analysis

Astronomical Databases

General:

- Stars: SIMBAD (http://simbad.u-strasbg.fr/simbad/) (*)
- Galaxies: NED (http://ned.ipac.caltech.edu/) (*)
- Exoplanets: <u>exoplanets.org</u> & Exoplanet Archive
- NASA Missions: MAST (https://archive.stsci.edu/) (*)

Specialized:

- Keck Observatory Archive: KOA (https://www2.keck.hawaii.edu/koa/public/koa.php)
- · Gaia Mission: (https://gea.esac.esa.int/archive/)

Structure of Scientific Papers

Break into small groups, skim Howard et al. (2011) and answer these questions:

- Identify (by highlighting or circling) the major parts of the paper:
 Title, abstract, introduction, results/discussion, conclusion
- Title: Does it convey meaning and importance?
- Abstract: Does it convey the motivation, main results, and importance?
- First paragraph: Does it draw your attention and motivate?
- Sections/sub-sections: Is the paper structure clear from the subsection headings?
- Figures/tables: Is the motivation and importance of these clear (based on 5 minutes of skimming)? Are they well designed?
- Conclusion: Does it elevate or merely summarize?