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1. Chemical Evolution

1.1. Analytical Chemical Evolution Models

The data we hope to reproduce:

(1) the gas content of a stellar system as a function of time

(2) the overall metallicity in the gas as a function of time

(3) the metallicity distribution of the stars as a function of time

(4) the detailed abundances of various elements as a function of time in the gas

(5) the total mass of the system as a function of time

(6) the fraction of mass locked up in stellar remnants (neutron stars, white dwarfs) as a

function of time

(7) the number of type of SN, neutron stars, novae, X-ray binaries, etc as a function of time

Observational data for most of these issues exists for the various components of the

Milky Way galaxy, less detailed data exists for other nearby galaxies within the Local

Group. Beyond the Local Group, the data is quite limited with regard to these issues.

1.2. Simple Homogenous Model

In a simple homogenous model, one assumes uniform mixing within the gas over the

entire systmem, homogenous star formation, and no infall or outflow of gas from the system

(i.e. a closed system). A power law initial mass function (IMF) φ(m) which is constant over

time and space, is often assumed; the Salpeter value is φ(m)dm ∝ m−2.35 dm. More recent

work by Scalo (1986, Fund.Cosmic Phys., 11, 1) and Kroupa (2001, MNRAS, 322, 231)
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suggests that the Salpeter IMF is too steep to fit the observations for low mass stars below

0.5M⊙, and that a flatter slope is required, reaching −0.3± 0.7 for 0.01 < M/M⊙ < 0.08.

Note that the transformation from luminosity to mass (the IMF is a function of stellar mass)

is not as well determined for the lowest mass stars). In their most recent work, Weidner,

Kroupa & Bonell (2010, MNRAS, 401, 275) explore the statistical issues associated with

massive stars forming in clusters. How does the maximum mass of a star formed in a cluster

depend on the mass of the cluster gas ? Obviously a star with mass greater than this value

cannot form in such a cluster. Integrating over many clusters with an appropriate cluster

mass distribution, they then derive what they call the integrated galactic mass function,

and which is somewhat steeper at the highest masses than a standard power law IMF.

Instanteous recycling, that stars die and release their metals very quickly after their

birth, is also assumed. The specific simplifying assumption often made is that stars with

M < 1M⊙ live forever, while stars of higher mass die instantly. Since most metals come

from fairly massive stars with lifetimes short compared to the age of the Galaxy, this is

not an unreasonable assumption for an intial pedagogic model. Another assumption which

must be made is that the fraction of mass from each stellar generation which remains locked

up in long-lived remnants or in stars that do not evolve during the entire timescale of the

calculation (i.e. the age of the Galaxy), α, is constant. This is equivalent to a constant IMF

in practice.

In this case, following Francesca Matteucci (The Chemical Evolution of the Galaxy,

Kluwer Academic Publishers, 2003) the equation for the metallicity as a function of time

can be solved analytically. The variables are µ, the fraction of the total mass which is in

gas that can form stars, p the nuclear reactions yield, and Z the fraction of metals in the

gas (by mass). The subscript 0 denotes inital values when star formation first started in the

system. Ms is the total mass in stars (both living and dead remnants) at the time t, Mg is
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the fraction of the total mass in the form of gas at time t. ψ(t) is the star formation rate,

usually taken to be a function of σgas/τdyn (the Schmidt-Kennicutt law), where σgas is the

surface density of gas and τdyn is the local dynamical timescale for collapse of a gas cloud.

The current value of ψ in the local disk is ∼ 4M⊙pc
−2/Gyr.

The relevant equations were first laid out by Beatrice Tinsley following earlier work by

M. Schmidt (1959, 1963), and are given in many articles.

Conservation of mass and of heavy element abundance,

Mgas + Ms =Mtot, Ms = (1 − µ)Mtot, Z = MZ/Mgas.

The initial conditions are: Mgas(t = 0) = Mtot and Z(t = 0) = 0.

The gas evolves according to

dMgas
dt

= − ψ(t) + E(t) (eq. 1)

where E(t) is the rate at which dying stars restore their gas to the ISM, partially enriched

by nuclear reactions in their cores. MR(m) is the permanently locked up remnant mass for

a star of mass m, and τ(m) is the lifetime of a star of mass m. Denoting m(t) as the mass

of a star born at t = 0 and dying at time t, we get:

E(t) =
∫
∞

m(t)
(m−MR)ψ(t− τm)φ(m)dm

The metallicity evolves through the addition of newly synthesized material from stars,

namely:
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d(ZMgas)

dt
= Mtot

d(Zµ)

dt
= − Zψ(t) + EZ(t) (eq. 2)

where the second term represent the addition of material to the ISM from dying stars. This

in turn has two components, the first is the pristine material from the outer layers of stars

that was returned to the ISM without alteration, and the second is the processed material

with newly formed and ejected metals, as indicated below in eq. 2a.

EZ(t) =
∫
∞

m(t)
[(m−MR)Z(t− τm) + mpZm]ψ(t− τm)φ(m)dm (eq. 2a)

Define R as the total mass restored in pristine condition (i.e. without any products of

nuclear reactions mixed in) to the ISM by each generation of stars. This is the gas lost by

winds from the stellar surface. We assume that all stars with masses less than 1M⊙ always

become remnants and never return any mass to the ISM; this defines the lower limit on the

integral. Then R is:

R =
∫
∞

1
(m−MR)ψ(m)dm,

We also need the yield for nucleosynthesis, yZ for the stellar generation, which is the ratio

between the total mass of the isotope (element) i newly formed and ejected into the ISM

from all stars with M > 1M⊙, assumed to die immediately after being formed, and the

amount of mass locked up in low mass stars and remnants,

yZ =
1

1−R

∫
∞

1
m pZm φ(m)dm,

where pZm is the mass fraction for a star of mass m of heavy elements freshly produced

within the star and then ejected into the ISM upon its death. We denote the yield yZ as
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the effective yield yZeff which describes the stellar system assuming that the Simple Model

is adequate. If yZeff > yZ then the system has attained a higher metallicity for a given gas

fraction µ than the Simple Model can produce. If this were the case, then some assumption

in the Simple Model must be incorrect.

Substituting eq. 2 into eq. 1 and assuming instantaneous recycling, which allows us to

neglect τm, we end up with an equation

EZ(t) = ψ(t)RZ(t) + yZ(1− R)ψ(t).

This simplifies, in the Simple Model, to

µ
dZ

dt
= − y

dµ

dt

which has the solution

Z = yZ ln(1/µ). (eq. 3)

This is the fundamental equation for the evolution of metallicity with time in the

Simple Model. Z is a function of the fraction of the total mass that is in the form of gas

that can be used to form stars, µ. Once a value is assigned to µ, Z can be calculated,

assuming the nuclear yield per generation of stars, y, is known.

1.3. Applications of the Simple Model

We can now calculate the fraction of all stars ever formed with metallicities less than

or equal to Z, S(Z). We first calculate the fraction of all stars formed while the gas fraction
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was ≥ µ, (M∗/M1) = (1 − µ)/(1− µ1), where the subscript 1 denotes the present value.

All these stars were formed with Z < yz ln(1/µ). So the fraction of stars today with

metallicities ≤ Z, indicated by S(Z) is

S(Z) =
1− exp(Z/yZ)

1− µ1
=
1− µ

Z/Z1
1

1− µ1
. (eq. 4)

The average stellar metallicity can be calculated as well. This will be a mass-averaged

metallicity, unless a specific mass-luminosity relation is put in to the integral as well to give

a luminosity averaged metallicity. Since the luminosity is dominated more by giants than

is the mass, the two may be different, and in general the luminosity weighted metallicity is

smaller than the mass-averaged one.

If we find the gas fraction µ at which half of the stars observed today have formed, we

can find the associated Z, which will be the median of the metallicity distribution. Assuming

µ at the present time in the Solar neighborhood is ∼ 0.5, we get Z(median) = 0.3 yZ .

Thus since in the Solar neighborhood the mean Z is about 0.5 that of the Sun, we infer

that the present value of yZ is ∼ 1.7 Z⊙.

A comparison of the predictions of the Simple Model with the Solar neighborhood

metallicity distribution, S(Z), shows that there are fewer metal-poor stars predicted by the

Simple Model than are observed. This is often called the “G dwarf problem”.
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Fig. 1.— The IMF slope inferred from various Milky Way and LMC clusters (from Kroupa,

2001, MNRAS, 322, 231). The horizontal line in the right half of the figure is the Salpeter

slope, which appears to fit the IMF for stars more massive than 1M⊙.
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Fig. 2.— from Kroupa (2001, MNRAS, 322, 231)
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Fig. 3.— The mass of the highest mass star known in each of a set of young clusters as a

function of the total mass of the cluster. from Weidner, Kroupa & Bonnell 2010)
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Fig. 4.— Fig. 5.1 of Matteucci’s book The Chemical Evolution of the Galaxy.
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Fig. 5.— The metallicity distribution of the thick disk in the Solar neighborhood, and in

the halo, from Ivezic et al (SDSS), 2008, ApJ, 684, 287



– 12 –

1.4. Secondary Elements

An element is secondary if it is produced in reactions proportional to the initial

metallicity of the star, not just from hydrogen and He. The heavy elements beyond Fe, for

example, are produced by neutron capture by the pre-existing Fe nuclei. Until some Fe

exists, they can’t be produced.

In this case, eq. 2 becomes:

Es =
∫
∞

m(t)
[(m−MR) XS (t− τm) + mpsm

Z(t− τm)

Z⊙
]ψ(t− τm)φ(m)dm. (eq. 5)

Under the assumption of instantaneous recycling, this eventually becomes

XS ∝ Z2 (eq. 6) in the Simple Model.

1.5. Other Analytical Cases

Analytical solutions exist for a number of other cases. If one wishes to add accretion of

gas as well as Galactic outflows, then the total mass of the system may change with time.

dMtot
dt

= −W (t) + A(t) (eq. 7)

where W (t) represents the Galactic wind (outflow) and A(t) the accreted material, assumed

to have metallicity ZA.

The equation for the evolution of the metallicity is then:

d(Z Mgas)

dt
= − Z(t) ψ(t) + EZ(t) + ZA(t)A(t) − Z(w)W (t) (eq. 8),
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where the last two terms on the right side represent accretion and outflow, while the

first two terms represent removing material from the ISM via star formation and adding

processed material back to the ISM upon stellar death.

Analytical solutions exist in certain specific cases. First, if one ignores accretion and

defines the wind term as proportional to the star formation rate, W (t) = λ(1 − R)ψ(t),

where λ (λ ≥ 0) is the wind parameter, the solution is:

Z =
yZ
1 + λ

ln[(1 + λ)µ−1 − λ] (eq. 9)

The true yield is always lower than the effective yield for outflows.

If one has accretion without any outflow, and the accretion rate is set to

A(t) = Λ(1 − R)ψ(t), where Λ > 0 is the accretion parameter, and where the

infalling gas has ZA = 0, then the solution for Λ 6= 1 is:

Z =
yZ
Λ
[1− (Λ− (Λ− 1)µ−1)−Λ/(1−Λ)] (eq. 10a)

and for Λ = 1 is

Z = yZ [1− e
−(µ−1−1)] (eq. 10b).

The latter is the solution for extreme infall where the amount of gas remains constant in

time, that going into stars is replaced by infalling primordial gas. In this case, (µ−1 − 1) is

the ratio of the accreted mass to the initial mass.

A somewhat more complicated expression can be derived for the analytical solution for

both accretion and outflows being present provided that A(t) and W (t) can be represented
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as parameterized above. See eqtn. 5.43 of Matteucci, The Chemical Evolution of the Galaxy.

Clayton (1985, 1987, see 1987, ApJ, 315, 451) described another family of cases which

are exactly soluble. His cases allow more freedom in parameterizing the star formation rate

and the infall rate. He begins by assuming that the star formation rate is a linear function

of the gas mass, (1− R)ψ(t) = ωMgas, where ω is a constant. Exact solutions exist to this

model if A(t) has the form

A(t) =
k

t+∆
Mgas(t),

where k and ∆ are free parameters.

The Clayton model is useful as one can study analytically a wider range of SF histories

and infall rates than can be done in the simpler models described above.

A variation of Clayton’s model developed by Pagel (1989) introduces a fixed delay

between the star formation and the stellar death, which allows one to study the behavior

with time of elements such as Fe which are formed on long timescales. For a linear star

formation rate and a fixed time delay ∆ and for a wind parameter λ he found the analytical

solution:

Z(t) = yz e
(1+Λ)ω∆ ω(t−∆).

At present these analytical models are used as pedgogical tools and for testing

numerical codes only.
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Fig. 6.— Fig. 1 of Edmnds, 1990, MNRAS, 246, 678. Note that F in his notation is

µ =Mgas/Mtot in the notation used here.
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1.6. Timescale for Chemical Evolution

We assume the simple model with instantaneous recycling. The star formation

timescale = time to consume all the gas in a system,

τ∗ =
Mgas

abs[dMgas/dt]
=

Mgas
(1−R)ψ

,

which evaluated for the solar neighborhood yields τ∗ ∼ 1 Gyr. This seems too short, another

symptom that the Simple Model is too simple for the solar neighborhood.

The timescale for chemical enrichment, τZ , necessary to reach the metallicity Z is

τZ =
Z

abs[dZ/dt]
=

ZMgas
abs[yZ(1−R)ψ]

= τ∗(Z/yZ)

This is about 1 Gyr, which is too short a timescale. We need infall to fix up the problems

the simple model encounters when applied to the Solar neighborhood.

2. Numerical Computations of Chemical Evolution

The equations to be solved are the equivalents of eq. 1 and eq. 2 with the additional

terms appropriate to the situation being considered. The star formation rate may vary with

time; it is usually taken as exponentially declining with time with a timescale τ0 set to best

fit the data for the situation under consideration, φ(t) = Aexp(−t/τo). The value of τ0 is

set short to match old stellar populations (elliptical galaxies), perhaps ∼1 Gyr, and longer

to replicate spiral galaxies (∼5 Gyr), and even longer to model dwarf irregular galaxies

There may be infall and/or outflows. There may be radial mixing or other forms

of spatial non-uniformity. You may want to abandon the instantaneous recycling
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approximation, using f(t − τm) instead of the simpler f(t). After all, once you go for a

numerical solution, it might as well be as good as you can make it.

The key equation for each element (isotope) i considered has the form:

dGi
dt
= − ψ(t)Xi(t) + XiA(t)A(t) − Xi(t)W (t) + many source terms.

Each of the source terms is similar to:

∫ Mu
ML

ψ(t− τm)Qmi(t− τm)φ(m)dm.

Here Xi(t) is the fractional abundance by mass of the species i, Gi(t) = σi/σ(tG), where σ

is the total surface mass density, including gas and stars, both living and dead. The first

three terms on the right include gas lost from the ISM due to star formation, accretion of

material which has an abundance of species i of XiA, and outflows. Then follow a number

of source terms which are of the general form shown above, namely an integral over a range

of stellar mass times a production rate Qi(t) and the initial mass function. These can be

from various types of supernovae, novae, AGB stars, or any other source.

There is another equation which gives the total gas mass including accretion and

outflows.

The exact form of these equations will depend on the specific problem to be solved,

the galaxy to be modelled, etc. The basic equations are not hard to write down, and in

such circumstances can best be solved numerically. If you want to follow the abundances of

various elements besides H in detail, you will need a full set of nucleosynthetic yields and,

in particular for non-primary elements/isotopes, there may be a lot of coupling between

the equations for the various elements to be included. Overall, however, this is a trivial
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calculation on the scale of current computing capabilities, easily carried out on a personal

workstation.
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3. Rates of SNIa, SNII, Novae, AGB Stars, PISN

SN rates can be predicted from the IMF and star formation rate. We also now have

good observational data from very large imaging surveys attempting to detect SN of actual

rates in various galaxies. Such surveys include the Supernova Legacy Survey (SNLS) carried

out at the CFHT, the Palomar Transient Facility now in operation, etc. Wide field imaging

at high cadence is required for this purpose. We first describe the predicted rates, then the

observations. Because of the high absorption in the Galactic plane and the fact that these

stellar explosions are rare, it is quite difficult to determine these rates from the Milky Way.

3.1. Rates from Models

The SNII rate is easy to calculate. It has two terms, the first from those stars in the

mass range such that if they were in a binary system, they do not become SNIa. The

parameter A represents the fraction in the IMF of binary systems with the right properties

to become SNIa. The second term includes stars more massive than that that up to the

highest mass present, Mup, usually between 40 and 100M +⊙. The first integral goes from

M1, the lowest mass for which a degenerate CO white dwarf can form, to M2, the highest

mass for this can occur taking into account mass loss. Values from 6 to 8M⊙ are often used

for M2. The second integral runs from M2 to the highest mass star in the system MUP .

The parameter A is the fraction in binaries which become SNIa.

R(SNII) = (1− A)
∫ M2
M1

φ(M)ψ(t− τm)dM +
∫ MUP
M2

φ(M)ψ(t− τm)dM

SNII rates should be strictly proportional to the very recent star formation rate SFR(t)

in a galaxy. Since star formation increases at higher redshift by a factor of about (1 + z)3.5,
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one expects the SNII rate to increase by this factor as well.

Greggio (2010, MNRAS, in press, see arXiv:1001.3033) gives rates for SNIa. Thes are

believed to originate from degenerate binaries, both singly degenerate and systems where

both components are degenerate (doubly degenerate). A detailed understanding of binary

star frequency and evolution, including, for example, decay of the binary orbit due to loss

of energy by gravitational waves, is required to evaluate the rate properly. In order to

produce a SNIa, the binary must be a close binary, the primary of the binary must be an

intermediate mass star (2 to 8 M⊙) so the first Roche lobe overflow leading to mass transfer

to the secondary must leave a CO WD, i.e. the core of the primary star.

She calculates the delay time between the initial formation of the stars and the SNIa

explosion. This is the crucial delay between SNIa and SNII (core-collapse SN, which for

massive stars occurs almost instantaneously as their lifetimes as so short).

Novae are similar to SNIa, in that they too involve degenerate white dwarfs in a binary

system, with mass transfer. But a nova explosion involves only the accreted material. The

explosion is less energetic and the net effect is the loss of some material, but the white

dwarf itself is not disrupted. Nova rates were calculated for a constant SFR model by

Yungelson, Livio & Tutukov (1997, ApJ, 481, 127). The nova rate is proportional to the

rate of formation of white dwarfs. But they must be in the appropriate binary systems in

order to have novae occur. Many details of the evolution of binary systems are required to

carry out this calculation.
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Fig. 7.— SD = singly degenerate, i.a. a binary in which only one component is a white

dwarf. Fig. 1 of Greggio (2010).
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Fig. 8.— DD = doubly degenerate, a binary with both components being degenerate white

dwarfs. Fig. 2 of Greggio (2010).
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Fig. 9.— Fig. 7 of Greggio (2010).
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Fig. 10.— Solomonic model: SD and DD each contribute half of the total events at all times.

Segregated model: SD explosions provide early events, DD provide longer delay time events.

(Fig. 9 of Greggio 2010).
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Fig. 11.— DTD = delay time distribution. The X axis of this plot roughly indicates the

galaxy type, 10 being extreme spirals and irregulars with high star formation rates, −5 being

ellipticals with no current star formation. (Fig. 11 of Greggio 2010).
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Fig. 12.— Fig. 1 of Yungelson, Livio & Tutokov (1997). Pairs of curves correspond to

different distributions of binaries over the mass ratios of the components f(q) ∝ qα, for

α = −1, 0, 1 from top to bottom. The two lines for each of the three values of α modeled

correspond to different parameters for the common-envelope phase. The long dashed line

describes the nova rate for a 109 yr initial burst of star formation followed by a stage of

constant (lower) star formation for another 14 Gyr so that equal total stellar masses were

formed in the burst and in the extended constant SFR phase. The total mass in each case

is 15 × 109M⊙, close to that of the Milky Way, so th is is a prediction of the nova rate for

our galaxy.
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3.2. Observed SN Rates

SNIa have been the subject of intensive study because of their use as cosmological

distance indicators. SNII are fainter, have a wider range in peak luminosity, and until

recently were not as well studied.

The Supernova Legacy Survey (SNLS) carried out over 5 years from 2003 to 2008 with

the CFHT has determined the rates of core-collapse and SNIa SN. Their cadence is such

that there are at least 4 observations per lunation in each of their fields.

Preliminary results from the SNLS based on the first three years of data are given

in the following papers. Bazin, Palanque-Delabrouille, Rich et al (2009, A&A, 499, 653)

describe in detail the derivation of the SNII rate from their sample of 117 SNII confirmed

by spectroscopy and/or detailed light curves. They find their rate to be larger than the

SNIa rate by a factor of about 4.5, corresponding to R(SNII) = 1.42× 10−4/yr/Mpc3 at

z ∼ 0.3 for a Hubble constant of 70 km/sec/Mpc. The rate is proportional to (H0/70)
3 if a

different value for the Hubble constant is chosen.

Sullivan, Le Borgne, Pritchet et al (2006, ApJ, 648, 868) focus on the SNIa rate from

the SNLS with a sample of 100 spectroscopically confirmed SNIa, plus 24 probable SNIa.

They find a bivariate linear dependence with the SNIa rate per unit mass in a galaxy

linearly proportional to the specific SFR (SFR/Mgal), i.e. to both the SFR and the stellar

mass of the host galaxy, with R(SNIa) = 5.3± 1.1× 10−14 SN/yr/M⊙ of the host galaxy

and 3.9± 0.7× 10−4/yr/SFR, where the SFR is in M⊙/yr. This is equivalent to a prompt

and a more delayed set of SNIa events from a burst of star formation.

Neill, Sullivan, Balam et al (2006, AJ, 132, 1126) use the SNLS to establishe the SNIa

rate for a higher mean redshift (z ∼ 0.5), but smaller sample of events.

Boticella, Riello, Cappellaro et al (2008, A&A, 479, 49) have published rates of SN at
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intermediate redshift from the Southern Intermediate Redshift ESO SN Search (STRESS),

but the number of spectroscopically confirmed SN is far below that of the SNLS, as is also

the case for all previous surveys.

Moaz & Badenes (2010, MNRAS, in press, see arXiv:1003.3031) determine the SN rate

and delay times in the Magellanic Clouds. Obviously they did not do this by counting SN,

as 1987A is all we know about for sure. But there are 77 supernova remnants in the LMC

and SMC, which they attempt to age date and separate into SNII and SNIa. A valiant

attempt !

Nova rates are high enough that one can get a reasonable number of events per

year detected in the Milky Way, about 4 per year (see the IAU telegrams, circulars, etc).

Extrapolating that over the fraction not detected due to extremely high absorption, nd the

area of the disk not searched, Della Velle & Livio (1994, A&A, 286, 786) estimate a rate of

∼20 novae per year. Della Valle, Rosino, Bianchini & Livio (1994, A&A, 287, 403) present

preliminary results from a survey of novae in M33.

There have been a number of surveys of novae in M31, beginning with the classic

work of H.C.Arp at Mount Wilson (1956, AJ, 61, 15). The PTF is conducting a survey of

novae in nearby galaxies, including M31, M81, and several other galaxies. Darnley, Black,

Bode et al (2009, arXiv:0809.4590) summarize in a conference proceedings their search for

extragalactic classical novae in the Local Group, especially in M31.

Until very recently there were no detections of events that were claimed to be PISN.

These are suggested to arise from a star with initial mass in excess of 140M⊙, to produce

very high energy explosions, during which the star becomes completely unbound and

disrupts completely, without leaving a black-hole remnant. Such events may have been

more common in the early Universe.
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Very recently, SN2007bi was claimed by Gal-Yam, Mazzali, Ofek et al (2009, Nature,

462, 624) to be such an event. It was observed in a dwarf galaxy with ∼1% the mass of the

Milky Way. They claim that the exploding core mass was about 100M⊙, and that more

than 3M⊙ of
56Ni was synthesized. This suggests that star-forming dwarf galaxies may host

extremely massive stars, above the apparent limit for the Milky Way.
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Fig. 13.— Fig. 13 of Bazin, Palanque-Delabrouille, Rich et al (2009, A&A, 499, 653)
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Fig. 14.— Fig. 6 of Sullivan et al (2006).
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Fig. 15.— Fig. 8 of Sullivan et al (2006).
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Fig. 16.— The predicted SNIa rate as a function of redshift from their model, including

both prompt and delayed contributions. The points are from analysis of images from various

observational studies with suitable temperal cadence. The Palomar Transient Survey will

be generate a much larger sample of SNIa, and hopefully improve the measurements of their

frequency of occurent. The vertical axis is the number of SNIa events/yr/Mpc3. Fig. 10 of

Sullivan et al (2006).
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Fig. 17.— Fig. 1 of Maoz & Badenes (2010). SN rates in the LMC+SMC based on

approximate age dating of SN remnants.
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4. Other Types of Models

The numerical integration of models for chemical evolution of stellar populations

described above has many parameters. One criticism is that there are enough “knobs” that

almost any reasonable dataset can be reproduced, and that nothing is learned by applying

such models.

Qian and Wasserburg have written a series of papers developing a phenomenological

model. They specialize to simple cases, where the number of contributing types of sources

is small. They adopt a fixed template of yield for each type of source, ignoring the

complexities of differences of yield with progenitor mass. They look for specific element

ratios which are diagnostic of which source contributes, and then compare that with the

data. This simplification gives more insight into how good the template yields and list of

specific types of sources might be, without getting lost in the many parameters that go into

a full blown chemical evolution computation. Clearly this will work best when the number

of types of sources is small. Thus they focus on the first few generations of normal stars in

the Galaxy, before SNIa got going, and especially on the ratio of the heavy neutron capture

elements vs Fe vs α-elements.

Their current model contains 3 sources, low mass SNII, normal mass SNII (both of

which leave behind neutron stars and within which the r-process can operate) and and

hypernovae (very energetic SNII), which leave a black hole. No heavy neutron capture

occurs for hypernovae, which produce only elements through the Fe-peak, but not heavier.

They claim that HNe produced 24% of the Fe in the Sun, while normal SNII contributed

only 9% instead of the 33% normally assumed. They attribute the elements Sr through Ag,

the first peak of heavy neutron capture elements) to charged particle reactions in neutrino

driven winds from young neutron stars instead of the neutron capture, while the elements

in the Ba peak and beyond they consider the true r-process elements produced by extensive
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rapid neutron capture in low mass SN.

Key papers of theirs to read are: Qian & Wasserburg (2008, ApJ, 687, 272 and 2007,

Physics Reports, 442, 237).

Of course, once there are many sources operating and many generations of stars

contributing to the chemical inventory of the iSM, the situation rapidly becomes too

complicated for such an approach, and a full numerical integration of the equations of

chemical evolution is required.
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Fig. 18.— The three sources considered in the latest models of Qian and Wasserburg and

the range of elements each is assumed to produce. (Table 4 of Qian & Wasserburg, 2008.)
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Fig. 19.— Constraints on allowed ratios of [Sr/Fe] vs [Ba/Fe] from the models of Qian and

Wasserburg. (Fig. 2 of Qian & Wasserburg, 2008.)
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Fig. 20.— Adopted template yields for the light elements through the Fe-peak for two of

the three sources adopted by Qian & Wasserburg. The adopted production yields for these

elements are assumed to be identical for hypernovae and for normal SNII. (Fig. 6 of Qian &

Wasserburg, 2008.)
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5. Topics For Discussion

1. Derive the solutions given above for S(Z) and for XS (the abundance of a secondary

element) (eqs. 4 and 5) for the Simple Model with instantaneous recycling.

2. Look into the details of predicting the SNIa rate by reading papers by Laura Greggio

and others.

2. Look into the details of calculating the SNIa and SNII rates from the SNLS

observations by reading the papers cited above.


