_ 1 _
1. Chemical Evolution
1.1. Analytical Chemical Evolution Models

The data we hope to reproduce:
(1) the gas content of a stellar system as a function of time
(2) the overall metallicity in the gas as a function of time
(3) the metallicity distribution of the stars as a function of time
(4) the detailed abundances of various elements as a function of time in the gas
(5) the total mass of the system as a function of time

(6) the fraction of mass locked up in stellar remnants (neutron stars, white dwarfs) as a

function of time
(7) the number of type of SN, neutron stars, novae, X-ray binaries, etc as a function of time

Observational data for most of these issues exists for the various components of the
Milky Way galaxy, less detailed data exists for other nearby galaxies within the Local

Group. Beyond the Local Group, the data is quite limited with regard to these issues.

1.2. Simple Homogenous Model

In a simple homogenous model, one assumes uniform mixing within the gas over the
entire systmem, homogenous star formation, and no infall or outflow of gas from the system
(i.e. a closed system). A power law initial mass function (IMF) ¢(m) which is constant over

time and space, is often assumed; the Salpeter value is ¢(m)dm oc m=235 dm. More recent

work by Scalo (1986, Fund.Cosmic Phys., 11, 1) and Kroupa (2001, MNRAS, 322, 231)
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suggests that the Salpeter IMF is too steep to fit the observations for low mass stars below
0.5M, and that a flatter slope is required, reaching —0.3 £ 0.7 for 0.01 < M/M < 0.08.
Note that the transformation from luminosity to mass (the IMF is a function of stellar mass)
is not as well determined for the lowest mass stars). In their most recent work, Weidner,
Kroupa & Bonell (2010, MNRAS, 401, 275) explore the statistical issues associated with
massive stars forming in clusters. How does the maximum mass of a star formed in a cluster
depend on the mass of the cluster gas 7 Obviously a star with mass greater than this value
cannot form in such a cluster. Integrating over many clusters with an appropriate cluster
mass distribution, they then derive what they call the integrated galactic mass function,

and which is somewhat steeper at the highest masses than a standard power law IMF.

Instanteous recycling, that stars die and release their metals very quickly after their
birth, is also assumed. The specific simplifying assumption often made is that stars with
M < 1M, live forever, while stars of higher mass die instantly. Since most metals come
from fairly massive stars with lifetimes short compared to the age of the Galaxy, this is
not an unreasonable assumption for an intial pedagogic model. Another assumption which
must be made is that the fraction of mass from each stellar generation which remains locked
up in long-lived remnants or in stars that do not evolve during the entire timescale of the
calculation (i.e. the age of the Galaxy), «, is constant. This is equivalent to a constant IMF

in practice.

In this case, following Francesca Matteucci (The Chemical Evolution of the Galazy,
Kluwer Academic Publishers, 2003) the equation for the metallicity as a function of time
can be solved analytically. The variables are u, the fraction of the total mass which is in
gas that can form stars, p the nuclear reactions yield, and Z the fraction of metals in the
gas (by mass). The subscript 0 denotes inital values when star formation first started in the

system. M, is the total mass in stars (both living and dead remnants) at the time ¢, M, is
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the fraction of the total mass in the form of gas at time t. (¢) is the star formation rate,
usually taken to be a function of ¢,4s/74yn (the Schmidt-Kennicutt law), where o4, is the
surface density of gas and 74y, is the local dynamical timescale for collapse of a gas cloud.

The current value of 9 in the local disk is ~ 4Mgpc=2/Gyr.

The relevant equations were first laid out by Beatrice Tinsley following earlier work by

M. Schmidt (1959, 1963), and are given in many articles.

Conservation of mass and of heavy element abundance,

Mgas + Ms:Mt0t7 Ms = (1 - M)Mtota Z = MZ/Mgas-

The initial conditions are: Myqs(t =0) = M and Z(t =0) = 0.

The gas evolves according to

dMgyes

() + B() (eq. )

where E(t) is the rate at which dying stars restore their gas to the ISM, partially enriched
by nuclear reactions in their cores. Mg(m) is the permanently locked up remnant mass for
a star of mass m, and 7(m) is the lifetime of a star of mass m. Denoting m(t) as the mass

of a star born at ¢ = 0 and dying at time ¢, we get:

B(O) = [ (m— Ma)u(t = )6(m)dm

m

The metallicity evolves through the addition of newly synthesized material from stars,

namely:



= M = ) + Bl (eq.2)

where the second term represent the addition of material to the ISM from dying stars. This
in turn has two components, the first is the pristine material from the outer layers of stars
that was returned to the ISM without alteration, and the second is the processed material

with newly formed and ejected metals, as indicated below in eq. 2a.

o) = [ [(m = Me)Z(t = 1) + mpzalib(t — ) b(m)dm (eq. 2)

Define R as the total mass restored in pristine condition (i.e. without any products of

nuclear reactions mixed in) to the ISM by each generation of stars. This is the gas lost by
winds from the stellar surface. We assume that all stars with masses less than 1M, always
become remnants and never return any mass to the ISM; this defines the lower limit on the

integral. Then R is:

R = /1 (m = Mp)w(m)dm,

We also need the yield for nucleosynthesis, y; for the stellar generation, which is the ratio
between the total mass of the isotope (element) i newly formed and ejected into the ISM
from all stars with M > 1M, assumed to die immediately after being formed, and the

amount of mass locked up in low mass stars and remnants,

1 oo
Yz = ﬁ/1 m pzm ¢(m)dm,

where pz,, is the mass fraction for a star of mass m of heavy elements freshly produced

within the star and then ejected into the ISM upon its death. We denote the yield y; as
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the effective yield yz,_,, which describes the stellar system assuming that the Simple Model
is adequate. If yz, ., > yz then the system has attained a higher metallicity for a given gas
fraction p than the Simple Model can produce. If this were the case, then some assumption

in the Simple Model must be incorrect.

Substituting eq. 2 into eq. 1 and assuming instantaneous recycling, which allows us to

neglect 7,,, we end up with an equation

Ez(t) = ¢ORZ(t) + yz(1 - R)Y(?).

This simplifies, in the Simple Model, to

. dp
Hat Yt

which has the solution

Z = yz In(1/p).  (eq. 3)

This is the fundamental equation for the evolution of metallicity with time in the
Simple Model. Z is a function of the fraction of the total mass that is in the form of gas
that can be used to form stars, . Once a value is assigned to u, Z can be calculated,

assuming the nuclear yield per generation of stars, y, is known.

1.3. Applications of the Simple Model

We can now calculate the fraction of all stars ever formed with metallicities less than

or equal to Z, S(Z). We first calculate the fraction of all stars formed while the gas fraction
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was > u, (M./M;) = (1—u)/(1— uy), where the subscript 1 denotes the present value.
All these stars were formed with Z < y, In(1/u). So the fraction of stars today with
metallicities < Z, indicated by S(Z) is

1—exp(Z 1— 2
H1 H1

The average stellar metallicity can be calculated as well. This will be a mass-averaged
metallicity, unless a specific mass-luminosity relation is put in to the integral as well to give
a luminosity averaged metallicity. Since the luminosity is dominated more by giants than
is the mass, the two may be different, and in general the luminosity weighted metallicity is

smaller than the mass-averaged one.

If we find the gas fraction p at which half of the stars observed today have formed, we
can find the associated Z, which will be the median of the metallicity distribution. Assuming
u at the present time in the Solar neighborhood is ~ 0.5, we get Z(median) = 0.3 yz.
Thus since in the Solar neighborhood the mean Z is about 0.5 that of the Sun, we infer

that the present value of yz is ~ 1.7 Z.

A comparison of the predictions of the Simple Model with the Solar neighborhood
metallicity distribution, S(Z), shows that there are fewer metal-poor stars predicted by the

Simple Model than are observed. This is often called the “G dwarf problem”.
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Figure 1.  The alpha-plot for Milky-Way (MW) and Large-Magellanic-
Cloud (LMC) star-clusters and associations. Data are from the compilation
of Scalo (1998). The horizontal dashed lines are the average IMFE with esti-
mated uncertainties (eqn (), and the diagonal dot-dashed line is the popular
Miller-Sealo (1979) IMF. From Kroupa (2001b). The figure can be obtained
in colour from pstro-ph /0009005

Fig. 1.— The IMF slope inferred from various Milky Way and LMC clusters (from Kroupa,
2001, MNRAS, 322, 231). The horizontal line in the right half of the figure is the Salpeter

slope, which appears to fit the IMF for stars more massive than 1M.
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Fig. 2. The adopted logarithmic IMF (egs. Q and @}, £L/10°%, for 10° stars (solid histogram). Two random
renditions of this IMF with 10% stars are shown as the heavy and thin dotted histograms. The mass-ranges over
which power-law functions are fitted are indicated by the arrowed six regions (eq. Eb_. while thin vertical dotted lines
indicate the masses at which a: changes.

Fig. 2.— from Kroupa (2001, MNRAS, 322, 231)
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Figure 5. Panel A: Most-massive star va cluster mass. The dots are the chesrved values from column # 4 from Tab, [BI] The two open
cyreles Indicats agisting dynamical estimates for the present-day mass of the most-massive stars. The bored data are from the sampls
of [Faustind st all @_ﬁﬁ]. The dotted ling refers to the mods value for rendom sampling, the shori-dashed line to the median value, the
curved sofid lins marks the mean value and the two long-dashed lines are the 1 /6th (lowar) snd 5/6th (upper) quantiles between which
2/3rd of the data points should lie if they wers randomly sampled from the IMF over the mass rangs 0.01 Mo to mpos = 100 Mo, The
thin sold lins to the left marks the identity whers the cluster is madeup only of one star. Panel B The same as panel 4 but sssuming
& fundamental upper mass limit for stara of Mmee. = 50 Mz instead of 150 M.

Fig. 3.— The mass of the highest mass star known in each of a set of young clusters as a

function of the total mass of the cluster. from Weidner, Kroupa & Bonnell 2010)
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Figure 5.1, Cumulative steflar metallicity distribution. S(Z) is the fraction of stars having
metallicities < Z, with a maximum value %, (taken as 22;). Solid line: log-normal representa-
tion of the data for the solar neighbourhood. Long dashes: the prediction of the Simple Model
for the chemical evolution. Short dashes: the prediction of the extreme infall model. Dots:
prediction of a model with a finite initial metallicity. From Tinsley 1980, Fund. Cosmic FPhys.
Vol. 5, 287; reproduced here by kind permission of Gordon & Breach Science Publishers (copy
right 1980).

Fig. 4.— Fig. 5.1 of Matteucci’s book The Chemical Evolution of the Galaxy.
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3 for the best-At paramstars,

Fig. 5.— The metallicity distribution of the thick disk in the Solar neighborhood, and in
the halo, from Ivezic et al (SDSS), 2008, ApJ, 684, 287
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1.4. Secondary Elements

An element is secondary if it is produced in reactions proportional to the initial
metallicity of the star, not just from hydrogen and He. The heavy elements beyond Fe, for
example, are produced by neutron capture by the pre-existing Fe nuclei. Until some Fe

exists, they can’t be produced.
In this case, eq. 2 becomes:
00 Z(t — Tm)

B, = / [(m — Mg) Xs (t — ) + MPom

mi(t) Zs J(t — ) Pp(m)dm.  (eq. 5)

Under the assumption of instantaneous recycling, this eventually becomes

Xg o< Z%  (eq. 6) in the Simple Model.

1.5. Other Analytical Cases

Analytical solutions exist for a number of other cases. If one wishes to add accretion of

gas as well as Galactic outflows, then the total mass of the system may change with time.

thot _
dt

—W(t) + A(t) (eq. 7)
where W (t) represents the Galactic wind (outflow) and A(t) the accreted material, assumed
to have metallicity Z 4.

The equation for the evolution of the metallicity is then:

d(Z Myas)

7 = —Z(t) (1) + Ez(t) + Za@)A®) — Z(w)W(t)  (eq. 8),
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where the last two terms on the right side represent accretion and outflow, while the
first two terms represent removing material from the ISM via star formation and adding

processed material back to the ISM upon stellar death.

Analytical solutions exist in certain specific cases. First, if one ignores accretion and
defines the wind term as proportional to the star formation rate, W(t) = A(1 — R)(t),

where A (A > 0) is the wind parameter, the solution is:

Yz

7 —
14+ A

In[(1+Npu™t — N (eq.9)

The true yield is always lower than the effective yield for outflows.

If one has accretion without any outflow, and the accretion rate is set to
A(t) = Al — R)Y(t), where A > 0 is the accretion parameter, and where the

infalling gas has Z4 = 0, then the solution for A # 1 is:

Z = Zh-(A—- A=)y NN (eq. 100)

and for A =11is

Z = yz[1—e D] (eq. 100).

The latter is the solution for extreme infall where the amount of gas remains constant in
time, that going into stars is replaced by infalling primordial gas. In this case, (u=* — 1) is

the ratio of the accreted mass to the initial mass.

A somewhat more complicated expression can be derived for the analytical solution for

both accretion and outflows being present provided that A(¢) and W (t) can be represented
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as parameterized above. See eqtn. 5.43 of Matteucci, The Chemical Evolution of the Galaxy.

Clayton (1985, 1987, see 1987, ApJ, 315, 451) described another family of cases which
are exactly soluble. His cases allow more freedom in parameterizing the star formation rate
and the infall rate. He begins by assuming that the star formation rate is a linear function

of the gas mass, (1 — R)Y(t) = wM,,s, where w is a constant. Exact solutions exist to this

model if A(t) has the form

At) = H—AMgas(t),

where k and A are free parameters.

The Clayton model is useful as one can study analytically a wider range of SF histories

and infall rates than can be done in the simpler models described above.

A variation of Clayton’s model developed by Pagel (1989) introduces a fixed delay
between the star formation and the stellar death, which allows one to study the behavior
with time of elements such as Fe which are formed on long timescales. For a linear star
formation rate and a fixed time delay A and for a wind parameter A\ he found the analytical

solution:

Z(t) = y, eMHVD Gyt — A).

At present these analytical models are used as pedgogical tools and for testing

numerical codes only.
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Figure 1. Schematic plot of mewllicity z versus logarithm of the
reciprocal of the gas fraction In{1/f) for galaxies, or regions of
galaxies, to show the area of the plot which can be reached by inflow
of unenriched pas or outflow.

Fig. 6.— Fig. 1 of Edmnds, 1990, MNRAS, 246, 678. Note that F' in his notation is
p = Mgy.s/Mtot in the notation used here.
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1.6. Timescale for Chemical Evolution

We assume the simple model with instantaneous recycling. The star formation

timescale = time to consume all the gas in a system,

Mgas Mgas
T = = :
abs[dM s/ dt] (1-R)y

which evaluated for the solar neighborhood yields 7, ~ 1 Gyr. This seems too short, another

symptom that the Simple Model is too simple for the solar neighborhood.

The timescale for chemical enrichment, 77, necessary to reach the metallicity Z is

Z Z My,

2= psldzjdl] ~ abslys(— Ryl 212

This is about 1 Gyr, which is too short a timescale. We need infall to fix up the problems

the simple model encounters when applied to the Solar neighborhood.

2. Numerical Computations of Chemical Evolution

The equations to be solved are the equivalents of eq. 1 and eq. 2 with the additional
terms appropriate to the situation being considered. The star formation rate may vary with
time; it is usually taken as exponentially declining with time with a timescale 7y set to best
fit the data for the situation under consideration, ¢(t) = Aexp(—t/7,). The value of 7 is
set short to match old stellar populations (elliptical galaxies), perhaps ~1 Gyr, and longer

to replicate spiral galaxies (~5 Gyr), and even longer to model dwarf irregular galaxies

There may be infall and/or outflows. There may be radial mixing or other forms

of spatial non-uniformity. You may want to abandon the instantaneous recycling
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approximation, using f(t — 7,,,) instead of the simpler f(¢). After all, once you go for a

numerical solution, it might as well be as good as you can make it.

The key equation for each element (isotope) i considered has the form:

G,
dt

= —YP)Xi(t) + Xia(t)A(t) — X;(t)W(t) + many source terms.

Each of the source terms is similar to:

/Mﬂju Wt = Ton) Qui(t — Tim) (M) dm.

Here X;(t) is the fractional abundance by mass of the species i, G;(t) = 0;/0(tc), where o
is the total surface mass density, including gas and stars, both living and dead. The first
three terms on the right include gas lost from the ISM due to star formation, accretion of
material which has an abundance of species i of X;4, and outflows. Then follow a number
of source terms which are of the general form shown above, namely an integral over a range
of stellar mass times a production rate Q;(¢) and the initial mass function. These can be

from various types of supernovae, novae, AGB stars, or any other source.

There is another equation which gives the total gas mass including accretion and

outflows.

The exact form of these equations will depend on the specific problem to be solved,
the galaxy to be modelled, etc. The basic equations are not hard to write down, and in
such circumstances can best be solved numerically. If you want to follow the abundances of
various elements besides H in detail, you will need a full set of nucleosynthetic yields and,
in particular for non-primary elements/isotopes, there may be a lot of coupling between

the equations for the various elements to be included. Overall, however, this is a trivial
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calculation on the scale of current computing capabilities, easily carried out on a personal

workstation.
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3. Rates of SNIa, SNII, Novae, AGB Stars, PISN

SN rates can be predicted from the IMF and star formation rate. We also now have
good observational data from very large imaging surveys attempting to detect SN of actual
rates in various galaxies. Such surveys include the Supernova Legacy Survey (SNLS) carried
out at the CFHT, the Palomar Transient Facility now in operation, etc. Wide field imaging
at high cadence is required for this purpose. We first describe the predicted rates, then the
observations. Because of the high absorption in the Galactic plane and the fact that these

stellar explosions are rare, it is quite difficult to determine these rates from the Milky Way.

3.1. Rates from Models

The SNII rate is easy to calculate. It has two terms, the first from those stars in the
mass range such that if they were in a binary system, they do not become SNIa. The
parameter A represents the fraction in the IMF of binary systems with the right properties
to become SNIa. The second term includes stars more massive than that that up to the
highest mass present, M,,, usually between 40 and 1000 + ©. The first integral goes from
M1, the lowest mass for which a degenerate CO white dwarf can form, to M2, the highest
mass for this can occur taking into account mass loss. Values from 6 to 8 M, are often used
for M2. The second integral runs from M2 to the highest mass star in the system My p.

The parameter A is the fraction in binaries which become SNIa.

M2 M,

R(SNII) = (1— A) / S(MYY(t — 1)dM + [ SMY(t — 7)dM

M1 M2

SNII rates should be strictly proportional to the very recent star formation rate SFR(t)

in a galaxy. Since star formation increases at higher redshift by a factor of about (1 + 2)>?,



- 20 —

one expects the SNII rate to increase by this factor as well.

Greggio (2010, MNRAS, in press, see arXiv:1001.3033) gives rates for SNIa. Thes are
believed to originate from degenerate binaries, both singly degenerate and systems where
both components are degenerate (doubly degenerate). A detailed understanding of binary
star frequency and evolution, including, for example, decay of the binary orbit due to loss
of energy by gravitational waves, is required to evaluate the rate properly. In order to
produce a SNIa, the binary must be a close binary, the primary of the binary must be an
intermediate mass star (2 to 8 M) so the first Roche lobe overflow leading to mass transfer

to the secondary must leave a CO WD, i.e. the core of the primary star.

She calculates the delay time between the initial formation of the stars and the SNIa
explosion. This is the crucial delay between SNIa and SNII (core-collapse SN, which for

massive stars occurs almost instantaneously as their lifetimes as so short).

Novae are similar to SNIa, in that they too involve degenerate white dwarfs in a binary
system, with mass transfer. But a nova explosion involves only the accreted material. The
explosion is less energetic and the net effect is the loss of some material, but the white
dwarf itself is not disrupted. Nova rates were calculated for a constant SFR model by
Yungelson, Livio & Tutukov (1997, ApJ, 481, 127). The nova rate is proportional to the
rate of formation of white dwarfs. But they must be in the appropriate binary systems in
order to have novae occur. Many details of the evolution of binary systems are required to

carry out this calculation.
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Figure 1. Distribution of the delay times for SD models, Chandra (solid)
and Sub-Chandra (dot-dashed). The DTD is normalised to 1 over the range
0.04 to 13 Gyr. The upper axis is labelled with the value of the stellar mass
(in M) evolving off the MS at the corresponding a delay time labelled on
the lower axis. A Salpeter IMF for the primaries, a flat distribution of the
mass ratios, and oy = 2 (3] M. for Chandra (Sub-Chandra) models have
been adopted. The dashed line shows the trend of the CO WD formation
rate from the primaries, which may represent an upper limit to the slope of
the DTD for the M5+WD channel. This function, plotted on the logarithmic
scale, is not normalised to 1 over the delay time range.

Fig. 7.— SD = singly degenerate, i.a. a binary in which only one component is a white

dwarf. Fig. 1 of Greggio (2010).
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Figure 2, Left: the delay time due to the gravitational wave radiation, as given by the labelled (approximate) relation, as function of the initial separation of
the DD systems, and for Mpp ranging from 1.4 to 2.4 My in steps of 0.1 M. Right: the distribution of the delay times for DD models, CLOSE (solid) and
WIDE (dot-dashed), in the same units as in Fig. [T]. Adopted parameters include a Salpster IMF for the primaries, a flat distribution of the mass ratios, 7y = 1
Gyr, and flat distribution of the separations A, The DTDs for the SD models are plotted in red for comparison,

Fig. 8— DD = doubly degenerate, a binary with both components being degenerate white
dwarfs. Fig. 2 of Greggio (2010).
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gravitational wave radiation delay (Towpl In SN la progenitor systems
for DO CLOSE (top) and WIDE (bottom) models, The line-types encodes
the values of (Tyo.Town) = Q0400007 (solid), (0.1,00001) (dot-dashed,

red), (0015,000000 (dotted, red), 00.04,0.10 (short dashed], (0.04,0,.2) (long
dashed). All curves assume a mirdmum o of 2.5 M, and a flat distribu-

tion of A,

Fig. 9.— Fig. 7 of Greggio (2010).



— 24 —

]_ T T | T T | T T T T T T T T T | T T
[ SOLOMONIC T SEGREGATED 1
— D -
e [
= [
-1+
o [
=2 T
2 .
a —2 |
2 - -
[ T ]
3 - —+ | -
C 1 1 | 1 1 | | 1 1 i | l 1 | 1 | 1 | 1 1 | ]
8 9 10 8 9 10
log DT (yr) log DT (yr)

Figure 8. DTDs for mixed models. Lafi: the DTD of S0 Chandra explosions in Fig. [dl{dotted ling) 1s combined with the OTD of a DD-CLOSE maodel with
mirdmum sacondary mass of 2.5 Mz and a flat distribution of 4 idashed) to construct the Solomonic misxture. In which 30 % of the total events within 13 Gyr
come from elther channel. Right: the events at delay tmes shorter than 0.1 Gyr come from SO explosions, while those at longer delay times come from the
DD-CLOSE fsolid) or DD-WIDE (dot-dashed) evolutionary channels, both with minimum oe of 2.3 M and a flat distribution of 4, The events from the S0
channel amount to 30 % of the total within 13 Gyr.

Fig. 10.— Solomonic model: SD and DD each contribute half of the total events at all times.
Segregated model: SD explosions provide early events, DD provide longer delay time events.

(Fig. 9 of Greggio 2010).
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Figure 11. 5N la rate per unit B {upper panels) and per unit K (lower panels) luminosity, as function of the morphological type of the parent galagy. Black dots
shenw the abserved rates from|Gregglo & Cappellara 2009); the stars shows the published rates for the E+50 class; coloured lines show modals caloulated with
different [TDs and the SF rate given by Eq.(). Left panels: theoretical relations obtained with single channel DTDs The SD Chardra (SD-Chom green line)
model assumes a Salpeter disribution for . a flat distribution of the mass ratios, and an efficiency & = L Blue lines are obtained with DD-CLOSE models:
DO 1 and D3 assume a distribation of separations skewed at small values, and differ for the minimum mg, respectively of 2.5 and 2 My DDC2 assumes a
flat distribution of the separations and a mintmum mg of 2.5 M. Red lnes are obtained with DD-WIDE medels, DDW1 and DDW2 being computed with the
same cholce of parameters as DDC1 and DDC2, Central and dght panels: comelations cbtained with mixed DTDs in the Solomonic and Segregaied flavours;
colours and line types reflect the specific DD model used to construct the mixtre with the encoding labelled in the top left panel. The coloured crosses show
the rates for the bursting modal in Fig.[I0 put at an arbitrary value of T.

Fig. 11— DTD = delay time distribution. The X axis of this plot roughly indicates the
galaxy type, 10 being extreme spirals and irregulars with high star formation rates, —5 being

ellipticals with no current star formation. (Fig. 11 of Greggio 2010).



— 26 —

S : ==

Fig. 12.— Fig. 1 of Yungelson, Livio & Tutokov (1997). Pairs of curves correspond to
different distributions of binaries over the mass ratios of the components f(q) o ¢%, for
a = —1,0,1 from top to bottom. The two lines for each of the three values of @ modeled
correspond to different parameters for the common-envelope phase. The long dashed line
describes the nova rate for a 10° yr initial burst of star formation followed by a stage of
constant (lower) star formation for another 14 Gyr so that equal total stellar masses were
formed in the burst and in the extended constant SFR phase. The total mass in each case
is 15 x 109My, close to that of the Milky Way, so th is is a prediction of the nova rate for

our galaxy.
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3.2. Observed SN Rates

SNIa have been the subject of intensive study because of their use as cosmological
distance indicators. SNII are fainter, have a wider range in peak luminosity, and until

recently were not as well studied.

The Supernova Legacy Survey (SNLS) carried out over 5 years from 2003 to 2008 with
the CFHT has determined the rates of core-collapse and SNIa SN. Their cadence is such

that there are at least 4 observations per lunation in each of their fields.

Preliminary results from the SNLS based on the first three years of data are given
in the following papers. Bazin, Palanque-Delabrouille, Rich et al (2009, A&A, 499, 653)
describe in detail the derivation of the SNII rate from their sample of 117 SNII confirmed
by spectroscopy and/or detailed light curves. They find their rate to be larger than the
SNIa rate by a factor of about 4.5, corresponding to R(SNIT) = 1.42 x 107*/yr/Mpc?® at
z ~ 0.3 for a Hubble constant of 70 km/sec/Mpc. The rate is proportional to (H,/70)? if a

different value for the Hubble constant is chosen.

Sullivan, Le Borgne, Pritchet et al (2006, ApJ, 648, 868) focus on the SNIa rate from
the SNLS with a sample of 100 spectroscopically confirmed SNIa, plus 24 probable SNIa.
They find a bivariate linear dependence with the SNIa rate per unit mass in a galaxy
linearly proportional to the specific SFR (SFR/My), i.e. to both the SFR and the stellar
mass of the host galaxy, with R(SNTa) = 5.3 £ 1.1 x 10714 SN/yr/ M, of the host galaxy
and 3.9 £ 0.7 x 10~*/yr/SFR, where the SFR is in M /yr. This is equivalent to a prompt

and a more delayed set of SNIa events from a burst of star formation.

Neill, Sullivan, Balam et al (2006, AJ, 132, 1126) use the SNLS to establishe the SNIa

rate for a higher mean redshift (z ~ 0.5), but smaller sample of events.

Boticella, Riello, Cappellaro et al (2008, A&A, 479, 49) have published rates of SN at
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intermediate redshift from the Southern Intermediate Redshift ESO SN Search (STRESS),
but the number of spectroscopically confirmed SN is far below that of the SNLS, as is also

the case for all previous surveys.

Moaz & Badenes (2010, MNRAS, in press, see arXiv:1003.3031) determine the SN rate
and delay times in the Magellanic Clouds. Obviously they did not do this by counting SN,
as 1987A is all we know about for sure. But there are 77 supernova remnants in the LMC
and SMC, which they attempt to age date and separate into SNII and SNIa. A valiant

attempt !

Nova rates are high enough that one can get a reasonable number of events per
year detected in the Milky Way, about 4 per year (see the IAU telegrams, circulars, etc).
Extrapolating that over the fraction not detected due to extremely high absorption, nd the
area of the disk not searched, Della Velle & Livio (1994, A&A, 286, 786) estimate a rate of
~20 novae per year. Della Valle, Rosino, Bianchini & Livio (1994, A&A, 287, 403) present

preliminary results from a survey of novae in M33.

There have been a number of surveys of novae in M31, beginning with the classic
work of H.C.Arp at Mount Wilson (1956, AJ, 61, 15). The PTF is conducting a survey of
novae in nearby galaxies, including M31, M81, and several other galaxies. Darnley, Black,
Bode et al (2009, arXiv:0809.4590) summarize in a conference proceedings their search for

extragalactic classical novae in the Local Group, especially in M31.

Until very recently there were no detections of events that were claimed to be PISN.
These are suggested to arise from a star with initial mass in excess of 140M, to produce
very high energy explosions, during which the star becomes completely unbound and
disrupts completely, without leaving a black-hole remnant. Such events may have been

more common in the early Universe.
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Very recently, SN2007bi was claimed by Gal-Yam, Mazzali, Ofek et al (2009, Nature,
462, 624) to be such an event. It was observed in a dwarf galaxy with ~1% the mass of the
Milky Way. They claim that the exploding core mass was about 100M,, and that more
than 3M of ®Ni was synthesized. This suggests that star-forming dwarf galaxies may host

extremely massive stars, above the apparent limit for the Milky Way.
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Fig.13. The measured rate of SNcc as a function of redshift.
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as described in the text. The error bars correspond to statistical
and systematic uncertainties added in quadrature. The line is the
best fit for rateee (1 + 2)°®, i.e. proportional to the SFR.

Fig. 13.— Fig. 13 of Bazin, Palanque-Delabrouille, Rich et al (2009, A&A, 499, 653)
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Fiz. 6.— The numbsr of SMe Ia per unit stellar mass as a function of the star-formation rate (SFR) per unit stellar mass of the host
galaxy. Blue points represent SNLS data-points in star-forming gelaxies. The red hashed area shows the number per unit stellsr mass
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lines show the division we use to classify the host galscies into different types.

Fig. 14.— Fig. 6 of Sullivan et al (2006).
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Fig. 15.— Fig. 8 of Sullivan et al (2006).
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Fig. 16.— The predicted SNIa rate as a function of redshift from their model, including
both prompt and delayed contributions. The points are from analysis of images from various
observational studies with suitable temperal cadence. The Palomar Transient Survey will
be generate a much larger sample of SNIa, and hopefully improve the measurements of their
frequency of occurent. The vertical axis is the number of SNIa events/yr/Mpc3. Fig. 10 of

Sullivan et al (2006).
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Figure 1. Best-fit delsy-times distributions for the Magellanic Cloud S8MNR sample. Each panel in the top row displays the results obtained
with a different density tracer: HI (left), Ha {centre), and SFR (right). The panels in the bottom row show the DTDe obtained with
“hybrid” density tracers, using HI at low densities and sither Ha (laft) or SFR (right) st high densitiss, Error bars show 68% confidenoses
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best fita in the most-delayed bins are always sero, and the horizontal line gives the 95% confidence upper limit on the rats in this time
hbin. To facilitate comparison, the DTD obtained without scaling with density of the visibility time of SMHs is plotted in all pansls as
black lines, with shaded regions for the error bars. All DTDs have besn scaled so as to give the same, theoretically ecpected, OC-8N

yield in the first bin.

Fig. 17— Fig. 1 of Maoz & Badenes (2010). SN rates in the LMC+SMC based on

approximate age dating of SN remnants.
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4. Other Types of Models

The numerical integration of models for chemical evolution of stellar populations
described above has many parameters. One criticism is that there are enough “knobs” that
almost any reasonable dataset can be reproduced, and that nothing is learned by applying

such models.

Qian and Wasserburg have written a series of papers developing a phenomenological
model. They specialize to simple cases, where the number of contributing types of sources
is small. They adopt a fixed template of yield for each type of source, ignoring the
complexities of differences of yield with progenitor mass. They look for specific element
ratios which are diagnostic of which source contributes, and then compare that with the
data. This simplification gives more insight into how good the template yields and list of
specific types of sources might be, without getting lost in the many parameters that go into
a full blown chemical evolution computation. Clearly this will work best when the number
of types of sources is small. Thus they focus on the first few generations of normal stars in
the Galaxy, before SNIa got going, and especially on the ratio of the heavy neutron capture

elements vs Fe vs a-elements.

Their current model contains 3 sources, low mass SNII, normal mass SNII (both of
which leave behind neutron stars and within which the r-process can operate) and and
hypernovae (very energetic SNII), which leave a black hole. No heavy neutron capture
occurs for hypernovae, which produce only elements through the Fe-peak, but not heavier.
They claim that HNe produced 24% of the Fe in the Sun, while normal SNII contributed
only 9% instead of the 33% normally assumed. They attribute the elements Sr through Ag,
the first peak of heavy neutron capture elements) to charged particle reactions in neutrino
driven winds from young neutron stars instead of the neutron capture, while the elements

in the Ba peak and beyond they consider the true r-process elements produced by extensive
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rapid neutron capture in low mass SN.

Key papers of theirs to read are: Qian & Wasserburg (2008, ApJ, 687, 272 and 2007,
Physics Reports, 442, 237).

Of course, once there are many sources operating and many generations of stars
contributing to the chemical inventory of the iSM, the situation rapidly becomes too
complicated for such an approach, and a full numerical integration of the equations of

chemical evolution is required.
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Table 4. Characteristics of HNe, H, and L* Sources

Sources HNe H L*
stellar types HNe from stars low-mass SNe from normal SNe from
of ~ 25-50 M stars of ~ 811 M. stars of ~ 12-25 M
remnants black holes neutron stars nentron stars
nucleosynthetic  dominant source for  source for CPR elements source for low-A
characteristics low-A elements from Sr throngh Ag and CPR elements

from Na through Zn  and only source for heavy
Tropm ~ 0.248 r-elements with 4 = 130 fuge ~ 0.08"

*Fraction of the solar Fe abundance contributed by HNe.

"Fraction of the solar Fe abundance contributed by the L* source.

Fig. 18— The three sources considered in the latest models of Qian and Wasserburg and

the range of elements each is assumed to produce. (Table 4 of Qian & Wasserburg, 2008.)
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Fig. 2.— Evolution of [Sr/Fe] with [Ba/Fe]. Data symbols are the same as in Fig-
ure [ except that the left-pointing arrows indicate the upper limits on [Ba/Fe]. Typ-
ical observational errors in [Sr/Fe] and [Ba/Fe] are ~ 0.1-0.25 dex. The curves show
[St/Fe] = log (10Fr/Baly HBa/Fel g 0o 101550} based on the three-component model with
the H and L sources and a third source (HNe) for fr.; = 0 (dot-dot-dashed), 0.1 (dashed),
0.5 (dot-dashed), and 1 (solid). The parameter fg. ; is the fraction of Fe contributed by the
L source (fp.; = 0 corresponds to all the Fe being from the third source). The filled circle
labeled “L" indicates the value of [Sr/Fe|p, = —0.32 for the L source. Almost all of the data
lie within the allowed region of the model. Note the presence of quite a few data on the
curve for fr.p = 0 as well as the abundant data near the curve for frop = 1.

Fig. 19.— Constraints on allowed ratios of [Sr/Fe| vs [Ba/Fe| from the models of Qian and
Wasserburg. (Fig. 2 of Qian & Wasserburg, 2008.)
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Fig. 6.— Comparison of the abundance patterns of the low- 4 elements for the third source
(HNe) and the L source. The patterns for the third source are taken from five stars that
lie on the curve for fr.p = 0 in Figure [ (open square: BD —18°5550, [Fe/H| = —2.958,

; open circle: CS 30325-094, [Fe/H] = —3.25, open diamond: S 22885-096,
[Fe/H] = —3.73, open triangle: CS5 29502-042, [Fe/H] = —3.14, [Cayre] et al.l |2J1ll-ﬂ plus:
BS 16085-050, [Fe/H] = —2.85, Honda et all 1. Those for the L source are from three
stars that lie on the curve for fr.p = 1in Figure @ (filled square: BD +4°2621, :
filled circle: HD 122563, Honda et aljlm: IED_EId; filled diamond: €8 20491053, |Cavrel et al
j. The solid curve represents a star (BD 4+17°3248, [Cowan et al“m:l with a relatively
high wvalue of [Fe/H] = —2. Typical observational errors in [E/Fe| are ~ 0.1-0.25 dex. All
the patterns shown are essentially indistingnishable.

Fig. 20.— Adopted template yields for the light elements through the Fe-peak for two of
the three sources adopted by Qian & Wasserburg. The adopted production yields for these
elements are assumed to be identical for hypernovae and for normal SNII. (Fig. 6 of Qian &

Wasserburg, 2008.)



— 40 —

5. Topics For Discussion

1. Derive the solutions given above for S(Z) and for Xg (the abundance of a secondary

element) (egs. 4 and 5) for the Simple Model with instantaneous recycling.

2. Look into the details of predicting the SNIa rate by reading papers by Laura Greggio

and others.

2. Look into the details of calculating the SNIa and SNII rates from the SNLS

observations by reading the papers cited above.



