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1. Cosmology and Dark Matter Halos

1.1. The Cosmological Model

The concordance cosmological model, cold dark matter, has had great success in

reproducing the CMB and predicting the behavior of radiation and baryons prior to the

time when interactions (collisions) of the baryons and of the dark matter became important.

The high density of the early Universe guarantees interactions at rates faster than the

expansion, hence equilibrium between the various components. When a specific rate for

collisions or some other type of interaction of particles and/or photons becomes smaller

than the expansion rate H(t), at that time the reaction falls out of equilibrium.

The physics of the evolution of the dark matter is straightforward and there are no

parameters (aside from things like the number of neutrino flavors) with unknown values.

Until collisions of particles become important, the properties of a Universe with collisionless

cold dark matter and radiation can be solved analytically.

The general relativity metric for a spatially homogeeous and isotropic universe (the

Friedman-Robertson-Walker metric) can be written as:

ds2 = dt2 − a2(t)[ dR
2

1− kR2 + R
2(dθ2 + sin2θdφ2)],

where a(t) is the cosmic scale factor which describes the expansion with time and k is

the curvature parameter determining the geometry of the metric (what happens at large

distance to a pair of freely traveling particles initally moving on parallel trajectories); k > 0

in a closed Universe, 0 in a flat Universe, and negative in an open Universe.

Light emitted at a time t is observed at the present (t = 0) with a redshift

z = [1/a(t)] − 1, where a at the present time is defined to be 1.0, so that a(t) < 1 in the
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past. (Sometimes t = 0 is set to the moment of the Big Bang, which may cause confusion.)

The Hubble constant is

H =
da/dt

a
.

By definition, its value at times near the present is da/dt. From the Friedman equation in

general relativity, we find H2(t) = (8πG/3)ρ − k/a2.

The critical density required for a flat Universe (one with k = 0) is

ρc(t) = 3H2(t)/(8πG), which is ≈ 9 × 10−30 g/cm3 today. The ratio of the total

density to the critical density is called Ω. There are contributions to Ω from matter

(including baryons as well as dark matter) and from radiation. If we consider times close

to the present, where radiation plays a minor role, and set Ωk ≡ − (k/H2
0
) = 1− Ωm,

then the Einstein-de Sitter model (which is a flat universe with k = 0 defined by

Ωm = 1, ΩΛ = Ωr = Ωk = 0, where ΩΛ is the term from the vacuum density (i.e. the

cosmological constant) has the solution a(t) ∝ t2/3. However, if radiation dominates, then

a ∝ t1/2

For the flat Einstein-de Sitter model described above with a(t) ∝ t2/3, H(t) = (2/3)t−1.

The Hubble constant today is denoted by H0; its current value is set to h×100 km/sec/Mpc

to encompass the range of values of H0 established from observations of the velocity of

recession of galaxies in the past three decades. Recent measurements of h are all near 0.70;

see the papers from the Hubble Treasury program on Cepheid variables in nearby galaxies,

e.g. Freedman, Madore, Gibson et al. (2001, ApJ, 553, 47) and references therein. Then

H0t0 = 2/3, where t0 is the age of the Universe. The age of the universe in this model is

1/H0 ≡ (1010/h) yr = (10/h) Gyr. Stellar astrophysics demands a t0 of order 12 Gyr.

One can show that at high redshift (i.e. when 1 + z >> | Ωm − 1 | assuming Ωr can

be neglected) models with non-zero Ωk or ΩΛ approach the Einstein-de Sitter solution.
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In this regime the age of the Universe to a redshift z is

t from Big Bang ≈ 2

3H0
√
Ωm
(1 + z)−3/2

In the standard hot Big Bang model, the energy density of the initially hot Universe

is dominated by radiation. The energy a non-relativistic particle is fixed and is mc2. The

energy density of such particles is proportional to 1/Volume, hence a(t)−3. The energy of

a photon is proportional to λ−1. Thus the photon temperature is T (t) = T0/a(t), where

T0 = 2.63 K is the temperature of the relic Big Bang radiation at the present time, which

radiation we call the CMB (cosmic microwave background). The volume energy density of

the photons is proportional to a(t)−4.

Since a(t)−4 declines more rapidly than a(t)−3 as a increases and one approaches the

present time, eventually a transition from radiation domination to matter domination must

occur. This happens at aeq, for which z ∼ 3500, when the universe was ≈ 65, 000 yr old.

The gas at that point is still ionized, and the matter and radiation are still coupled.

At z ∼ 1100 (age∼ 300, 000 yr) the temperature drops below 3000 K, and recombination

of the protons and electrons to form neutral H atoms occurs. This is a thermal energy well

below 13.6 eV, the ionization potential of H, but the high photon/baryon ratio ensures that

as soon as a neutral H is produced it will be instantaneously ionized. Reionization does not

occur until TK ∼ 1 eV. Once neutral H atoms exist as a substantial fraction of the baryons,

the Universe became transparent to photons. The photons decoupled from the gas, and the

relic Big Bang photons from that time on travel freely, cooling with time. These are the

CMB photons we observe today, which currently have T = 2.63 K with a uniformity in T

of this blackbody radiation field of better than 0.1% over the sky.

The currently accepted concordance cosmology has parameters Ωm = 0.24, Ωb =
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0.04, ΩΛ = 0.73. It satisfactorily explains the Hubble diagram for galaxies indicating

expansion, the abundances of the lightest elements via Big Bang nucleosynthesis, and the

existence and properties of the CMB. However, all of the galaxies and stars and gas we have

studied for years are only 4% of the total. We do not know anything about the nature of

dark matter, and even less about “dark energy” (i.e. ΩΛ). This is a very unsatisfactory and

frustrating state of affairs.

The cosmological parameter w, determined by the 5 year results from WMAP (a

satellite that measured the CMB very accurately) to be −0.99 ± 0.06 and sought to still

higher precision from many more planned experiments, is related to the equation of state

of the “dark energy” (the cosmological constant). For matter, w = 0, for a cosmological

constant, w = −1.
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Fig. 1.— Fig. 3-4 from Dodelson, Modern Cosmology.
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Fig. 2.— IGM temperature evolution ignoring star formation and stellar energy input into

the IGM. In the upper panel, the straight dashed line is the photon temperature, the solid

line just below it and sometimes overlapping is the spin temperature for excitation within

the ground state of HI (the 21 cm line transition), and the dotted line dropping rapidly

towards low z is the dark matter kinetic temperature. The lower panel is the differential

brightness temperature of TS, the hydrogen spin temperature, which determines the strength

of the (reshifted) 21 cm line, against the CMB. (Fig. 6 from Furlanetto, Peng Oh & Briggs,

2006, Phys. Reports, 433, 181, a lengthly review Cosmology at Low Frequencies: The 21 cm

Tranisition and the High Redshift Universe.
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1.2. Primordial Fluctuations

Primordial fluctuations in the density field were generated by quantum mechanical

fluctuations at the end of the epoch of inflation. Inflation stretched a region of microscopic

size to a scale bigger than the visible Universe and thus our local geometry became flat.

Inflation solves the “horizen problem”.

The horizon problem arises as the event horizon in a decelerating universe scales as ab,

with b > 0. For a matter dominated universe, this is a1/2. The CMB decoupled at a = 10−3,

so the horizon at that time subtended an angle on the sky of 10−3/2 radians, or ≈ 2 deg.

This means there were at that time ∼ 104 causally disconnected regions, yet we know that

the CMB sky today is isotropic in temperature to better than 1 part in 105.

At the epoch of the emission of the CMB, the fluctuations in the energy density and

gravitational potential were about 1 part in 105. Measuring this with some degree of precision

is one of the observational triumphs of the past decade. Let δ(x) = (ρ(r)/ < ρ >) − 1,

where x = r/a(t) is a comoving position and r is the associated physical coordinate. Recall

that for 2 points, the comoving distance is fixed as the universe expands, while the physical

distance expands with a(t) such that the Hubble flow velocity v = dr/dt = H(t) r, where

boldface denotes vectors.

Since the universe is homogenous on large scales, δ << 1 on large scales

The potential φ is from Poisson’s equation, δ2φ = 4πG < ρ > a2δ, and this equation

describes the evolution of collisionless CDM particles. The equation of continuity and

Euler’s equation (a force balance) describe the motions. The first of these, for u being the

peculiar velocity with respect to the Hubble flow, u = v −Hr, is

∂δ

∂t
+
1

a
▽ ·[(1 + δ)u] = 0,
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These two equations, combined with Poisson’s equation, and linearized for small

perturbations, give an expression for the growth of perturbations with time,

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πG < ρ > δ.

This equation has a growing and decaying solution, of which only the growing mode is

important after a short time. Thus, until it becomes non-linear, the density perturbation

has a fixed shape and grows in amplitude by a factor which depends on time. For the

Einstein-de Sitter model, this growth factor is proportional to a(t).

We now need to look at the spatial form of the density fluctuations. There is no

coupling in the equations above between different harmnonic components. Thus each mode

is independent. Inflation generates fluctuations which can be described by a Gaussian

random field, so that the different k-modes (where k = 2π/λ) are statistically independent.

It is believed that inflation generates a power spectrum of fluctuations P (k) ∝ kn with

n ≈ 1. The modified power spectrum in the Universe at late times has a turnover at a scale

cH−1 at matter-radiation equality, and a small scale asymptotic shape P (k) ∝ kn−4.

The two point correlation function (the autocorrelation function of the density field)

is ξ(r) =< δ(x)δ(x + r) >. This can be measured through the clustering of objects (halos

or galaxies). The power spectrum is the Fourier transform of the two point correlation

function. It is much harder to determine from observations, but is much easier to predict

from the theory.

To consider the fluctuations which might give rise to a mass M , we consider a spherical

top hat, smoothing the density perturbation field over a sphere of radius R and ignoring

anything outside that region. The normalization of the density fluctuations, which can’t

be derived from first principles, is usually specified by the value σ8 ≡ σ(R = 8h−1 Mpc),
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which is observed to be ∼ 1 at the present epoch. Here σ is the rms deviation of the density

field smoothed by a window function normalized to unity.

For the top-hat window function, the smoothed perturbation field is denoted by δR or

δM , where M = 4πρmR
3/3, and ρm is the current mean density of matter and R is the

comoving radius. The variance < δM >
2, denoted σ2(M), is an important parameter in

estimates of the abundance of collapsed objects as a function of time.

The decoupling of (dark) matter from the radiation affects the perturbation

fluctuations. The interaction cross section of the dark matter particles sets the epoch at

which decoupling occurs. There is both thermal decoupling (the temperature of the matter

and photons is no longer identical) and kinematic decoupling (the bulk motion of the two

starts to differ). These occur at the same epoch for CDM, when the timescale for collisions

to change the momentum of the particles becomes equal to the Hubble time. The particle

mass determines the spread of thermal speeds of the particles, which smoothes out very

small scale fluctuations after kinematic decoupling. Viscosity also smoothes fluctuations

in the particle density. Also we need to consider the effect of the acoustic oscillations of

the radiation (i.e. the fluctuations in the CMB radiation field) on the particle density

fluctuations at decoupling.

Note that the CDM damping scale is significantly smaller than the scales directly

observed in the CMB photons due to the viscosity of the CDM particles. A smaller

value of k is equivalent to a larger value of R in computing the minimum mass of dark

matter clumps. The result of a detailed analysis of these effects (see A. Loeb’s chapter

in First Light) is that acoustic oscillations truncate the CDM power spectrum on a

comoving scale even larger (i.e. a k even smaller) than other effects listed above. This

increases the minimum mass of dark matter clumps by more than a factor of 10 to a value

M = 4πρcΩM (π/kcut)
3/3 ≈ 10−4(Td/10 MeV)−3M⊙. Here kcut is the wave number where
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the transfer function for the fluctuations drops to a fraction 1/e of its value as k → 0,

kcut ≈ 3.3η−1d , where ηd is the free streaming damping scale, so the scale length ratio differs

by ≈ 3.33.

We now consider the early evolution of perturbations of the baryons. They are coupled

to the radiation field by Thomson scattering until the baryons become neutral. After

cosmic recombination, they start to fall into the potential wells of the dark matter. Since

the baryons are a small fraction of the total matter, we do not consider this issue in detail.

Initially all modes are outside the horizon and the gravitational potential is constant.

At intermediate times, the wavelengths fall within the horizon and the universe evolves from

radiation domination to matter domination. Large scale modes, which enter the horizon

after the universe becomes matter dominated, evolve differently than small scale modes. At

late times, all the modes evolve identically again.

Structures (galaxies, dark matter halos) will form around the highest density

perturbations. Observations suggest that galaxies (i.e. matter) have a higher two point

correlation function than does dark matter. Some people introduce biasing to try to

reproduce this, introducing a bias factor b, b > 1, such that (δρ/ρ)(for galaxies) = b(δρ/ρ)

for dark matter. This ensures that galaxies (matter) collapse only around even higher

density perturbations than does the dark matter.
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Fig. 3.— The linear evolution of the gravitational potential φ. A dashed line denotes that the

mode has enetered the horizon. The thick vertical line denotes the time when the universe

transitions from being radiation dominated to matter dominated. Evolution through the

shaded region is described by the transfer function. The potentials are all set to 1 at very

high redshift. The relative normalization of the three modes is as it would be for scale-

invarient perturbations. Baryons have been neglected, Ωm = 1, and h = 0.5. (Fig. 7-2 from

Dodelson, Modern Cosmology).
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Fig. 4.— (Dodelson, fig. 7-3) The evolution of perturbations to the dark matter in the same

model as used for Fig. 7-2. Amplitude starts to grow upon horizon entry (different times for

the three different modes shown). Well after aeq (a when the matter and radiation energy

densities are equal), all sub-horizon modes evolve identicaly, scaling as the growth factor.

In the case plotted, a matter dominated flat universe (Einstein-de Sitter case), the growth

factor is equal to a(t).
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Fig. 5.— The power spectrum in two CDM models, with dark energy and without a

cosmological constant. The units of the horizontal axis are k(h Mpc−1). The spectra have

bee normalized to agree on large spatial scales (small k). The spectrum with dark energy

turns over at larger scales because of a later transition from radiation to matter domination.

Scales to the left of the vertical line are still evolving linearly. The turnover occurs at a

scale corresponding to the one which enters the horizon just as the universe switches from

being radiation to matter dominated. The decline at small scale lengths (large k) occurs

because of the decline of the transfer function of a mode during the radiation epoch. The

scale over which the linear case is valid ends when ∆(knl) = 1. (Fig. 7-4 from Dodelson,

Modern Cosmology).
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Fig. 6.— The growth factor at late times, z < 10, for three different cosmologies. For a

flat matter dominated universe, the growth factor is equal to the scale factor, a(t). The

growth factor is lower at late times in open and dark energy cosmologies than in the Ωm = 1

cosmology, indicating that the large scale structure we observe today had to form earlier in

such models. This affects the prediction for the number of galaxy clusters as a function of

z, etc. Fig. 7-12 from Dodelson, Modern Cosmology.
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Fig. 7.— Fig. 1 from Barkana & Loeb, 2005, MNRAS, 363, L36.
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Fig. 8.— Fig. 2 from Barkana & Loeb, 2005, MNRAS, 363, L36.
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1.3. Gravitational Instability

A summary of the discussion of the growth of perturbations in the dark matter

given above is that before the mode enters the horizon, everything is coupled and nothing

happens. Evolution thereafter is described by a transfer function which strongly suppresses

modes that enter the horizon before the transition from radiation dominance to matter

dominance, while those modes with large enough scale (k small enough) that they do not

enter the horizon until this transition has already occurred are only slightly suppressed. At

late times, all the modes evolve identically again, irrespective of their spatial scale k.

The force on an element near an overdensity of matter (δρm > 1) is determined by

the difference between the pressure and the gravitational forces. If the pressure is high,

then random thermal motions cause a diffusion of particles out of an overdense region.

Inhomogeneities cannot grow, and δρ will oscillate with time. If the pressure is low, then

an overdensity can grow exponentially.

This is parameterized by the Jeans length which in Newtonian gravity defines the

critical λ separating the oscillatory and exponential solutions for growth of perturbations

in an infinite, uniform, and stationary gas distribution. For scales smaller than λJ , the

sound crossing time l/cs is shorter than the gravitational free fall time (∝ Gρ)−1/2 allowing

the build up of a pressure force that can counteract gravity. On larger scales, the pressure

builds up too slowly to react to the building up of the attractive gravitational force, and

collapse follows.

The Jeans mass is that within a spherical volume of radius λJ/2. This is the minimum

mass that can collapse under the given conditions. This mass can be derived by considering

the borderline case when the cloud of mass M and radius R is in hydrostatic equilibrium

by replacing dP/dr by −P/R and assuming an ideal gas to get MJ ∼ [kT/(mpG)3/2ρ−1/2.

This, evaluated for cold cloud cores in the Solar neighborhood with T ∼ 10 K, yields a value
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of ∼0.5M⊙. But the value of MJ in the early Universe is much larger due to the higher T

and lower ρ.

For cosmological purposes, we need a Jeans mass calculation that considers a single

Fourier mode with a spherical spatial fluctuation on scales much smaller than the horizon,

includes dark matter and baryons, and includes expansion of the Universe.

T of the baryons follows that of the CMB photons until decoupling; in this regime

Tb ∝ (1 + z). After the residual electrons (fraction of ionized H) declines sufficiently so that

all coupling with the photons is lost, the baryons expand adiabatically with the Universe,

so T ∝ (1 + z)2. In the adiabatic limit, T and ρ are related by Tb ∝ ργ−1b , where γ is the

adiabatic index of the baryon gas. Note that the mean atomic weight per particle in the gas

µ for the neutral primordial gas is fixed, and is set by the Big Bang production of He to be

1.22.

The equation for the growth of baryon fluctuations including all the above factors again

gives rise to a length scale which divides the oscillatory from the exponentially growing

solutions, the cosmological Jeans length, which is time dependent. As time proceeds,

perturbations with increasingly smaller initial wavelengths stop oscillating and start to

grow.

In the regime from z ∼ 1100 (the epoch of recombination) and the time zt
when there are no longer enough residual electrons to couple Tb to T (CMB), we find

kJ ≡ (2π)/λ = [2kTCMB/3µmp]−1/2
√
ΩmH0, so the Jeans mass (including both baryons and

dark matter) is redshift independent and has the valueMJ = 1.4×105(Ωmh2/0.15)−1/2 M⊙.

The factor in parenthesis is ≈ 1, so this is comparable to the mass of a globular cluster as

observed today in the Milky Way halo.

At times later than zt, the temperature of the matter declines adiabatically, and the total
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Jeans mass becomes MJ = 4.5× 103 (Ωmh2/0.15)−1/2 (Ωbh2/0.022)−3/5 [(1+ z)/10]3/2 M⊙.

This is ∼ 5, 000 M⊙ at z ∼ 10.

Another complication is that the Jeans mass is a function of time, but the linear

theory applies only the the evolution of perturbations at a given time. Furthermore, as

the perturbations grow, eventually δ reaches 1, and the linear perturbation treatment is no

longer valid. After that time, the full non-linear gravitational problem must be solved.

The easiest case is spherical symmetry, with a top hat overdensity. We approximate

this as a Newtonian case of a top hat with total mass M = (4π/3)r3i ρi(1 + δi), where ρi is

the initial background density and δi is the initial overdensity. Then the particle will either

collapse, reach infinity with some positive velocity, or reach infinity with zero velocity. The

latter defines the critical overdensity, which collapses to a point at 1 + zc = 0.593δi/ai.

Thus a top hat sphere collapsing at redshift zc had a linear overdensity extrapolated to the

present time of δ0 = 1.69(1 + zc). In this case, a density perturbation at a redshift z with

δ > 1.69/D(z), where D(z) = (1 + z)−1, will have collapsed to a point by the present time,

with δcrit = 1.69/D(z).

Numerical simulations of hierarchical halo interactions along these lines leads to a

“universal” density profile for the resulting halos given by Navarro, Frenk & White (1997),

which has the form

ρ(r) =
3H2
0

8πG
(1 + z)3

Ωm
Ωzm

δc
cNx(1 + cNx)2

where x = r/rvir. The characteristic density δc is a function of the concentration parameter

cN and of ∆c, where ∆c is the final overdensity relative to the critical density at the collapse

radius, which is 18π2 ≈ 178 in a Einstein-de Sitter universe.
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δc =
∆c
3

c3N
ln(1 + cN ) − cN/(1 + cN )

The virial temperature is that determined from the gravitational potential, so the

kinetic energy for each particle, (3kT/)2, assumed to be protons, is the gravitational

potential energy, kTvir = −(1/3)mpφ, where φ is the gravitational potential. The virial

radius refers to the radius of a sphere within which virial equilibrium holds. It is often

assumed that this corresponds to the radius within which the average density is larger, by

some specified factor, than the critical density for a flat universe ρcrit = (3H)
2)/(8πG). The

factor chosen must be big, usually 200 is the value adopted; the value 178 is the overdensity

at virialization. Ignoring cosmology, one can follow a gas as it collapses, noting that when

the radius is half the initial radius, if virial equilibrium holds, the gravitational potential is

more negative by a factor of two, and the thermal energy is then 0.5× | φi |, where φi is

the initial gravitational energy (assuming the initial thermal energy is very low). One can

follow the collapse of dark matter perturbations in detail, and use the above to establish a

specific criterion for virialization to have occured.

There are some useful notes by Wayne Hu which work this out in detail (including the

factor of 178), see http://background.uchicago.edu/∼whu/Courses/Ast321 05/ast321 7.pdf,

also A. Loeb’s chapter in First Light, pages 30-36.

1.4. The Distribution of Dark Matter Halos with Mass

The number distribution of dark matter halos with mass at a redshift z is a key

parameter in CDM theory. Press & Shechter (1974) worked this out, assuming a Gaussian

random field of density perturbations, linear growth, and spherical collapse. The discussion

begins with δM , the density field smoothed on a mass scale M , which is a function of
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redshift, and has a mean of 0, with a standard deviation of σ(M). One can then calculate

the probability that δM is greater than some value δ by integrating the Gaussian distribution

from δ to ∞. This probability is taken as the fraction of dark matter particles which are in

collapsed halos with mass greater than M . The result is the Press-Schechter function,

F (> M, z) = erfc[δcrit(z)/(
√
2σ(M)] =

2

π

∫

x

0

e−t
2

dt

and t = δcrit(z)/(
√
2σ(M).

Differentiating the above yields the mass distribution for halos. The comoving number

density of halos with mass between M and M + dM is then

dn

dM
=

√

2

π

ρM
M

−d(ln σ)
dM

νc e
−ν2
c
/2,

where νc = δcrit(z)/σ(M) is the number of standard deviations which the critical collapse

density represents at mass scale M . At high mass there is an expontial cutoff above M∗,

where σ(M∗) = δc, and M∗ ∼ 1013h−1M⊙ today. At low mass the number of halos increases

rapidly.

Thus the number of halos depends on σ(M) and δcrit(z), which depend on the energy

content of the Universe and the other cosmological parameters. σ(M) is calculated based

on the present mass power spectrum from observations of large scale structure in the

distribution of galaxies (probing out to at least 50 h−1 Mpc), the abundance of clusters of

galaxies (probing fluctuations on a scale of 8 h−1 Mpc), etc. See Eisenstein & Hu (1999,

ApJ, 511, 5) for details.

At each redshift, a fixed fraction of the total dark matter mass lies in halos above the

mass such that σ(M) = 1 (the 1σ mass). Thus most of the mass is in small halos at high

redshift, but it continuously shifts towards higher characteristic mass at lower redshift.
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Since σ(M)→∞ as M → 0, in the CDM model, all dark matter is in halos at all redshifts

provided low mass halos are included. Setting the power spectrum to 0 below a specified

mass reduces the predicted number of low mass halos, and some dark matter may then not

be in a halo.

At high redshifts where δcrit >> σ(M = 0) all halos are rare and only a small fraction

of the dark matter resides in halos.

Navarro, Frenk & White (1997) worked out the mass distribution within a dark matter

halo, which has a universal form.
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Fig. 9.— Fig. 5 from Barkana & Loeb, 2001.
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Fig. 10.— Fig. 6 from Barkana & Loeb, 2001.
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Fig. 11.— Fig. 7 from Barkana & Loeb, 2001.
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Fig. 12.— Fig. 8 from Barkana & Loeb, 2001.
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Fig. 13.— Fig. 9 from Barkana & Loeb, 2001.
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Fig. 14.— Fig. 10 from Barkana & Loeb, 2001, showing the Press-Schechter halo mass

function at several redshifts. At lower redshift, the most massive halos grow in mass, while

the number of low mass halos declines slightly.
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Fig. 15.— Fig. from Greif, Johnson, Klessen & Bromm, 2008, MNRAS, 387, 1021.
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Fig. 16.— The present day halo mass function from the 2DdFGRS survey of luminous red

galaxies as compared to that expected by “observing” the Millenium simulation. (Fig. from

Driver, 2009, description of the GAMA project, see arXiv:0910.5123)
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2. Summary

Concordance cosmology, Ωm = 0.24,Ωb = 0.04,ΩΛ = 0.73, flat universe with k = 0 and

lots cold dark matter and dark energy. Predicts CMB, big bang nucleosynthesis, and the

increasing recession velocity of galaxies with distance (the Hubble law).

z + 1 = 1/a(t)

Radiation dominated, becomes matter dominated at z ∼ 3500.

Recombination at T ∼ 3000 K, age ∼ 300, 000 yr

Perturbations established at the end of the inflation era grow in the dark matter.

Perturbations are characterized by their wavelength and amplitude. At high redshift, low

amplitude, low mass perturbations collapse into halos, while at low redshift these are

already well developed, and high mass halos being collapsing from the larger amplitude

perturbations. The details of the growth of perturbations depend on when the mode enters

the horizon, whether this is before or after the universe becomes matter dominated.

The Jeans mass is that within a spherical volume of radius λJ/2. This is the minimum

mass that can collapse under the given conditions; MJ ∼ [kT/(mpG)3/2ρ−1/2.

From z ∼ 1100 to the time TK for the baryons is no longer TCMB,

kJ ≡ (2π)/λ = [2kTCMB/3µmp]
−1/2
√
ΩmH0, so the Jeans mass (including both

baryons and dark matter) is redshift independent and has the value MJ = 1.4× 105 M⊙,

comparable to the mass of a globular cluster as observed today in the Milky Way halo.

At times later than zt, the total Jeans mass becomes ∼ 5, 000 M⊙ at z ∼ 10.

Press & Shechter (1974) worked out an approximate number distribution of dark

matter halos with mass at a redshift z for a CDM universe.
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Suggested exercise:

Work out in detail the equivalent of the Saha equation for the recombination of hydrogen

in a flat universe to get the fraction of hydrogen which are ionized as a function of redshift.

Take into account the CMB radiation field. What assumptions do you have to make ? (Feel

free to ignore helium, lithium....) Compare your results with a full numerical calculation if

possible.

Suggested reading:

a) First Light, chapter by A. Loeb and by A. Ferrara

b) review of first stars, Bromm & Larson, 2004, ARAA, 42, 79

c) A. Loeb, 2007, “The Frontier of Reionization: Theory and Forthcoming Observations”,

Astro-ph:0711.3463

d) R. Barkana & A. Loeb, 2001, “In the Beginning: The First Sources of Light and

Reionization in the Universe”, see Astro-ph:00104683

e) Furlanetto, Peng Oh & Briggs, 2006, Phys. Reports, 433, 181, Cosmology at Low

Frequencies: The 21 cm Transition and the High-Redshift Universe


