294 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Lawg §
|

6.25. (a) Starting with the Lorentz force ex i : 3
2 : pression (6.114), show that ip )
approximation the force acting on an atom can be expressed as the leE ‘ PTER 7
dPatom

a =d-V)E+dxB

wh<?re d is the atomic dipole moment and E and B are the electric
netic fields at the site of the atom. and

yne Electromagnetic Waves
(b) For a uniform plane wave of frequency w in a nonm i . k. W P /
medium with index of refractior? n(w))i show that tl?egl:fr:)lz trearll:(:)l;scild . " ave rop aga tlon
meghanical momentum per unit volume gg..., accompanying the eleqin e L .
netic momentum g, (6.118) of the wave is Omay.
This chapter on plane waves in unbounded, or perhaps semi-infinite, media treats
first the basic properties of plane electromagnetic waves in nonconducting me-
dia—their transverse nature, linéar and circular polarization states. Then the
important Fresnel formulas for reflection and refraction at a plane interface are
derived and applied. This is followed by a survey of the high-frequency dispersion
properties of dielectrics, conductors, and plasmas. The richness of nature is illus-
trated with a panoramic view (Fig. 7.9) of the index of refraction and absorption
coefficient of liquid water over 20 decades of frequency. Then comes a simplified
discussion of propagation in the ionosphere, and of magnetohydrodynamic waves
in a conducting fluid. The ideas of phase and group velocities and the spreading
of a pulse or wave packet as it propagates in a dispersive medium come next.
The important subject of causality and its consequences for the dispersive prop-
erties of a medium are discussed in some detail. including the Kramers—Kronig
dispersion relations and various sum rules derived from them. The chapter con-
cludes with a treatment of the classic problem of the arrival of a signal in a
dispersive medium, first discussed by Sommerfeld and Brillouin (1914) but only

recently subjected to experimental test.

dgmech _ 1 2 dgem
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\ 1 [see Peierls (loc. cit.) for corrections for dense media and non-uniform way, ]
&)

lane Waves in a Nonconducting Medium

A basic feature of the Maxwell equations for the electromagnetic field is the
existence of traveling wave solutions which represent the transport of energy
from one point to another. The simplest and most fundamental electromagnetic
waves are transverse, plane waves. We proceed to see how such solutions can be
obtained in simple nonconducting media described by spatially constant per-
;. meability and susceptibility. In the absence of sources, the Maxwell equations in
. an infinite medium are

B
V.B =0, VXE+%{—:0
a‘D (7.1)
o vV.-D=0, VxH-—=0
ot
Assuming solutions with harmonic time dependence ¢ ', from which we can
build an arbitrary solution by Fourier superposition, the equations for the am-
- plitudes E(w, x), etc. read
VB =0, VXE - iwB =20

V.D =0, VxH+ioD =0

E@—
e
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For 1_1niform isotropic linear media we have D = ¢E, B = #H, where
may in general be complex functions of w. We assume for the present t}f :
are real (no losses). Then the equations for E and H are a

VXE - iowB =, VXB+ ivueE = 0

; : . . 1
The zero-divergence equations are not independent, but are obtained p M

divergences in (7.2). By combining the two equations we get the Helmp, 1&*
equation Oltz ygy

E !
(V2 + 2 { } =0 ]
LEWT) 0y

Consider as a possible solution a plane wave traveling in the x direction, pik-
From (7.3) we find the requirement that the wave number & and the ’

o are related by frequﬂ,q i

The phase velocity of the wave is
b= 1 c JT
= = = ———— = - R n = —_—
k  Vue n Y o € 9

The quantity n is called the index of refraction and is usually a function of fre-
quency. The primordial solution in one dimension is

u(x, t) — aeikxfrmt + be‘:k.\'wiwt (76)
Using k = wv from (7.5), this can be written
uk(x, t) — aeik(x -vi) + bev-ik(x+u1)

If the mgdium is nondispersive (ue independent of frequency). the Fourier s
perposition theorem (2.44) and (2.45) can be used to construct a general solutiot
of the form

ux, t) = f(x — vt) + g(x + vt) (1

where f(z) and g(z) are arbitrary functions. Equation (7.7) represents W%
traveling in the positive and negative x directions with speeds equal to the phas
velocity v.

If the medium is dispersive, the basic solution (7.6) still holds, but whea ™
build up a wave as an arbitrary function of x and ¢, the dispersion pr
modifications. Equation (7.7) no longer holds. The wave changes shape &
propagates (see Sections 7.8, 7.9, and 7.11).

We now consider an electromagnetic plane wave of frequency @ a%
vector k = kn and require that it satisfy not only the Helmholtz wave equ
(7.3) but also all the Maxwell equations. The constraint imposed by (7-3), 15#
sentially kinematic; those imposed by the Maxwell equations, dynamic- WIak“
convention that the physical electric and magnetic fields are obtained by ¥
the real parts of complex quantities, we write the plane wave fields s

E(x, 1) = ekmx=iwr
B(x, 1) = P iknx—iot

d w®

(4]
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where €, B, and n are constant vectors. Each component of E and B satisfies
(1.3) provided

n.n= peo’ (7.9)
To recover (7.4) it is necessary that n be a unit vector such that n.n = 1. With
the wave equation satisfied, there only remains the fixing of the vectorial prop-
erties so that the Maxwell equations (7.1) are valid. The divergence equations in
(7.1) demand that

n-B=0
This means that E and B are both perpendicular to the direction of propagation

n. Such a wave is called a transverse wave. The curl equations provide a further
restriction, namely

n-¢%=20 and (7.10)

B=Vyuen x ¢

The factor Ve can be written Ve = nlc, where n is the index of refraction
defined in (7.5). We thus see that ¢B and E, which have the same dimensions,
have the same magnitude for plane electromagnetic waves in free space and differ
by the index of refraction in ponderable media. In engineering literature the
magnetic field H is often displayed in parallel to E instead of B\ The analog of
(7.11) for H is

(7.11)

% =nxB/Z (7.11")

where Z = v’[Z/E is an impedance. In vacuum, Z = Z, = V py/€, = 376.7 ohms,
the impedance of free space.

If nis real, (7.11) implies that € and 3 have the same phase. It is then useful
to introduce a set of real mutually orthogonal unit vectors (€, €, i), as shown

. in Fig. 7.1. In terms of these unit vectors the field strengths € and ® are

€ = ¢ F,, B = e,Vpue £, (7.12)
or
€ = e,E, B =—€Vue k£ (7.12")

where E, and E; are constants, possibly complex. The wave described by (7.8)
and (7.12) or (7.12') is a transverse wave propagating in the direction n. It rep-

Figure 7.1 Propagation vector k and two
x orthogonal polarization vectors €, and €;.
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Mple, e plex wave number, not a complex unit vector n. Inhomogeneous plane waves

resents a time-averaged flux of energy given by the real part of the ¢q
Poynting vector:
S = 1E X H*
2

The energy flow (energy per unit area per unit time) is

€
S = ﬁ IE()I2 n (713)

The time-averdged energy density u is correspondingly

1
u=—<eE-E*+lB-B*)
4 S

This gives

€
u = |Ef (7.14

The ratio of the magnitude of (7.13) to (7.14) shows that the speed of energy
flow is v = 1/V e, as expected from (7.5).

In the discussion that follows (7.11) we assumed that n was a real unit vector,
This does not yield the most general possible solution for a plane wave. Suppose
that n is complex, and written as n = ng + in,. Then the exponential in (7)
becomes

eikn-xfiwz — e*kn,'x ikng-x—iwt

4

The wave possesses exponential growth or decay in some directions. It is then
called an inhomogeneous plane wave. The surfaces of constant amplitude and
constant phase are still planes, but they are no longer parallel. The relations (7.10)
and (7.11) still hold. The requirement n-n = 1 has real and imaginary parts*

nk —nt=1 (7.13)
ng-n, =0

The second of these conditions shows that ng and n; are orthogonal. The coor
dinate axes can be oriented so that n is in the x direction and n, in the y direction:
The first equation in (7.15) can be satisfied generally by writing

n = e, coshf + ie, sinh 6 (7-16)

where 6 is a real constant and e, and e, are real unit vectors in the X and Y
directions (not to be confused with €, and €,!). The most general vector & sat
isfying n +€ = 0 is then

€ = (ie; sinh § ~ e, cosh )A + e;A’

where A and A’ are complex constants. For 8 # 0, % in general has compo
in the direction(s) of n. It is easily verified that for 8 = 0, the solutions (7.12) an
(7.12") are recovered.

We encounter simple examples of inhomogeneous plane waves in ’
cussion of total internal reflection and refraction in a conducting medium g ,
in the chapter, although in the latter case the inhomogeneity arises from 2 o0

17

nents

the dis

2 41
*Note that if n is complex it does not have unit magnitude, that is, n - n = 1 does not imply ‘“1 1

form a general basis for the treatment of boundary-value problems for waves
and are especially useful in the solution of diffraction in two dimensions. The
interested reader can refer to the book by Clemmow for an extensive treatment
with examples.

4 Linear and Circular Polarization; Stokes Parameters

The plane wave (7.8) and (7.12) is a wave with its electric field vector always in
the direction €,. Such a wave is said to be linearly polarized with polarization
vector €,. Evidently the wave described in (7.12) is linearly polarized with po-
Jarization vector €, and is linearly independent of the first. Thus the two waves,

El — elEletk-xfiwr
Ez = e2E~zeik-xviwr
with (7.18)
-k x E;
B, = \/Ie—sz, j=12
can be combined to give the most general homogeneous plane wave propagating
in the direction k = kn,

E(x, 1) = (e,E, + eF,)e™ ™" (7.19)

The amplitudes E, and E, are complex numbers, to allow the possibility of a
phase difference between waves of different linear polarization.

If E, and E, have the same phase. (7.19) represents a linearly polarized wave,
with its polarization vector making an angle 8 = tan"' (E,/E,) with €, and a
magnitude £ = VE? + EZ as shown in Fig. 7.2.

If E, and E, have different phases, the wave (7.19) is elliptically polarized.
To understand what this means let us consider the simplest case, circular poiar-
ization. Then E, and E, have the same magnitude. but differ in phase by 90°,
The wave (7.19) becomes:

E(x. 1) = E\(e, * i€;)e™ ™™ (7.20)
with E, the common real amplitude. We imagine axes chosen so that the wave
is propagating in the positive z direction, while €, and e, are in the x and v

directions, respectively. Then the components of the actual electric field, obtained
by taking the real part of (7.20), are

EJ(x,1) = E, cos(tkz — wt )
: ( E ¢ .( ) (721)
E(x.1) = *Eysin(kz — wt)

E

I

]
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I
) Figure 7.2 Electric field of a linearly polanized

E; wave.,
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P ‘ ‘ At a foe'd point in space, the fields (7.21) are such that the elect
k constant in magnitude, but sweeps around in a circle at a frequency
3
I
|

riC Vi

in Fig. 7.3. For the upper sign (€, + ie,), the rotation is counterclo o . sh%
the observer is facing into the oncoming wave. This wave is called 1C kwl.s "&
polarized in optics. In the terminology of modern physics, however o Clrc"b"l,"
is said to have positive helicity. The latter description seems m » Such AWy |

i . L ore a .
I because such a wave has a positive projection of angular momemunfpro
on

N

R

i .

‘ axis (see Problem 7:29). For the lower sign (e; ~ ie,), the rotation Of E; 2
; wise when looking into the wave; the wave is right circularly polarizeq se ‘
i it has negative helicity. (Optj“): ‘

.The two circularly polarized waves (7.20) form an equally acce
‘ basic fields for description of a general state of polarization. We ;
i complex orthogonal unit vectors: '

p[able set
nt - . L .
roduce the | Figure 7.4 Electric field and magnetic induction for an elliptically polarized wave.
arameters, proposed by G. G. Stokes in 1852. These parameters are quadratic
+ in the field strength and can be determined through intensity measurements onty,
in conjunction with a linear polarizer and a quarter-wave plate or equivalents.
Their measurement determines completely the state of polarization of the wave.

| I S
| ‘-; €. = \/z (El = l€2) (72)

with properties

1 * == i
. € €. =0 . The Stokes parameters can be motivated by observing that for a wave prop-
; “w €t.e; =0 (123) "agating in the z direction, the scalar products,
‘ * - ‘
€ e, =1 € -E € E, €f - E, e E (7.25)

Then a general representation, equivalent to (7.19), is

E(x, 1) = (E,e, + E_e_)e™x (7.24)

are the amplitudes of radiation, respectively, with linear polarization in the x
direction, linear polarization in the y direction, positive helicity, and negative
helicity. Note that for circular polarization the complex conjugate of the appro-
- priate polarization vector must be used, in accord with (7.23). The squares of
these amplitudes give a measure of the intensity of each type of polarization.
Phase information is also needed; this is obtained from cross products. We give

where E, and £_ are complex amplitudes. If £, and E_ have different magni-
tugies‘, but the same phase, (7.24) represents an elliptically polarized wave with
principal axes of the ellipse in the directions of €, and €,. The ratio of semimajor

to semiminor axis is [(1 + r)/(1 — r)|, where E_/E, = r. If the amplitudes have
a phase difference between them, E_/E, = re™, then it is easy to show that the
ellipse traced out by the E vector has its axes rotated by an angle («/2). Figure
7.4 shows the general case of elliptical polarization and the ellipses traced outby
both E and B at a given point in space.

For r =-*=1 we get back a linearly polarized wave.

The polarization content of a plane electromagnetic wave is known if it cat
be written in the form of either (7.19) or (7.24) with known coefficients (E1, E)
or (E,, E_). In practice, the converse problem arises. Given that the wave is of
the form (7.8), how can we determine from observations on the beam the state
of polarization in all its particulars? A useful vehicle for this are the four Stokes

A\

arized

L Figure 7.3 Electric field of a circularly pol
E(x, ) = Eples + ieg)e™™ * =10 wave.

definitions of the Stokes parameters with respect to both the linear polarization

and the circular polarization bases, in terms of the projected amplitudes (7.25)
and also explicitly in terms of the magnitudes and relative phases of the com-
ponents. For the latter purpose we define each of the scalar coefficients in (7.19)
and (7.24) as a magnitude times a phase factor:

% E, = ae’®

Eﬁ — aAeié,

In terms of the linear polarization basis (e, €,), the Stokes parameters are*
so= e EP +|e-Ef =ai + a3
si=leEP - le-Ef =al - @

5, = 2 Re[(e; - E)*(¢, - E)] = 2a,a, cos(8, — &)

sy = 2 Im[(€, + E)*(e, - E)] = 2a,a, sin(8, — &)

If the circular polarization basis (e, €_) is used instead, the definitions read
so= € EP + |e* Ef =a} +d°

s, = 2 Re[(e¥ - E)*(e* - E)] = 2a.a_ cos(5_ — 6.)

s, = 2 Im[(e* - E)*(e* - E)] = 2a,a_sin(6_ — &.)

sy = |ef EP - |e* Ef =4} —a

E =
1T he (7.26)

_ 3
E, =a.e’,

1l

(7.27)

(7.28)

*The notation for the Stokes parameters is unfortunately not uniform. Stokes himself used.(A. B, C,
DY): other labelings are (/. Q. U. V) and (1, M. C. §). Our notation is that of Born and Wolf.
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The expressions (7.27} and (7.28) show an interesting rearrangement of r
the Stokes parameters with respect to the two bases. The paramet
the relative intensity of the wave in either case. The parameter s gives the &
ponderance of x-linear polarization over y-linear polarization, while 5 an&s'-
the linear basis give phase information. We see from (7.28) that $3 has the int
pretation of the difference in relative intensity of positive and negative heliqe'-
while in this basis s, and s, concern the phases. The four Stokes pirameterg '
not independent, since they depend on only three quantitics. a,. a-. and 8 - a]e
They satisty the relation -

€rs, meas“r

3 el 2 N 2
S6 =87+ 55 + o83

(7.29)

Discussion of the operational steps needed to measure the Stokes Patameter
and so determine the state of polarization of a plane wave would take US 10 fay
aficld. We refer the reader to Section 13.13 of Stone for deiails. Also neglected
except for the barest mention, is the important problem of quasi-monochromatié
radiation. Beams of radiation, even if monochromatic enough for the purpoge
at hand, actually consist of a superposition of finite wave trains. By Fourjer;
theorem they thus contain a range of freqirencics and are not completely mopg.
chromatic. One way of viewing this is to say that the magnitudes and phases
(a; 8;) in (7.26) vary slowly in time, slowly, that is, when compared to the fre.
quency . The observable Stokes parameters then become averages over a rel.
atively long time interval, and are written as

8 = 2aa; cos(8, — §)))

for cxample, where the angle brackets indicate the MACroscopic time average,
One consequence of the averaging process is that the Stokes parameters for a
quasi-monochromatic beam satisfy an inequality,

o

-~ 2 2 )
So =87+ 85+ sy

rather than the equality, (7.29). “Natural light.” even if monochromatic to 4 high
degree, has s; = 5, = 5; = (). Further discussion of quasi-monochronatic light
and partial coherence can be found in Born and Wolf, Chapter 10,

An astrophysical example of the use of Stokes parameters to describe the
state of polarization is afforded by the study of optical and radiofrequency /@
diation from the pulsar in the Crab nebula. The optical light shows some Slmﬂ"
amount of linear polarization, while the radio emission at w = 2.8 > [()? s ' ha
a high degree of linear polarization.* At neither frequency is there vvidence for
circular polarization. Information of this type obviously helps to clucidate the
mechanism of radiation from these fascinating objects.

7.3 Reflection and Refraction of Electromagnetic Waves
at a Plane Interface Between Dielectrics

i 0f
. . - A . . 180
I'he reflection and refracuon of light at a plane surface between two media ”
different dielectric properties are familiar phenomena. The varion. « ety 0
phenomena divide themselves into two classes,

‘ : : - : " Hen™
“See The Crab Nebule and Related Supernova Renmants. eds. M. O Kafatos and R B¢

Cambridge University Press, New York (1985),

()les of
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1. Kinematic properties:
(a) Angle of reflection equals angle of incidence.
('b) Snell’s law: (sini)/(sinr) = n'/n, where /. r are the angles of incidglcc
and refraction, while n, n" are the corresponding indices of refraction.
2. Dynamic properties:
(a) Intensities of reflected and refracted radiation.
(b) Phase changes and polarization.

The kinematic properties follow immediately from the wave nature of the
phenomena and from the fact that there are boundary conditions to be satistied.
But they do not depend on the detailed nature of the waves or the boundary
conditions. On the other hand, the dynamic properties depend entirely on the
specific nature of electromagnetic fields and their boundary conditions.

The coordinate system and symbols appropriate to the problem are shown
in Fig. 7.5. The media below and above the plane z = 0 have permeabilitics and
permittivities u, € and p’, €, respectively. The indices of refraction, defined
through (7.5), are n = Vyue/pyg, and n’ = Vu'€'/pye,. A plane wave with wave
vector kK and frequency o is incident from medium u, €. The refracted and re-
flected waves have wave vectors k' and k", respectively, and n is a unit normal
directed from medium u, € into medium u’, €.

According to (7.18), the three waves are:

INCIDENT
E — E“exk-x'fuu!
—KxE (7.3
B=Vue——
V e X
REFRACTED
E/ — E(/)eik'~x~imr
) , 7.31)
_K XE (
[— ﬁ L
B =V X
Z
"
"t
r
ne x
MeE
-
k [
K

Figure 7.5 Incident wave Kk strikes plane interface between different media, giving rise
to a reflected wave k" and a refracted wave k'.
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REFLECTED
E" = Egexk'ﬁxfimz

B = Viie £ E 0y

The wave numbers have the magnitudes

K| = ] = & = oVae
|krl =k =@ Mlel (733)

The existence of boundary conditions at z = 0, which must be satisfied
points on the plane at all times, implies that the spatial (and time) variatj

all fields must be the same at z = 0. Consequently, we must have the ph
all equal at z = 0,

atal)
on of
ase factopg

(k * x)z:() = (k, ¢ x)::l) = (k" * x)z:() (734)

independent of the nature of the boundary conditions. Equation (7.34) contaips
the kinematic aspects of reflection and refraction. We see immediately that g
three wave vectors must lie in a plane. Furthermore, in the notation of Fig. 75,

ksini = k'sinr = k" sinr’ (7.35)

Since k" = k, we find i = r'; the angle of incidence equals the angle of reflection,
Snell’s law is

sini k' € n
T (L (7.36)
sinr  k ME n
The dynamic propertics are contained in the boundary conditions—normal
components of D and B are continuous; tangential components of E and H are
continuous. In terms of fields (7.30)~(7.32) these boundary conditions at z =0
are:

[e(E, + Ef) — €Ef]-n =0
[k XE,+ k"X Ej; -k xEj-n=0 )
(E, + Ej ~ Ej) xn = (7
1 1
l: (k X E; + k" X E{) — — (k' x El',):| xn=70
K 2

In applying these boundary conditions it is convenieni to consider two sep”
arale situations, one in which the incident plane wave is linearly polarized with
its polarization vector perpendicular to the plane of incidence (the plane defin®
by k and n), and the other in which the polarization vector is parallel to the P!a”e
of incidence. The general case of arbitrary elliptic polarization can be obtain®
by appropriate lincar combinations of the two results. [ollowing the methods ©
Section 7.2.

We first consider the clectric field perpendicular to the plane of incidence
as shown in Fig. 7.6a. All the electric fields are shown dirceted away from the
viewer. The orientations of the B vectors are chosen to give a positive flow 9
energy in the direction of the wave vectors. Since the electric fields are all para] €
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Se
B’ ,
n k
£
r
we
pe
B”
B k/ T
E E”
K"
(a)
E’ k
n
r B’

we

€ k
g E E”

tjt
B B Figure 7.6 Reflection and
k- refraction with polarization (u)
perpendicular and (b) parallel to
(b) the plane of incidence.

to the surface, the first boundary condition in (7.37) yields nothing, The third and
fourth equations in (7.37) give

|

E, + E§ — Ej=20

€ .,
€ (Ey — E{) cosi — |— E/ cosr
© Vu

while the second, using Snell’s larw, duplicates the third. The relative amplitudes
of the refracted and reflected waves can be found from (7.38). These are:

(7.38)

I

0

E PERPENDICULAR TO PLANE OF INCIDENCE
Ey 2n cosi

Eo ncosi + E, VT = n? sin’
p (7.39)

., ncosi— li, Vn'Z = n?sini
EG 123 -

E, . s
Y ncosi+ ﬁ, Vn'? = n’ sin’i
m

The square root in these expressions is n’ cos r, but Snell’s law has been used 0
express it in terms of the angle of incidence. For optical frequencies it is usually
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permitted to put w/p' = 1. Equations (7.39), and (7.41) and (7.42
mqst often employed in optical contexts with real n and n’, but
valid for complex dielectric constants. '

If the electric field is parallel to the plane of incidence, as shown j

) bCl()W

Ehhe bfoundary conditions involved are normal D, tangential E, and tarll];ig' 7-66‘
the first, third, and fourth equations in (7.37)]. The tangenti , >eNlial g
uous demand that ) gential £ and p Contjy,

cosi(Eg — Ef) —cosr Ej =0

€ [e
\/: (Eo + Ep) — \/i, Ey=0 (7.40)
I M

Normal D continuous, plus Snell’s law, merely duplicates the second of

equations. The relative amplitudes of refracted and reflected fields are therthese

efore
E PARALLEL TO PLANE OF INCIDENCE

-, .
Ey _ 2nn' cosi
Eq [
z . S S
" n'?cosi + nVn'"? — n¥ sin%
P L nVn'? — n? sin’i
0
Ey

*oo2 : 7 —
—n'? cosi + nVn'? — n? sin%

For normal incidence (i =-0), both (7.39) and (7.41) reduce to
By 2 2

= — e d
E, e n' +n
B
u'e

, (14
ey ’
Ef_Nwe __n'-n
bo /,:z | n' + n
Vu'e

where the rgsults on the right hold for u' = u. For the reflected wave the sigd
convention is that for polarization parallel to the plane of incidence. This meas
that if n' > n there is a phase reversal for the reflected wave.

7.4 Polarization by Reflection and Total Internal Reflection;

Goos-Hanchen Effect

Two aspects of the dynamical relations on reflection and refraction are worthy
of meptlon. The first is that for polarization parallel to the plane of inciden®
there is an angle of incidence. called Brewster’s angle, for which there is 19 e
flected wave. With u' = p for simplicity, we find that the amplitude of th e

hey are’:l::
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fiected wave in (7.41) vanishes when the angle of incidence is equal to Brewster’s

angle,
. — -1 n’
iz = tan (_n > (7.43)

For a typical ratio n'/n = 1.5, i = 56°. If a plane wave of mixed polarization is
incident on a plane interface at the Brewster angle, the reflected radiation is
completely plane-polarized with polarization vector perpendicular to the plane of
incidence. This behavior can be utilized to produce beams of plane-polarized
light but is not as efficient as other means employing anisotropic properties of
some dielectric media. Even if the unpolarized wave is reflected at angles other
than the Brewster angle, there is a tendency for the reflected wave to be pre-
dominantly polarized perpendicular to the plane of incidence. The success of dark
glasses that selectively transmit only one direction of polarization depends on
this fact. In the domain of radiofrequencies, receiving antennas can be oriented
to discriminate against surface-reflected waves (and also waves reflected from
the ionosphere) in favor of the directly transmitted wave.

The second phenomenon is called total internal reflection. The word “inter-
nal” implies that the incident and reflected waves are in a medium of larger index
of refraction than the refracted wave (n > n'). Snell’s law (7.36) shows that, if
n > n', then r > i. Consequently, r = /2 when i = i, where

iO = Sin_l(n—> (744)
n

For waves incident at i = i, the refracted wave is propagated parallel to the
surface. There can be no energy flow across the surface. Hence at that angle of
incidence there must be total reflection. What happens if i > i,? To answer this
we first note that, for i > i, sin r > 1. This means that r is a complex angle with

a purely imaginary cosine.
sini \’
cosr =i ( ) -1 (7.45)
Y \sin i

The meaning of these complex quantities becomes clear when we consider the
propagation factor for the refracted wave:

ik’ -x

e = eik'(xsinr+zcosr) — e—kr[(sini/sini())z,1]l/zze,-kr(smi/sinu,)x (746)

This shows that, for i > i, the refracted wave is propagated only parallel to the
surface and is attenuated exponentially beyond the interface. The attenuation
occurs within a very few wavelengths of the boundary, except for i = iy~

Even though fields exist on the other side of the surface therc is no energy
flow through the surface. Hence total internal reflection occurs for i = i, The
lack of energy flow can be verified by calculating the time-averaged normal com-
ponent of the Poynting vector just inside the surface:

S-n = Re[n (E' x H) (7.47)




