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ABSTRACT

Stars do not simply pop up on the main sequence. Before the stars arrive on the zero-age
main sequence, they form in the collapses of molecular clouds, gain matter through accretion
processes, and compress their cores until hydrogen can burn in full equilibrium. Although this
evolutionary phase lasts a relatively short time, it is the imprint of these important physical
processes that is often ignored by simplified assumptions. While asteroseismology offers a great
tool to investigate these physical processes, studying pre-MS oscillations in turn has the potential
to further advance the field.

Asteroseismology of pre-main sequence stars faces observational and theoretical challenges.
The remnants of their birth environment which is often still surrounding the young stars causes
variability that can interfere with the signal of pulsations. The lack of long time-base satellite
observations in addition limits the applications of the method. Theoretical models of pre-main
sequence stars include several assumptions and simplifications that influence the calculation of
pulsation frequencies and excitation properties of pulsation modes.

Keeping all this in mind, the prospects for pre-main sequence asteroseismology are manifold.
An improved understanding of the structure of young stellar objects has the potential to answer
some of the open questions of stellar evolution, including angular momentum transport and the
formation of magnetic fields. While gyrochronology, for example, struggles to determine the ages
of the youngest clusters, pulsations in pre-main sequence stars can function as an independent
age indicator yielding higher precision for single stars.

The increasing interest of stellar astrophysics in general to investigate the formation and
early evolution of stars and planets illustrates the growing importance of pre-main sequence
asteroseismology. In this work we discuss its potential for an advancement of our understanding
of stellar structure and evolution.

Keywords: early stellar evolution, pre-main sequence, p- and g-mode pulsations, stellar structure, accretion physics, angular

momentum transport, asteroseismology

1 INTRODUCTION

The study of pre-main sequence stars was initiated in the 1950s when what appear to be recently formed
groups of stars (Henyey et al., 1955) drew interest from the astronomical community. Henyey et al. (1955)
provided the first calculations of stars before their main sequence phase. Their models described the
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gravitational contraction of radiative stars and the respective evolution of the spectroscopic parameters
is still referred to as the ‘Henyey track’ today. Once it was evident that convection plays a major part in
the evolution of stars, Hayashi (1961) delivered improved theoretical models for the pre-main sequence
phase, achieving good agreement with the observational data of NGC 2264 (Walker, 1956). Hayashi (1961)
discussed the forbidden zone in the Hertzsprung-Russell diagram – an area in which no star can be in the
hydrostatic equilibrium as the needed temperature gradient would immediately be brought down by rapid
convection – and provided calculation after which stars follow a fully convective ‘Hayashi track’ before
joining the ‘Henyey track’ on their contraction towards the ZAMS. Because of the forbidden zone in the
Hertzsprung-Russell diagram, the models by Hayashi (1961) follow the ‘Hayashi track’ before joining
the ‘Henyey track’ on their contraction towards the ZAMS. Iben (1965) refined the picture of pre-main
sequence evolution (classical pre-main sequence model from here on) by following the C12-depletion in
more detail

Compared to the real star formation process, however, this classical view of the pre-main sequence
evolution suffers from a crude approximation: the initial model. While the latter is taken as a huge (∼ 55R�
for a 2M� star) fully convective star at ZAMS mass, real stellar seeds are produced in the collapse of
molecular clouds. Such an optically thin cloud collapses under its own gravity. The increase in density and
temperature leads to the formation of a first hydrostatic core which will further heat up until molecular
hydrogen dissociates at ∼ 2000K. This is a strongly endothermic process and leads to a second collapse,
ending in the formation of the second hydrostatic core (see e.g. Larson, 1969). Such a stellar seed with
1 − 5R� and 10−3 − 10−2M� (Larson, 1969; Bhandare et al., 2018), constitutes the first stage of the
pre-main sequence evolution, and continues to accrete material from its surrounding cloud or disk.

The evolution of such accreting protostars was followed by multiple authors including Palla and Stahler
(1990), who phrased the word ‘birthline’ meant as the position in the Hertzsprung-Russell diagram in
which the radius of the accreting protostar first coincides with the radius of the classical pre-main sequence
models. This created a misconception: a view in which stars evolve along the classical pre-main sequence
tracks but are still hidden underneath their dust cloud and become visible when they cross the birthline. This
view is a very unphysical picture, as stars evolve along the birthline (or rather their very own track) during
their accretion phase. The concept of such a birthline is hence outdated, with state-of-the-art models of the
pre-main-sequence providing a very different picture. The latter has been manifested by many authors (e.g.
Hartmann and Kenyon, 1996; Hartmann et al., 1997; Wuchterl, 2001; Baraffe et al., 2009; Baraffe and
Chabrier, 2010; Hosokawa et al., 2011; Baraffe et al., 2012; Kunitomo et al., 2017; Jensen and Haugbølle,
2018; Elbakyan et al., 2019), but only recently arrived in the field of asteroseismology (Steindl et al., 2021a,
2022; Steindl and Zwintz, 2022).

Introducing accretion effects into the numerical simulations of the pre-main sequence evolution provides
an insight into the complicated structure of such young stars. The Kippenhahn diagram in Figure 1 shows
the striking differences between the simplified classical model (1A) and the more realistic simulation
including disk-mediated accretion rates (1B). Most notable is the difference in chemical mixing. While
the view of fully convective pre-main sequence stars is deeply rooted, state-of-the-art pre-main sequence
models show that this is not the case although a large part of the stellar interior can still be affected by
convection at different stages of the pre-main sequence evolution.

Naturally, such drastic changes in internal structure are also mirrored by the spectroscopic parameters
of the star. Figure 2 provides the corresponding evolutionary tracks in the Kiel diagram (log(g)-log(Teff)-
diagram). It is important to state that the track for the disk-mediated model is unique, that is a different
accretion history will lead to significantly changed evolutionary track. In order to provide a realistic picture
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of pre-main sequence evolution, we have to move on from simplified views (Hayashi-track→ Henyey-track
→ main sequence) and have to accept more complicated evolutionary paths: The spectroscopic parameters
and internal structure in the early phases of a stars’ lifetime are directly related to the properties of the
mass accretion. Only after the disk has dissolved and the star continues to evolve without obtaining new
material, will the structure of real stars gradually converge towards the structure that we are used to from
the classical models. Even if spectroscopic parameters are rather similar, the internal structure remains
different. Most notably is the existence of a temperature inversion towards the centre of the star (see e.g.
Fig. 8 of Steindl et al., 2021a). An imprint of star formation on the internal structure remains throughout
the pre-main sequence phase and at least until the ZAMS; this should provide the opportunity to probe
such disk-mediated evolution models with asteroseismology (Steindl et al., 2022).

Astrophysicists of the past have long desired a tool to probe the stellar interior. While direct photometric
and spectroscopic methods pierce only the stellar atmosphere, information about the entire star are needed
to improve our theory of stellar structure and evolution. Today, such a tool is available. Asteroseismology –
the theory of stellar oscillations – provides the opportunity to measure (often) tiny changes in the stellar
structure powered by stellar pulsations by means of photometric or spectroscopic methods (overviews about
asteroseismology can be found in, e.g., Christensen-Dalsgaard, 1982; Gough, 1987; Unno et al., 1989;
Aerts et al., 2010). As the pulsations travel throughout the star, their frequencies hold information about the
entire structure hence providing a view deep into the stellar interior. Since its discovery, asteroseismology
has allowed many improvements of our understanding of stellar structure throughout the entire Hertzsprung-
Russell diagram and all evolutionary stages (e.g., Aerts, 2021).

Especially promising is the research field “Pre-main sequence asteroseismology”. Its origin lies in the first
discovery of pulsations in young stars by Breger (1972). In his article, he reported that the two members
of the young open cluster NGC 2264 – V 588 Mon and V 589 Mon – show δ Scuti-type pulsations. But
it took 20 years until the next observational detections were available (e.g., Praderie et al., 1991; Kurtz
and Marang, 1995). These observations triggered the search for additional members of this new group of
pulsating stars, the pre-main sequence δ Scuti stars, as well as the first theoretical work on pulsational
instability in stars before the onset of hydrogen core burning (Marconi and Palla, 1998). Subsequently, more
pre-main sequence stars were found to show radial and non-radial oscillations. It soon became obvious
that not only δ Scuti type pulsations can be excited in young stars, but also γ Doradus (e.g., Bouabid et al.,
2011; Zwintz et al., 2013) and Slowly Pulsating B type variability (e.g., Gruber et al., 2012). A complete
overview of the history of pre-main sequence asteroseismology can be found in Zwintz (2019).

A very important milestone in the field of pre-main sequence asteroseismology was the discovery of
the presence of non-radial pulsations in pre-main sequence δ Scuti stars and the corresponding theoretical
description (Ruoppo et al., 2007; Zwintz et al., 2007). Soon after, the observed pulsation frequencies of a δ
Scuti star were used to confirm its pre-main sequence evolutionary stage in combination with theoretical
models (Guenther et al., 2007). Pre-main sequence δ Scuti stars have since then proven to be a treasure
trove for observational discoveries, with Zwintz et al. (2014) showing a connection between the pulsational
properties of pre-main sequence δ Scuti stars and their relative evolutionary stage: the closer the stars are
to the onset of hydrogen core burning, the faster they oscillate. Such a direct connection between stellar
pulsation frequencies and the relative evolutionary stages has not yet been found for more evolved δ Scuti
stars.

More recent milestones include the discovery of a first candidate of solar-like oscillations in pre-main
sequence stars by Müllner et al. (2021), after predictions of their existence were already made early on by
(Samadi et al., 2005). Furthermore, the case of RS Cha, a pre-main sequence eclipsing binary consisting of
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two δ Scuti stars, provides the best evidence for the discovery of tidally perturbed pulsations in young stars
to date (Steindl et al., 2021b). Pre-main sequence asteroseismology provides the opportunity for many more
exciting discoveries. To get there, however, many challenges have to be overcome, in order to uncover the
mysteries of this complicated evolutionary stage. The aim of this work is to present these challenges and
provide the reader with an outlook on the great prospects this field offers. We review pulsations in young
stars in Section 2 before an in-depth description of the challenges pre-main sequence asteroseismology is
faced with, both observational and theoretical, in Section 3. An idea for a space mission dedicated to young
stars and star forming regions is presented in Section 4. Section 5 concludes this work with a discussion of
possible future milestones and how we might be able to achieve them sooner rather than later.

2 PULSATIONS IN YOUNG STARS

As of March 2022, seven types of pulsations have been discovered theoretically and observationally in
pre-main sequence stars. Sorted from most massive to least massive, these are: Slowly Pulsating B (SPB),
δ Scuti, tidally perturbed, γ Doradus, δ Scuti – γ Doradus hybrid, solar-like, and M type pulsations. Table
1 provides an overview of their properties and gives approximate current numbers of known objects, and
Figure 3 illustrates the corresponding instability regions.

Overall, the pre-main sequence pulsators have the same pulsation properties as their counterparts in the
main sequence and post-main sequence stages. The difference between the evolutionary stages lies in the
pattern of excited oscillation frequencies (e.g., Suran et al., 2001; Bouabid et al., 2011; Gruber et al., 2012)
which is another beautiful illustration of the power of asteroseismology. Below we briefly describe the
properties of the known types of pre-main sequence pulsators sorted from most massive to least massive.

SPB type. The pulsations in SPB type stars are excited by the heat-engine (κ) mechamism acting in the
ionisation zone of metals (Dziembowski et al., 1993). The pulsation periods lie between about 0.5 and 3
days (Aerts et al., 2010). With masses between ∼3 and 7M�, the pre-main sequence evolution of SPB
type stars proceeds relatively fast making them statistically less frequent. As a consequence, SPB pulsators
before the onset of hydrogen core burning are observationally harder to find. The expected temperature
range for pre-main sequence SPB stars is 11100 to 18700 K (Steindl et al., 2021a).

δ Scuti type. The pulsation periods of these intermediate-mass pre-main sequence stars with effective
temperatures from 6300 to 10300 K (Steindl et al., 2021a) lie between ∼18 minutes and 7 hours (Zwintz,
2019). Pre-main sequence δ Scuti stars show p-modes driven by the heat-engine (κ) mechanism in the
ionisation zones of hydrogen and helium (Aerts et al., 2010). This is the group of pre-main sequence
pulsators that was discovered first. Because of their pulsation periods, pre-main sequence δ Scuti stars
could easily be detected with ground-based observations obtained only within a few nights.

Tidally perturbed type. Intermediate-mass δ Scuti type stars can often be found in binary systems. In
some cases, the two components of the binary systems interact leading to strong effects on their structure
and evolution (e.g., De Marco and Izzard, 2017). If the two components are in a close and eccentric orbit,
tidal effects cause self-excited pulsation modes to be perturbed (e.g., Reyniers and Smeyers, 2003b,a). As
of March 2022, only one pre-main sequence star, RS Cha, is known to show tidally perturbed oscillations
(Steindl et al., 2021b).

γ Doradus type. Pre-main sequence γ Doradus stars have early F spectral types. Their expected range in
effective temperature lies between 5200 and 7650 K (Steindl et al., 2021a). First theoretical predictions for
this type of pulsations in pre-main sequence stars have been conducted by Bouabid et al. (2011) without
observational evidence. The first observational detections followed a few years later (Zwintz et al., 2013).
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The g-mode pulsations of pre-main sequence γ Doradus stars are excited by the convective flux blocking
mechanism (Guzik et al., 2000). The pulsation periods are in the range from 0.3 to 3 days (Aerts et al.,
2010) and, hence, are quite similar to those in SPB stars. A reliable value for effective temperature is
therefore required to identify the type of pulsator as the light curves alone are not sufficient.

δ Scuti – γ Doradus hybrid type. Some pre-main sequence pulsators in the A to F range of spectral
types can show both p- and g-modes, hence, δ Scuti and γ Doradus type pulsations. Consequently, this
class of objects combines the properties of both classes described above.

Stochastic solar type. Stochastic solar-like p-mode oscillations are predicted to be excited in stars
before their arrival on the ZAMS (e.g., Samadi et al., 2005). Pre-main sequence stars in the mass range
of our Sun are mostly very active objects with magnetic fields, spots on their surfaces, and partly still
accreting material from circumstellar disks. The light curves obtained for such objects often show regular
and irregular variability that is not connected to pulsations. To be able to search for stochastic solar-like
oscillations in pre-main sequence stars requires a suitable tool that deals with the high activity which
introduces a high background signal (Müllner et al., 2021). Only one candidate is known at the moment
(Müllner et al., 2021), but the search continues.

K and M type. This is a recently discovered type of pulsation in pre-main sequence stars that has no
known counterpart in the main sequence and post-main sequence phases. Steindl et al. (2021a) found
a region of instability for K- and M-type stars which was expected from previous works (e.g., Baran
et al., 2011) and presented a first candidate pulsator of this class. The driving mechanism for M-dwarfs is
expected to be the ε-mechanism (e.g., Baran et al., 2011, and references therein) but detailed investigations
of the instability regions in Steindl et al. (2021a) have not been performed and are subject of future work.

3 CHALLENGES

The field of pre-main sequence asteroseismology was met by many challenges throughout its relatively brief
history. The initial challenge was taken by Breger (1972) who presented the first evidence for pulsational
variability in pre-main sequence stars located in NGC 2264. Since then, due to the advent of space
telescopes, the number of known pre-main sequence pulsators has risen above 100. In the last decades, lots
of challenges regarding pulsations in such young stars have been identified. Many of these have been partly
or fully solved, while others remain open until today. The more we start to understand stellar structure and
evolution in detail, the more challenges are continuously being created. This sections aims at discussing
the currently most important challenges faced by pre-main sequence asteroseismology.

3.1 Observational challenges

When observations of young stellar objects shall be conducted, several challenges have to be tackled.
These are mainly related to the early evolutionary state of the stars.

Activity. Young protostars are formed in molecular clouds. During their first evolutionary stages, they
gain mass by accreting matter from their birth environment. Consequently, young stars can be partially
or completely embedded in dense gas and dust, magnetic fields influence how the matter is accreted onto
the early star, and the angular momentum gained from the birth process lets the young stellar object spin
fast in most cases. All these phenomena can be summarized with the description that young stars show
different levels of activity which manifest themselves in our observations.
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The dense circumstellar material can prevent us completely from viewing the young stars in the optical
or generates irregular light variations of up to several magnitudes (e.g., Cody et al., 2014). Slightly less
dense material can still be responsible for semi-regular variability (e.g., Alencar et al., 2010). Searching for
millimagnitude pulsations in photometric time series of young stars therefore becomes tricky (e.g., Zwintz
et al., 2009).

The irregular or semi-regular variability originating from the disks has a second challenge for the search
and characterization of pulsations: in case the pulsational variability has long periods (i.e., longer than
about half a day), the distinction between variability originating from the disk and from the pulsations will
be impossible in many cases. The reason is that the irregular variability produces artifacts in the frequency
analysis in the low frequency domain where we would also search for the pulsations. Only if the pulsation
periods are shorter (i.e., on the order of a few hours and shorter), can they be well distinguished from
variability caused by the disk and the artifacts generated during the frequency analysis.

The determination of colors for pre-main sequence stars is also affected by the dense dust that surrounds
them: young stars appear much redder than they actually are. Observed colors include the star-disk system
and not the star alone. As no general relations for dereddening can be applied for individual young stars
with disks (i.e., Herbig Ae/Be stars), the real stellar colors cannot be obtained for embedded objects.

Spectroscopically, the circumstellar matter is visible as very characteristic emission features, for example
in the hydrogen lines. Although finding emission lines in the spectra is a good indicator for potentially
young stars, in many cases it prevents a reliable calculation of effective temperature and gravitational
acceleration which are needed to place the stars into a Kiel diagram.

Evolutionary stage. Taking the atmospheric properties of given stars (i.e., effective temperature,
luminosity, and mass) and placing them into a Hertzsprung-Russell diagram does not provide a unique
identification of their evolutionary stage which is illustrated in Figure 4. Some observational features
related to activity have to be used to collect indications for the young evolutionary stage, and the more
of these indicators are present, the better. If stars can be attributed to a star forming region or an open
cluster as young as – say – ten million years, then this can be considered as excellent evidence for stellar
youth. Observational properties such as irregular variability in the photometric time series, infrared and /
or ultraviolet excesses, or emission lines in their spectra can point to an early evolutionary stage, but are
not unique identifiers because they might also be attributed to quite evolved evolutionary stages. Infrared
excesses, for example, can be also found for post-asymptotic giant branch (post-AGB) stars (e.g., Kamath
et al., 2014), and circumstellar material is present in the form of Keplerian disks also around classical Be
stars (e.g., Rivinius et al., 2013).

Availability of time-series photometry from space. Current and former missions have either not
targeted young stellar objects or were quite limited in their observations of the early evolutionary phases of
stars and planets.

The currently operational and hugely successful NASA mission TESS (Ricker et al., 2015) can reach
down to the galactic plane, but the resulting light curves often suffer from high contamination. The reason
is that the CCD pixels are relatively large (i.e., 21 arcseconds per pixel). Consequently, TESS observations
avoid to observe deep in the galactic plane.

The NASA mission Kepler (Borucki et al., 2010) observed a single field high above the galactic plane on
purpose to avoid star forming regions and any resulting contamination. The Kepler K2 (Gilliland et al.,
2010) mission provided some data for young stars and star forming regions in four of 19 campaigns (i.e.,
campaigns numbers 2, 9, 13, and 15) illustrating the potential of space observations for this research field.
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The BRITE-Constellation nano-satellite mission (Weiss et al., 2014) targets only the brightest stars on
the sky, limiting the observations of young stars and planets (which are typically fainter by several orders
of magnitude) dramatically.

The earlier satellite missions CoRoT (Auvergne et al., 2009) and MOST (Walker et al., 2003) allowed for
observations of the youngest objects in the galaxy through dedicated short (i.e., between 10 days and 5-6
weeks) observing runs, for example on the young cluster NGC 2264 (MOST & CoRoT) or on individual
young stellar objects such as HD 142666, HD 37806, or TW Hya.

ESA’s future mission PLATO (planned launch in 2026; Rauer et al., 2014) is scheduled to observe two
selected fields for two years each: both fields will not reach down to the galactic plane, hence not be able to
target the youngest regions in the Milky Way. Additionally, PLATO’s pixel size of 18µm × 18µm yields a
plate scale of about 26.5 arcseconds per pixel which is even higher than TESS’s plate scale. Therefore,
observations of star forming regions and young clusters with high object densities will be problematic for
PLATO due to high percentages of contamination.

The current maximum time bases for continuous photometric observations of pre-main sequence
pulsating stars are ∼80 days from Kepler K2 and slightly more than 100 days from TESS (Steindl
et al., 2021a). Therefore, pre-main sequence asteroseismology has the challenge to work with way more
limited observational material than most of the other fields in asteroseismology.

3.2 Theoretical challenges

Many ingredients are needed to properly describe the earliest phases of stellar evolution since many
physical processes are active during that time span. In terms of complexity of the pre-main sequence
evolution, the discussion in the introduction only scratches the surface of the challenges we are faced with
to create theoretical models of such stars. Stellar rotation, magnetic fields, and star-disk interaction are just
a few examples of the physical ingredients, in addition to mass accretion, that need to be kept in mind. All
of the above will generally be different for every object. Hence, there might not be a single other phase of
stellar evolution in which the spectroscopic parameters and internal structure vary as much on a case by
case level as during the pre-main sequence evolution.

Stellar rotation. When stars are born in the collapse of a molecular cloud, they obtain angular momentum.
Throughout the accretion phase, in which material from the surrounding disk deposited onto stellar surface,
the system is expected to be disk-locked Bouvier et al. (1997). That is, the disk and the star co-rotate
until the former is dissolved or its influence on the star becomes minor. The mechanism of disk-locking,
however, provides many open questions for the implementation of pre-main sequence models: How long
does the disk-locking phase last? What is the distribution of rotation periods and how is it produced?
Does the disk lock only the stellar atmosphere or is the whole star co-rotating? If the former, how is
the angular momentum distributed in the stellar atmosphere and what is the mechanism of the angular
momentum transport? If the latter, what mechanism fixes the rotation rate throughout the star? Some of
these questions linger to even later phases of the pre-main sequence stage. After the disk has dissolved,
angular momentum throughout the star will evolve according to a not yet fully explained mechanism.
Including angular momentum into the current description of stellar evolution models remains an open
question with lots of impact on the pulsational characteristics of stars: For gravity mode pulsators, the
period spacings are tilted according to the angular momentum of the core while the frequencies of pressure
modes are split with respect to the angular velocity and the azimuthal order (Aerts et al., 2010). The
Coriolis force in rotating stars gives rise to a new family of pulsation modes, the Rossby modes. The latter
have so far not been detected in any pre-main sequence object.
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Magnetic fields. As is common in the theory of stellar structure and evolution, many of the theoretical
challenges of pre-main sequence asteroseismology are intertwined. Magnetic fields, for example, are
expected to play a major role in the rotational evolution of stars. As such, they are expected to dominate the
angular momentum transport in radiative zones, albeit not efficient enough to explaining observations (i.e.
Fuller et al., 2014). Magnetic braking seems to be the dominant mechanism for angular momentum loss in
more evolved stars (i.e. Matt et al., 2015). For pre-main sequence stars, magnetic fields are expected to be
an important ingredient for disk-locking (Barnes et al., 2001). As the latter already implies, magnetic fields
also carry implications on the mass accretion mechanism and hence the accretion rates themselves (i.e.
Bouvier et al., 2007). In addition, magnetic fields directly effect the internal structure of stars including
the mode cavities and leave a measurable imprint on the pulsation frequencies (Prat et al., 2019). The
interaction between magnetic fields and pulsation can lead to a suppression of the latter, resulting in
a change in mode amplitudes (i.e. Lecoanet et al., 2022, and references therein). Magnetic fields with
strengths of multiple kG have been found in pre-main sequence stars (Lavail et al., 2017) while their
consequences for pre-main sequence asteroseismology have not been explored.

Mass accretion rates. The atmospheric parameters of pre-main sequence stars (Steindl et al., 2021a;
Steindl and Zwintz, 2022) as well as their internal structure (see Steindl et al., 2022, and the discussion
in the introduction to this article) are dependent on the characteristics of the accretion process. While
time-dependent mass accretion rates are, although limited in amount, readily available from 2-dimensional
simulations of the disk (e.g. Vorobyov and Basu, 2015; Jensen and Haugbølle, 2018; Elbakyan et al., 2019),
many other free parameters need to be set in the calculation of stellar structure models. Most noteworthy,
we lack an intrinsic description of the mechanism that describes the energy flow of the accreted material.
How much energy is added to the star? How much is radiated away? Where is the energy deposited? At the
current stage, we have to manually set many parameters corresponding to different assumptions. For further
progress in this field it is inevitable to investigate the detailed physics of the accretion processes in more
detail. Additional effects complicate the calculation of the equilibrium stellar structure. The properties of
the material transferred from the accretion disk to the star are expected to be dependent on the accretion
rate itself. For example, the metallicity should follow the relation Zacc = Ṁd

Ṁacc
(Kunitomo and Guillot,

2021), where Ṁd is the flux of the gas and Ṁacc is the mass accretion rate. Many of the to-date calculated
mass accretion histories cannot deliver the needed information of Ṁd. However, recent studies provide this
information (see e.g. Elbakyan et al., 2020) such that the inclusion of effects from condensing material
will be possible in the near future. Most probably, however, the inclusion of these effects will further push
the software instrument Modules for Experiments in Stellar Astrophysics (MESA) (Paxton et al., 2011,
2013, 2015, 2018, 2019). MESA was never designed to perform such calculations and, albeit providing us
with an indispensable and vital tool, repeatedly runs intro convergence issues with strong time-dependent
mass accretion rates during the early phases of the pre-main sequence evolution. Strong efforts will need
to go into MESA-related problems which is a time consuming work. However, we are not concerned that
progress in this regard will have to wait long since the core MESA team is very helpful in any regards of
their community focused tool.

The issue of controlled grid studies. The simple fact that each and every pre-main sequence star has
its very own time-dependent accretion rate history and, hence, a very different (and often times chaotic)
evolution in the Hertzsprung-Russell diagram (Steindl et al., 2022) complicates the calculation of controlled
grids. With the inclusion of disk-mediated accretion rates, the days of (almost) parallel evolutionary tracks
are gone which complicates almost every theoretical study. Incorporating assumptions similar to those in the
work of Steindl et al. (2021a), namely that each star follows the same accretion track (with constant mass
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accretion rate) simplifies such studies, but at the cost of completely disregarding the different evolutionary
paths. Quasi-random grids, similar to (Steindl and Zwintz, 2022) are in general to be preferred, but the
exact values of parameters at a given location in the Hertzsprung-Russell diagram are then not uniquely
defined by one evolutionary track. Albeit disk-mediated mass accretion rates are available in a limited
amount, the calculation of thousands (as we would wish for in such studies) remain challenging due to the
needed computational time.

Pre-main sequence asteroseismology beyond intermediate mass stars. Among known pre-main
sequence pulsators, δ Scuti stars significantly outnumber both γ Doradus and SPB stars Steindl et al.
(2021a). While it is reasonably simple to verify the pre-main sequence status for δ Scuti and γ Doradus
stars, such a verification is much more complicated for the more massive SPB stars. Owing to the fast
evolution towards the main sequence, it remains a matter of debate at which mass range will it be still
possible to observe stars in their pre-main sequence stage. This, of course, will again be dependent on their
evolutionary path from the protostellar stage to the ZAMS. This calls in the need for dedicated calculations
with disk-mediated accretion rates that end in higher mass stars (Steindl and Zwintz, 2022). This will not
only be helpful in regard to SPB stars, but should provide many insights in asteroseismology of β Cephei
stars with even higher mass as well. In the low mass regime, theoretical models suggest an instability
region for K- and M-type stars (i.e. Rodrı́guez-López, 2019; Steindl et al., 2021a) and a first candidate for
such pulsation has been presented by Steindl et al. (2021a). According to the theoretical models, many
radial orders of g-modes seem to be excited (Steindl et al., 2021a). This instability region needs to be
further explored with improved theoretical models for which an important step is to further decrease the
mass of the initial stellar seeds which is usually taken to be ∼ 10Mjupiter (Steindl et al., 2021a, 2022;
Steindl and Zwintz, 2022).

4 STRETTO

STRETTO (Early STaRs and planEt evoluTion in Two cOlors) is an innovative project idea that aims to
provide a micro-satellite for astronomy from space with the main goal to study early stellar and planetary
evolution.

Science goals. STRETTO aims to investigate young stars and planets in star forming regions as well as the
youngest open clusters with the goal to address their early evolution. The STRETTO space telescope will be
able to study the strength and properties of stellar activity and the amount of rotation present in early stars
and their influence on planet formation and evolution. STRETTO will search for signs for the formation of
planets and the presence of planets around member stars of young open clusters and star forming regions.
The photometric time series obtained by STRETTO will enable studies of the effects of accretion on
young stellar objects, of eclipsing binary and multiple systems in their early evolutionary stages, and
the interior structures of young stars using asteroseismology. The expected precision of STRETTO will
let us investigate the properties of ring systems around exoplanets, other circumplanetary material and
the existence of smaller bodies (e.g., exomoons or exocomets) around young stellar objects. Also, the
properties of young open clusters and star forming regions as larger-scale objects in our universe can be
investigated with such a mission.

Together with complementary ground-based observations, STRETTO science will allow to improve the
input physics for the early phases of stellar and exoplanetary evolution, provide a time-dependent map of
rotation and chemical composition from stellar birth to the onset of hydrogen-core burning, determine a
complete picture of the angular momentum transport of young stars from the interior to the atmosphere,
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provide more reliable ages for the youngest stellar and exoplanetary objects, investigate the connection
between magnetic fields and variability of stars in their early evolutionary stages, and understand the
interaction of the young circumstellar environment with the star, including exoplanets, exomoons, and
exocomets.

Instrumental design. STRETTO will carry two 8-cm telescopes each with a 1.5 x 1.5 square degree
field of view and a spatial resolution of 3 – 5 arcseconds per pixel. Each telescope will have a dedicated
filter: one in the optical, the other at infrared wavelengths. From a low-Earth orbit, STRETTO will be
able to monitor the young stars and planets for about half a year continuously, providing the necessary
long time-bases for the analysis of the objects’ different types of variability. STRETTO will be able to
take photometric time series measurements of stars in the magnitude range from about 6 to 16 mag (V)
in two colors using alternating exposure times in the range from 1 to 60 seconds. The goal is to utilize a
commercially available microsatellite platform (mass: 50-70kg and power: 60- 80W) which shall host two
digital camera systems as payloads, one for each passband. A low earth polar orbit in the height range of
600 – 900 km will be suitable to conduct the scientific observations. The baseline for communication will
be one ground station in Europe.

Potential of STRETTO. The scientific potential of monitoring young stars and planets photometrically
from space with STRETTO lies in yielding a first clear picture how stars and planets pass through their
earliest evolutionary phases.

Status of the project. Presently, a small consortium consisting of researchers and engineers from Austria,
Canada, France, the Netherlands, and Poland is trying to acquire funding for a concept study. If you are
interested to learn more about STRETTO and the people involved, please contact the first author of this
article.

5 PROSPECTS AND IMPORTANCE

One might think that our theoretical understanding of stellar evolution is well established with only a
minor need for further research. But this is a misconception as there are many physical processes that
are either not well-understood (e.g., the impact of accretion on the complete evolution of stars) or not
taken into account properly in our theoretical models (e.g., convection, rotation or magnetic fields). The
physical effects occurring and defining the earliest evolutionary phases of stars must have an impact on
their complete further evolution. It would be physically unlikely that the stars’ formation histories do not
play a role in their later stages.

One of the biggest questions in this respect is how large the impact of the processes acting in the youngest
stellar objects is and how long the pre-main sequence history of stars persists up to later stages. This is one
of the questions pre-main sequence asteroseismology can and does address. By adding processes such as
accretion to theoretical models of pre-main sequence stars and coupling those to models of pulsational
instability lets us investigate the resulting changes in the interior structures of stars.

Pre-main sequence asteroseismology should be able to test the very early evolutionary phases as well. By
studying objects with ages of a few million years, we can measure the imprint of the star formation process,
thereby shedding light on the many free parameters connected to the accretion physics. The amazing
prospect of gathering observational information about the internal structure of stars (rotation rate, chemical
mixing profiles, etc.) opens the door to exciting constraints for theoretical models. As of today, the earliest
evolutionary phases of stars are often treated as a black box using crude approximations as in the classical
model. The resulting stellar structure and atmospheric parameters, however, are used in many different
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fields to motivate for example the existence of magnetic fields or the evaporation of exoplanet atmospheres.
Only dedicated asteroseismic studies of the youngest objects we can possible find, can provide us with the
important ingredients to study these processes with the accuracy they deserve.

Chemical composition plays an important role in stellar structure and evolution due to the sensitivity
of opacities on the atomic spectra and absorption features of the elements making up the star. Most stars
pulsate exactly because of the behaviour of the opacities in relation to perturbations (e.g., the heat engine
mechanism). Also, the location of the computed evolutionary tracks for stars at all ages depends on the
metallicity, Z (e.g., Montalbán et al., 2004). Presently, we do not understand how the chemical evolution
proceeds between stellar birth and the onset of hydrogen core burning upon arrival on the ZAMS. For
example, in ∼10% of main sequence stars of spectral type B to F chemical peculiarities are found (e.g.;
Preston, 1974), but it is unclear when these anomalies are formed. The first few detailed analyses of the
atmospheric chemical abundances of pulsating pre-main sequence stars have revealed basically solar or
slightly solar chemical composition with two exceptions: (i) stars with masses smaller than ∼1.5M�have
not burnt the primordial Lithium completely and, hence, show an overabundance compared to the Sun
(Zwintz et al., 2013); (ii) in the high-resolution spectra of intermediate-mass pre-main sequence pulsators
Barium shows a significant overabundance which cannot be fully explained yet (e.g., Zwintz et al., 2013).
In the future, high-resolution spectroscopic observations of a statistically large enough sample of pre-main
sequence stars should be used to generate a time dependent map of the chemical evolution in the early
stages of the lives of stars.

Asteroseismology has successfully revealed the interior chemical structure of stars: it allows measuring
the percentage of hydrogen in the cores of main sequence stars (e.g., Moravveji et al., 2015) or detecting
chemical gradients in g-mode period spacings (e.g., Miglio et al., 2008; Bouabid et al., 2013). Consequently,
pre-main sequence asteroseismology has the potential to probe the interior chemical evolution of stars in
the earliest phases of their evolution. Possible topics in this context would be to investigate the influence
of the accretion history on the chemical evolution of stars and how long it persists, if observed chemical
inhomogeneities on the stellar surfaces extend into the interiors or not, and if stellar pulsations let us
deduce, for example, the amount of Deuterium in the earliest stars. But such investigations require an
improvement in our theoretical models and dedicated instruments providing the high-accuracy data (both
photometrically and spectroscopically) for pre-main sequence stars.

As the excited pulsation frequencies in pre-main sequence stars are different to those in the post-main
sequence stages due to the different inner structures (e.g., Suran et al., 2001; Bouabid et al., 2011), it is
obvious that stellar pulsations can be used to distinguish the evolutionary stages of stars (Guenther et al.,
2007). Even within the pre-main sequence stages, the pulsational properties of stars change following a
relation that is not present for the same type of pulsators in later phases: the youngest objects pulsate slower
than stars close to the onset of hydrogen core burning (i.e., the ZAMS, Zwintz et al., 2014). Therefore
the next logical step is to use the pulsation properties of pre-main sequence stars as an age indicator for
stellar astrophysics. In the earliest evolutionary phases, it is difficult to determine precise ages based on our
currently available methods. The ages of the youngest open clusters, for example, are typically given with
errors of 50 to 100 %. One of the important prospects of pre-main sequence asteroseismology is therefore to
provide accurate (relative) ages for young stellar objects - similar to the percentage of hydrogen in the core,
Xc, that is determined for the main sequence stages from asteroseismology. This is especially important,
as different age indicators that are very useful for the study of older clusters, often fail to improve the
accuracy of the age determination of young open clusters. Gyrochronology, for example, can provide
fantastic constraints on the age of open clusters, but the usage for pre-main sequence stars is very limited.
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Measurements of the surface rotation periods of young stars are available, but the only way to reproduce
them theoretically is to force a specific distribution of initial rotation periods. One of the major issues in
this regard is the effect of the protostellar disk during the accretion phase. By coupling stellar evolution
codes with a designated disk-evolution, we are hopeful to improve the models in this regard. Once we
have an accurate picture of the rotation of pre-main sequence stars, we can explore the effects of the stars’
rotation on their pulsational properties in much more detail.

Asteroseismology of pre-main sequence stars is needed to address the question why intermediate-mass
stars on the main sequence tend to show rigid rotation independent of their core rotation rates (Aerts
et al., 2017). Strong coupling between the stellar core and the envelope seems to occur for stars on the
main sequence and in later evolutionary phases. With pre-main sequence asteroseismology we will be
able to investigate at what earlier point in stellar evolution this strong coupling starts. By measuring
nearly-equidistant period spacings we can deduce near-core rotation rates for pre-main sequence g-mode
pulsators – as it is already successfully done for stars in later evolutionary stages. First steps in these
investigations have been undertaken, but for a complete picture of the angular momentum transport in
young stars, longer photometric time-series with highest precision obtained from space are required. The
observational material available for pre-main sequence g-mode pulsators now is insufficient to conduct
more detailed studies. As a consequence, the idea of the micro-satellite STRETTO (see Section 4) dedicated
to young star- and planet-forming regions emerged a couple of years ago and will hopefully be realized in
the near future.
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Figure 1. Kippenhahn diagram of the pre-main sequence evolution. Left panel: classical model. Right
panel: model including accretion effects (Steindl et al., 2022) with disk-mediated accretion rates from
(Elbakyan et al., 2019). The stellar structure is shown between the stellar centre (enclosed mass = 0) and
the black line (enclosed mass = stellar mass). Different mixing regions are indicated by textures. Radiative
regions are grey, while overshooting and convective regions are hashed according to the legend. Regions of
the star producing energy by nuclear reactions are colored according to the energy rate and the legend.

Table 1. Types of known pre-main sequence pulsators and their properties (as of March 2022).
Pulsation type Mass range Periods Known objects References

SPB 3.0 – 7.0M� 0.8 d – 3 d 18 [1], [2]
δ Scuti 1.5 – 2.5M� 18 min – 8 h >100 [3]
Tidally perturbed 1.8 – 1.9M� 48 min – 3.3 h 1 [4]
γ Doradus 1.4 – 1.8M� 0.3 d – 3 d 8 [5], [6]
δ Scuti - γ Doradus hybrids 1.4 - 2.2M� 18 min – 8 h & 0.3 d – 3 d 4 [7]
Solar-like ∼ 1M� ∼1.15 h1 1? [8]
M-stars ∼ 0.15M� 0.5 d - 5 d 1? [6]

References: [1] Gruber et al. (2012), [2] Zwintz et al. (2017), [3] multiple papers, e.g., Zwintz (2008); Zwintz et al.
(2014); Mellon et al. (2019); Steindl et al. (2021a), [4] Steindl et al. (2021b), [5] Zwintz et al. (2013), [6] Steindl
et al. (2021a), [7] Ripepi et al. (2010), [8] Müllner et al. (2021).
1 ... value for νmax;
? ... Only candidate stars detected so far.
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Figure 2. Kiel diagram of the pre-main sequence models shown in Figure 1. The classical mode (red)
follows the well known Hayashi track before entering the Henyey track and contracting on to the ZAMS.
The disk mediated model (black) shows the effect of time-dependent accretion rates. The evolution follows
a very chaotic route before entering the Henyey track and converging with the classical model.
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Figure 3. Pre-main sequence instability regions in the Hertzsprung-Russell diagram. The colored areas
depict the regions for which stellar pulsations are expected to be excited according to the results of Steindl
et al. (2021a). The dashed grey line shows the evolutionary track of an accreting protostar with time-
constant accretion rate. The thin grey lines show the subsequent pre-main sequence evolutionary track
evolution and the dotted line indicates the ZAMS.
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Figure 4. Evolutionary tracks for the protostellar seed until the asymptotic giant branch. The colored lines
show the evolution of stars with different masses between 1 and 5M�. The pre-main sequence evolution is
shown in brighter colors compared to the main- and post-main sequence evolution. Evolutionary tracks
are shifted slightly at the beginning of the evolution for better visibility. The zero age main sequence is
shown as grey line and the instability regions (i.e., the same as in Figure 3) are shown in grey with hashes
according to the legend.

Frontiers 21


	1 Introduction
	2 Pulsations in young stars
	3 Challenges
	3.1 Observational challenges
	3.2 Theoretical challenges

	4 STRETTO
	5 Prospects and importance

