COSMOLOGY & SN IA RATES WITH THE SNLS

JAMES D. "DON" NEILL UNIVERSITY OF VICTORIA

OUTLINE

- 1. What is SNLS?
- 2. Cosmology results
- 3. SN Ia rates

THE SUPERNOVA LEGACY SURVEY (SNLS)

- 5 year program
- Goal: constrain w to $\pm 0.07 (\pm 0.04!)$
- CFHT MegaCam/MegaPrime
- Four one square degree fields: D1-4
- Filters: g'r'i'z' (and u* hosts)
- Cadence ~ 3 restframe days
- RTA produce good candidates in 6-hr!
- Spectral followup on 8m class scopes

The Supernova Legacy Survey: Measurement of Ω_M , Ω_Λ and *w* from the First Year Data Set *

P. Astier¹, J. Guy¹, N. Regnault¹, R. Pain¹, E. Aubourg^{2,3}, D. Balam⁴, S. Basa⁵, R.G. Carlberg⁶, S. Fabbro⁷, D. Fouchez⁸, I.M. Hook⁹, D.A. Howell⁶, H. Lafoux³, J.D. Neill⁴, N. Palanque-Delabrouille³, K. Perrett⁶, C.J. Pritchet⁴, J. Rich³, M. Sullivan⁶, R. Taillet^{1,10}, G. Aldering¹¹, P. Antilogus¹, V. Arsenijevic⁷, C. Balland^{1,2}, S. Baumont^{1,12}, J. Bronder⁹, H. Courtois¹³, R.S. Ellis¹⁴, M. Filiol⁵, A.C. Gonçalves¹⁵, A. Goobar¹⁶, D. Guide¹, D. Hardin¹, V. Lusset³, C. Lidman¹², R. McMahon¹⁷, M. Mouchet^{15,2}, A. Mourao⁷, S. Perlmutter^{11,18}, P. Ripoche⁸, C. Tao⁸, N. Walton¹⁷

- Accepted, A&A: astro-ph/0510447
- 71 distant SNe Ia (SNLS)
- 44 nearby SNe Ia (Literature)
- 42 Authors (< 2 SNLS SNe/Author!)
- Canada, France, USA, UK, Portugal, Chile, Sweden

Cosmology with SNe Ia

 Hubble (1929) noticed that the farther away a galaxy was, the faster it was receding

EQUATION OF STATE

$p = w\rho \Rightarrow \rho \propto R^{-3(1+w)}$

- w = 0, pressure-less matter: normal dilution with expansion (EdS Universe)
- w = -1, ρ independent of scale factor:
 vacuum energy (Cosmological Constant)

Cosmology with SNe Ia

Supernovae are visible across a large fraction of the Universe

Velocity from spectroscopic redshift

Distance from known intrinsic brightness

 $M_{B,MAX}$ from SALT, (Guy et al. 2005)

Flux

Multi-colour LC: stretch, host extinction

Baryon Acoustic Oscillations (BAO) from **SDSS** (Eisenstein et al. 2005)

FUTURE WORK

- Sample will grow (goal of ~700 SNe Ia)
- Re-observe local SN fields w/MegaCam
- Increase local sample
- Improve z' de-fringing for z > 0.8 SNe
- Better understanding of systematics

SN IA RATES FROM Z=0.2 - 0.6 WITH SNLS

MOTIVATION

- What is a Type Ia Supernova?
 - SD White Dwarf + Ordinary Star
 - DD Two White Dwarfs
- Why is this candle standard?
- Rate evolution + Star Formation History
 - Delay form constrains SN Ia process

STAR FORMATION HISTORY

filled circles - spectroscopic confirmation

open triangles from Barris & Tonry (2005)

RATES FROM SNLS: METHOD OUTLINE

- Careful selection of spectroscopically confirmed samples
- Artificial star experiments determine variable epoch limits
- Monte Carlo simulation to determine survey efficiencies
- Compare results with samples to derive volumetric rate

SN IA SAMPLES

Table 2. SNLS SN Ia Samples: 0.2 < z < 0.6

	Control Sample	Full Sample		
Field	(N_{SN})	(N_{SN})		
D1	9	15		
D2	4	17		
D3	6	8		
D4	6	11		
ALL	25	51		

Spectroscopically Confirmed

SN DETECTABILITY

 $L_e = L_{f,0.5} - \alpha_f (IQ_e - 0.5) + 2.5 \log(E_e/E_{f,ref}) - 2.5 \log(T_e) - 2.5 \log(S_e/S_{f,ref}),$

SPECTRAL FOLLOWUP CRITERIA

- Observe twice in i' up to day -1.5
- Early color from either g' or r'
- Determine stretch (decline rate) from g'r'i' observation > 11 days after max

POSSIBLE MISSED SNE IA

 Table 4.
 Control Sample Spectroscopic Completeness

Field	Confirmed	Missed?	% Complete
D1	9	4	82^{+18}_{-13}
D2	4	0	100
D3	6	3	80^{+20}_{-13}
D4	6	3	80^{+20}_{-13}
ALL	25	10	83^{+17}_{-12}

SIMULATED SN IA POPULATION

MONTE CARLO RESULTS

 Table 6.
 Monte Carlo Efficiencies and Rates

	Control Sample		Full Sample	
Field	(yr^{-1})	$r_{RAW} \ ({ m yr}^{-1})$	(yr^{-1})	$r_{RAW} \ ({ m yr}^{-1})$
D1	0.303	29.7 ± 9.9	0.267	28.0 ± 7.2
D2	0.102	39.2 ± 19.6	0.212	40.2 ± 9.7
D3	0.175	34.2 ± 14.0	0.235	34.1 ± 12.0
D4	0.314	19.1 ± 7.8	0.273	20.1 ± 6.1

SN IA RATE DENSITY

- Spectroscopic incompleteness
- Time dilation: 1+<z>vol
- Survey volume

Field	r_{RAW}^{a} (yr ⁻¹)	r_{spec}^{b} (yr ⁻¹)	r_{1+z}^{c} (yr^{-1})	Ω degrees ²	$V \\ \times 10^4 \; \rm Mpc^3$	$\stackrel{r_V}{(\times 10^{-4}~{\rm yr}^{-1}~{\rm Mpc}^{-3})}$
D1 D2 D3 D4	28.0 ± 7.2 40.2 ± 9.7 34.1 ± 12.0 20.1 ± 6.1	34.1 ± 8.8 40.2 ± 9.7 42.6 ± 15.0 25.1 ± 7.6	50.1 ± 12.9 59.0 ± 14.2 62.5 ± 22.0 36.9 ± 11.2	1.024 1.026 1.029 1.027	106.0 106.2 106.5 106.3	$\begin{array}{c} 0.47 \pm 0.12 \\ 0.56 \pm 0.13 \\ 0.59 \pm 0.21 \\ 0.35 \pm 0.11 \end{array}$
AVG ^d	27.4 ± 4.0	33.0 ± 4.7	48.4 ± 6.9	1.026	106.2	$0.46 \pm 0.06^{\rm e}$

ERRORS & RESULTS

Source	$\delta r_V{}^{\mathrm{a}}$
Poisson Spec. Completeness Host Extinction Frame Limits	$\pm 0.06 \\ ^{+0.08} \\ ^{-0.08} \\ +0.13 \\ \pm 0.06$
Total Statistical	± 0.06
Total Systematic	$^{\rm +0.16}_{\rm -0.10}$

 $r_V(\langle z \rangle_V = 0.47) = 0.46^{+0.16}_{-0.10}(syst) \pm 0.06(stat) \times 10^{-4} yr^{-1} Mpc^{-3}$

STAR FORMATION HISTORY MAPPINGS

- Gaussian delay time distribution:
 - τ in Gyr, $\sigma = f \times \tau$ (f = 0.2, 0.5, 0.7)
- Two-component model:
 - A extended: total mass
 - B prompt: direct SFH (0.7 Gyr delay)
 - Mannucci et al. 2005, Scannapieco & Bildsten 2005

DELAY TIME MODEL

TWO-COMPONENT MODEL

HYBRID MODEL

SUMMARY

- No evidence for missing Ia's near z=0.5
- Models predict very different rates beyond z = 1 with impact on SNAP yield and SN weak lensing studies
- Two-component model fits spectroscopically confirmed rates well
- Must be wary of contamination in photometrically-typed samples

FUTURE DIRECTIONS

- Bin rates and extend to z = 0.75
- Rate as a function of host properties:
 - M. Sullivan, A. Howell, C. Pritchet
- Proper training of photometric typing
 - Account for wide range of CC SNe