SN IA RATES FROM Z=0.2 - 0.6 WITH SNLS

JAMES D. "DON" NEILL UNIVERSITY OF VICTORIA

open triangles from Barris & Tonry (2005)

RATES FROM SNLS: METHOD OUTLINE

- Identify control sample
- Analyze all candidates for missed SNe
- Identify larger full sample
- Derive SN detectability equation
- Monte Carlo simulate SN Ia population
- Observe with detectability equation
- Compare results with samples

SN IA SAMPLES

Table 2. SNLS SN Ia Samples: 0.2 < z < 0.6

	Control Sample	Full Sample		
Field	(N_{SN})	$\begin{array}{c} \mathrm{ALL} \\ (N_{SN}) \end{array}$	Year 1 (N_{SN})	$\begin{array}{l} \text{Year 2} \\ (N_{SN}) \end{array}$
D1	9	15	6	9
D2	4	17	5	12
D3	6	8	8	
D4	6	11	5	6
ALL	25	51	24	27

Spectroscopically Confirmed

SN DETECTABILITY

 $L_e = L_{f,0.5} - \alpha_f (IQ_e - 0.5) + 2.5 \log(E_e/E_{f,r}) - 2.5 \log(T_e)$

SN DETECTABILITY

- Two real SNLS epochs at two IQ
- SExtractor runs to identify stars, hosts
- Fake SNe generated from real stars
- Flux-weighted host selection
- Flux-weighted host offset
- Need i'-detection, g'r'-early colors
- Fluxscales measure transparency
- Derive SN detectability equation

SPECTRAL FOLLOWUP CRITERIA

- Observe twice in i' up to day -1.5
- Early color from either g' or r'

SPECTRAL FOLLOWUP CRITERIA

 Determine stretch (decline rate) from g'r'i' observation > 11 days after max

POSSIBLE MISSED SNE IA

 Table 4.
 Control Sample Spectroscopic Completeness

Field	Confirmed	Missed?	% Complete
D1	9	4	82^{+18}_{-13}
D2	4	0	100
D3	6	3	80^{+20}_{-13}
D4	6	3	80^{+20}_{-13}
ALL	25	10	83^{+17}_{-12}

SIMULATED SN IA POPULATION

- 0.2 < z < 0.6, volume weighted
- stretch: $\sigma = 0.25$, $\mu = 1.0$, 0.6 < str < 1.4
- $E(B-V)h: \sigma = 0.2, \mu = 0.0, E(B-V)h > 0.0$
- Bmax: **σ** = 0.17, **μ** = 0.0 Hamuy et al. 1996

Astier et al. 2005

MONTE CARLO RESULTS

SN IA RATE DENSITY

- Spectroscopic incompleteness
- Time dilation: 1+<z>vol
- Survey volume

Field	$r_{MC}^{\mathrm{a} \mathrm{b}} \ \mathrm{(yr^{-1})}$	$r_{spec} \ ({ m yr}^{-1})$	$r_{1+z} \ ({ m yr}^{-1})$	Ω degrees ²	$V \times 10^4 { m Mpc}^3$	$r_V \ (imes 10^{-4} \ { m yr}^{-1} \ { m Mpc}^{-3})$
D1 D2 D3 D4	27.1 ± 5.7 38.2 ± 6.9 30.0 ± 8.1 18.7 ± 6.4	33.0 ± 7.0 38.2 ± 6.9 37.5 ± 10.1 23.4 ± 8.0	48.5 ± 10.2 56.1 ± 10.1 55.1 ± 14.9 34.3 ± 11.8	1.024 1.026 1.029 1.027	101.6 101.8 102.1 101.9	$\begin{array}{c} 0.48 \pm 0.10 \\ 0.55 \pm 0.10 \\ 0.54 \pm 0.15 \\ 0.34 \pm 0.12 \end{array}$
SUM AVG ^c	$\begin{array}{c} 114.0\pm13.7 \\ 27.9\pm3.3 \end{array}$	$\begin{array}{c} 132.1\pm16.2 \\ 33.1\pm3.9 \end{array}$	194.0 ± 23.8 48.6 ± 5.7	$4.106 \\ 1.026$	407.4 101.8	$1.90 \pm 0.23 \\ 0.48 \pm 0.06^{ m d}$

LUMINOSITY SPECIFIC SN IA RATE

- VIMOS-VLT Deep Survey (Ilbert et al. 2005)
- 2,178 galaxies in 0.2 < z < 0.6 (no evolution)
- Integrate Schechter fn -> luminosity density

 $r_L = 0.175^{+0.041}_{-0.032}$ SNu (statistical error only)

ERROR SUMMARY

Source	$\delta r_V{}^{\mathrm{a}}$	$\delta r_L{}^{ m b}$
Monte Carlo + Poisson	± 0.06	± 0.020
Luminosity Estimate	•••	$^{+0.038}_{-0.026}$
Spec. Completeness	$^{+0.09}_{-0.07}$	$^{+0.033}_{-0.027}$
Host Extinction	+0.05	+0.018
Frame Limits	± 0.08	± 0.029
Total Statistical	± 0.06	$^{+0.043}_{-0.033}$
Total Systematic	$^{+0.13}_{-0.11}$	$^{+0.048}_{-0.040}$

HOST OFFSET

LITERATURE COMPARISON

 $r_V(\langle z \rangle_V = 0.47) = 0.48^{+0.13}_{-0.11}(syst) \pm 0.06(stat) \times 10^{-4}yr^{-1}Mpc^{-3}$

- 0.48 ± 0.17 , z = 0.46, Tonry et al. 2003
- 0.525 ± 0.1, z = 0.65, Pain et al. 2002
- 2.04 ± 0.38, z = 0.55, Barris & Tonry '05 !
- No evidence for systematically low rates near z = 0.5

Also compare: Cappellaro et al. (1999), Madgwick et al. (2003), Blanc et al. (2004), and Hardin et al. (2000)

STAR FORMATION HISTORY

- SN Ia rate is a mapping from SFH
- Gaussian delay time distribution:
 - τ in Gyr, $\sigma = f \times \tau$ (f = 0.2, 0.5, 0.7)
- Two-component model:
 - prompt: direct SFH (0.7 Gyr delay)
 - extended: total mass

TWO-COMPONENT MODEL

DELAY TIME MODEL

HYBRID MODEL

SFH MODEL RESULTS

- 2-comp model fits ground based rates with prompt normalization from Ia rates in star-forming hosts
- Best delay-time model for ground based rates has $\tau = 4$ Gyr, $\sigma = 0.7\tau$
- Hybrid of extended plus delayed with $\tau = 3$ Gyr, $\sigma = 0.5\tau$ fits all but $z \approx 0.8$
- 0.5 3 Gyr for SD, ~0.3 Gyr for DD
 (Lapente & Canal 1998; Hachisu et al. 1999)

SUMMARY

- No evidence for systematics at z = 0.5
- No models fit all observed rates
- Contamination may be bigger systematic than missed SNe
- SNLS produces good rates with only 2 years of data (5 will be better!)