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Selected Physical Constants

Accurate updated values are listed. When doing numerical problems use
only a reasonable number of significant figures (usually 3 or 4).

atomic mass constant u = 1.66053873 x 10727 kg
Avogadro constant N4 = 6.02214199 x 10?3 mol~!
Bohr magneton up = 9.27400899 X 10724 J 11
Bohr radius ag = 0.5291772083 x 1071 m
Boltzmann constant & = 1.3806503 x 10723 J K1
Compton wavelength h/m.c = 2.426310215 x 10712 m
electric constant ey = 8.854187817 x 1072 F m~!
electron mass m,. = 9.10938188 x 1073! kg
electron volt eV = 1.602176462 x 10719 J
elementary charge e = 1.602176462 x 10~1° C
fine-structure constant o = 7.297352533 x 1073

a~ !t = 137.03599976
Hartree energy Ej, = 4.35974381 x 10718 J = 27.2113834 eV
magnetic constant pg = 47 x 107" N A2
molar gas constant R = 8.314472 J mol~! K—!
Newtonian constant of gravitation G = 6.673 x 1071 m3 kg=! s72
nuclear magneton py = 5.05078317 x 10727 J T!
Planck constant h = 6.62606876 x 1073* J s

h =1.054571596 x 10734 J s
proton mass m, = 1.67262158 x 10727 kg
proton-electron mass ratio m,/m. = 1836.1526675
Rydberg constant R, = 10973731.568549 m~—!
second radiation constant hc/k = 1.4387752 x 1072 m K
speed of light in vacuum ¢ = 2.99792458 x 10® m~—!



Chapter 1

Atoms and Photons: Origins of the Quantum Theory
Atomic and Subatomic Particles

The notion that the building blocks of matter are invisibly tiny particles
called atoms is usually traced back to the Greek philosophers Leucippus
of Miletus and Democritus of Abdera in the 5th Century BC. The English
chemist John Dalton developed the atomic philosophy of the Greeks into a
true scientific theory in the early years of the 19th Century. His treatise New
System of Chemical Philosophy gave cogent phenomenological evidence for
the existence of atoms and applied the atomic theory to chemistry, providing
a physical picture of how elements combine to form compounds consistent
with the laws of definite and multiple proportions. Table 1 summarizes
some very early measurements (by Sir Humphrey Davy) on the relative
proportions of nitrogen and oxygen in three gaseous compounds.

Table 1. Oxides of Nitrogen

Compound Percent N Percent O Ratio
I 29.50 70.50 0.418

IT 44.05 55.95 0.787

111 63.30 36.70 1.725

We would now identify these compounds as NOy, NO and N5 O, respectively.
We see in data such as these a confirmation of Dalton’s atomic theory: that
compounds consist of atoms of their constituent elements combined in small
whole number ratios. The mass ratios in Table 1 are, with modern accuracy,

0.438, 0.875 and 1.750.

After over 2000 years of speculation and reasoning from indirect evidence, it
is now possible in a sense to actually see individual atoms, as shown for ex-
ample in Fig. 1. The word “atom” comes from the Greek atomos, meaning
literally “indivisible.” It became evident in the late 19th Century, how-
ever, that the atom was not truly the ultimate particle of matter. Michael
Faraday’s work had suggested the electrical nature of matter and the exis-
tence of subatomic particles. This became manifest with the discovery of
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radioactive decay by Henri Becquerel in 1896—the emission of alpha, beta
and gamma particles from atoms. In 1897, J. J. Thompson identified the
electron as a universal constituent of all atoms and showed that it carried
a negative electrical charge, now designated —e.
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Figure 1. Image showing electron clouds of individual xenon atoms on
a nickel(110) surface produced by a scanning tunneling microscope at (of
course!) IBM Laboratories.

To probe the interior of the atom, Ernest Rutherford in 1911 bombarded a
thin sheet of gold with a stream of positively-charged alpha particles emitted
by a radioactive source. Most of the high-energy alpha particles passed right
through the gold foil, but a small number were strongly deflected in a way
that indicated the presence a small but massive positive charge in the center
of the atom (see Fig. 2). Rutherford proposed the nuclear model of the
atom. As we now understand it, an electrically-neutral atom of atomic
number Z consists of a nucleus of positive charge +Ze, containing almost
the entire the mass of the atom, surrounded by Z electrons of very small
mass, each carrying a charge —e. The simplest atom is hydrogen, with
Z =1, consisting of a single electron outside a single proton of charge +-e.
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Figure 2. Some representative trajectories in Rutherford scattering of
alpha particles by a gold nucleus.

With the discovery of the neutron by Chadwick in 1932, the structure of
the atomic nucleus was clarified. A nucleus of atomic number Z and mass
number A was composed of Z protons and A—Z neutrons. Nuclei diameters
are of the order of several times 10~'*m. From the perspective of an atom,
which is 10° times larger, a nucleus behaves, for most purposes, like a point
charge +Ze.

During the 1960’s, compelling evidence began to emerge that protons and
neutrons themselves had composite structures, with major contributions by
Murray Gell-Mann. According to the currently accepted “Standard Model,”
the protons and neutron are each made of three quarks, with compositions
uud and udd, respectively. The up quark uw has a charge of +§e, while
the down quark d has a charge of —%e. Despite heroic experimental ef-
forts, individual quarks have never been isolated, evidently placing them
in the same category with magnetic monopoles. By contrast, the electron
maintains its status as an indivisible elementary particle.

Electromagnetic Waves

Perhaps the greatest achievement of physics in the 19th century was James
Clerk Maxwell’s unification in 1864 of the phenomena of electricity, mag-
netism and optics. An (optional) summary of Maxwell’s equations is given
in Supplement 1A. Heinrich Hertz in 1887 was the first to demonstrate
experimentally the production and detection of the electromagnetic waves
predicted by Maxwell—specifically radio waves—Dby acceleration of electri-



cal charges. As shown in Fig. 3, electromagnetic waves consist of mutually
perpendicular electric and magnetic fields, E and B respectively, oscillating
in synchrony at high frequency and propagating in the direction of E x B.
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Figure 3. Schematic representation of monochromatic linearly-polarized
electromagnetic wave.

The wavelength A is the distance between successive maxima of the electric
(or magnetic) field. The frequency v represents the number of oscillations
per second observed at a fixed point in space. The reciprocal of frequency
T = 1/v represents period of oscillation—the time it takes for one wave-
length to pass a fixed point. The speed of propagation of the wave is
therefore determined by A = ¢7 or in more familiar form

v =c (1)

where ¢ = 2.9979 x 108 m/sec, usually called the speed of light, applies to all
electromagnetic waves in vacuum. Frequencies are expressed in hertz (Hz),
defined as the number of oscillations per second.

Electromagnetic radiation is now known to exist in an immense range of
wavelengths including gamma rays, X-rays, ultraviolet, visible light, in-
frared, microwaves and radio waves, as shown in Fig. 4.
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Figure 4. The electromagnetic spectrum, showing wavelengths of different
types of radiation. Adapted from R. A. Freedman and W. J. Kaufmann
11, Universe (Freeman, New York, 2001).

Three Failures of Classical Physics

Isaac Newton’s masterwork, Principia, published in 1687, can be considered
to mark the beginning of modern physical science. Not only did Newton
delineate the fundamental laws governing motion and gravitation but he
established a general philosophical worldview which pervaded all scientific
theories for two centuries afterwards. This system of thinking about the
physical world is known as “Classical Physics.” Its most notable feature is
the primacy of cause and effect relationships. Given sufficient information
about the present state of part of the Universe, it should be possible, at
least in principle, to predict its future behavior (as well as its complete



history.) This capability is known as determinism. For example, solar
and lunar eclipses can be predicted centuries ahead, within an accuracy of
several seconds. (But interestingly, we can’t predict even a couple of days in
advance if the weather will be clear enough to view the eclipse!) The other
great pillar of classical physics is Maxwell’s theory of electromagnetism.

The origin of quantum theory can be marked by three diverse phenomena in-
volving electromagnetic radiation, which could not be adequately explained
by the methods of classical physics. First among these was blackbody ra-
diation, which led to the contribution of Max Planck in 1900. Next was
the photoelectric effect, treated by Albert Einstein in 1905. Third was the
origin of line spectra, the hero being Neils Bohr in 1913. A coherent formu-
lation of quantum mechanics was eventually developed in 1925 and 1926,
principally the work of Schrodinger, Heisenberg and Dirac. The remainder
of this Chapter will describe the early contributions to the quantum theory
by Planck, Einstein and Bohr.

Blackbody Radiation

It is a matter of experience that a hot object can emit radiation. A piece of
metal stuck into a flame can become “red hot.” At higher temperatures, its
glow can be described as “white hot.” Under even more extreme thermal
excitation it can emit predominantly blue light (completing a very patriotic
sequence of colors!). Josiah Wedgwood, the famous pottery designer, noted
as far back as 1782 that different materials become red hot at the same
temperature. The quantitative relation between color and temperature is
described by the blackbody radiation law. A blackbody is an idealized per-
fect absorber and emitter of all possible wavelengths A of the radiation.
Fig. 5 shows experimental wavelength distributions of thermal radiation
at several temperatures. Consistent with our experience, the maximum in
the distribution, which determines the predominant color, increases with
temperature. This relation is given by Wien’s displacement law, which can
be expressed

T Amax = 2.898 x 10 nm K

where the wavelength is expressed in nanometers (nm). At room tempera-
ture (300K), the maximum occurs around 10 pm, in the infrared region. In
Figure 5, the approximate values of A\, are 2900nm at 1000K, 1450nm at
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2000K and 500nm at 5800K, the approximate surface temperature of the
Sun. The Sun’s A\p.x is near the middle of the visible range (380-750nm)
and is perceived by our eyes as white light.

2000K

1000K

RELATIVE INTENSITY

WAVELENGTH A

Figure 5. Intensity distributions of blackbody radiation at three different
temperatures. The total radiation intensity varies as T (Stefan-Boltzmann
law) so the total radiation at 2000K is actually 24 = 16 times that at 1000K.

The origin of blackbody radiation was a major challenge to 19th Century
physics. Lord Rayleigh proposed that the electromagnetic field could be
represented by a collection of oscillators of all possible frequencies. By
simple geometry, the higher-frequency (lower wavelength) modes of oscil-
lation are increasingly numerous since it it possible to fit their waves into
an enclosure in a larger number of arrangements. In fact, the number of
oscillators increases very rapidly as A~4. Rayleigh assumed that every os-
cillator contributed equally to the radiation (the equipartition principle).
This agrees fairly well with experiment at low frequencies. But if ultravio-
let rays and higher frequencies were really produced in increasing number,
we would get roasted like marshmallows by sitting in front of a fireplace!
Fortunately, this doesn’t happen, and the incorrect theory is said to suffer
from an “ultraviolet catastrophe.”

Max Planck in 1900 derived the correct form of the blackbody radiation
law by introducing a bold postulate. He proposed that energies involved in
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absorption and emission of electromagnetic radiation did not belong to a
continuum, as implied by Maxwell’s theory, but were actually made up of
discrete bundles—which he called “quanta.” Planck’s idea is traditionally
regarded as marking the birth of the quantum theory. A quantum associated
with radiation of frequency v has the energy

E=hv (2)

where the proportionality factor h = 6.626 x 1073* J sec is known as
Planck’s constant. For our development of the quantum theory of atoms
and molecules, we need only this simple result and do not have to follow
the remainder of Planck’s derivation. If you insist, however, the details are
given in Supplement 1B.

The Photoelectric Effect

A familiar device in modern technology is the photocell or “electric eye,”
which runs a variety of useful gadgets, including automatic door openers.
The principle involved in these devices is the photoelectric effect, which
was first observed by Heinrich Hertz in the same laboratory in which he
discovered electromagnetic waves. Visible or ultraviolet radiation imping-
ing on clean metal surfaces can cause electrons to be ejected from the metal.
Such an effect is not, in itself, inconsistent with classical theory since elec-
tromagnetic waves are known to carry energy and momentum. But the
detailed behavior as a function of radiation frequency and intensity can not
be explained classically.

The energy required to eject an electron from a metal is determined by its
work function ®. For example, sodium has & = 1.82 eV. The electron-volt
is a convenient unit of energy on the atomic scale: 1 eV = 1.602x10~19]J.
This corresponds to the energy which an electron picks up when accelerated
across a potential difference of 1 volt. The classical expectation would be
that radiation of sufficient intensity should cause ejection of electrons from
a metal surface, with their kinetic energies increasing with the radiation
intensity. Moreover, a time delay would be expected between the absorption
of radiation and the ejection of electrons. The experimental facts are quite
different. It is found that no electrons are ejected, no matter how high the
radiation intensity, unless the radiation frequency exceeds some threshold
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value v for each metal. For sodium v = 4.39 x 10'*Hz (corresponding to
a wavelength of 683 nm), as shown in Fig. 6. For frequencies v above the
threshhold, the ejected electrons acquire a kinetic energy given by

1mv? = h(v — 1) = hv — @ (3)

I 439x10"Hz

ELECTRON KINETIC ENERGY/eV
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Figure 6. Photoelectric data for sodium (Millikan, 1916). The threshhold
frequency v, found by extrapolation, equals 4.39 x 10 Hz.

Evidently, the work function ® can be identified with hrg, equal to 3.65 x
10719J=1.82 eV for sodium. The kinetic energy increases linearly with
frequency above the threshhold but is independent of the radiation intensity.
Increased intensity does, however, increase the number of photoelectrons.

Einstein’s explanation of the photoelectric effect in 1905 appears trivially
simple once stated. He accepted Planck’s hypothesis that a quantum of
radiation carries an energy hr. Thus, if an electron is bound in a metal
with an energy ®, a quantum of energy hry = ® will be sufficient to disloge
it. And any excess energy h(v — 1) will appear as kinetic energy of the
ejected electron. Einstein believed that the radiation field actually did
consist of quantized particles, which he named photons. Although Planck
himself never believed that quanta were real, Einstein’s success with the
photoelectric effect greatly advanced the concept of energy quantization.

Line Spectra

Most of what is known about atomic (and molecular) structure and mechan-
ics has been deduced from spectroscopy. Fig. 7 shows two different types of
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spectra. A continuous spectrum can be produced by an incandescent solid
or gas at high pressure. Blackbody radiation, for example, is a continuum.
An emission spectrum can be produced by a gas at low pressure excited by
heat or by collisions with electrons. An absorption spectrum results when
light from a continuous source passes through a cooler gas, consisting of a
series of dark lines characteristic of the composition of the gas. Frauenhofer
between 1814 and 1823 discovered nearly 600 dark lines in the solar spec-
trum viewed at high resolution. It is now understood that these lines are
caused by absorption by the outer layers of the Sun.

Continuous Spectrum

Emission Spectrum

Absorption Spectrum

Figure 7. Continuous spectrum and two types of line spectra. From
http://csepl0.phys.utk.edu/astr162/lect/light/absorption.html

Gases heated to incandescence were found by Bunsen, Kirkhoff and others
to emit light with a series of sharp wavelengths. The emitted light analyzed
by a spectrometer (or even a simple prism) appears as a multitude of narrow
bands of color. These so called line spectra are characteristic of the atomic
composition of the gas. The line spectra of several elements are shown in
Fig. 8.
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Figure 8. Emission spectra of several elements.

It is consistent with classical electromagnetic theory that motions of electri-
cal charges within atoms can be associated with the absorption and emission
of radiation. What is completely mysterious is how such radiation can oc-
cur for discrete frequencies, rather than as a continuum. The breakthrough
that explained line spectra is credited to Neils Bohr in 1913. Building on
the ideas of Planck and Einstein, Bohr postulated that the energy levels of
atoms belong to a discrete set of values F,,, rather than a continuum as in
classical mechanics. When an atom makes a downward energy transition
from a higher energy level FE,, to a lower energy level FE,,, it caused the
emission of a photon of energy

This is what accounts for the discrete values of frequency v in emission
spectra of atoms. Absorption spectra are correspondingly associated with
the annihilation of a photon of the same energy and concomitant excitation
of the atom from F, to F,,. Fig. 9 is a schematic representation of the
processes of absorption and emission of photons by atoms. Absorption and
emission processes occur at the same set frequencies, as is shown by the two
line spectra in Fig. 7.
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Figure 9. Origin of line spectra. Absorption of the photon shown in blue
causes atomic transition from Ey to F>. Transition from Es to E; causes
emission of the photon shown in red.

Rydberg (1890) found that all the lines of the atomic hydrogen spectrum
could be fitted to a simple empirical formula

1 1
:R<—2——2>, n1:1,2,3..., no > Ny (5)

1
A ny nj

where R, known as the Rydberg constant, has the value 109,677 cm~—!. This
formula was found to be valid for hydrogen spectral lines in the infrared
and ultraviolet regions, in addition to the four lines in the visible region.
No analogously simple formula has been found for any atom other than
hydrogen. Bohr proposed a model for the energy levels of a hydrogen atom
which agreed with Rydberg’s formula for radiative transition frequencies.
Inspired by Rutherford’s nuclear atom, Bohr suggested a planetary model
for the hydrogen atom in which the electron goes around the proton in one
of a set of allowed circular orbits, as shown in Fig 8. A more fundamental
understanding of the discrete nature of orbits and energy levels had to
await the discoveries of 1925-26, but Bohr’s model provided an invaluable
stepping-stone to the development of quantum mechanics. We will consider
the hydrogen atom in greater detail in Chap. 7.
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Figure 8. Bohr model of the hydrogen atom showing three lowest-energy
orbits.

Figure 9. A stylized representation of the Bohr model for a multielectron
atom. From the logo of the International Atomic Energy Agency.

Update 4/18/02
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Supplement 1A

Maxwell’s equations

These four vector relations summarize the previously discovered experimen-
tal laws to describe all known electrical and magnetic phenomena. In these
expressions, p is the electric charge density, J, the current density, E, the
electric field and B, the magnetic induction. Maxwell’s equations in free
space (in the absence of dielectric or magnetic media) can be written

V:-D=p (1)
V-B=0 2)
0B
E4+ — =
V x +6t 0 (3)
oD
H= — 4
V X J+8t (4)

The two auxilliary fields D, the electric displacement, and H, the magnetic
field are defined by constitutive relations. In free space

D =¢E and B = uoH (5)

where €g and g, are the vacuum electric permittivity and magnetic perme-
ability, respectively.

Eq. (1) states that an electric field diverges from a distribution of electric
charge. This implies Coulomb’s law. Eq. (2) implies the nonexistence of
isolated magnetic poles—the magnetic equivalent of electric charges. The
most elementary magnetic objects are dipoles, connected pairs of north and
south poles which can not be isolated from one another. Eq. (3) is an
expression of Faraday’s law of electromagnetic induction, which shows how
a circulating electric field can be produced by a time-varying magnetic field.
Eq. (4) contains Ampere’s law showing how a magnetic field is produced
by an electric current. The second term on the right, which was added by
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Maxwell himself, is, in a sense, reciprocal to Faraday’s law, since it implies
that a circulating magnetic field can also be produced by a time-varying
electric field.

In the absence of charges and currents, Maxwell equations can be trans-
formed into three-dimensional wave equations

1 02 1 92

where ¢ = 1/,/€opo = 2.9979 x 10% m/sec, representing the speed of light
in vacuum. Possible solutions to Eqgs (6) represent synchronized transverse
electric and magnetic waves propagating at the speed c, as sketched in
Figure 1.3.

Even in the classical theory, electromagnetic fields can carry energy and
momentum. The energy density of an electromagnetic field in free space is
given by
1 , B2
= — € E — 7
o= (0B o) )
The energy flux or intensity (energy transported across unit area per unit
time across unit area) is given by the Poynting vector

S=ExH (8)

It is significant that the energy density and intensity depend of the square
of field quantities. We will exploit an analogous relationship in the inter-
pretation of the wavefunction in quantum mechanics.

Maxwell’s first equation is equivalent to Coulomb’s law. In its simplest form,
the force between two point charges ¢; and ¢o separated by a distance r is
given by

I q1qe
F = 9
Ameg 12 (9)

The algebraic signs of ¢; and ¢» determine whether the force is attractive or
repulsive. If ¢; and ¢y are like charges, they repel (F' > 0), whereas opposite
charges attract (F' < 0). In our applications to atomic and molecular
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structure, it is clumsy and unnecessary to carry the constant 4mwey. We will
instead write Coulomb’s law in gaussian electromagnetic units, whereby

_NQq2

F==3

(10)

The potential energy of interaction between two charges is related to the
force by F' = —dV/dr (more generally, F = —VV). Coulomb’s law therefore
implies

V()= 2 (11)

which we will repeatedly use in applications to the quantum theory of atoms
and molecules.



Supplement 1B

The Planck Radiation Law

To apply Rayleigh’s idea that the radiation field can be represented as a col-
lection of oscillators, we need to calculate the number of oscillators per unit
volume for each wavelength A. The reciprocal of the wavelength, k = 1/,
is known as the wavenumber, and equals the number of wave oscillations
per unit length. The wavenumber actually represents the magnitude of the
wavevector k, which also determines the direction in which the wave is prop-
agating. Now, all the vectors k of constant magnitude k in a 3-dimensional
space can be considered to sweep out a spherical shell of radius £ and in-
finitesimal thickness dk. The volume (in k-space) of this shell is equal to
4mk?dk and can be identified as the number of modes of oscillation per
unit volume (in real space). Expressed in terms of A, the number of modes
per unit volume equals (47/A%)d\. Sir James Jeans recognized that this
must be multiplied by 2 to take account of the two possible polarizations of
each mode of the electromagnetic field. Assuming equipartition of energy
implies that each oscillator has the energy k7', where k here is Boltzmann’s
constant R/Na. Thus we obtain for the energy per unit volume per unit

wavelength range

o) = 8 (1)

which is known as the Rayleigh-Jeans law. This result gives a fairly accurate
account of blackbody radiation for larger values of A, in the infrared region
and beyond. But it does suffer from the dreaded ultraviolet catastrophe,
whereby p(\) increases without limit as A — 0.

Planck realized that the fatal flaw was equipartition, which is based on the
assumption that the possible energies of each oscillator belong to a contin-
uum (0 < F < o0). If, instead, the energiy of an oscillator of wavelength A
comes in discrete bundles hv = he/), then the possible energies are given
by

Ey.n = nhv = nhc/ A, where n =0,1,2... (2)

By the Boltzmann distribution in statistical mechanics, the average energy
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of an oscillator at temperature 7' is given by

—FEy /KT
o Zn E)\,ne A/

(EX)av S B /FT (3)
Using the formula for the sum of a decreasing geometric progression
i o—nhe/ KT _ 1 (4)
n:O 1 — e—hc/XkT
we obtain Lo
(Ba)ow = 5)

This implies that the higher-energy modes are less populated than what is
implied by the equipartion principle. Substituting this (5), rather than kT,
into the Rayleigh-Jeans formula (1), we obtain the Planck distribution law

8mhce 1
p(A) = N5 ehe/ T _ | (6)

Note that, for large values of A and/or T', the average energy (5) is approx-
imated by (E))av = kT and the Planck formula reduces to the Rayleigh-
Jeans approximation. The Planck distribution law accurately accounts for
the experimental data on thermal radiation shown in Figure 5. Remark-
ably, recent measurements of the cosmic microwave background also give a
perfect fit with a blackbody distribution at temperature 2.73K, as shown in
Figure 1B below. The cosmic microwave background radiation, which was
discovered by Penzias and Wilson in 1965, is a relic of the Big Bang about
15 billion years ago.

From the Planck distribution law one can calculate the wavelength at which
p(A) is a maximum at a given T'. The result agrees with the Wien displace-
ment law with

ch
4.965 k (7)

By integration of Eq (6) over all wavelengths A\, we obtain the total radiation
energy density per unit volume

)\maXT —

e 8ok
= Nd\ = ——— T
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in accord with the Stefan-Boltzmann law.
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Figure 1B. Cosmic Microwave Background. From G. F. Smoot and D.
Scott, http://pdg.1bl.gov/2001/microwaverpp.pdf
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The Wave Field. Landscape Sculpture by Maya Lin on North Campus,
the University of Michigan, Ann Arbor.

[%

CHAPTER 2
WAVES AND PARTICLES

Quantum mechanics is the theoretical framework which describes the be-
havior of matter on the atomic scale. It is the most successful quantitative
theory in the history of science, having withstood thousands of experimen-
tal tests without a single verifiable exception. It has correctly predicted or
explained phenomena in fields as diverse as chemistry, elementary-particle
physics, solid-state electronics, molecular biology and cosmology. A host of
modern technological marvels, including transistors, lasers, computers and
nuclear reactors are offspring of the quantum theory. Possibly 30% of the
US gross national product involves technology which is based on quantum
mechanics. For all its relevance, the quantum world differs quite dramat-
ically from the world of everyday experience. To understand the modern



theory of matter, conceptual hurdles of both psychological and mathemat-
ical variety must be overcome.

A paradox which stimulated the early development of the quantum
theory concerned the indeterminate nature of light. Light usually behaves
as a wave phenomenon but occasionally it betrays a particle-like aspect, a
schizoid tendency known as the wave-particle duality. We consider first the
wave theory of light.

The Double-Slit Experiment

Fig. 1 shows a modernized version of the famous double-slit diffraction ex-
periment first performed by Thomas Young in 1801. Light from a monochro-
matic (single wavelength) source passes through two narrow slits and is pro-
jected onto a screen. Each slit by itself would allow just a narrow band of
light to illuminate the screen. But with both slits open, a beautiful inter-
ference pattern of alternating light and dark bands appears, with maximum
intensity in the center. To understand what is happening, we review some
key results about electromagnetic waves.

Figure 1. Modern version of Young’s interference experiment using a laser
gun. Single slit (left) produces an intense band of light. Double slit (right)
gives a diffraction pattern. See animated applet at
http://www.colorado.edu/physics/2000/applets/twoslitsa.html

Maxwell’s theory of electromagnetism was an elegant unification of the
diverse phenomena of electricity, magnetism and radiation, including light.
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Electromagnetic radiation is carried by transverse waves of electric and
magnetic fields, propagating in vacuum at a speed ¢ ~ 3 x 10%m/sec, known
as the “speed of light.” As shown in Fig. 2, the E and B fields oscillate
sinusoidally, in synchrony with one another. The magnitudes of E and B
are proportional (B = E/c in SI units). The distance between successive
maxima (or minima) at a given instant of time is called the wavelength A.
At every point in space, the fields also oscillate sinusoidally as functions
of time. The number of oscillations per unit time is called the frequency
v. Since the field moves one wavelength in the time A/c, the wavelength,
frequency and speed for any wave phenomenon are related by

AV =c (1)

Figure 2. Schematic representation of electromagnetic wave.

In electromagnetic theory, the intensity of radiation, energy flux incident
on a unit area per unit time, is represented by the Poynting vector

S = /LoE x B (2)
The energy density contained in an electromagnetic field, even a static one,
is given by
1 B2
=~ eE? + —> 3
G (3

Note that both of the above energy quantities depends quadratically on the
fields E and B. To discuss the diffraction experiments described above, it
is useful to define the amplitude of an electromagnetic wave at each point
in space and time r,¢ by the function

B(r,t)

Vi (4)

U(r,t) =+/eo E(r,t) =




such that the intensity is given by

p(r,t) = [¥(r, 1))’ ()

The function ¥(r,t) will, in some later applications, have complex values.
In such cases we generalize the definition of intensity to

p(r,t) = ’\Il(r’t)|2 = U(r,t)" ¥(r,t) (6)

where U(r,t)* represents the complex conjugate of ¥(r,t). In quantum-
mechanical applications, the function ¥ is known as the wavefunction.

GV AVAVAVAN

(.

(

Py TP, (W, + p,)?

Figure 3. Interference of two equal sinusoidal waves. Top: constructive
interference. Bottom: destructive interference. Center: intermediate case.
The resulting intensities p = ¥? is shown on the right.

The electric and magnetic fields, hence the amplitude ¥, can have
either positive and negative values at different points in space. In fact
constructive and destructive interference arises from the superposition of
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waves, as illustrated in Fig. 3. By Eq (5), the intensity p > 0 everywhere.
The light and dark bands on the screen are explained by constructive and
destructive interference, respectively. The wavelike nature of light is con-
vincingly demonstrated by the fact that the intensity with both slits open
is not the sum of the individual intensities, ie, p # p1 + p2. Rather it is the
wave amplitudes which add:

U=y, 4+ U, (7)
with the intensity given by the square of the amplitude:
e R 2

The cross term 2W, WV, is responsible for the constructive and destructive
interference. Where ¥ and W5 have the same sign, constructive interference
makes the total intensity greater than the the sum of p; and ps. Where
U, and ¥y have opposite signs, there is destructive interference. If, in fact,
VU, = —WU, then the two waves cancel exactly, giving a dark fringe on the
screen.

Wave-Particle Duality

The interference phenomena demonstrated by the work of Young, Fresnel
and others in the early 19th Century, apparently settled the matter that
light was a wave phenomenon, contrary to the views of Newton a century
earlier—case closed! But nearly a century later, phenomena were discov-
ered which could not be satisfactorily accounted for by the wave theory,
specifically blackbody radiation and the photoelectric effect.

Deviating from the historical development, we will illustrate these ef-
fects by a modification of the double slit experiment. Let us equip the laser
source with a dimmer switch capable of reducing the light intensity by sev-
eral orders of magnitude, as shown in Fig. 4. With each successive filter the
diffraction pattern becomes dimmer and dimmer. Eventually we will be-
gin to see localized scintillations at random positions on an otherwise dark
screen. It is an almost inescapable conclusion that these scintillations are
caused by photons, the bundles of light postulated by Planck and Einstein
to explain blackbody radiation and the photoelectric effect.



Figure 4. Scintillations observed after dimming laser intensity by several
orders of magnitude. These are evidently caused by individual photons!

But wonders do not cease even here. Even though the individual scintilla-
tions appear at random positions on the screen, their statistical behavior
reproduces the original high-intensity diffraction pattern. Evidently the sta-
tistical behavior of the photons follows a predictable pattern, even though
the behavior of individual photons is unpredictable. This impies that each
individual photon, even though it behaves mostly like a particle, somehow
carry with it a “knowledge” of the entire wavelike diffraction pattern. In
some sense, a single photon must be able to go through both slits at the same
time. This is what is known as the wave-particle duality for light: under
appropriate circumstances light can behave as a wave or as a particle.

Planck’s resolution of the problem of blackbody radiation and Ein-
stein’s explanation of the photoelectric effect can be summarized by a rela-
tion between the energy of a photon to its frequency:

E=hv (8)

where h = 6.626 x 10734 J sec, known as Planck’s constant. Much later,
the Compton effect was discovered, wherein an x-ray or gamma ray photon
ejects an electron from an atom, as shown in Fig. 5. Assuming conservation
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of momentum in a photon-electron collision, the photon is found to carry a
momentum p, given by

p=h/A (9)

Egs (8) and (9) constitute quantitative realizations of the wave-particle
duality, each relating a particle-like property—energy or momentum—to a
wavelike property—frequency or wavelength.

INCIDENT X-RAY
EJECTED ELECTROMN

SCATTERED X-RAY

Figure 5. Compton effect. The momentum and energy carried by the inci-
dent x-ray photon are transferred to the ejected electron and the scattered
photon.

According to the special theory of relativity, the last two formulas are
actually different facets of the same fundamental relationship. By Einstein’s
famous formula, the equivalence of mass and energy is given by

E = mc? (10)

The photon’s rest mass is zero, but in travelling at speed c, it acquires a
finite mass. Equating Eqgs (8) and (10) for the photon energy and taking
the photon momentum to be p = mec, we obtain

p=FE/c=hv/c=h/\ (11)

Thus, the wavelength-frequency relation (1), implies the Compton-effect
formula (9).



The best we can do is to describe the phenomena constituting the
wave-particle duality. There is no widely accepted explanation in terms
of everyday experience and common sense. Feynman referred to the “ex-
periment with two holes” as the “central mystery of quantum mechanics.”
It should be mentioned that a number of models have been proposed over
the years to rationalize these quantum mysteries. Bohm proposed that
there might exist hidden variables which would make the behavior of each
photon deterministic, ie, particle-like. Everett and Wheeler proposed the
“many worlds interpretation of quantum mechanics” in which each random
event causes the splitting of the entire universe into disconnected parallel
universes in which each possibility becomes the reality. Needless to say,
not many people are willing to accept such a metaphysically unwieldy view
of reality. Most scientists are content to apply the highly successful com-
putational mechanisms of quantum theory to their work, without worrying
unduly about its philosophical underpinnings. Sort of like people who enjoy
eating roast beef but would rather not think about where it comes from.

There was never any drawn-out controversy about whether electrons or
any other constituents of matter were other than particle-like. Yet a variant
of the double-slit experiment using electrons instead of light proves other-
wise. The experiment is technically difficult but has been done. An electron
gun, instead of a light source, produces a beam of electrons at a selected
velocity, which is focussed and guided by electric and magnetic fields. Then,
everything that happens for photons has its analog for electrons. Individual
electrons produce scintillations on a phosphor screen—this is how TV works.
But electrons also exhibit diffraction effects, which indicates that they too
have wavelike attributes. Diffraction experiments have been more recently
carried out for particles as large as atoms and molecules, even for the Cgg
fullerene molecule.

De Broglie in 1924 first conjectured that matter might also exhibit a
wave-particle duality. A wavelike aspect of the electron might, for example,
be responsible for the discrete nature of Bohr orbits in the hydrogen atom
(cf. Chap. 7). According to de Broglie’s hypothesis, the “matter waves”
associated with a particle have a wavelength given by

A= h/p (12)

identical in form to Compton’s result (9) (which, in fact, was discovered
later). The correctness of de Broglie’s conjecture was most dramatically
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confirmed by the observations of Davisson and Germer in 1927 of diffrac-
tion of monoenergetic beams of electrons by metal crystals, much like the
diffraction of x-rays. And measurements showed that de Broglie’s formula
(12) did indeed give the correct wavelength (see Fig. 6).

54V
e Scatterad slacirons
F
=
£
a é‘ I‘I.'l 'II5 20 25
Pecalarating volage

Figure 6. Intensity of electron scattered at a fixed angle off a nickel crystal,
as function of incident electron energy. From C. J. Davisson “Are Electrons
Waves?” Franklin Institute Journal 205, 597 (1928).

The Schrodinger Equation

Schrodinger in 1926 first proposed an equation for de Broglie’s matter waves.
This equation cannot be derived from some other principle since it consti-
tutes a fundamental law of nature. Its correctness can be judged only by
its subsequent agreement with observed phenomena (a posteriori proof).
Nonetheless, we will attempt a heuristic argument to make the result at
least plausible.

In classical electromagnetic theory, it follows from Maxwell’s equations
that each component of the electric and magnetic fields in vacuum is a
solution of the wave equation

1 020
2 _
VA - o =0 (13)

where the Laplacian or “del-squared” operator is defined by

0? 0? 0?
=5tz (14)

2
v oy? 022

We will attempt now to create an analogous equation for de Broglie’s matter
waves.



Accordingly, let us consider a very general instance of wave motion
propagating in the x-direction. At a given instant of time, the form of a
wave might be represented by a function such as

P(x) = f2rz/A) (15)
where f(6) represents a sinusoidal function such as sin, cos, e?, e~ or
some linear combination of these. The most suggestive form will turn out
to be the complex exponential, which is related to the sine and cosine by
Euler’s formula

e = cosh +isinf (16)

Each of the above is a periodic function, its value repeating every time
its argument increases by 27w. This happens whenever x increases by one
wavelength A. At a fixed point in space, the time-dependence of the wave
has an analogous structure:

T(t) = f(2rvt) (17)

where v gives the number of cycles of the wave per unit time. Taking into
account both x- and t-dependence, we consider a wavefunction of the form

U(z,t) = exp {2%75 (% — Vtﬂ (18)
representing waves travelling from left to right. Now we make use of the
Planck and de Broglie formulas (8) and (12) to replace v and A by their
particle analogs. This gives

U(z,t) = expli(pr — Et)/h] (19)
where
h= % (20)

Since Planck’s constant occurs in most formulas with the denominator 27,
this symbol, pronounced “aitch-bar,” was introduced by Dirac. Now Eq (17)
represents in some way the wavelike nature of a particle with energy F and
momentum p. The time derivative of (19) gives

%—f = —(iE/h) x expli(pr — Et)/h] (21)
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Thus

L ov
Analogously
L ov
and o2
0 OV 2
—REI T — 2@ 24
h 0x? (24)

E = g = (25)

Thus U(z,t) satisfies the partial differential equation

o h? 920
th ot 2m Ox? (26)

For a particle with a potential energy V (z),

2

E= f—m +V(2) (27)

we postulate that the equation for matter waves generalizes to
v h’ o2

h— =3 ———=—= 4V v 28

"ot { 2m O0x? i (m)} (28)

For waves in three dimensions should then have

ih%\ll(r, t) = {—;—mv2 + V(r)} U(r,t) (29)

Here the potential energy and the wavefunction depend on the three space
coordinates x,y, z, which we write for brevity as r. This is the time-
dependent Schrodinger equation for the amplitude W(r,t) of the matter
waves associated with the particle. Its formulation in 1926 represents the
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starting point of modern quantum mechanics. (Heisenberg in 1925 proposed
another version known as matrix mechanics.)

For conservative systems, in which the energy is a constant, we can
separate out the time-dependent factor from (19) and write

W(r,t) = y(r) e N (30)

where 1 (r) is a wavefunction dependent only on space coordinates. Putting
(30) into (29) and cancelling the exponential factors, we obtain the time-
independent Schrodinger equation:

2m

{—h—2v2 + V(r)} Y(r) = Ey(r) (31)

Most of our applications of quantum mechanics to chemistry will be based
on this equation.

The bracketed object in Eq. (31) is called an operator. An operator
is a generalization of the concept of a function. Whereas a function is a
rule for turning one number into another, an operator is a rule for turning
one function in another. The Laplacian is an example of an operator. We
usually indicate that an object is an operator by placing a ‘hat’ over it, eg,
A. The action of an operator that turns the function f into the function g
is represented by

Af=g (32)

Eq (23) implies that the operator for the xz-component of momentum can
be written

0
D, = —1h— 33
p tho- (33)
and by analogy, we must have
0 0
D, = —ih— h, = —th— 34
by =—ihg . D th- (34)

The energy, as in Eq (27), expressed as a function of position and momen-
tum is known in classical mechanics as the Hamiltonian. Generalizing to
three dimensions,

2
p 1 2 2 2
H=—4+YV S V
9 (r) 9 (pac +py +pz) + (5177 Y, Z) (35)
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We construct thus the corresponding quantum-mechanical operator

. h? [ 52 o2 o2

H = ™ <8x2 + B + 322) + V(z,y,2)
= —h—2V2 +V(r) (36)
 2m r

The time-independent Schrodinger equation (31) can then be written sym-
bolically as R
HV =FEV (37)

This form is actually more generally to any quantum-mechanical problem,

given the appropriate Hamiltonian and wavefunction. Most applications to

chemistry involve systems containing many particles—electrons and nuclei.
An operator equation of the form

A = const 1) (38)

is called an eigenvalue equation. Recall that, in general, an operator acting
on a function gives another function [Eq (32)]. The special case (38) occurs
when the second function is a multiple of the first. In this case, v is known
as an eigenfunction and the constant is called an eigenvalue. (These terms
are hybrids with German, the purely English equivalents being ‘character-
istic function’ and ‘characteristic value.”) To every dynamical variable A
in quantum mechanics, there corresponds an eigenvalue equation, usually
written

Ay =ar (39)

The eigenvalues a represent the possible measured values of the variable A.
The Schrédinger equation (37) is the best known instance of an eigenvalue
equation, with its eigenvalues corresponding to the allowed energy levels of
the quantum system.

The Wavefunction

For a single-particle system, the wavefunction ¥(r,t), or ¢(r) for the time-
independent case, represents the amplitude of the still vaguely defined mat-
ter waves. The relationship between amplitude and intensity of electro-
magnetic waves we developed for Eq (6) can be extended to matter waves.
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The most commonly accepted interpretation of the wavefunction is due to
Max Born (1926), according to which p(r), the square of the absolute value
of ¥ (r) is proportional to the probability density (probability per unit vol-
ume) that the particle will be found at the position r. Probability density is
the three-dimensional analog of the diffraction pattern that appears on the
two-dimensional screen in the double-slit diffraction experiment for elec-
trons described in the preceding Section. In the latter case we had the
relative probability a scintillation would appear at a given point on the
screen. The function p(r) becomes equal, rather than just proportional to,
the probability density when the wavefunction is normalized, that is,

/ p(r)2dr = 1 (40)

This simply accounts for the fact that the total probability of finding the
particle somewhere adds up to unity. The integration in (40) extends over
all space and the symbol dr designates the approrpiate volume element.
For example, in cartesian coordinates, dr = dxdydz; in spherical polar
coordinates, dr = 12 sin 0 dr df de.

The physical significance of the wavefunctions makes certain demands
on its mathematical behavior. The wavefunction must be a single-valued
function of all its coordinates, since the probability density ought to be
uniquely determined at each point in space. Moreover, the wavefunction
should be finite and continuous everywhere, since a physically-meaningful
probability density must have the same attributes. The conditions that
the wavefunction be single-valued, finite and continuous—in short, “well-
behaved”—Ilead to restrictions on solutions of the Schrodinger equation such
that only certain values of the energy and other dynamical variables are
allowed. This is called quantization and is in fact the feature that gives
quantum mechanics its name.
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Chapter 2. Exercises

1. In the theory of relativity, space and time variables can be combined
to form a 4-dimensional vector thus: 1 = z, x9 = y, T3 = 2, 14 =
tct. The momentum and energy analogously combine to a 4-vector with
P1 = Dg, D2 = Py, D3 = Pz, P4 = iE/c. By a suitable generalization of
the quantization prescription for momentum components, deduce the time-
dependent Schrodinger equation:

{_h_w +V(r) } (1) = ihw

2m

2. Estimate the number of photons emitted per second by a 100-watt light-
bulb. Assume a wavelength of 550 nm (yellow light).

3. Electron diffraction makes use of 40 keV (40,000 eV) electrons. Calculate
their de Broglie wavelength.

4. Show that the wavefunction W(z,t) = 'P*=E/M ig a solution of the
one-dimensional time-dependent Schrodinger equation.

5. Show that W(r,t) = e/(PT=E)/h g a solution of the three-dimensional
time-dependent Schrodinger equation.

6. A certain one-dimensional quantum system in 0 < x < oo is described
by the Hamiltonian:

= L (¢ = constant)
x

One of the eigenfunctions is known to be

Y(x) = Aze™ ", o =mq?/h?, A = constant

(i) Write down the Schrédinger equation and carry out the indicated differ-
entiation.



(ii) Find the corresponding energy eigenvalue (in terms of A, m and q).

(iii) Find the value of A which normalizes the wavefunction according to

| @k de =1

You may require the definite integrals

oo
/ z"e” " dx = n!/a" !
0



Answers to Exercises

Don’t even think of looking here before you attempt to
solve the problems yourself!

1. The components of the momentum operator can be expressed in the
form
0

Py = —th—, k=1,2,3

8azk
Now extend this relation for k& = 4 using py = iE/c and x4 = ict. The
result is

i = inl

ot
where the energy operator is the Hamiltonian H. Applying the quantization
prescription to the classical energy-momentum relation

2
p

then leads to the 3-dimensional time-dependent Schrédinger equation (29).

2. 100 watts = 100 J/sec. The energy of a 550 nm photon is given by

_he (6626 x 107°%)(2.998 x 10°%)

N e 109 =361x10719J

E = hv

Thus 100/E = 2.77 x 10%° photons/sec.

3. Since 1 eV=1.602 x 10™%? J, each electron has a kinetic energy of (40 x
10%)(1.602 x 10~1?) J. This is equal to

The de Broglie relation A = h/p, therefore gives

h 6.626 x 1034
V2mE  /2(9.109 x 10-31)(40 x 103)(1.602 x 10-19)




= 6.13 x 107'2 m. This gives sufficient resolution to study the geometric
structure of molecules. [Since 40 keV electrons travel at a significant fraction
of the speed of light, the relativistic energy-momentum relation must be
used. The corrected de Broglie wavelength is actually 6.016 x 10712 m.]

4. Evaluate the partial derivatives

_8 D i(pe—Et)/h 0° p° i(pr—FEt)/h
(%\If(x,t) — %e (p )/ @\p(x,t) — _?e (p )/
e
and %\p(x’ t) = _%ez(px—Et)/h

Eq (26) then follows from the relation E = p?/2m.

5. Note that p-r =p, x +p,y + p. 2. Then

0 D ;

%\If(r,t) = %el(p'r_Et)/h etc.

and Eq (29), with V(r)=0, follows from E = (p3 + pZ + p?)/2m.

6. Evaluate the derivatives (suppressing A for now):
P(z) = e " — are” " and V" (z) = =20 " 4 axe” "
Then the Schrédinger equation Hi(z) = Ev(z) becomes

h2 q2
———(—2ae™ " 4 alre” ) — T fe " = Fge "
2m £
Now, cancel out the e~** and find two independent relations for the terms
independent of x and linear in z. The results give a = mg? /hz, which

agrees with the definition and
h2 a2 B mq*

E — — 19
2m 2h

To normalize the function

/ p(z)|?de =1 = A2/ z?e ™2 dy = A% x 2!/(2a)?
0 0

giving A = 2a°/2.



CHAPTER 3

QUANTUM MECHANICS OF
SOME SIMPLE SYSTEMS

The Free Particle

The simplest system in quantum mechanics has the potential energy V
equal to zero everywhere. This is called a free particle since it has no forces
acting on it. We consider the one-dimensional case, with motion only in
the z-direction, giving the Schrodinger equation

7 d*y(x)

C9m dx?

= Ey(x) (1)

Total derivatives can be used since there is but one independent variable.
The equation simplifies to

Y (x) + k2 (z) = 0 (2)

with the definition
k? = 2mE /K’ (3)
Possible solutions of Eq (2) are

sin kx

w(x) = const { coskx

e:l:ik‘:):

(4)

There is no restriction on the value of k. Thus a free particle, even in
quantum mechanics, can have any non-negative value of the energy

h2 k2
:2m

E

>0 (5)

The energy levels in this case are not quantized and correspond to the same
continuum of kinetic energy shown by a classical particle.



It is of interest also to consider the x-component of linear momentum
for the free-particle solutions (4). According to Eq (2-32), the eigenvalue
equation for momentum should read

dip(z)

put(a) = —in =2 = pu(a) (6)

where we have denoted the momentum eigenvalue as p. It is easily shown
that neither of the functions sin kz or coskx from (4) is an eigenfunction
of p,. But eT7 are both eigenfunctions with eigenvalues p = +hk, respec-
tively. Evidently the momentum p can take on any real value between —oo
and +oo. The kinetic energy, equal to £ = p?/2m, can correspondingly
have any value between 0 and +oo.

The functions sin kx and cos kx, while not eigenfunctions of p,, are each
superpositions of the two eigenfunctions e=*** by virtue of the trigonometric
identities

1 . . 1 . .
cos kx = 5(6”"“’ + e %) and sinkx = %(e"‘k“’ — e k) (7)

The eigenfunction e’** for k > 0 represents the particle moving from left
to right on the z-axis, with momentum p > 0. Correspondingly, e~ %<
represents motion from right to left with p < 0. The functions sinkx
and cos kx represent standing waves, obtained by superposition of opposing
wave motions. Although these latter two are not eigenfunctions of p, but

are eigenfunctions of p2, hence of the Hamiltonian H.

Particle in a Box

This is the simplest non-trivial application of the Schrodinger equation,
but one which illustrates many of the fundamental concepts of quantum
mechanics. For a particle moving in one dimension (again along the z-
axis), the Schrédinger equation can be written

I @)+ V(@) = B ) (5)

Assume that the particle can move freely between two endpoints z = 0
and x = a, but cannot penetrate past either end. This is equivalent to a
potential energy dependent on x with

[0 0<z<a
V(x)_{oo r<0and z > a (9)
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E,=16E,
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E;=9E,
Figure 1. Potential well
£ =aE, and low?st energy levels
for particle in a box.
E1=h2/8ma2
(0] X a

This potential is represented by the dark lines in Fig. 1. Infinite potential
energy constitute an impenetrable barrier. The particle is thus bound to a
potential well. Since the particle cannot penetrate beyond x = 0 or x = a,

Y(x) =0 for x<0 and z>a (10)

By the requirement that the wavefunction be continuous, it must be true
as well that

»(0)=0 and ¥(a)=0 (11)

which constitutes a pair of boundary conditions on the wavefunction within
the box. Inside the box, V(x) = 0, so the Schrédinger equation reduces to
the free-particle form (1)

2
(@)= E(),  0<z<a (12
We again have the differential equation
V'(x) + k2 P(x) =0  with  k? =2mE/R’ (13)

The general solution can be written

Y(x) = Asinkx + B coskx (14)



where A and B are constants to be determined by the boundary conditions
(11). By the first condition, we find

¥(0) = Asin0+ BcosO0 =B =0 (15)
The second boundary condition at x = a then implies
Y(a) = Asinka =0 (16)

It is assumed that A # 0, for otherwise 1 (x) would be zero everywhere and
the particle would disappear. The condition that sin kx = 0 implies that

ka = nm (17)

where n is a integer, positive, negative or zero. The case n = 0 must
be excluded, for then & = 0 and again (z) would vanish everywhere.
Eliminating k& between (13) and (17), we obtain

h22 B2
=T 2 n?2  n=123... (18)

En = omaz’  8ma?
These are the only values of the energy which allow solution of the Schro-
dinger equation (12) consistent with the boundary conditions (11). The
integer n, called a quantum number, is appended as a subscript on E to
label the allowed energy levels. Negative values of n add nothing new
because the energies in Eq (18) depends on n?. Fig. 1 shows part of the
energy-level diagram for the particle in a box. The occurrence of discrete
or quantized energy levels is characteristic of a bound system, that is, one
confined to a finite region in space. For the free particle, the absence of
confinement allowed an energy continuum. Note that, in both cases, the
number of energy levels is infinite—denumerably infinite for the particle in
a box but nondenumerably infinite for the free particle.

The particle in a box assumes its lowest possible energy when n = 1,
namely

h2
FE, =

— 19
8ma? (19)

The state of lowest energy for a quantum system is termed its ground state.
An interesting point is that E; > 0, whereas the corresponding classical
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system would have a minimum energy of zero. This is a recurrent phe-
nomenon in quantum mechanics. The residual energy of the ground state,
that is, the energy in excess of the classical minimum, is known as zero point
energy. In effect, the kinetic energy, hence the momentum, of a bound par-
ticle cannot be reduced to zero. The minimum value of momentum is found
by equating E; to p?/2m, giving pmin = £h/2a. This can be expressed as
an uncertainty in momentum given by Ap ~ h/a. Coupling this with the
uncertainty in position, Ax = a, from the size of the box, we can write

AxAp ~h (20)

This is in accord with the Heisenberg uncertainty principle, which we will
discuss in greater detail later.

The particle-in-a-box eigenfunctions are given by Eq (14), with B =0
and k = nm/a, in accordance with (17):

Un(z) = Asin ==, p=1,2,3... (21)

a
These, like the energies, can be labelled by the quantum number n. The
constant A, thus far arbitrary, can be adjusted so that 1, (x) is normalized.

The normalization condition (2-39) is, in this case,

/ (@) de = 1 (22)

the integration running over the domain of the particle, 0 < x < a. Substi-
tuting (21) into (22),

Az/ sin2@dx:142i/ sin0df = A2 2 =1 (23)
0 a nmw Jo 2
We have made the substitution § = nmx/a and used the fact that the
average value of sin®# over an integral number of half wavelenths equals
1/2. (Alternatively, one could refer to standard integral tables.) From (23),
we can identify the normalization constant A = (2/a)'/2, for all values of
n. Finally we can write the normalized eigenfunctions:

2\ /2 nmwE
Un(z) = (—) sin —, n=123... (24)
a a



The first few eigenfunctions and the corresponding probability distributions
are plotted in Fig. 2. There is a close analogy between the states of this
quantum system and the modes of vibration of a violin string. The patterns
of standing waves on the string are, in fact, identical in form with the
wavefunctions (24).
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Figure 2. Eigenfunctions and probability
densities for particle in a box.

A significant feature of the particle-in-a-box quantum states is the oc-
currence of nodes. These are points, other than the two end points (which
are fixed by the boundary conditions), at which the wavefunction vanishes.
At a node there is exactly zero probability of finding the particle. The
nth quantum state has, in fact, n — 1 nodes. It is generally true that the
number of nodes increases with the energy of a quantum state, which can
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be rationalized by the following qualitative argument. As the number of
nodes increases, so does the number and steepness of the ‘wiggles’ in the
wavefunction. It’s like skiing down a slalom course. Accordingly, the av-
erage curvature, given by the second derivative, must increase. But the
second derivative is proportional to the kinetic energy operator. Therefore,
the more nodes, the higher the energy. This will prove to be an invaluable
guide in more complex quantum systems.

Another important property of the eigenfunctions (24) applies to the
integral over a product of two different eigenfunctions. It is easy to see from
Fig. 3 that the integral

/O“ Ya(z) Y1(z) dz =0

LA
wlxwz
A \/

Figure 3. Product of n=1 and n=2 eigenfunctions.

To prove this result in general, use the trigonometric identity
1
sin a sin 3 = 5[(308(0! — B) — cos(a + ()]

to show that "
/ UV () Yp(z)de =0 if m#mn (25)
0

This property is called orthogonality. We will show in the Chap. 4 that
this is a general result for quantum-mechanical eigenfunctions. The nor-
malization (22) together with the orthogonality (25) can be combined into
a single relationship

/ Ui (@) Yn (@) dz = Oy, (26)
0
in terms of the Kronecker delta

5 = lifm=n

0 m#n



(27)
A set of functions {t,,} which obeys (26) is called orthonormal.

Free-Electron Model

The simple quantum-mechanical problem we have just solved can provide
an instructive application to chemistry: the free-electron model (FEM) for
delocalized m-electrons. The simplest case is the 1,3-butadiene molecule

H _H
H £=C.
o= H
H H
The four m-electrons are assumed to move freely over the four-carbon frame-
work of single bonds. We neglect the zig-zagging of the C—C bonds and as-
sume a one-dimensional box. We also overlook the reality that m-electrons
actually have a node in the plane of the molecule. Since the electron wave-
function extends beyond the terminal carbons, we add approximately one-
half bond length at each end. This conveniently gives a box of length equal
to the number of carbon atoms times the C—C bond length, for butadiene,
approximately 4 x 1.40 A. Recall that 1 A=10"'m, Now, in the lowest
energy state of butadiene, the 4 delocalized electrons will fill the two lowest
FEM “molecular orbitals.” The total m-electron density will be given (as
shown in Fig. 4) by
p =297 + 293 (28)

Figure 4. Pi-electron density in butadiene.

A chemical interpretation of this picture might be that, since the m-electron
density is concentrated between carbon atoms 1 and 2, and between 3 and
4, the predominant structure of butadiene has double bonds between these
two pairs of atoms. Each double bond consists of a 7- bond, in addition

8



to the underlying o-bond. However, this is not the complete story, be-
cause we must also take account of the residual m-electron density between
carbons 2 and 3. In the terminology of valence-bond theory, butadiene
would be described as a resonance hybrid with the contributing structures
CHy=CH-CH=CH; (the predominant structure) and °CHy-CH=CH-CHz°
(a secondary contribution). The reality of the latter structure is suggested
by the ability of butadiene to undergo 1,4-addition reactions.

The free-electron model can also be applied to the electronic spectrum
of butadiene and other linear polyenes. The lowest unoccupied molecu-
lar orbital (LUMO) in butadiene corresponds to the n = 3 particle-in-a-
box state. Neglecting electron-electron interaction, the longest-wavelength
(lowest-energy) electronic transition should occur from n = 2, the highest
occupied molecular orbital (HOMO).

The energy difference is given by

h2
8mL?
Here m represents the mass of an electron (not a butadiene molecule!),

9.1x1073! Kg, and L is the effective length of the box, 4 x 1.40 x 10710 m.
By the Bohr frequency condition

AE = E3 — Ey = (3% — 2?) (29)

AE = hy = % (30)
The wavelength is predicted to be 207 nm. This compares well with the
experimental maximum of the first electronic absorption band, A, =~ 210
nm, in the ultraviolet region.

We might therefore be emboldened to apply the model to predict
absorption spectra in higher polyenes CHy=(CH-CH=),,_1CH;. For the
molecule with 2n carbon atoms (n double bonds), the HOMO — LUMO
transition corresponds to n — n + 1, thus

he 2 2
7%[(714-1) — n”|

h2
8m(2nL00)2

(31)



A wuseful constant in this computation is the Compton wavelength h/mc =
2.426 x 10~'?m. For n = 3, hexatriene, the predicted wavelength is 332
nm, while experiment gives A\.x =~ 250 nm. For n = 4, octatetraene, FEM
predicts 460 nm, while A\ .« &~ 300 nm. Clearly the model has been pushed
beyond it range of quantitative validity, although the trend of increasing
absorption band wavelength with increasing n is correctly predicted. Inci-
dentally, a compound should be colored if its absorption includes any part
of the visible range 400-700 nm. Retinol (vitamin A), which contains a
polyene chain with n = 5, has a pale yellow color. This is its structure:

B B
HC . CHs H3 H3
HE f=t = e OH
CHs

Particle in a Three-Dimensional Box

A real box has three dimensions. Consider a particle which can move freely
with in rectangular box of dimensions a X b X ¢ with impenetrable walls.
In terms of potential energy, we can write

0 inside box
V » Yy — { .
(#,9,2) oo outside box

(32)

Again, the wavefunction must vanish everywhere outside the box. By the
continuity requirement, the wavefunction must also valish in the six surfaces
of the box. Orienting the box so its edges are parallel to the cartesian
axes, with one corner at (0,0,0), the following boundary conditions must be
satisfied:

Y(x,y,z) =0when x =0,z =a,y=0,y=bz=0o0r z =c (33)

Inside the box, where the potential energy is everywhere zero, the Hamil-
tonian is simply the three-dimensional kinetic energy operator and the
Schrodinger equation reads
52
—%V%/J(a:,y,z) - E@/J(QS’,:U,Z) (34)
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subject to the boundary conditions (33). This second-order partial diffential
equation is separable in cartesian coordinates, with a solution of the form

Y(z,y,2) = X(2)Y(y) Z(2) (35)

subject to the boundary conditions

Substituting (35) into (34) and dividing through by (35), we obtain

X"z) Y'"(y) Z"(z) 2mFE
X(x) Yy | Z()

~ 0 (37)

Each of the first three terms in (37) depends on one variable only, indepen-
dent of the other two. This is possible only if each term separately equals
a constant, say, —a?, —3% and —v?2, respectively. These constants must be
negative in order that F > 0. Eq (37) is thereby transformed into three
ordinary differential equations

X"+ 02X =0, Y + %Y =0, 7" +~%Z =0 (38)
subject to the boundary conditions (36). The constants are related by

2mE
h2

= o’ + 7 ++° (39)

Each of the equations (38), with its associated boundary conditions
in (36) is equivalent to the one-dimensional problem (13) with boundary
conditions (11). The normalized solutions X (z), Y (y), Z(z) can therefore
be written down in complete analogy with (24):

2\ /2 NnimTT
an(a:):<—) sin 1a : np=1,2...

11



2 1/2 n3mz
Zny(x) = (E) sin o nyg=1,2... (40)

The constants in Eq (39) are given by

nym
o= g Tem o Dsm (41)

and the allowed energy levels are therefore

h? [n? nZ2 n2
Enl,ng,ng = 8_m (a—;‘l‘b_;‘l‘c—g) y nl,ng,n3:1,2... (42)

Three quantum numbers are required to specify the state of this three-
dimensional system. The corresponding eigenfunctions are

1/2
8
Yy g ns (T, Y, 2) = (V) sin nl;r:c sin nggry sin n?’:Z (43)

where V' = abc, the volume of the box. These eigenfunctions form an
orthonormal set [cf. Eq (26)] such that

a b c
/ / ,/ wnll’nlz’né (x’y’z) ¢n1,n2,n3 (.CE,y, Z) drdydz
0 0 0
Gt Oy Oty (44)

.
Note that two eigenfunctions will be orthogonal unless all three quantum
numbers match. The three-dimensonal matter waves represented by (43)
are comparable with the modes of vibration of a solid block. The nodal
surfaces are planes parallel to the sides, as shown here:

. : . e Figure 5. Nodal planes for particle
e S S in a box, for ny =4,ny = 2,n3 = 3.

- - rr - - - - - - 7 7 |
| | |
| | |
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When the box has the symmetry of a cube, with a = b = ¢, the energy
formula (42) simplifies to

]’L2

Sma2 (nf +n3 +n3), ni1,n2,n3=1,2... (45)

Enl yNn2,n3 =

Quantum systems with symmetry generally exhibit degeneracy in their en-
ergy levels. This means that there can exist distinct eigenfunctions which
share the same eigenvalue. An eigenvalue which corresponds to a unique
eigenfunction is termed nondegenerate while one which belongs to n different
eigenfunctions is termed n-fold degenerate. As an example, we enumerate
the first few levels for a cubic box, with E,, 5, n, expressed in units of

h? /8ma?:

FE11,1 = 3 (nondegenerate)

Fi12=FEi121 = F>1,1 =06 (3-fold degenerate)

Fi22=~Fy12=F321 =29 (3-fold degenerate)

Fi13=F131=FE311 =11 (3-fold degenerate)

E5 52 = 12 (nondegenerate)
Fio3=F132=Fy13=Fs31=FE312=FE35; =14 (6-fold degenerate)

The particle in a box is applied in statistical thermodynamics to model
the perfect gas. Each molecule is assumed to move freely within the box
without interacting with the other molecules. The total energy of N mole-
cules, in any distribution among the energy levels (45), is proportional to
1/a?, thus

E = const V2/3

From the differential of work dw = —pdV, we can identify

dE 2 E

PE I T3V

But the energy of a perfect monatomic gas is known to equal %nRT, which
leads to the perfect gas law

pV =nRT

13



Chapter 3. Exercises

1. Which of the following is not a solution y(x) of the differential equation
y"(z) + k?y(z) = 0 (k = constant): (i) sin(kx) (i) cos(kx)  (iii) et*®
(iv) e7*®  (v) sin(kx + ) (a = constant).

2. For a particle in a 1-dimensional box, calculate the probability that the
particle will be found in the middle third of the box: L/3 < z < 2L/3.
From the general formula for arbitrary n, find the limiting value as n — oc.

3. Predict the wavelength (in nm) of the lowest-energy electronic transition
in the following polymethine ion:

(CH3)oN*t = CH — CH = CH — CH = CH — N(CHjs),

Assume that all the C-C and C-N bonds lengths equal 1.40 A. Note that
N and N contribute 1 and 2 w-electrons, respectively.

4. In this calculation you will determine the order of magnitude of nuclear
energies. Assume that a nucleus can be represented as a cubic box of side
10714 m. The particles in this box are the nucleons (protons and neutrons).
Calculate the lowest allowed energy of a nucleon. Express your result in
MeV (1 MeV = 10%V = 1.602 x10713 J).

5. Consider the hypothetical reaction of two “cube-atoms” to form a “moly-
box”:

T

«— a—> +«—2da—

Each cube-atom contains one electron. The interaction between electrons
can be neglected. Determine the energy change in the above reaction.



6. Consider the two-dimensional particle-in-a-box—a particle free to move
on a square plate of side a. Solve the Schrodinger equation to obtain the
eigenvalues and eigenfunctions. You should be able to do this entirely by
analogy with solutions we have already obtained. Discuss the degeneracies
of the lowest few energy levels.

7. As a variant on the free-electron model applied to benzene, assume that
the six 7 electrons are delocalized within a square plate of side a. Calculate
the value of a that would account for the 268 nm ultraviolet absorption in
benzene.



Answers to Exercises
1. y = e % is a solution of the differential equation 3" (z) — k%y(x) = 0.
(Note the minus sign.)

2. 2L/3
P(L/3 <z <2L/3) :/ | (2)|? do
L/3
/2L/3 . o (NTX 2 L [0 sin2(9rm/3
ot () g 2L T0
L/ L Lnr |2 4

o

nw/3

Note
sin(4nm/3) = sin(4nn /3 — 2n7) = sin(—2nw/3) = — sin(2nw/3)

Thus

As n — oo, this approaches 1/3.

3. Polymethine ion: Nt*=C-C=C-C=C-N, 8 electrons (1 from each C, 1
from N*, 2 from N), L ~ 7 x 1.40A.

he h? .,
X T Emz® )

giving A = 352 nm.

4. For particle of mass M = 1.67 x 10727 kg in cubic box with a = 10714
m, ground-state energy is

h2

E =
T 8 M a2

(12 + 1% + 1°) ~ 6.15MeV




5. Energy of 2 electrons in molybox minus that of 2 electrons in cube-atoms:

h2 12 12 12 h2 3 h2
AE =2 x — 4+ =] -2 121012412y = -2
8m ((Za)2 * a? i a2) 8ma? P+ 17+ 1%) 16 ma?

Note that the molybox is more stable (has lower energy). One of the fac-
tors promoting formation of molecules from atoms is the increased volume
available to valence electrons.

6. By analogy with 3-dimensional particle-in-a-box

2 . /niTT\ . [NoTY
Unin, = — sin ( ) sin ( )
a

a a
h2

2 2
Enin, = (nl —|—n2) niy, ne=1,2...

8ma?

Ground state Ey; = h? /Zlma2 is nondegenerate. First excited level, with
FEo1 = By = 5h2/8ma2, is 2-fold degenerate.

7. Six m-electrons occupy FEi1, F12 and FEs;. Lowest-energy transition is
from E12 or E21 to EQQI

he h?
— = Foy — Fy =
\ 29 21 = 2

(8-5)

)\ = 268 nm when a = 4.94A.



CHAPTER 4
PRINCIPLES OF QUANTUM MECHANICS

In this Chapter we will continue to develop the mathematical formalism
of quantum mechanics, using heuristic arguments as necessary. This will
lead to a system of postulates which will be the basis of our subsequent
applications of quantum mechanics.

Hermitian Operators

An important property of operators is suggested by considering the Hamil-
tonian for the particle in a box:

~ h? d?
H="om @ M)

Let f(z) and g(x) be arbitrary functions which obey the same boundary
values as the eigenfunctions of H, namely that they vanish at x = 0 and
x = a. Consider the integral

/f ) g(a /f g'( (2)

Now, using integration by parts,

(2) ¢ (& P d@dn+ @@ ©
Oaf 0

The boundary terms vanish by the assumed conditions on f and g. A second
integration by parts transforms (3) to

+ [ gt d - [ o]

0

It follows therefore that

/ " fe) Hgle) de = / " g@) I f(x) da (4)
0 0



An obvious generalization for complex functions will read

[ r@is@an= ([ @) (5)

In mathematical terminology, an operator A for which

/f*Ang:(/g*Ade)* (6)

for all functions f and g which obey specified boundary conditions is classi-
fied as hermitian or self-adjoint. Evidently, the Hamiltonian is a hermitian
operator. It is postulated that all quantum-mechanical operators that rep-
resent dynamical variables are hermitian.

Properties of Eigenvalues and Eigenfunctions

The sets of energies and wavefunctions obtained by solving any quantum-
mechanical problem can be summarized symbolically as solutions of the
eigenvalue equation

I:I Yn = Ep ¥y (7)
For another value of the quantum number, we can write
Hpm = Ep o (8)

Let us multiply (7) by ¢ and the complex conjugate of (8) by . Then
we subtract the two expressions and integrate over d7. The result is

[t (| w;ﬁwde)*:<En—E;>/¢mndT )

But by the hermitian property (5), the left-hand side of (9) equals zero.
Thus

(B — E) / U dr = 0 (10)

Consider first the case m = n. The second factor in (10) then becomes the
normalization integral [ X, dr, which equals 1 (or at least a nonzero
constant). Therefore the first factor in (10) must equal zero, so that

E* = E, (11)

n
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implying that the energy eigenvalues must be real numbers. This is quite
reasonable from a physical point of view since eigenvalues represent possible
results of measurement. Consider next the case when F,, # E,,. Then it is
the second factor in (10) that must vanish and

/ U by dr =0 when FE,, # E, (12)

Thus eigenfunctions belonging to different eigenvalues are orthogonal. In
the case that 1, and 1, are degenerate eigenfunctions, so m # n but
E,, = FE,, the above proof of orthogonality does not apply. But it is always
possible to construct degenerate functions that are mutually orthogonal. A
general result is therefore the orthonormalization condition

It is easy to prove that a linear combination of degenerate eigenfunc-
tions is itself an eigenfunction of the same energy. Let

Hns = Ep ¥y, k=1,2...d (14)

where the v, represent a d-fold degenerate set of eigenfunctions with the
same eigenvalue F,,. Consider now the linear combination

Y =c1¥n1 + c2Vp2+ ...+ Cqt¥n.a (15)

Operating on ¢ with the Hamiltonian and using (14), we find

ﬁ¢ = Clﬁ¢n,1 + C2I:Iwn,2 + ...
= En(c1¥n1 + c2na+...) = Epy (16)

which shows that the linear combination ¢ is also an eigenfunction of the
same energy. There is evidently a limitless number of possible eigenfunc-
tions for a degenerate eigenvalue. However, only d of these will be linearly
independent.



Dirac Notation [OPTIONAL]

The term orthogonal has been used both for perpendicular vectors and for
functions whose product integrates to zero. This actually connotes a deep
connection between vectors and functions. Consider two orthogonal vectors
a and b. Then, in terms of their x,y, 2z components, labelled by 1, 2, 3,
respectively, the scalar product can be written

a-b=aib; + asby +aszbz =0 (17)

Suppose now that we consider an analogous relationship involving vectors
in n-dimensional space (which you need not visualize!). We could then write

a-b=> arby=0 (18)
k=0

Finally let the dimension of the space become nondenumerably infinite,
turning into a continuum. The sum (18) would then be replaced by an
integral such as

/ a(z) b(z) dz = 0 (19)

But this is just the relation for orthogonal functions. A function can there-
fore be regarded as an abstract vector in a higher-dimensional continuum,
known as Hilbert space. This is true for eigenfunctions as well. Dirac de-
noted the vector in Hilbert space corresponding to the eigenfunction 1, by
the symbol |n). Correspondingly, the complex conjugate 1, is denoted by
(m|. The integral over the product of the two functions is then analogous
to a scalar product of the abstract vectors, written

/ Wt Y dr = (m] - |n) = (min) (20)

The last quantity is known as a bracket, which led Dirac to designate the
vectors (m| and |n) as a “bra” and a “ket,” respectively. The orthonormality
conditions (13) can be written

(m|n) = dmn (21)
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The integral of a “sandwich” containing an operator A can be written very
compactly in the form

/ W, Aty dr = (] Aln) (22)

The hermitian condition on A [cf. Eq (6)] is therefore expressed as

(m|Aln) = (n|AJm)” (23)

Expectation Values

One of the extraordinary features of quantum mechanics is the possibility
for superpositions of states. The state of a system can sometimes exist as
a linear combination of other states, for example,

Y = c191 + a1y (24)

Assuming that all three functions are normalized and that 17 and 15 are
orthogonal, we find

/ e = e+ |eof? = 1 (25)

We can interpret |c;|? and |c3|? as the probabilities that a system in a state
described by v can have the attributes of the states 11 and 5, respectively.
Suppose 11 and 1o represent eigenstates of an observable A, satisfying the
respective eigenvalue equations

Ay = arih and Apy = agiy (26)

Then a large number of measurements of the variable A in the state v
will register the value a; with a probability |c;|? and the value ay with a
probability |c2]?. The average value or expectation value of A will be given
by

<A> = \cl|2a1 + |CQ|2CL2 (27)

This can be obtained directly from ¢ by the “sandwich construction”

(A) = / W* Anp dr (28)



or, if 1 is not normalized,

[ Aydr

W= T

(29)

Note that the expectation value need not itself be a possible result of a
single measurement (like the centroid of a donut, which is located in the
hole!). When the operator Ais a simple function, not containing differen-
tial operators or the like, then (28) reduces to the classical formula for an
average value:

(A) :/ApdT (30)

More on Operators

An operator represents a prescription for turning one function into another:
in symbols, Ajp = ¢. From a physical point of view, the action of an
operator on a wavefunction can be pictured as the process of measuring
the observable A on the state 1. The transformed wavefunction ¢ then
represents the state of the system after the measurement is performed. In
general ¢ is different from 1), consistent with the fact that the process of
measurement on a quantum system produces an irreducible perturbation
of its state. Only in the special case that ¢ is an eigenstate of A, does a
measurement preserve the original state. The function ¢ is then equal to
an eigenvalue a times 1.

The product of two operators, say AB, represents the successive action
of the operators, reading from right to left-ie., first B then A. In general,
the action of two operators in the reversed order, say B A, gives a different
result, which can be written AB;H? A. We say that the operators do not
commute. This can be attributed to the perturbing effect one measurement
on a quantum system can have on subsequent measurements. An example
of non-commuting operators from everyday life. In our usual routine each
morning, we shower and we get dressed. But the result of carrying out these
operations in reversed order will be dramatically different!

The commutator of two operators is defined by

A A

A, B]

AB—-BA (31)
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When [A, B] = 0, the two operators are said to commaute. This means
their combined effect will be the same whatever order they are applied (like
brushing your teeth and showering).

The uncertainty principle for simultaneous measurement of two observ-
ables A and B is closely related to their commutator. The uncertainty Aa
in the observable A is defined in terms of the mean square deviation from
the average:

(Aa)® = (A~ (4))%) = (4?) - (4)? (32)

It corresponds to the standard deviation in statistics. The following inequal-
ity can be proven for the product of two uncertainties:

Ba b > S|(A,B) (33)

The best known application of (33) is to the position and momentum op-
erators, say & and p,. Their commutator is given by

so that
Az Ap > h/2 (35)

which is known as the Heisenberg uncertainty principle. This fundamental
consequence of quantum theory implies that the position and momentum
of a particle cannot be determined with arbitrary precision—the more ac-
curately one is known, the more uncertain is the other. For example, if
the momentum is known exactly, as in a momentum eigenstate, then the
position is completely undetermined.

If two operators commute, there is no restriction on the accuracy of
their simultaneous measurement. For example, the x and y coordinates of
a particle can be known at the same time. An important theorem states
that two commuting observables can have simultaneous eigenfunctions. To
prove this, write the eigenvalue equation for an operator A

A Yy = ap Py (36)
then operate with B and use the commutativity of A and B to obtain
BAy, =AB, =a, B, (37)
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This shows that B, is also an eigenfunction of A with the same eigenvalue
an. This implies that

B Y, = const Y, = by Py (38)

showing that v, is a simultaneous eigenfunction of A and B with eigenvalues
an, and b,,, respectively. The derivation becomes slightly more complicated
in the case of degenerate eigenfunctions, but the same conclusion follows.

After the Hamiltonian, the operators for angular momenta are proba-
bly the most important in quantum mechanics. The definition of angular
momentum in classical mechanics is L = r x p. In terms of its cartesian
components,

L, =yp. — zpy
Ly = ZPx — TP,
L, = TPy — YPx (39)

In future, we will write such sets of equation as “L, = yp, — zpy, et cyc,”
meaning that we add to one explicitly stated relation, the versions formed
by successive cyclic permutation * — y — z — x. The general prescrip-
tion for turning a classical dynamical variable into a quantum-mechanical
operator was developed in Chap 2. The key relations were the momentum
components

. G . L0 .0
Dy = _Zhé‘_x’ Dy = —zha—y D, = —zh& (40)

with the coordinates x, y, z simply carried over into multiplicative oper-
ators. Applying (40) to (39), we construct the three angular momentum
operators

. 0 0
L, = —ih (y— — z—) et cyc (41)
Y
while the total angular momentum is given by
r2 72 72, 72
L* =L, + L, + L; (42)

The angular momentum operators obey the following commutation rela-
tions:

A

Lx,f) :ihﬁz et cyc 43
y
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but o
(L2, L,] =0 (44)

and analogously for L, and f) This is consistent with the existence of

simultaneous eigenfunctions of L2 and any one component, conventionally
designated L. But then these states cannot be eigenfunctions of either L,
or L

Postulates of Quantum Mechanics

Our development of quantum mechanics is now sufficiently complete that
we can reduce the theory to a set of postulates.

Postulate 1. The state of a quantum-mechanical system is com-
pletely specified by a wavefunction ¥ that depends on the co-
ordinates and time. The square of this function W*W gives the
probability density for finding the system with a specified set of
coordinate values.

The wavefunction must fulfill certain mathematical requirements because of
its physical interpretation. It must be single-valued, finite and continuous.
It must also satisfy a normalization condition

/ T dr = 1 (45)

Postulate 2. Every observable in quantum mechanics is repre-
sented by a linear, hermitian operator.

The hermitian property was defined in Eq (6). A linear operator is one
which satisfies the identity

A<C1”¢1 + co1po) = lelwl + 02121% (46)

which is required in order to have a superposition property for quantum
states. The form of an operator which has an analog in classical mechanics
is derived by the prescriptions

f=r, p=—ihV (47)



which we have previously expressed in terms of cartesian components [cf.
Eq (40)].

Postulate 3. In any measurement of an observable A, associated
with an operator A, the only possible results are the eigenvalues
a,, which satisfy an eigenvalue equation

A@Dn = Gp Yn (48)

This postulate captures the essence of quantum mechanics—the quantiza-
tion of dynamical variables. A continuum of eigenvalues is not forbidden,
however, as in the case of an unbound particle.

Every measurement of A invariably gives one of the eigenvalues. For
an arbitrary state (not an eigenstate of A), these measurements will be
individually unpredictable but follow a definite statistical law, which is the
subject of the fourth postulate:

Postulate 4. For a system in a state described by a normalized
wave function ¥ | the average or expectation value of the observ-
able corresponding to A is given by

(A%:/GFAWdT (49)
Finally,

Postulate 5. The wavefunction of a system evolves in time in
accordance with the time-dependent Schrodinger equation

) 2
iher = HY (50)

For time-independent problems this reduces to the time-independent Schro-
dinger equation
Hy=Ey (51)

which is the eigenvalue equation for the Hamiltonian operator.
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The Variational Principle

Except for a small number of intensively-studied examples, the Schrodinger
equation for most problems of chemical interest cannot be solved exactly.
The variational principle provides a guide for constructing the best possible
approximate solutions of a specified functional form. Suppose that we seek
an approximate solution for the ground state of a quantum system described
by a Hamiltonian H. We presume that the Schrodinger equation

Hpo = Eotho (52)

is too difficult to solve exactly. Suppose, however, that we have a function @Z
which we think is an approximation to the true ground-state wavefunction.
According to the variational principle (or variational theorem), the following
formula provides an upper bound to the exact ground-state energy FEjy:

~:f&*ﬁ@2d7'
B 2 b (53)

Note that this ratio of integrals has the same form as the expectation value
(H) defined by (29). The better the approximation 1, the lower will be the
computed energy E, though it will still be greater than the exact value. To
prove Eq (53), we suppose that the approximate function can, in concept, be
represented as a superposition of the actual eigenstates of the Hamiltonian,

analogous to (24),

W = cothg + crhy + .. (54)

This means that ¢, the approximate ground state, might be close to the
actual ground state 1)y but is “contaminated” by contributions from excited
states ¢, ... Of course, none of the states or coefficients on the right-hand
side is actually known, otherwise there would no need to worry about ap-
proximate computations. By Eq (25), the expectation value of the Hamil-
tonian in the state (54) is given by

E: |Co|2E0+ ‘01’2E1 + - (55)

Since all the excited states have higher energy than the ground state,
E17E2 R 2 E(), we find

E > (leo]? +|e1]* + - -) Eo = Eo (56)

11



assuming @Z has been normalized. Thus F must be greater than the true
ground-state energy Ey, as implied by (53)

As a very simple, although artificial, illustration of the variational prin-
ciple, consider the ground state of the particle in a box. Suppose we had
never studied trigonometry and knew nothing about sines or cosines. Then a
reasonable approximation to the ground state might be an inverted parabola
such as the normalized function

i@ = (%) e (57)

Fig. 1 shows this function along with the exact ground-state eigenfunction

T

di(e) = <—>1/251n T (59)

a

x/a

Figure 1. Variational approximation for particle in a box.

A variational calculation gives

. a A2\ -
B [ i) (5 ) 9 de =
0 2m
5 h? 10
——— = —F; =1.01321F 59
A2 ma® w2 ! (59)
in terms of the exact ground state energy F; = h?/8ma?. In accord with
the variational theorem, £ > F;. The computation is in error by about

1%.
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Chapter 4. Exercises

1. If ¢ happens to be an eigenfunction of an operator A with the eigenvalue
a, evaluate the expectation value (A).

2. Discuss why the noncommutativity of observables is not generally sig-
nificant in everyday life. For example, why can we simultaneously measure
the instantaneous position and momentum of a pitched baseball with con-
fidence?

3. Evaluate the commutator [x,p,]| used to derive the Heisenberg uncer-
tainty principle. Hint: First compute the quantity zp,f(x) — p.zf(x),

where f(z) is a arbitrary function.

4. Convince yourself of the correctness of the commutation relation

Ly, L) = ihL,

5. Can you measure simultaneously a particle’s y position coordinate and
r-component of momentum?



CHAPTER 5
THE HARMONIC OSCILLATOR

The harmonic oscillator is a model which has several important applications
in both classical and quantum mechanics. It serves as a prototype in the
mathematical treatment of such diverse phenomena as elasticity, acoustics,
AC circuits, molecular and crystal vibrations, electromagnetic fields and
optical properties of matter.

Classical Oscillator

A simple realization of the harmonic oscillator in classical mechanics is a
particle which is acted upon by a restoring force proportional to its displace-
ment from its equilibrium position. Considering motion in one dimension,
this means

F=—kx (1)
k
I g F
a Figure 1. Spring obeying
Hooke’s law.
-

if] X

Such a force might originate from a spring which obeys Hooke’s law, as
shown in Fig. 1. According to Hooke’s law, which applies to real springs
for sufficiently small displacements, the restoring force is proportional to
the displacement—either stretching or compression—from the equilibrium
position. The force constant k is a measure of the stiffness of the spring.
The variable x is chosen equal to zero at the equilibrium position, positive
for stretching, negative for compression. The negative sign in (1) reflects
the fact that F' is a restoring force, always in the opposite sense to the
displacement x.



Applying Newton’s second law to the force from Eq (1), we find

d?z
where m is the mass of the body attached to the spring, which is itself
assumed massless. This leads to a differential equation of familiar form,
although with different variables:

#(t) + w?z(t) =0, w? =k/m (3)

The dot notation (introduced by Newton himself) is used in place of primes
when the independent variable is time. The general solution to (3) is

x(t) = Asinwt + B coswt (4)

which represents periodic motion with a sinusoidal time dependence. This is
known as simple harmonic motion and the corresponding system is known
as a harmonic oscillator. The oscillation occurs with a constant angular
frequency

k
w=4]— radians per second (5)
m

This is called the natural frequency of the oscillator. The correponding
circular frequency in hertz (cycles per second) is

1
v =2 LA (6)

2772% m

The general relation between force and potential energy in a conservative
system in one dimension is

F=—-— (7)

Thus the potential energy of a harmonic oscillator is given by

V(z)=1ka’ (8)

which has the shape of a parabola, as drawn in Fig. 2. A simple computa-
tion shows that the oscillator moves between positive and negative turning

2



max

while the kinetic energy is momentarily zero. In contrast, when the oscilla-
tor moves past x = 0, the kinetic energy reaches its maximum value while
the potential energy equals zero.

points *+x,.x Where the total energy E equals the potential energy % k 2?2

V(xX)

Figure 2. Potential energy function and first few energy
levels for harmonic oscillator.

Harmonic Oscillator in Quantum Mechanics

Given the potential energy (8), we can write down the Schrodinger equation
for the one-dimensional harmonic oscillator:

h2 7 1 2 —
—5—0" (@) + Sha*y(z) = B (o) (9)

For the first time we encounter a differential equation with non-constant

coefficients, which is a much greater challenge to solve. We can combine
the constants in (9) to two parameters

5 mk 2mkE

a“=— and \= 2

- (10)

(87



and redefine the independent variable as
¢ =a'?z (11)
This reduces the Schrodinger equation to

() + (A= E)(€) =0 (12)

The range of the variable z (also £) must be taken from —oo to 400, there
being no finite cutoff as in the case of the particle in a box.

A useful first step is to determine the asymptotic solution to (11), that
is, the form of ¥(§) as £ — 4oo. For sufficiently large values of [£], £2 >> A
and the differential equation is approximated by

P"(€) = E*(€) =0 (13)

This suggests the folllowing manipulation:

(=)o~ (n-¢) g+ )uo~0  ay
The first-order differential equation
J(E) + () = 0 (15)
can be solved exactly to give
W(€) = conste & /2 (16)

Remarkably, this turns out to be an exact solution of the Schrédinger equa-
tion (12) with A = 1. Using (10), this corresponds to an energy

Mo k
E- — i)l =1 17
2m 2" m 2w (17)

where w is the natural frequency of the oscillator according to classical
mechanics. The function (16) has the form of a gaussian, the bell-shaped
curve so beloved in the social sciences. The function has no nodes, which
leads us to conclude that this represents the ground state of the system.

4



The ground state is usually designated with the quantum number n = 0
(the particle in a box is a exception, with n = 1 labelling the ground state).
Reverting to the original variable x, we write

Yo () = const e—ov" /2, o = (mk/h?)/? (18)

With help of the well-known definite integral (Laplace 1778)
o0 1/2
/ e~ dy = (E> (19)
oo e
we find the normalized eigenfunction

(87

vo(z) = (—)1/4 ooz’ /2 (20)

0

with the corresponding eigenvalue

EO =zhw (21)

1
2

Drawing from our experience with the particle in a box, we might
surmise that the first excited state of the harmonic oscillator would be a
function similar to (20), but with a node at z = 0, say,

Y1 (z) = const x e /2 (22)

This is orthogonal to ¥y(z) by symmetry and is indeed an eigenfunction

with the eigenvalue
By =3hw (23)

Continuing the process, we try a function with two nodes
Vo(x) = const (2° — a) e=oc" /2 (24)

Using the integrals tabulated in the Supplement 5, on Gaussian Integrals,
we determine that with ¢ = 1/2 makes 19(z) orthogonal to ¥y(z) and
1 (x). We verify that this is another eigenfunction, corresponding to

E2 = %hw (25)

5!



The general result, which follows from a more advanced mathematical
analysis, gives the following formula for the normalized eigenfunctions:

() = (anﬁ)l/2 H,(v/az) e=oe’/2 (26)

where H,, (&) represents the Hermite polynomial of degree n. The first few
Hermite polynomials are

Ho(§) =1
Hy (&) = 2¢
Hy (&) = 4€% — 2
Hj(g) = 86 — 12¢ (27)

The four lowest harmonic-oscillator eigenfunctions are plotted in Fig. 3.
Note the topological resemblance to the corresponding particle-in-a-box
eigenfunctions.

A ,f/
W3(x)
/
7 =
T Pt
Py(X) L~ N
A/
B
AT Figure 3. Harmonic oscillator
00—t [~ eigenfunctions for n=0, 1, 2, 3.
]S
P
Wo(x) P
0 X—

The eigenvalues are given by the simple formula

E,=(n+ 3)hw (28)



These are drawn in Fig. 2, on the same scale as the potential energy. The

ground-state energy Ey = 1hw is greater than the classical value of zero,

-2
again a consequence of the uncertainty principle.
It is remarkable that the difference between successive energy eigenval-

ues has a constant value
AFE =F,+1 — FE, = hw = hv (29)

This is reminiscent of Planck’s formula for the energy of a photon. It comes
as no surprise then that the quantum theory of radiation has the structure
of an assembly of oscillators, with each oscillator representing a mode of
electromagnetic waves of a specified frequency.



Supplement 5. Gaussian Integrals

An apocryphal story is told of a math major showing a psychology major
the formula for the infamous bell-shaped curve or gaussian, which purports
to represent the distribution of intelligence and such:

I DISTRIBUTION
0.025 Fainy

0.02 / \

0.015 / \
/ \

sl /] \
ol N

60 B0 1o 120 140

The formula for a normalized gaussian looks like this:

1
e—x2/202
o\ 2T

plx) =

The psychology student, unable to fathom the fact that this formula con-

tained 7, the ratio between the circumference and diameter of a circle,

asked “Whatever does m have to do with intelligence?” The math student

is supposed to have replied, “If your IQQ were high enough, you would un-

derstand!” The following derivation shows where the m comes from.
Laplace (1778) proved that

/_o; e dr = /7 (1)

This remarkable result can be obtained as follows. Denoting the integral
by I, we can write

(oo 2 o (0.@)
I? = (/ e da:) = / e da / e dy (2)

where the dummy variable y has been substituted for x in the last integral.
The product of two integrals can be expressed as a double integral:

I? = / / e~ (@) g dy



The differential dx dy represents an elementof area in cartesian coordinates,
with the domain of integration extending over the entire xy-plane. An
alternative representation of the last integral can be expressed in plane
polar coordinates r, 6. The two coordinate systems are related by

x =1cosb, y = rsinf (3)

so that
r? =2 +y? (4)

The element of area in polar coordinates is given by rdr df, so that the
double integral becomes

00 27
I? = / / e rdrdf (5)
o Jo

Integration over 6 gives a factor 27w. The integral over r can be done after
the substitution v = r?, du = 2r dr:

/ e rdr = ) / e " du= 3 (6)
0 0

Therefore I? = 27 x 3 and Laplace’s result (1) is proven.
A slightly more general result is

[Lemra= )" "

obtained by scaling the variable = to /au.
We require definite integrals of the type

o0 2
/ " e du, n=1,23... (8)

— 00

for computations involving harmonic oscillator wavefunctions. For odd n,
the integrals (8) are all zero since the contributions from {—o0,0} exactly
cancel those from {0,00}. The following stratagem produces successive

2



integrals for even n. Differentiate each side of (7) wrt the parameter a and
cancel minus signs to obtain

oo 1/2
2 —ax? . ™
/ xe dx = PR (9)

— 0

Differentiation under an integral sign is valid provided that the integrand
is a continuous function. Differentiating again, we obtain

o0 o 37.[.1/2
/_Oo zte dr = P (10)
The general result is
o 1-3-5-+|n—1|71/2
/_OO:U e dr = TIEPCESVE , n=0,2,4... (11)



Chapter 5. Exercises

1. For a classical harmonic oscillator, the particle can not go beyond the
points where the total energy equals the potential energy. Identify these
points for a quantum-mechanical harmonic oscillator in its ground state.
Write an integral giving the probability that the particle will go beyond
these classically-allowed points. (You need not evaluate the integral.)

2. Evaluate the average (expectation) values of potential energy and kinetic
energy for the ground state of the harmonic oscillator. Comment on the
relative magnitude of these two quantities.

3. Apply the Heisenberg uncertainty principle to the ground state of the
harmonic oscillator. Applying the formula for expectation values, calculate

Ax = /(2?) — (x)? and Ap = +/(p?) — (p)?

and find the product AzAp.



Solutions to Exercises

1. The turning points for quantum number occur where the kinetic energy
equals 0, so that the potential energy equals the total energy. For quantum
number n, this is determined by

1 1
§k:€fnax = <n+ 5) huw
recalling that w = /k/m and o = vVmk/h, we find

22 = (2n+1) h :(2n—|—1)

max \/% «

Therefore

P(xmax <z < OO) = P(_OO <z < _xmaX) = / Wn(l’)\2 dx

xmax

[Optional: For n =0,

™

e 1/2 2 2 o 2
Foutside = 2/ <g> e ™ dx = —/ e~¢ dé = erfe(1) ~ 0.158
1/va VT )i

where erfc is the complementary error function. This result means that in
the ground state, there is a 16% chance that the oscillator will “tunnel”
outside its classical allowed region.]

2.
Do) = (a/m) e o= (mb /)2

Using integrals in Supplement 5,

1= [ ww (%kx) vo(@)dr = 1 = o= Lk



Thus the average values of potential and kinetic energies for the harmonic
oscillator are equal. This is an instance of the virial theorem, which states
that for a potential energy of the form V' (x) = const 2™, the average kinetic
and potential energies are related by

(T) = 5(V)

3. The expectation values (r) and (p) are both equal to zero since they
are integrals of odd functions, such that f(—z) = — f(x), over a symmetric
range of integration. You have already calculated the expectation values
(x2) and (p?) in Exercise 2, namely

R

2

Therefore

AxAp =

which is its minimum possible value.



Chapter 6
ANGULAR MOMENTUM

Particle in a Ring

Consider a variant of the one-dimensional particle in a box problem in which
the x-axis is bent into a ring of radius R. We can write the same Schrodinger
equation

2 g2
TV gy 0
m dx
There are no boundary conditions in this case since the x-axis closes upon
itself. A more appropriate independent variable for this problem is the
angular position on the ring given by, ¢ = x/R. The Schrédinger equation
would then read

h o d*p(9)

e i = BV 8

The kinetic energy of a body rotating in the xzy-plane can be expressed as
LQ

E=== 3

5] (3)

where I = mR? is the moment of inertia and L., the z-component of angular
momentum. (Since L =r x p, if r and p lie in the zy-plane, L points in the
z-direction.) The structure of Eq (2) suggests that this angular-momentum
operator is given by

A 0
L, =—ih— 4
i (4)
This result will follow from a more general derivation in the following Sec-
tion. The Schrédinger equation (2) can now be written more compactly

Y () +m*(¢) =0 ()

where
m? = 2IE /h? (6)

(Please do not confuse this variable m with the mass of the particle!) Pos-
sible solutions to (5) are

Y (¢) = const etime (7)

1



In order for this wavefunction to be physically acceptable, it must be single-
valued. Since ¢ increased by any multiple of 27 represents the same point
on the ring, we must have

(¢ + 2m) = () (8)
and therefore
eim(o+2m) _ im¢ (9)
This requires that
e?mm = 1 (10)
which is true only is m is an integer:
m=0, +1, £2... (11)
Using (6), this gives the quantized energy values
2
E,, = % m? (12)

In contrast to the particle in a box, the eigenfunctions corresponding to +m
and —m [cf. Eq (7)] are linearly independent, so both must be accepted.
Therefore all eigenvalues, except Ey, are two-fold (or doubly) degenerate.
The eigenfunctions can all be written in the form const e?, with m al-
lowed to take either positive and negative values (or 0), as in Eq (10). The
normalized eigenfunctions are

1 im
@Dm(cb):\/%e ’ (13)

and can be verified to satisfy the normalization condition containing the
complex conjugate

27

i V(@) hm(¢) dop =1 (14)

where we have noted that ¢* (¢) = (2r)~%/2e~*"¢. The mutual orthogo-
nality of the functions (13) also follows easily, for

2m 27
@D:fn/ ¢m(¢) do = i / ez‘(m—m/)cb do
0

0 2m
1 21

= — [cos(m —m')p + i sin(m — m')¢]dp = 0
27 J,

for m' #m (14)
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The solutions (12) are also eigenfunctions of the angular momentum
operator (4), with

Lobm(¢) = mhtby(¢), m=0, +1, +2. .. (16)

This is a instance of a fundamental result in quantum mechanics, that any
measured component of orbital angular momentum is restricted to integral
multiples of h. The Bohr theory of the hydrogen atom, to be discussed in
the next Chapter, can be derived from this principle alone.

Free Electron Model for Aromatic Molecules

The benzene molecule consists of a ring of six carbon atoms around which
six delocalized pi-electrons can circulate. A variant of the FEM for rings pre-
dicts the ground-state electron configuration which we can write as 172 274,
as shown here:

AT m=2

' Figure 1. Free electron model
i
for benzene. Dotted arrow shows
ST om=1_8 o o &
1T e the lowest-energy excitation.

The enhanced stability the benzene molecule can be attributed to the com-
plete shells of m-electron orbitals, analogous to the way that noble gas elec-
tron configurations achieve their stability. Naphthalene, apart from the
central C-C bond, can be modeled as a ring containing 10 electrons in the
next closed-shell configuration 172 274 37#. These molecules fulfill Hiickel’s
“4N+2 rule” for aromatic stability. The molecules cyclobutadiene (172 272)
and cyclooctatetraene (172 27 372), even though they consist of rings with
alternating single and double bonds, do not exhibit aromatic stability since
they contain partially-filled orbitals.

The longest wavelength absorption in the benzene spectrum can be
estimated according to this model as

he B’
— =Fy,— F =
A 2 LT omR2
The ring radius R can be approximated by the C—-C distance in benzene,
1.39 A. We predict \ ~ 210 nm, whereas the experimental absorption has

Amax ~ 268 nm.

(22 - 1)




Spherical Polar Coordinates

The motion of a free particle on the surface of a sphere will involve com-
ponents of angular momentum in three-dimensional space. Spherical polar
coordinates provide the most convenient description for this and related
problems with spherical symmetry. The position of an arbitrary point r is
described by three coordinates r, 6, ¢, as shown in Fig. 2.

Figure 2. Spherical
polar coordinates.

These are connected to cartesian coordinates by the relations

x = rsinfcos ¢
y = rsinfsin ¢
z =rcosf (16)

The radial variable r represents the distance from r to the origin, or the
length of the vector r:

r= /224 y2 + 22 (18)

The coordinate 6 is the angle between the vector r and the z-axis, similar

to latitude in geography, but with § = 0 and 8 = 7 corresponding to the

North and South Poles, respectively. The angle ¢ describes the rotation of

r about the z-axis, running from 0 to 27, similar to geographic longitude.
The volume element in spherical polar coordinates is given by

dr =r? sin@drdf do,
re{0,00},0 €{0,7}, ¢ €{0,27} (19)

and represented graphically by the distorted cube in Fig. 3.
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rsinddg

-3 - Figure 3. Volume element in
ro spherical polar coordinates.

1 87‘ 0 +#£Sin92+ 1 o (20)
T r29r Or  r2sinf 06 90 r2sin? 0 0¢?

A detailed derivation is given in Supplement 6.

Rotation in Three Dimensions

A particle of mass M, free to move on the surface of a sphere of radius R,
can be located by the two angular variables 6, ¢. The Schrodinger equation
therefore has the form

-
—57 VY (6.9) = EY(6,9) (21)

with the wavefunction conventionally written as Y (0, ¢). These functions
are known as spherical harmonics and have been used in applied mathemat-
ics long before quantum mechanics. Since r = R, a constant, the first term
in the Laplacian does not contribute. The Schrodinger equation reduces to

1 0 0 1 02
{smeae 058 T a2 g 952 “} (6,9) =0 (22)
where ,
2MR*E 2IF
A= 2 = 2 (23)



again introducing the moment of inertia I = M R?. The variables 6 and ¢
can be separated in Eq (22) after multiplying through by sin? 6. If we write

Y(0,0) = 0(0)2() (24)

and follow the procedure used for the three-dimensional box, we find that
dependence on ¢ alone occurs in the term

" (¢)

5(0) = const (25)

This is identical in form to Eq (5), with the constant equal to —m?, and we
can write down the analogous solutions

1 .
®,,(0) = \/%e"‘m‘ﬁ, m=0, £1, £2... (26)

Substituting (24) into (22) and cancelling the functions ®(¢), we obtain an
ordinary differential equation for ©(6)

—sinf— —

sin 6 do df  sin®0

{ L d 4 m +/\}@(0):0 (27)

Consulting our friendly neighborhood mathematician, we learn that the
single-valued, finite solutions to (27) are known as associated Legendre func-
tions. The parameters A and m are restricted to the values

A=00+1), £=0,1,2... (28)

while
m=0,=+1, £2 ... £/ (20+1 values) (29)

Putting (28) into (23), the allowed energy levels for a particle on a sphere

are found to be )

E, = % (0+1) (30)

Since the energy is independent of the second quantum number m, the levels
(30) are (20+1)-fold degenerate.



The spherical harmonics constitute an orthonormal set satisfying the
integral relations

T 21
/ / Y5 (8, 0)Yem(8, ) sindf dd = 000G (31)
0 0

The following table lists the spherical harmonics through ¢ = 2, which will
be sufficient for our purposes.

Spherical Harmonics Yy, (6, ¢)

1/2
1
Yoo=|—
0= ()

5\ 1/2
Yio = <—> cos 6
4

3 1/2 »
Yl:i:l =F <E) Sin(96jj¢

5\ /2
Yoo = (—) (3cos?6 — 1)
15\ /2 ‘
Yor1 =7F <§> cos 0 sin § ¢

15\ /2 |
Yoio = <32_7r> sin? 0 et2i¢

A graphical representation of these functions is given in Fig. 4. Surfaces of
constant absolute value are drawn, positive where green and negative where
red. Other colors represent complex values.



Figure 4. Contours of spherical harmonics.

Theory of Angular Momentum

Generalization of the energy-angular momentum relation (3) to three di-
mensions gives

L2
E = — 32
i (32)
Thus from (21)-(23) we can identify the operator for the square of total

angular momentum

A e . 9 1
L2 - 2 i e -
L {sine 50" T o a¢2} (33)

By (28) and (29), the functions Y (0, ¢) are simultaneous eigenfunctions of
L? and L, such that

L2Y i (0,0) = €€ + 1) B> Yo (6, )
and  L.Yin(0,0) = mh Y, (0,0) (34)
But the Y;,,(0, ¢) are not eigenfunctions of either L, and L, (unless £ = 0).
Note that the magnitude of the total angular momentum /¢(¢ + 1)h is
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greater than its maximum observable component in any direction, namely
fh. The quantum-mechanical behavior of the angular momentum and its
components can be represented by a vector model, illustrated in Fig. 5. The
angular momentum vector L, with magnitude /¢(¢ 4+ 1)h, can be pictured
as precessing about the z-axis, with its z-component L, constant. The
components L, and L, fluctuate in the course of precession, corresponding
to the fact that the system is not in an eigenstate of either. There are 2¢41
different allowed values for L., with eigenvalues mh (m =0, +£1, £2 ... £/)
equally spaced between +¢h and —/h.

Figure 5. Vector model
for angular momentum,
showing the case £ = 2.

This discreteness in the allowed directions of the angular momentum vec-
tor is called space quantization. The existence of simultaneous eigenstates
of L2 and any one component, conventionally f)z, is consistent with the
commutation relations derived in Chap. 4:

f/x,f/ =ikl et cyc 4.43
[La, Ly

and X
[L*,L.]=0 (4.44)

Electron Spin

The electron, as well as certain other fundamental particles, possesses an

intrinsic angular momentum or spin, in addition to its orbital angular mo-

mentum. These two types of angular momentum are analogous to the daily

and annual motions, respectively, of the Earth around the Sun. To dis-

tinguish the spin angular momentum from the orbital, we designate the

quantum numbers as s and mg, in place of £ and m. For the electron, the
1

quantum number s always has the value 5, while m, can have one of two

9



values, :l:%. The electron is said to be an elementary particle of spin %

The proton and neutron also have spin % and belong to the classification of
particles called fermions, which are govened by the Pauli exclusion princi-
ple. Other particles, including the photon, have integer values of spin and
are classified as bosons. These do not obey the Pauli principle, so that an
arbitrary number can occupy the same quantum state. A complete theory
of spin requires relativistic quantum mechanics. For our purposes, it is suf-
ficient to recognize the two possible internal states of the electron, which
can be called ‘spin up’ and ‘spin down.” These are designated, respectively,
by a and 3 as factors in the electron wavefunction. Spins play an essential
role in determining the possible electronic states of atoms and molecules.

10



Supplement 6
Curvilinear Coordinates

Applications of quantum mechanics to atomic structure require expressions
for the volume element and the Laplacian operator in spherical polar co-
ordinates. We can actually derive more general results applicable to all
systems of orthogonal curvilinear coordinates. Consider therefore a set of
curvilinear coordinates (g1, ¢z, q3) such that the elements of length in the
three coordinate directions are given by ds; = Q; dq; for i = 1,2, 3, as shown
in Fig. 1. The element of volume is then given by

dr = Q1Q2Q3 dqg1dqadgs (1)

where the (); can be functions of ¢1, g2 and g3.

Q,dq;,

,/(Squ2 Figure 1. Volume element

-— in curvilinear coordinates.

Q,daq,

The components of the gradient vector represent directional derivatives
of a function. For example, the change in the function f(q1,qe,q3) along
the gi-direction is given by the ratio of df to the element of length Q1 dq;.
Thus the gradient in curvilinear coordinates can be written

1':11 af 112 af ﬁ3 8f
= + +
Q1 0q Q2 0q2 Q3 g3 (2>

Vf

where the i; are unit vectors in the g; directions.

The divergence V - A represents the limiting value of the net outward
flux of the vector quantity A per unit volume. Referring to Fig. 2, the net
flux of the component A; in the ¢;-direction is given by the difference bet-



Figure 2. Evaluation of
: divergence in curvilinear
/ AQ.dg.dg,  coordinates.

ween the outward contributions QQ2Q3A1 dgodgs on the two shaded faces.
As the volume element approaches a point, this reduces to

(Q20Q3A41)
Oq1
Adding the analogous contributions from the ¢o- and g3-directions and div-
ing by the volume d7r, we obtain the general result for the divergence in
curvilinear coordinates

1 0 0 0
V- A= 0:0:05 [36}1 Q2Q3A1 + 8_q2Q3Q1A2 + 8—%621@2143] (3)

dq1dgodgs

The Laplacian is the divergence of the gradient:
Vf=V-Vf
Thus, substitution of (2) into (3) gives the operator relation

_ 1 [8Q2Q33+3Q3Q15+8Q1Q23
Q1Q2Q3 |01 Q1 Oq1  Oq2 Q2 Oq2  9dq3 Q3 0g3

For spherical polar coordinates, we identify

v? | @

G =7r,q=0,q¢G=0¢

and
Q1=1, Q=7 Q3 =rsinb

Therefore, we obtain the volume element

dr = r?sin 0 drdfd¢ (5)
and the Laplacian operator
10 ,0 1 0 0 1 0?
2_ -~ Y 2Y — ginf— 6
v r20r or + 2sinf ol 90 * r2 sin? 0 0?2 (6)



Chapter 7
THE HYDROGEN ATOM; ATOMIC ORBITALS

Atomic Spectra

When gaseous hydrogen in a glass tube is excited by a 5000-volt electrical
discharge, four lines are observed in the visible part of the emission spec-
trum: red at 656.3 nm, blue-green at 486.1 nm, blue violet at 434.1 nm and
violet at 410.2 nm:

Figure 1. Visible spectrum of atomic hydrogen.

Other series of lines have been observed in the ultraviolet and infrared
regions. Rydberg (1890) found that all the lines of the atomic hydrogen
spectrum could be fitted to a single formula

%zR(ﬂ%—%), np=1,2,3..., ng>mn (1)
where R, known as the Rydberg constant, has the value 109,677 cm ™! for
hydrogen. The reciprocal of wavelength, in units of cm™!, is in general
use by spectroscopists. This unit is also designated wavenumbers, since
it represents the number of wavelengths per cm. The Balmer series of
spectral lines in the visible region, shown in Fig. 1, correspond to the
values n1 = 2, no = 3,4,5 and 6. The lines with n; = 1 in the ultraviolet
make up the Lyman series. The line with ny, = 2, designated the Lyman
alpha, has the longest wavelength (lowest wavenumber) in this series, with
1/X = 82.258 cm™! or A = 121.57 nm.

Other atomic species have line spectra, which can be used as a “fin-
gerprint” to identify the element. However, no atom other than hydrogen
has a simple relation analogous to (1) for its spectral frequencies. Bohr in
1913 proposed that all atomic spectral lines arise from transitions between
discrete energy levels, giving a photon such that

AE:hV:hTC (2)



This is called the Bohr frequency condition. We now understand that the
atomic transition energy AF is equal to the energy of a photon, as proposed
earlier by Planck and Einstein.

The Bohr Atom

The nuclear model proposed by Rutherford in 1911 pictures the atom as a
heavy, positively-charged nucleus, around which much lighter, negatively-
charged electrons circulate, much like planets in the Solar system. This
model is however completely untenable from the standpoint of classical
electromagnetic theory, for an accelerating electron (circular motion repre-
sents an acceleration) should radiate away its energy. In fact, a hydrogen
atom should exist for no longer than 5 x 107! sec, time enough for the
electron’s death spiral into the nucleus. This is one of the worst quantita-
tive predictions in the history of physics. It has been called the Hindenberg
disaster on an atomic level. (Recall that the Hindenberg, a hydrogen-filled
dirigible, crashed and burned in a famous disaster in 1937.)

Bohr sought to avoid an atomic catastrophe by proposing that certain
orbits of the electron around the nucleus could be exempted from classical
electrodynamics and remain stable. The Bohr model was quantitatively
successful for the hydrogen atom, as we shall now show.

We recall that the attraction between two opposite charges, such as
the electron and proton, is given by Coulomb’s law

2

e : :
—— (gaussian units)
F=q ™, |
“Trer? (ST units) (3)

We prefer to use the gaussian system in applications to atomic phenomena.
Since the Coulomb attraction is a central force (dependent only on r), the
potential energy is related by

(4)

Vi =-5 (5)



Bohr considered an electron in a circular orbit of radius r around the proton.
To remain in this orbit, the electron must be experiencing a centripetal
acceleration

a=—— (6)

where v is the speed of the electron.
Using (4) and (6) in Newton’s second law, we find

5= 7)

where m is the mass of the electron. For simplicity, we assume that the
proton mass is infinite (actually m, ~ 1836m.) so that the proton’s position
remains fixed. We will later correct for this approximation by introducing
reduced mass. The energy of the hydrogen atom is the sum of the kinetic
and potential energies:

e2

E=T+V=1imv’ - — (8)
.

Using Eq (7), we see that

T=-3V and E=3V=-T (9)
This is the form of the virial theorem for a force law varying as » 2. Note
that the energy of a bound atom is negative, since it is lower than the energy
of the separated electron and proton, which is taken to be zero.

For further progress, we need some restriction on the possible values
of r or v. This is where we can introduce the quantization of angular
momentum L = r X p. Since p is perpendicular to r, we can write simply

L =rp=mur (10)

Using (9), we find also that
L2

r = —
me?

(11)

We introduce angular momentum quantization, writing

L = nh, n=12... (12)



excluding n = 0, since the electron would then not be in a circular orbit.
The allowed orbital radii are then given by

r, = n? ag (13)

where )

h 0O,
ap = —5 =529 x 10~"'m = 0.529 A (14)
me

which is known as the Bohr radius. The corresponding energy is

62 me4

B, =-—2 - _ M —1,2... 15
2a0 n? oK% n2 " (15)

Rydberg’s formula (1) can now be deduced from the Bohr model. We

have " 02, 4
c T“me 1 1
—=b, - E,=——|=—-— 16
)\ 2 1 h2 (n% n% ) ( )
and the Rydbeg constant can be identified as
9 2 4
R =" 109,737 cm™" (17)

h3c

The slight discrepency with the experimental value for hydrogen (109,677)
is due to the finite proton mass. This will be corrected later.

The Bohr model can be readily extended to hydrogenlike ions, systems
in which a single electron orbits a nucleus of arbitrary atomic number Z.
Thus Z = 1 for hydrogen, Z = 2 for He™, Z = 3 for Li*™", and so on. The
Coulomb potential (5) generalizes to

7 2
V(r)=-=—. (18)
r
the radius of the orbit (13) becomes
n2a0
n = 19
r 7 (19)
and the energy (15) becomes
Z2e?
E, =— 20
2a0n2 (20)



De Broglie’s proposal that electrons can have wavelike properties was
actually inspired by the Bohr atomic model. Since

nh

—rp = = — 21
L =rp=nh o (21)
we find
2nr = nh_ nA (22)
p

Therefore, each allowed orbit traces out an integral number of de Broglie
wavelengths.

Wilson (1915) and Sommerfeld (1916) generalized Bohr’s formula for
the allowed orbits to

%pdr:nh, n=12... (23)

The Sommerfeld-Wilson quantum conditions (23) reduce to Bohr’s results
for circular orbits, but allow, in addition, elliptical orbits along which the
momentum p is variable. According to Kepler’s first law of planetary mo-
tion, the orbits of planets are ellipses with the Sun at one focus. Fig. 2
shows the generalization of the Bohr theory for hydrogen, including the el-
liptical orbits. The lowest energy state n = 1 is still a circular orbit. But
n = 2 allows an elliptical orbit in addition to the circular one; n = 3 has
three possible orbits, and so on. The energy still depends on n alone, so
that the elliptical orbits represent degenerate states. Atomic spectroscopy
shows in fact that energy levels with n > 1 consist of multiple states, as
implied by the splitting of atomic lines by an electric field (Stark effect) or a
magnetic field (Zeeman effect). Some of these generalized orbits are drawn
schematically in Fig. 2.



Figure 2. Bohr-Sommerfeld orbits
for n =1,2,3 (not to scale).

The Bohr model was an important first step in the historical devel-
opment of quantum mechanics. It introduced the quantization of atomic
energy levels and gave quantitative agreement with the atomic hydrogen
spectrum. With the Sommerfeld-Wilson generalization, it accounted as well
for the degeneracy of hydrogen energy levels. Although the Bohr model was
able to sidestep the atomic “Hindenberg disaster,” it cannot avoid what we
might call the “Heisenberg disaster.” By this we mean that the assumption
of well-defined electronic orbits around a nucleus is completely contrary to
the basic premises of quantum mechanics. Another flaw in the Bohr picture
is that the angular momenta are all too large by one unit, for example, the
ground state actually has zero orbital angular momentum (rather than h).

Quantum Mechanics of Hydrogenlike Atoms

In contrast to the particle in a box and the harmonic oscillator, the hydrogen
atom is a real physical system that can be treated exactly by quantum
mechanics. in addition to their inherent significance, these solutions suggest
prototypes for atomic orbitals used in approximate treatments of complex
atoms and molecules.

For an electron in the field of a nucleus of charge +Ze, the Schrodinger
equation can be written

{_%w _ ZTQ} b(r) = E(r) (24)

It is convenient to introduce atomic units in which length is measured in

6



bohrs:
h2
ap = —5 =5.29 x 107" m = 1 bohr
me

and energy in hartrees:

2

€ 4358 x 10718 = 27.2116eV = 1 hartree
ao

Electron volts (eV) are a convenient unit for atomic energies. One eV is
defined as the energy an electron gains when accelerated across a potential
difference of 1 volt. The ground state of the hydrogen atom has an energy
of —1/2 hartree or -13.6 eV. Conversion to atomic units is equivalent to
setting

h=e=m=1

in all formulas containing these constants. Rewriting the Schrodinger equa-
tion in atomic units, we have

{_%w _ g} b(r) = E(r) (25)

Since the potential energy is spherically symmetrical (a function of r
alone), it is obviously advantageous to treat this problem in spherical polar
coordinates r, 6, ¢. Expressing the Laplacian operator in these coordinates
[cf. Eq (6-20)],

= sino=
r20r or + 2sin o0 o0 * r2 sin? § O¢p2

2

1{1828 1 9 %) 1 82}

K00, 6) ~ Z9(r,0,6) = B(r,0.6) (20

Eq (6-33) shows that the second and third terms in the Laplacian represent
the angular momentum operator L2. Clearly, Eq (26) will have separable
solutions of the form

Y(r,0,¢) = R(r) Yon (9, ) (27)

7



Substituting (27) into (26) and using the angular momentum eigenvalue
equation (6-34), we obtain an ordinary differential equation for the radial
function R(r):

1 d o,d ((+1) Z
{_Tﬁ%r AL —7}R<r> — BR(r) (28)

Note that in the domain of the variable r, the angular momentum contri-
bution £(£ + 1)/2r? acts as an effective addition to the potential energy. It
can be identified with centrifugal force, which pulls the electron outward,
in opposition to the Coulomb attraction. Carrying out the successive dif-
ferentiations in (29) and simplifying, we obtain

%R”(r) + %R’(T) - % — 5(52%1) +E|R(r)=0 (29)

another second-order linear differential equation with non-constant coeffi-
cients. It is again useful to explore the asymptotic solutions to (29), as
r — oo. In the asymptotic approximation,

R"(r) — 2|E|R(r) ~ 0 (30)

having noted that the energy E is negative for bound states. Solutions to
(30) are

R(r) ~ const e*V2IEIT (31)

We reject the positive exponential on physical grounds, since R(r) — oo as
r — 00, in violation of the requirement that the wavefunction must be finite
everywhere. Choosing the negative exponental and setting E = —Z2/2, the
ground state energy in the Bohr theory (in atomic units), we obtain

R(r) ~ const e~ 4" (32)

It turns out, very fortunately, that this asymptotic approximation is
also an ezxact solution of the Schrédinger equation (29) with ¢ = 0, just what
happened for the harmonic-oscillator problem in Chap. 5. The solutions
to Eq (29), designated R,,(r), are labelled by n, known as the principal

8



quantum number, as well as by the angular momentum ¢, which is a param-
eter in the radial equation. The solution (32) corresponds to Rig(r). This
should be normalized according to the condition

/O T Ryo(r)]2 12 dr = 1 (33)

A useful definite integral is

/000 r'te” Y dr = a:il (34)

The normalized radial function is thereby given by
Ryo(r) = 223/2 =27 (35)
Since this function is nodeless, we identify it with the ground state of the hy-

drogenlike atom. Multipyling (35) by the spherical harmonic Yoo = 1/V/4,
we obtain the total wavefunction (27)

P100(r) = (Z—3> 1/26_27“ (36)

T
This is conventionally designated as the 1s function ().

Integrals in spherical-polar coordinates over a spherically-symmetrical
integrand can be significantly simplified. We can do the reduction

/OOO /07r /O% f(r)rzsinedrdedgb:/()oo F(r) dmr? dr (37)

since integration over 6 and ¢ gives 4w, the total solid angle of a sphere.
The normalization of the 1s wavefunction can thus be written as

/OOO [V1s(r)]? dmr? dr = 1 (38)



Hydrogen Atom Ground State

There are a number of different ways of representing hydrogen-atom wave-
functions graphically. We will illustrate some of these for the 1s ground

state. In atomic units,
1
¢1S<T) — ﬁ 6_7' (39)

is a decreasing exponential function of a single variable r, and is simply
plotted in Fig. 3.

0.
0.
0.
0.
0.

—_—

5 g 10

r/bohr

Figure 3. Wavefunctions for 1s and 2s orbitals for atomic hydrogen. The
2s-function (scaled by a factor of 2) has a node at r = 2 bohr.

Fig. 4 gives a somewhat more pictorial representation, a three-dimensional
contour plot of ¥14(r) as a function of z and y in the x, y-plane.

Figure 4. Contour map of
1s orbital in the x, y-plane.
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According to Born’s interpretation of the wavefunction, the probability per
unit volume of finding the electron at the point (r,60,¢) is equal to the
square of the normalized wavefunction

p1a(r) = [ ()] = e (10)

This is represented in Fig. 5 by a scatter plot describing a possible sequence
of observations of the electron position. Although results of individual
measurements are not predictable, a statistical pattern does emerge after a
sufficiently large number of measurements.

Figure 5. Scatter plot of electron position
measurements in hydrogen 1s orbital.

The probability density is normalized such that

/o prs(r) dmr? dr = 1 (41)

In some ways p(r) does mot provide the best description of the electron
distribution, since the region around r = 0, where the wavefunction has its
largest values, is a relatively small fraction of the volume accessible to the
electron. Larger radii r represent larger physical regions since, in spherical
polar coordinates, a value of r is associated with a shell of volume 47r2dr.
A more significant measure is therefore the radial distribution function

Dis(r) = dmr®[ihs(r))? (42)

which represents the probability density within the entire shell of radius r,
normalized such that

/OO Dis(r)dr =1 (43)
0

11



The functions p1(r) and D14(r) are both shown in Fig. 6. Remarkably, the
1s RDF has its maximum at r = ag, equal to the radius of the first Bohr
orbit.

r/bohr

Figure 6. Density p(r) and radial distribution
function D(r) for hydrogen 1s orbital.

Atomic Orbitals

The general solution for R,,(r) has a rather complicated form which we
give without proof:

Roo(r) = Ny p" L2 (p) e ?? p= =" (44)

Here L7 is an associated Laguerre polynomial and N, a normalizing con-
stant. The angular momentum quantum number ¢ is by convention desig-
nated by a code: sfor/ =0, pforf{ =1, dfor £ =2, f for ¢ = 3, g for £ = 4,
and so on. The first four letters come from an old classification scheme for
atomic spectral lines: sharp, principal, diffuse and fundamental. Although
these designations have long since outlived their original significance, they

12



remain in general use. The solutions of the hydrogenic Schrodinger equation
in spherical polar coordinates can now be written in full

¢n€m (’I“, ‘97 ¢> — Rne(T)Yem(Q, ¢)
n=1,2... £=01..n—1 m=0+1,+2...40  (45)

where Y),,, are the spherical harmonics tabulated in Chap. 6. Table 1 below
enumerates all the hydrogenic functions we will actually need. These are

1 —-T
wls — ﬁ €
1 r
s = 1— —) e /2
Vs = 5 o= ( 2
1
¢2pz — ze—T/Z

4/ 27
VYop, , Y2p, analogous

1
8137

V2 L,
V3p, :m(ﬁ—ﬂze /3

VY3p,, V3p, analogous

1

Vs (27 — 18r + 2r2) e~ 7/3

= 322 —r2)e /3
Vad.. 81\/67r( )
2
V34, = V2 zre /3

81/7
V3d,., V3d,, analogous

1
Vsdap = BT /7

(.1?2 . y2) 6—7"/3

Table 1

Real hydrogenic functions in atomic units.
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called hydrogenic atomic orbitals, in anticipation of their later applications
to the structure of atoms and molecules.
The energy levels for a hydrogenic system are given by

2

E,=——
2n2

hartrees (46)

and depends on the principal quantum number alone. Considering all the
allowed values of £ and m, the level E,, has a degeneracy of n?. Fig. 7 shows
an energy level diagram for hydrogen (Z = 1). For E > 0, the energy is
a continuum, since the electron is in fact a free particle. The continuum
represents states of an electon and proton in interaction, but not bound
into a stable atom. Fig. 7 also shows some of the transitions which make
up the Lyman series in the ultraviolet and the Balmer series in the visible
region.

Eog E=0

n=1

n=+

n=23 E=-151
]1:2 H E:-340
n=1 E =-13.60 eV

Lyman Balmer

Figure 7. Energy levels of atomic hydrogen.

The ns orbitals are all spherically symmetrical, being associated with
a constant angular factor, the spherical harmonic Ypo = 1/ V/4r. They have
n — 1 radial nodes—spherical shells on which the wavefunction equals zero.
The 1s ground state is nodeless and the number of nodes increases with
energy, in a pattern now familiar from our study of the particle-in-a-box
and harmonic oscillator. The 2s orbital, with its radial node at r = 2 bohr,
is also shown in Fig. 3.

14



p- and d-Orbitals

The lowest-energy solutions deviating from spherical symmetry are the 2p-
orbitals. Using Eqs (44), (45) and the ¢ = 1 spherical harmonics, we find
three degenerate eigenfunctions:

1
r,0,0) = re "2 cosf 47
¢210< ¢) 4\/% ( )

and

1
4+/2m

The function 151¢ is real and contains the factor r cos 6, which is equal to
the cartesian variable z. In chemical applications, this is designated as a
2p, orbital:

Po141(r, 0,0) = F re”"/? sinf eX? (48)

1

w2pz = 4\/% ze—fr’/? (49)
A contour plot is shown in Fig. 8. Note that this function is cylindrically-
symmetrical about the z-axis with a node in the z, y-plane. The 19141 are
complex functions and not as easy to represent graphically. Their angular
dependence is that of the spherical harmonics Y741, shown in Fig. 6-4. As
noted in Chap. 4, any linear combination of degenerate eigenfunctions is an
equally-valid alternative eigenfunction. Making use of the Euler formulas
for sine and cosine

e’ +e ' : e’ —e
cosp = ——— and sin ¢ = —
7

- (50)

and noting that the combinations sinfcos ¢ and sinfsin ¢ correspond to
the cartesian variables x and y, respectively, we can define the alternative
2p orbitals

Yopz = %(@/121—1 — po11) = 4\/1% ze "/ (51)

and

Yopy = —%(1%1—1 + 211) = 4\/1% ye_r/2 (52)
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Clearly, these have the same shape as the 2pz-orbital, but are oriented along
the x- and y-axes, respectively. The threefold degeneracy of the p-orbitals
is very clearly shown by the geometric equivalence the functions 2px, 2py
and 2pz, which is not obvious for the spherical harmonics. The functions
listed in Table 1 are, in fact, the real forms for all atomic orbitals, which are
more useful in chemical applications. All higher p-orbitals have analogous
functional forms xf(r), yf(r) and zf(r) and are likewise 3-fold degenerate.

<

1dr

(5]
T

Figure 8. Contour plot of 2p, orbital. Negative
values are shown in red. Scale units in bohrs.

The orbital 139 is, like 9219, a real function. It is known in chemistry
as the d,2-orbital and can be expressed as a cartesian factor times a function
of r:

V34, = 320 = (32° — 1) f(r) (53)

A contour plot is shown in Fig. 9. This function is also cylindrically sym-
metric about the z-axis with two angular nodes—the conical surfaces with
322 —r?2 = 0. The remaining four 3d orbitals are complex functions contain-
ing the spherical harmonics Y547 and Y545 pictured in Fig. 6-4. We can
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again construct real functions from linear combinations, the result being
four geometrically equivalent “four-leaf clover” functions with two perpen-
dicular planar nodes. These orbitals are designated dyz2_,2, dgy, d., and
dy.. Two of them are shown in Fig. 9. The d,2 orbital has a different shape.
However, it can be expressed in terms of two non-standard d-orbitals, d,2>_ 2
and dy2_,2. The latter functions, along with d,2_,2 add to zero and thus
constitute a linearly dependent set. Two combinations of these three func-
tions can be chosen as independent eigenfunctions.

d$2_y2
Figure 9. Contour plots of 3d orbitals.
Summary
The atomic orbitals listed in Table 1 are illustrated in Fig. 10. Blue and yel-
low indicate, respectively, positive and negative regions of the wavefunctions
(the radial nodes of the 2s and 3s orbitals are obscured). These pictures

are intended as stylized representations of atomic orbitals and should not
be interpreted as quantitatively accurate.
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Figure 10. Hydrogenic atomic orbitals.
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The electron charge distribution in an orbital 1, (r) is given by

p(r) = [thnem (r)[? (54)

which for the s-orbitals is a function of r alone. The radial distribution

function can be defined, even for orbitals containing angular dependence,
by

Dyi(r) = r*[Rpe(r))? (55)
This represents the electron density in a shell of radius r, including all values

of the angular variables 6, ¢. Fig. 11 shows plots of the RDF for the first
few hydrogen orbitals.
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Figure 11. Some radial distribution functions.
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Chapter 7. Exercises

1. Assume that each circular Bohr orbit for an electron in a hydrogen
atom contains an integer number of de Broglie wavelengths, n = 1, 2, .. ..
Show that the orbital angular momentum must then be quantized. Bohr’s
formula for the hydrogen energy levels follows from this.

2. Based on your knowledge of the first few hydrogenic eigenfunctions,
deduce general formulas, in terms of n and ¢, for: (i) the number of radial
nodes in an atomic orbital; (ii) the number of angular nodes; (iii) the total
number of nodes.

3. Calculate the wavelength of the Lyman alpha transition (1s < 2p) in

atomic hydrogen and in He™. Express the results in both nm and cm™!.

4. Determine the maximum of the radial distribution function for the
ground state of hydrogen atom. Compare this value with the corresponding
radius in the Bohr theory.

5. The following reaction might occur in the interior of a star:
He™ + H — He™ + HT

Calculate the electronic energy change (in eV). Assume all species in their
ground states.

6. Which of the following operators is not equal to the other four: (i)
0%/or?  (ii) r=29/0rr?0/0r  (iii) r=10%/0r?r  (iv) (r=190/0rr)?
(v) 82/0r* +2r=10/0r.

7. Calculate the expectation values of 7, 72 and of r—! in the ground state
of the hydrogen atom. Give results in atomic units.

8. Calculate the expectation values of potential and kinetic energies for the
1s state of of a hydrogenlike atom.

9. Verify that the 3d,, orbital given in the table is a normalized eigenfunc-
tion of the hydrogenlike Schrodinger equation.



10. Show that the function
¥(r,0,¢) = const [1 — r sin*(6/2)] e /2

is a solution of the Schrodinger equation for the hydrogen atom and find
the corresponding eigenvalue (in atomic units).

11. For the ground state of a hydrogenlike atom, calculate the radius of the
sphere enclosing 90% of the electron probability in the 1s state of hydrogen
atom. (This involves a numerical computation with successive approxima-
tions.)

12. Consider as a variational approximation to the ground state of the
hydrogen atom the wavefunction ¢ (r) = e~“". Calculate the corresponding
energy F(a) then optimize with respect to the parameter a. Compare with
the exact solution.

13. The electron-spin resonance hyperfine splitting for atomic hydrogen is
given by

8 3cos?fh —1
Av = 532.65{%%(0)|2 + <%>}MHZ

Calculate Av for the 1s and for the 2pg states. The result is in MHz when
the bracketed terms are expressed in atomic units. (Hint: In the expectation
value, do the integral over angles first.)



Chapter 7. Solutions

1. De Broglie wavelength A = h/p with L = rp. Circumference of orbit
27r = nA, an integer number of wavelengths. This implies L = nh/27 = nh.

2. n — £ — 1 radial nodes, ¢ angular nodes, n — 1 total nodes.

3. The best formula to use is

1 1 1
_=7’R(= - —
)

where R is the Rydberg constant, 109678 cm~!. For hydrogen, 1/\ =
R(1/12—1/2?) = 82258.5cm ™1, A = 121.6 nm. For helium, 1/\ =4 R(1/12-
1/2%) = 329034cm~1, A\ = 30.39 nm.

4. Find the maximum of Dy, (r) = 4mr? [i)1,(r)]> = constr?e 22", Set
dD/dr = 0, giving rmax = 1/Z (= ag/Z), same as Bohr radius for 1s orbit.

5. Het™ and HT are bare nuclei so their electronic energies equal zero.
He™ and H are hydrogenlike so their 1s energies equal —Z2/2. Thus AE =
—4/2+41/2 = —3/2 hartrees = —40.8 eV.

6. (i). The other four operators are equal.

(r) = /0 7 ra(r) P e () dr? di = g (: —ao)

(r?) = /OOO Pis(r) r is(r) dmr? dr =3 (= 3ag)



(r1y = /Ooo Dra(r) 1 hrg () der2 dr = 1 <: i)

ao

8. Average potential energy:

<V >= /OOO P1s(r) (—%) 1s(r) dmr? dr = —Z2

Average kinetic energy:
= Lo 2 2
<T >= P15(7) —§V 1s(r) dmr= dr = Z° /2
0

More simply, since total energy Eis = —Z2/2, (T) = E15 — (V). Note that
(V) = =2(T), consistent with the virial theorem.

9. For an easier exercise, do the 2p, orbital instead.

10. You should find that this function solves the Schrodinger equation with
E = —7?/8, i.e., n = 2. For normalization

const =

NG

Noting that sin?(6/2) = (1 — cos#)/2, the function is found to be an s-p

hybrid orbital:
1
- —= s+ z
’Qb \/5 <¢2 77b2p )



11. Solve for R: n
/ |¢1S(7")\247r7“2 dr =0.9
0

or easier

/ Wls(r)\zélm’z dr = 0.1

R
We find, using integral table,

4/ r?e 2" dr = e (14 2R +2R?) =0.1
R

Solving numerically, R = 2.6612ag = 1.41 A.

12. Let ¢(r) = e=*". Then

I e (=3V?% = Z/r) e T dmr? dr _ 1@2 7

E(a) = =
() Jo e 2erdmr2dr 2

E’'(a)) = 0 for minimum, giving « = Z. Thus ¢(r) = ¢=?" and £ = —Z?/2,
which in this exceptional case equal the exact eigenfunction and eigenvalue.



CHAPTER 8
THE HELIUM ATOM

The second element in the periodic table provides our first example of a
quantum-mechanical problem which cannot be solved exactly. Nevertheless,
as we will show, approximation methods applied to helium can give accurate
solutions in perfect agreement with experimental results. In this sense,
it can be concluded that quantum mechanics is correct for atoms more
complicated than hydrogen. By contrast, the Bohr theory failed miserably
in attemps to apply it beyond the hydrogen atom.

The helium atom has two electrons bound to a nucleus with charge
Z = 2. The successive removal of the two electrons can be diagrammed as

He 2L Het + ¢~ 22, Hett + 2¢- (1)

The first ionization energy I, the minimum energy required to remove the
first electron from helium, is experimentally 24.59 eV. The second ionization
energy, Io, is 54.42 eV. The last result can be calculated exactly since He™
is a hydrogenlike ion. We have

Z2
I, = —E1,(He") = 7z = 2 hartrees = 54.42eV (2)
n
The energy of the three separated particles on the right side of Eq (1) is, by
definition, zero. Therefore the ground-state energy of helium atom is given
by Eo = —(I1 + I2) = —79.02 eV = —2.90372 hartrees. We will attempt to
reproduce this value, as close as possible, by theoretical analysis.

Schrodinger Equation and Variational Calculations

The Schrodinger equation for He atom, again using atomic units and as-
suming infinite nuclear mass, can be written

{3v-3i- 220 S hutm) = Bulnr) )

2 rL T2 T2

The five terms in the Hamiltonian represent, respectively, the kinetic ener-
gies of electrons 1 and 2, the nuclear attractions of electrons 1 and 2, and
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the repulsive interaction between the two electrons. It is this last contri-
bution which prevents an exact solution of the Schrodinger equation and
which accounts for much of the complication in the theory. In seeking an
approximation to the ground state, we might first work out the solution
in the absence of the 1/ris-term. In the Schrédinger equation thus simpli-
fied, we can separate the variables r1 and rg to reduce the equation to two
independent hydrogenlike problems. The ground state wavefunction (not
normalized) for this hypothetical helium atom would be

P(r1,12) = Y1s(r1)h1s(r) = e Zrtr2) (4)

and the energy would equal 2x (—Z2/2) = —4 hartrees, compared to the ex-
perimental value of —2.90 hartrees. Neglect of electron repulsion evidently
introduces a very large error.

A significantly improved result can be obtained with the functional
form (4), but with Z replaced by a adjustable parameter «, thus:

h(ry,rg) = e~ T2 (5)
Using this function in the variational principle [cf. Eq (4.53)], we have

P f W(ry, o) H(ry,re) dry dr
[ (ri,r2) (ri,re) dm dro

(6)

where H is the full Hamiltonian as in Eq (3), including the 1/r1s-term. The
expectation values of the five parts of the Hamiltonian work out to

(-4m) (-3
(BB (D)2 o

The sum of the integrals in (7) gives the variational energy

5
E(a) = o? —2Zoz+§oz (8)



This will be always be an upper bound for the true ground-state energy.

We can optimize our result by finding the value of o which minimizes the
energy (8). We find

dE 5
— =2a—27+ - =
™ o + 3 0 (9)
giving the optimal value
5
=7 - — 1
o 16 (10)

This can be given a physical interpretation, noting that the parameter « in
the wavefunction (5) represents an effective nuclear charge. Each electron
partially shields the other electron from the positively-charged nucleus by
an amount equivalent to 5/8 of an electron charge. Substituting (10) into
(8), we obtain the optimized approximation to the energy

E:—(Z—%>2 (11)

For helium (Z = 2), this gives -2.84765 hartrees, an error of about 2%
(Ep = —2.90372). Note that the inequality E > Ey applies in an algebraic
sense.

In the late 1920’s, it was considered important to determine whether
the helium computation could be improved, as a test of the validity of
quantum mechanics for many electron systems. The table below gives the
results for a selection of variational computations on helium.

wavefunction parameters energy

e~ Z(ritra) Z =2 —2.75
e~(ritra) a = 1.6875 —2.84765
W(r1)Y(re) best () —2.86168
e~ 2] (1 4 crpy) best a, ¢ —2.89112
Hylleraas (1929) 10 parameters —2.90363
Pekeris (1959) 1078 parameters —2.90372

The third entry refers to the self-consistent field method, developed by
Hartree. Even for the best possible choice of one-electron functions v (r),
there remains a considerable error. This is due to failure to include the
variable r1» in the wavefunction. The effect is known as electron correlation.
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The fourth entry, containing a simple correction for correlation, gives a
considerable improvement. Hylleraas (1929) extended this approach with a
variational function of the form

W(ry,ro,r19) = e (ritra) o polynomial in 71,79, 712

and obtained the nearly exact result with 10 optimized parameters. More
recently, using modern computers, results in essentially perfect agreement
with experiment have been obtained.

Spinorbitals and the Exclusion Principle

The simpler wavefunctions for helium atom, for example (5), can be inter-
preted as representing two electrons in hydrogenlike 1s orbitals, designated
as a 1s? configuration. According to Pauli’s exclusion principle, which states
that no two electrons in an atom can have the same set of four quantum
numbers, the two 1s electrons must have different spins, one spin-up or «a,
the other spin-down or 3. A product of an orbital with a spin function
is called a spinorbital. For example, electron 1 might occupy a spinorbital
which we designate

¢(1) =P1s(Ma(l)  or  ¢Pis(1)6(1) (12)

Spinorbitals can be designated by a single subscript, for example, ¢, or
¢p, where the subscript stands for a set of four quantum numbers. In a
two electron system the occupied spinorbitals ¢, and ¢, must be different,
meaning that at least one of their four quantum numbers must be unequal.
A two-electron spinorbital function of the form

1
E

automatically fulfills the Pauli principle since it vanishes if a = . More-
over, this function associates each electron equally with each orbital, which
is consistent with the indistinguishability of identical particles in quantum
mechanics. The factor 1/ v/2 normalizes the two-particle wavefunction, as-
suming that ¢, and ¢ are normalized and mutually orthogonal. The func-
tion (13) is antisymmetric with respect to interchange of electron labels,
meaning that

W(1,2) = <¢a(1)¢b(2) - ¢b<1>¢a<2>) (13)

U(2,1) = —(1,2) (14)
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This antisymmetry property is an elegant way of expressing the Pauli prin-
ciple.
We note, for future reference, that the function (13) can be expressed
as a 2 X 2 determinant:
L | da(1)  ¢p(1) }
U(1,2) = — 15
12=T5 6.2 o2) 1)

For the 1s? configuration of helium, the two orbital functions are the
same and Eq (13) can be written

o
V2

For two-electron systems (but not for three or more electrons), the wave-
function can be factored into an orbital function times a spin function. The
two-electron spin function

(1,2) = iy (1)i614(2) <a(1)ﬁ(2)—5(1)a(2)> (16)

1
00(12) = - (amﬁ@) _ 5<1>a<2>) (a7)

represents the two electron spins in opposing directions (antiparallel) with a
total spin angular momentum of zero. The two subscripts are the quantum
numbers S and Mg for the total electron spin. Eq (16) is called the singlet
spin state since there is only a single orientation for a total spin quantum
number of zero. It is also possible to have both spins in the same state,
provided the orbitals are different. There are three possible states for two
parallel spins:

o1,-1(1,2) = 5(1)5(2) (18)

These make up the triplet spin states, which have the three possible orien-
tations of a total angular momentum of 1.



Excited States of Helium

The lowest excitated state of helium is represented by the electron configu-
ration 1s2s. The 1s2p configuration has higher energy, even though the 2s
and 2p orbitals in hydrogen are degenerate, because the 2s penetrates closer
to the nucleus, where the potential energy is more negative. When electrons
are in different orbitals, their spins can be either parallel or antiparallel. In
order that the wavefunction satisfy the antisymmetry requirement (14), the
two-electron orbital and spin functions must have opposite behavior under
exchange of electron labels. There are four possible states from the 1s2s
configuration: a singlet state

1
V2

and three triplet states

v (1,2) = (wlsu)w%(z)+¢zs<1>wls<2>)ao,ou,z) (19)

1

v(1,2) =

(1 002:(2) = v (01,2 ) { (1

(20)

Using the Hamiltonian in Eq(3), we can compute the approximate energies
E* = // Ut (1,2) HU*(1,2) dry dry (21)
After evaluating some fierce-looking integrals, this reduces to the form
E* =1I(1s) +I(2s) + J(1s,25) = K(1s,2s) (22)
in terms of the one electron integrals

1@ = [ wnn {57~ 2} v dr (23)

the Coulomb integrals

J(a,b) = / / wa(rlféwb(mmﬁ drs (24)



and the exchange integrals

K(a,b) = / / %(rl)wb(rl)iwa<r2>wb<r2>dn i (25)

The Coulomb integral represents the repulsive potential energy for two in-
teracting charge distributions ¢, (r1)? and 1)y (r2)2. The exchange integral,
which has no classical analog, arises because of the exchange symmetry (or
antisymmetry) requirement of the wavefunction. Both J and K can be
shown to be positive quantities. Therefore the lower sign in (22) repre-
sents the state of lower energy, making the triplet state of the configuration
1s2s lower in energy than the singlet state. This is an almost universal
generalization and contributes to Hund’s rule, to be discussed in the next
Chapter.



Chapter 8. Exercises

1. For the optimized helium variational wavefunction
p(ry,rp) = e tm2)

calculate the expectation values of total kinetic and potential energies. Do
these satisfy the virial theorem?

2. Using the same form of an optimized variational wavefunction
Plr1,ra) = e 7)
estimate the ground-state energy of Lit.
3. Calculate the energy of the hypothetical 1s3 state of the Li atom using
the optimized variational wavefunction
0(1,2,3) = emelrriraers)

Neglect electron spin, of course. Compare with the experimental ground-
state energy, Fy = —7.478 hartrees. Comment on the applicability of the
variational theorem.



Chapter 8. Solutions

(T) = o? and (V) =—-2Za+ ga

For the optimized variational function, « = Z — 5/16, so

(T) = (z_ 1—56)2 and (V) = —2 (z_ %)2

Thus (V) = —2(T), in agreement with the virial theorem.

2. LiT is He-like with Z = 3. Just as for He,

5
E(a) =a* —2Za + 3¢

with optimal a = Z — 1% = 2.6875 and

2
FE=— <Z — %) = —7.223 hartrees

A more accurate value is —7.280 hartrees.

3. For the Li atom with 3 electrons,

Assuming (1,2, 3) = e~ *("+72473) e find in analogy with helium results,

1 ,\ 1, A 1 5
< 2V2> 2% < 7’z‘> “ <7’z'j> 8"

The total energy is given by



with Z = 3. To optimize,

15
E'(a) =3a—9+ <= 0, «=2.375, FE = —8.4609 hartrees

This is less than the exact ground state energy —7.478, in apparent violation
of the variational principle. But 1 is an “illegal” wavefunction.



CHAPTER 9

ATOMIC STRUCTURE
AND THE PERIODIC LAW

Quantum mechanics can account for the periodic structure of the elements,
by any measure a major conceptual accomplishment for any theory. Al-
though accurate computations become increasingly more challenging as the
number of electrons increases, the general patterns of atomic behavior can
be predicted with remarkable accuracy.

Slater Determinants

According to the orbital approximation, which was introduced in the last
Chapter, an N-electron atom contains N occupied spinorbitals, which can
be designated ¢q, ¢p - . . ¢p,. In accordance with the Pauli exclusion principle,
no two of these spinorbitals can be identical. Also, every electron should
be equally associated with every spinorbital. A very neat mathematical
representation for these properties is a generalization of the two-electron
wavefunction (8.13) or (8.15) called a Slater determinant

¢a(l)  d(1) ... ¢n(1)

\11(1,2...]\7) _ 1 ¢a(2> ¢b(2) ¢n(2) (1)

VN .
¢a(N)  o(N) ... dn(N)

Since interchanging any two rows (or columns) of a determinant multiplies
it by —1, the antisymmetry property (8.15) is fulfilled, for every pair of
electrons.
The Hamiltonian for an atom with N electrons around a nucleus of
charge Z can be written
N N
. 1 Z 1
H= i v — 2
Z{ 2 7 Ti}+ZTi' (2)
i=1 i<j Y
The sum over electron repulsions is written so that each pair {i, j} is counted
just once. The energy of the state represented by a Slater determinant (1)
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can be obtained after a lengthy derivation. We give just the final result

B=Y 1+ 5 3~ Kun) 3)

a,b

where the sums run over all occupied spinorbitals. The one-electron, Cou-
lomb and exchange integrals have the same form as those defined for helium
atom in Eqgs (8.22-24). The only difference is that an exchange integral
equals zero unless the spins of orbitals a and b are both « or both 3. The
factor 1/2 corrects for the double counting of pairs of spinorbitals in the
second sum. The contributions with ¢ = b can be omitted since J,, = K.4.
This effectively removes the Coulomb interaction of an orbital with itself,
which is spurious.

The Hartree-Fock or self-consistent field (SCF) method is a procedure
for optimizing the orbital functions in the Slater determinant (1), so as
to minimize the energy (3). SCF computations have been carried out for
all the atoms of the periodic table, with predictions of total energies and
ionization energies generally accurate in the 1-2% range.

Aufbau Principles and Periodic Structure

Aufbau means “building-up.” Aufbau principles determine the order in which
atomic orbitals are filled as the atomic number is increased. For the hydro-
gen atom, the order of increasing orbital energy is given by 1s < 2s = 2p <
3s = 3p = 3d, etc. The dependence of energy on n alone leads to extensive
degeneracy, which is however removed for orbitals in many-electron atoms.
Thus 2s lies below 2p, as already observed in helium. Similarly, 3s, 3p and
3d increase energy in that order, and so on. The 4s is lowered sufficiently
that it becomes comparable to 3d. The general ordering of atomic orbitals
is summarized in the following scheme:

1ls <25 <2p<3s<3p<ds~3d<4p < dHs~4d

<Hp<bs~bd~4f <bp<Ts~6bd~>f (4)

and illustrated in Fig. 1. This provides enough orbitals to fill the ground
states of all the atoms in the periodic table. For orbitals designated as
comparable in energy, e.g., 4s ~ 3d, the actual order depends which other
orbitals are occupied. The sequence of orbitals pictured above increases in
the order n + %l , except that [ = 4 (rather than 3) is used for an f-orbital.
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The tabulation below shows the ground-state electron configuration
and term symbol for selected elements in the first part of the periodic table.
From the term symbol, one can read off the total orbital angular momentum
L and the total spin angular momentum S. The code for the total orbital
angular momentum mirrors the one-electron notation, but using upper-case
letters, as follows:

L=0 1 2 3 4
S P D F G
The total spin S is designated, somewhat indirectly, by the spin multiplicity
2S5 4 1 written as a superscript before the S, P, D... symbol. For example
1S (singlet S) ,'P (singlet P)... mean S = 0; 2S (doublet S) ,2P (doublet
P)... mean S = 1/2; 3S (triplet S) ;3P (triplet P)... mean S = 1, and so
on. Please do not confuse the spin quantum number S with the orbital
designation S.



Atom Z Electron Configuration Term Symbol
H 1 1s 81/2
He 2 152 1S,
Li 3 [HG]ZS 281/2
Be 4 [He]2s2 So
B 5 [He|2s%2p “Py /9
C 6 [He|2s%2p? 3Py
N 7 [He]2522p3 *S3/2
O 8 [H€]2822p4 3P2
F 9 [He]2522p° P32
Ne 10 [He|2s%2p" 1S,
Na 11 [Ne]3s *S1/2
Cl 17 [Ne|3s23p° P39
Ar 18 [Ne|3s23p° 1So
K 19 [Ar]4s S1/2
Ca 20 [Ar]4s? 1So
Sc 21 [Ar]4s%3d D39
Ti 22 [Ar]4s%3d? °Fy
Vv 23 [Ar]4523d3 F3/2
Cr 24 [Ar]453d° ’Ss
Mn 25 [Ar]4s%3d° S5/2
Fe 26 [Ar]45%3d° °Dy
Co 27 [Ar]4s%3d” "Fg /2
Ni 28 [Ar]45%3d® SFy
Cu 29 [Ar]4s3d'° S1/2
Zn 30 [Ar]4s%3d1Y 1So
Ga 31 [Ar|4s23d1%4p “Py /9
Br 35 [Ar]4s%3d04p® “P3 /9
Kr 36 [Ar]3d'%4524p° 1So

The vector sum of the orbital and spin angular momentum is designated

J=L+S

()

The possible values of the total angular momentum quantum number J runs
in integer steps between |L — S| and L + S. The J value is appended as a
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subscript on theterm symbol, eg, 'Sg, 2P, /25 2p, s2- The energy differences
between J states is a result of spin-orbit interaction, a magnetic interaction
between the circulating charges associated with orbital and spin angular
momenta. For atoms of low atomic number, the spin-orbit coupling is a
relatively small correction to the energy, but it can become increasingly
significant for heavier atoms.

We will next consider in some detail the Aufbau of ground electronic
states starting at the beginning of the periodic table. Hydrogen has one elec-
tron in an s-orbital so its total orbital angular momentum is also designated
S. The single electron has s = 1/2, thus S = 1/2. The spin multiplicity
25 + 1 equals 2, thus the term symbol is written 2S. In helium, a second
electron can occupy the 1s shell, provided it has the opposite spin. The
total spin angular momentum is therefore zero, as is the total orbital an-
gular momentum. The term symbol is 'S, as it will be for all other atoms
with complete electron shells. In determining the total spin and orbital
angular moments, we need consider only electrons outside of closed shells.
Therefore lithium and beryllium are a reprise of hydrogen and helium. The
angular momentum of boron comes from the single 2p electron, with [ =1
and s = 1/2, giving a 2P state.

To build the carbon atom, we add a second 2p electron. Since there
are three degenerate 2p orbitals, the second electron can go into either the
already-occupied 2p orbital or one of the unoccupied 2p orbitals. Clearly,
two electrons in different 2p orbitals will have less repulsive energy than
two electrons crowded into the same 2p orbital. In terms of the Coulomb
integrals, we would expect, for example

J(2pz, 2py) < J(2px, 2px) (6)

For nitrogen atom, with three 2p electrons, we expect, by the same line of
reasoning, that the third electron will go into the remaining unoccupied 2p
orbital. The half-filled 2p3 subshell has an interesting property. If the three
occupied orbitals are 2p,, 2p, and 2p., then their total electron density is
given by

’02p - ¢§pw + rlpgpy + wgpz
= (2% + y* 4 2?) x function of r = function of r (7)
noting that x? +y? + 22 = r2. But spherical symmetry implies zero angular

momentum, like an s-orbital. In fact, any half filled subshell, such as p?,
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d®, f7, will contribute zero angular momentum. The same is, of course true
as well for filled subshells, such as p®, d'°, f4. These are all S terms.

Another way to understand this vector cancellation of angular mo-
mentum is to consider the alternative representation of the degenerate 2p-
orbitals: 2p_q,2pg and 2p;. Obviously, the z-components of angular mo-
mentum now add to zero, and since only this one component is observable,
the total angular momentum must also be zero.

Returning to our unfinished consideration of carbon, the 2p? subshell
can be regarded, in concept, as a half-filled 2p3 subshell plus an electron
“hole.” The advantage of this picture is that the total orbital angular mo-
mentum must be equal to that of the hole, namely [ = 1. This is shown
below:

R v

2p2 2p3 2p1

Thus the term symbol for the carbon ground state is P. It remains to deter-
mine the total spins of these subshells. Recall that exchange integrals K
are non-zero only if the orbitals a and b have the same spin. Since exchange
integrals enter the energy formula (3) with negative signs, the more non-
vanishing K integrals, the lower the energy. This is achieved by having the
maximum possible number of electrons with unpaired spins. We conclude
that S = 1 for carbon and S = 3/2 for nitrogen, so that the complete term
symbols are 3P and *S, respectively.

The allocation electrons among degenerate orbitals can be formalized
by Hund’s rule: For an atom in its ground state, the term with the highest
multiplicity has the lowest energy.

Resuming Aufbau of the periodic table, oxygen with four 2p electrons
must have one of the 2p-orbitals doubly occupied. But the remaining two
electrons will choose unoccupied orbitals with parallel spins. Thus oxygen
has, like carbon, a 3P ground state. Fluorine can be regarded as a complete
shell with an electron hole, thus a ?P ground state. Neon completes the
252p shells, thus term symbol 1S. The chemical stabilty and high ioniza-
tion energy of all the noble-gas atoms can be attributed to their electronic
structure of complete shells. The third row of the periodic table is filled
in complete analogy with the second row. The similarity of the outermost
electron shells accounts for the periodicity of chemical properties. Thus,
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the alkali metals Na and K belong in the same family as Li, the halogens
Cl and Br are chemically similar to F, and so forth.

The transition elements, atomic numbers 21 to 30, present further chal-
lenges to our understanding of electronic structure. A complicating factor
is that the energies of the 4s and 3d orbitals are very close, so that in-
teractions among occupied orbitals often determines the electronic state.
Ground-state electron configurations can be deduced from spectroscopic
and chemical evidence, and confirmed by accurate self-consisent field com-
putations. The 4s orbital is the first to be filled in K and Ca. Then come
3d electrons in Sc, Ti and V. A discontinuity occurs at Cr. The ground-
state configuration is found to be 4s3d°, instead of the extrapolated 4523d*.
This can be attributed to the enhanced stability of a half-filled 3d°-shell.
All six electrons in the valence shells have parallel spins, maximimizing the
number of stabilizing exchange integrals and giving the observed °S term.
An analogous discontinuity occurs for copper, in which the 4s subshell is
again raided to complete the 3d'? subshell.

The order in which orbitals are filled is not necessarily consistent with
the order in which electrons are removed. Thus, in all the positive ions of
transition metals, the two 4s-electrons are removed first. The inadequacy
of any simple generalizations about orbital energies is demonstrated by
comparing the three ground-state electron configurations: Ni 4523d®, Pd
5594d'0 and Pt 6s5d°.

The periodic structure of the elements is evident for many physical and
chemical properties, including chemical valence, atomic radius, electroneg-
ativity, melting point, density, and hardness. The classic prototype for
periodic behavior is the variation of the first ionization energy with atomic
number, which is plotted in in Fig. 2.
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Figure 2. Periodic trends in ionization energy.



An interesting graphical representation of the sequence of atomic orbitals
is Benfey’s spiral form of the periodic table, reproduced in Fig. 3.

Figure 3. Spiral form of the periodic table. From http://chemlab.pc.
maricopa.edu /periodic/spiraltable.html



Chapter 9. Exercises

1. Recall that a filled or half-filled p, d or f shell has spherical symme-
try. Accordingly, go through the periodic table up to Z = 54 and predict
which atomic ground states should have spherically-symmetrical electronic
distributions (multiplet-S term symbols).

2. Give the electronic configurations and term symbols of the first excited
electronic states of the atoms up to Z = 10.

3. Find an excited state of carbon atom which is spherically symmetrical.
It will turn out that a similar state is responsible for the tetravalence of
carbon.

4. It has been suggested that the ground-state electronic configurations of
atoms are approximately consistent with the “n + ¢ rule”. According to
this, atomic orbitals are filled in the order of increasing n + ¢. For orbitals
with the same values of n + ¢, the one with the lower n fills first. Find at
least one exception to this ordering. On the basis of these rules, predict the
ground- state electronic configuration of Rn (Z = 86).



Chapter 9. Solutions

1. Spherically symmetrical (S) state whenever valence shell contains only (i)
all s-electrons, (ii) half filled shells, (iii) filled shells. Group IA, configuration
ns: H, Li, Na, K, Rb. Group IIA, ns?: Be, Mg, Ca, Sr. Group VB, ns?np?:
N, P, As, Sb. Group 0: He, Ne, Ar, Kr, Xe. Transition elements: Cr 4s3d°,
Mn 4s23d°, Mo 5s4d®, Tc 5s?4d®. Also Cu, Zn, Pd, Ag, Cd, all with d'°.

2. First excited states: H 2s 2S; He 1s2s 3S; Li 1s22p 2P; Be 1s22s2p *P; B
1522s2p? 28. For C, N and O, the electron configuration is the same as for

the ground state but the occupation of degenerate p-orbitals is not optimal.
C 2s22p? 1D; N 2s22p3 2D; O 2s22p* 'D; F 2s2pf; Ar 2s22p°3s.

3. Promote one of the 2s electrons to the empty 2p orbital. If the four
valence electrons have parallel spins, this is a ®S state, which can form four
bonds.

4. Rn (Z = 86): 1s22s522p83523p©4523d104p°®5s24d105p06s24f145d106pS. The
4s-3d and 5s-4d order can, in some cases, be reversed.



CHAPTER 10
THE CHEMICAL BOND

The Hydrogen Molecule

This four-particle system, two nuclei plus two electrons, is described by the
Hamiltonian

R 1 1 1 1
H=_-V?__-V2_- V4 V?
21 272 oM, A 2Mp P

1 1 1 1 1 1

— — — — + + = 1
rA 2B r24 1B r12 R ()

in terms of the coordinates shown in Fig. 1. We note first that

Figure 1. Coordinates
used for hydrogen molecule.

the masses of the nuclei are much greater than those of the electrons,
Mproton = 1836 atomic units, compared to melectron = 1 atomic unit. There-
fore nuclear kinetic energies will be negligibly small compared to those of
the electrons. In accordance with the Born-Oppenheimer approximation,
we can first consider the electronic Schrodinger equation

ﬁelecw(rla ro, R) — Eelec(R) w(rla ro, R) (2)
where
N 1 1 1 1 1 1 1 1
Hooe = —5Vi—sV3m — m—— m— m—p — 4 — (3
: 21 272 ri4 1o Tea TB T2 R (3)

The internuclear separation R occurs as a parameter in this equation so
that the Schrodinger equation must, in concept, be solved for each value of
the internuclear distance R. A typical result for the energy of a diatomic
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molecule as a function of R is shown in Fig. 2. For a bound state, the energy
minimum occurs at for R = R., known as the equilibrium internuclear
distance. The depth of the potential well at R, is called the binding energy
or dissociation enerqy D.. For the Hy molecule, D, = 4.746 eV and R.=
1.400 bohr = 0.7406 A. Note that as R — 0, E(R) — oo, since the 1/R
nuclear repulsion will become dominant.

E(R)

repulsive state

bound state

Figure 2. Energy curves for a diatomic molecule.

The more massive nuclei move much more slowly than the electrons.
From the viewpoint of the nuclei, the electrons adjust almost instanta-
neously to any changes in the internuclear distance. The electronic energy
Eelec(R) therefore plays the role of a potential energy in the Schrédinger
equation for nuclear motion

{_ﬁvi — ﬁv% + V(R)} x(ra,rp) = Ex(ra,rp) (4)
where
V(R) = Eeiee(R) (5)

from solution of Eq (2). Solutions of Eq (4) determine the vibrational and
rotational energies of the molecule. These will be considered further in
Chap. 13. For the present, we are interested in the obtaining electronic
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energy from Egs (2) and (3). We will thus drop the subscript “clec” on H
and F(R) for the remainder this Chapter.

The first quantum-mechanical account of chemical bonding is due to
Heitler and London in 1927, only one year after the Schrodinger equation
was proposed. They reasoned that, since the hydrogen molecule Hy was
formed from a combination of hydrogen atoms A and B, a first approxima-
tion to its electronic wavefunction might be

Y(ri,re) = Y1s(ria)is(res) (6)
Using this function into the variational integral
By — L0 )
[ 2dr

the value R, ~ 1.7 bohr was obtained, indicating that the hydrogen atoms
can indeed form a molecule. However, the calculated binding energy D, =~
0.25 eV, is much too small to account for the strongly-bound Hy molecule.
Heitler and London proposed that it was necessary to take into account the
exchange of electrons, in which the electron labels in (6) are reversed. The
properly symmetrized function

Y(ri,r2) = Yis(ria)is(res) + Yis(rip)is(raa) (8)

gave a much more realistic binding energy value of 3.20 eV, with R, = 1.51
bohr. We have already used exchange symmetry (and antisymmetry) in
our treatment of the excited states of helium in Chap. 8. The variational
function (8) was improved (Wang, 1928) by replacing the hydrogen 1s func-
tions e~" by e~¢". The optimized value ¢ = 1.166 gave a binding energy
of 3.782 eV. The quantitative breakthrough was the computation of James
and Coolidge (1933). Using a 13-parameter function of the form

W(r1,ra) = ) 5 polynomial in {&1,&,m1,m2, 0},
TiA +TiB TiA — TiB T12
giETa mET, p R (9)
they obtained R, = 1.40 bohr, D, = 4.720 eV. In a sense, this result pro-

vided a proof of the validity of quantum mechanics for molecules, in the
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same sense that Hylleraas’ computation on helium was a proof for many-
electron atoms.

The Valence Bond Theory

The basic idea of the Heitler-London model for the hydrogen molecule can
be extended to chemical bonds between any two atoms. The orbital function
(8) must be associated with the singlet spin function 0 (1,2) in order
that the overall wavefunction be antisymmetric [cf. Eq (8.18)]. This is a
quantum-mechanical realization of the concept of an electron-pair bond,
first proposed by G. N. Lewis in 1916. It is also now explained why the
electron spins must be paired, i.e., antiparallel. It is also permissible to
combine an antisymmetric orbital function with a triplet spin function but
this will, in most cases, give a repulsive state, as shown by the red curve in
Fig. 2.

According to valence-bond theory, unpaired orbitals in the valence
shells of two adjoining atoms can combine to form a chemical bond if they
overlap significantly and are symmetry compatible. A o-bond is cylindri-
cally symmetrical about the axis joining the atoms. Two s AO’s, two p,
AQO’s or an s and a p, can contribute to a o-bond, as shown in Fig. 3. The
z-axis is chosen along the internuclear axis. Two p, or two p, AO’s can
form a m-bond, which has a nodal plane containing the internuclear axis.
Examples of symmetry-incompatible AO’s would be an s with a p, or a p,
with a py. In such cases the overlap integral would vanish because of cancel-
lation of positive and negative contributions. Some possible combinations
of AO’s forming ¢ and 7 bonds are shown in Fig. 3.

Bonding in the HCl molecule can be attributed to a combination of
a hydrogen 1s with an unpaired 3p, on chlorine. In Cl,, a sigma bond is
formed between the 3p, AO’s on each chlorine. As a first approximation, the
other doubly-occupied AO’s on chlorine-the inner shells and the valence-
shell lone pairs—are left undisturbed.



Figure 3. Formation of ¢ and 7 bonds.

The oxygen atom has two unpaired 2p-electrons, say 2p, and 2p,. Each
of these can form a o-bond with a hydrogen 1s to make a water molecule. It
would appear from the geometry of the p-orbitals that the HOH bond angle
would be 90°. It is actually around 104.5°. We will resolve this discrepency
shortly. The nitrogen atom, with three unpaired 2p electrons can form
three bonds. In NHjs, each 2p-orbital forms a o-bond with a hydrogen 1s.
Again 90° HNH bond angles are predicted, compared with the experimental
107°. The diatomic nitrogen molecule has a triple bond between the two
atoms, one ¢ bond from combining 2p, AQO’s and two m bonds from the
combinations of 2p,’s and 2p,’s, respectively.

Hybrid Orbitals and Molecular Geometry

To understand the bonding of carbon atoms, we must introduce additional
elaborations of valence-bond theory. We can write the valence shell config-
uration of carbon atom as 2322p$2py, signifying that two of the 2p orbitals
are unpaired. It might appear that carbon would be divalent, and indeed
the species CHy (carbene or methylene radical) does have a transient exis-
tence. But the chemistry of carbon is dominated by tetravalence. Evidently
it is a good investment for the atom to promote one of the 2s electrons to
the unoccupied 2p. orbital. The gain in stability attained by formation of
four bonds more than compensates for the small excitation energy. It can
thus be understood why the methane molecule CHy exists. The molecule
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has the shape of a regular tetrahedron, which is the result of hybridization,
mixing of the s and three p orbitals to form four sp* hybrid atomic orbitals.
Hybrid orbitals can overlap more strongly with neighboring atoms, thus
producing stronger bonds. The result is four C—H o-bonds, identical except
for orientation in space, with 109.5° H-C-H bond angles.

-) _\} : | E.EF:p'-!

ﬁ'} , 51pa

o% Gl

Figure 4. Promotion and hybridization
of atomic orbitals in carbon atom.

Other carbon compounds make use of two alternative hybridization
schemes. The s AO can form hybrids with two of the p AO’s to give three sp?
hybrid orbitals, with one p-orbital remaining unhybridized. This accounts
for the structure of ethylene (ethene):

2p 2p

The C-H and C-C o-bonds are all trigonal sp? hybrids, with 120° bond
angles. The two unhybridized p-orbitals form a 7-bond, which gives the
molecule its rigid planar structure. The two carbon atoms are connected
by a double bond, consisting of one ¢ and one w. The third canonical
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form of sp-hybridization occurs in C—C triple bonds, for example, acetylene
(ethyne). Here, two of the p AO’s in carbon remain unhybridized and can
form two m-bonds, in addition to a o-bond, with a neighboring carbon:

Px

Acetylene H-C=C-H is a linear molecule since sp-hybrids are oriented 180°
apart.

The deviations of the bond angles in HoO and NHj3 from 90° can be
attributed to fractional hybridization. The angle H-O-H in water is 104.5°
while H-N-H in ammonia is 107°. It is rationalized that the p-orbitals of the
central atom acquire some s-character and increase their angles towards the
tetrahedral value of 109.5°. Correspondingly, the lone pair orbitals must
also become hybrids. Apparently, for both water and ammonia, a model
based on tetrahedral orbitals on the central atoms would be closer to the ac-
tual behavior than the original selection of s- and p-orbitals. The hybridiza-

tion is driven by repulsions between the electron densities of neighboring
bonds.

Valence Shell Model

An elementary, but quite successful, model for determining the shapes of
molecules is the valence shell electron repulsion theory (VSEPR), first pro-
posed by Sidgewick and Powell and popularized by Gillespie. The local
arrangement of atoms around each multivalent center in the molecule can
be represented by AX,,_iEr, where X is another atom and E is a lone pair
of electrons. The geometry around the central atom is then determined by
the arrangement of the n electron pairs (bonding plus nonbonding) which
minimizes their mutual repulsion. The following geometric configurations
satisfy this condition:

n shape

2 linear 5 trigonal bipyramid

3 trigonal planar 6 octahedral

4 tetrahedral 7 pentagonal bipyramid



The basic geometry will be distorted if the n surrounding pairs are not
identical. The relative strength of repulsion between pairs follows the order
E-E > E-X > X-X. In ammonia, for example, which is NH3E, the shape
will be tetrahedral to a first approximation. But the lone pair E will repel
the N-H bonds more than they repel one another. Thus the E-N-H angle
will increase from the tetrahedral value of 109.5°, causing the H-N—H angles
to decrease slightly. The observed value of 107° is quite well accounted for.
In water, OHsE5, the opening of the E-O-E angle will likewise cause a
closing of H-O—-H, and again, 104.5° seems like a reasonable value.

Valence-bond theory is about 90% successful in explaining much of the
descriptive chemistry of ground states. VB theory fails to account for the
triplet ground state of O2 or for the bonding in electron-deficient molecules
such as diborane, BoHg. It is not very useful in consideration of excited
states, hence for spectroscopy. Many of these deficiencies are remedied by
molecular orbital theory, which we take up in the next Chapter.



Chapter 10. Exercises

1. The electronic energy of a diatomic molecule can be approximated by
the Morse function:

E(R) =D (1- e—ﬁ““?—Re))z

R, is the equilibrium internuclear separation while D and (3 are constants.
(i) Find the dissociation energy D,
(ii) Sketch the Morse function, labelling D, and R..

(iii) Expand the Morse function up to terms quadratic in (R — R.). Show
that this approximates a harmonic oscillator potential and identify the force
constant k.

2. The allene molecule CHy,=C=CH, is known to have a linear geometry
for the three carbon atoms. Rationalize this on the basis of hybridization

of carbon AQ’s.

3. Applying the valence-shell model, predict the shapes of each of the
following molecules: HyS, SFg, XeFy, SFy, 1F5.



Chapter 10. Solutions

1. (i) Minimum value of F(R) can be found by setting F(R) = 0. It is
easy to see from the formula itself that F(R) will have a minimum value
of 0 when R = R.. As R — oo, F(R) approaches D. Thus D, = D, the

dissociation energy.

(i)

E(R)

T

De
{
R

R

e

(iii) Remember the expansion for the exponential (In fact, don’t ever forget

this!)
2 3

e N~ 2" a? 2t
e _Zn!_1+x+2+6+...

n=0

Expanding the Morse function up to terms quadratic in R — R, gives

E(R) =0+ DB*(R— R.)*+ ...

This has the form of a harmonic oscillator potential V' (z) = %kx2 with

r=R—R, and k=2Dp>



2. The central carbon forms two sp-hybrids and two unhybridized p-orbitals,
just like acetylene. The sp-hybrids bond to the terminal carbons in a linear
arrangement of o-bonds. Each p orbitals then bonds to a terminal carbon
to form a m-bond, as shown below

H, H

A5

Note that the two CHy groups are in perpendicular planes.

H H

3. HsS: S has 6 valence electrons, 2 form bonds to H leaving 4 electrons

or 2 unshared pairs. SHyE, approximately tetrahedral configuration giving
two S—H bonds for bent H-S—H molecule. Just like H,O!

SFg: 6 S—F bonds, octahedral molecule.

XeF4: Xe has 8 valence electrons, 4 bonds to F, leaving 2 pairs. XeF4E»
octahedral with the two E’s on opposite sides to minimize repulsion, so
XeF4 molecule is square planar.

SF4: 4 S-F bonds, leaving 2 electrons or 1 lone pair. SF4E trigonal bipyra-
mid with E in one equatorial position. The 4 S—F bonds bend away from
the E giving a see-saw shaped molecule.

IF5: I has 7 valence electrons, 5 I-F bonds plus 1 lone pair. IF5E octahedral
configuration gives geometry of square pyramid.



CHAPTER 11
MOLECULAR ORBITAL THEORY

Molecular orbital theory is a conceptual extension of the orbital model,
which was so successfully applied to atomic structure. As was once play-
fully remarked, “a molecule is nothing more than an atom with more nu-
clei.” This may be overly simplistic, but we do attempt, as far as posssible,
to exploit analogies with atomic structure. Our understanding of atomic or-
bitals began with the exact solutions of a prototype problem—the hydrogen
atom. We will begin our study of homonuclear diatomic molecules begin-

ning with another exactly solvable prototype, the hydrogen molecule-ion
Hy .

The Hydrogen Molecule-Ion

The simplest conceivable molecule would be made of two protons and one
electron, namely H; This species actually has a transient existence in
electrical discharges through hydrogen gas and has been detected by mass
spectrometry. It also has been detected in outer space. The Schrodinger
equation for H;r can be solved exactly within the Born-Oppenheimer ap-
proximation. For fixed internuclear distance R, this reduces to a problem of
one electron in the field of two protons, designated A and B. We can write

{_%v2_i_i+i}w<r>:m<r> (1)

rn g R

where 7o and rg are the distances from the electron to protons A and B,
respectively. This equation was solved by Burrau (1927), after separating
the variables in prolate spheroidal coordinates. We will write down these
coordinates but give only a pictorial account of the solutions. The three

prolate spheroidal coordinates are designated &, 1, ¢. the first two are
defined by

TA +TB A —TB

22 - = = 2
while ¢ is the angle of rotation about the internuclear axis. The surfaces
of constant ¢ and 7 are, respectively, confocal ellipsoids and hyperboloids
of revolution with foci at A and B. The two-dimensional analog should be
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familiar from analytic geometry, an ellipse being the locus of points such
that the sum of the distances to two foci is a constant. Analogously, a
hyperbola is the locus whose difference is a constant. Fig. 1 shows several
surfaces of constant &, n and ¢. The ranges of the three coordinates are
£ e€{l,o0},ne{-1,1}, ¢ € {0,2}. The prolate-spheroidal coordinate
system conforms to the natural symmetry of the Hj problem in the same
way that spherical polar coordinates were the appropriate choice for the

hydrogen atom.

¢=const

E=const

N|=const

n=o0

Figure 1. Prolate spheroidal coordinates.

The first few solutions of the Hy Schrédinger equation are sketched
in Fig. 2, roughly in order of increasing energy. The ¢-dependence of the
wavefunction is contained in a factor

(p) = 9, A=0,+1,+2... (3)

which is identical to the ¢-dependence in atomic orbitals. In fact, the
quantum number A\ represents the component of orbital angular momen-
tum along the internuclear axis, the only component which has a definite
value in systems with axial (cylindrical) symmetry. The quantum number
A determines the basic shape of a diatomic molecular orbital, in the same
way that ¢ did for an atomic orbital. An analogous code is used, o for
A=0, 7 for A\ = +£1, § for A = £2, and so on. We are already familiar
with o- and 7-orbitals from valence-bond theory. A second classification of
the H; eigenfunctions pertains to their symmetry with respect to inversion
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through the center of the molecule, also known as parity. If ¥(—r) = +(r),
the function is classified gerade or even parity, and the orbital designation
is given a subscript g, as in o, or m,. If ¢p(—r) = —¢(r), the function is
classified as ungerade or odd parity, and we write instead o, or m,. Atomic
orbitals can also be classified by inversion symmetry. However, all s and d
AQ’s are g, while all p and f orbitals are u, so no further designation is nec-
essary. The MO’s of a given symmetry are numbered in order of increasing
energy, for example, 10,4, 20,4, 30,.

1 UE
e 17,
13 T -.Il".
2 t 30,
I.:' g |q :
ik 5 EUH et AP 1 :r[g
& I MG
. o i L ] 1
—_— i
# i i 1'..f.-:- ”:E: : ]J F-'\.:'-. ': S-U
:m : | i.h'fl EU“ l:- || I:.} ;[I-.. i [F]

Figure 2. HJ molecular orbitals.

The lowest-energy orbital, as we have come to expect, is nodeless. It
obviously must have cylindrical symmetry (A = 0) and inversion symmetry
(g). It is designated 1o, since it is the first orbital of this classification. The
next higher orbital has a nodal plane, with n = 0, perpendicular to the axis.
This function still has cylindrical symmetry (o) but now changes sign upon
inversion (u). It is designated 1o, as the first orbital of this type. The next
higher orbital has an inner ellipsiodal node. It has the same symmetry as
the lowest orbital and is designated 20,. Next comes the 20, orbital, with
both planar and ellipsoidal nodes. Two degenerate m-orbitals come next,
each with a nodal plane containing the internuclear axis, with ¢=const.
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Their classification is 1m,. The second 1m,-orbital, not shown in Fig. 2,
has the same shape rotated by 90°. The 30, orbital has two hyperbolic
nodal surfaces, where n = £const. The 17, again doubly-degenerate, has
two nodal planes, n = 0 and ¢=const. Finally, the 30,, the last orbital we
consider, has three nodal surfaces where n=const.

An MO is classified as a bonding orbital if it promotes the bonding of
the two atoms. Generally a bonding MO has a significant accumulation
of electron charge in the region between the nuclei and thus reduces their
mutual repulsion. The lo,, 204, 17, and 30, are evidently bonding or-
bitals. An MO which does not significantly contribute to nuclear shielding
is classified as an antibonding orbital. The 10, 20, 17, and 30, belong in
this category. Often an antibonding MO is designated by ¢* or 7*.

The actual ground state of H;r has the lo, orbital occupied. The
equilibrium internuclear distance R, is 2.00 bohr and the binding energy
D, is 2.79 eV, which represents quite a strong chemical bond. The 10, is a
repulsive state and a transition from the ground state results in dissociation
of the molecule.

The LCAO Approximation

In Fig. 3, the 1o, and 1o, orbitals are plotted as functions of z, along the
internuclear axis. Both functions have cusps, discontinuities in slope, at
the positions of the two nuclei A and B. The 1s orbitals of hydrogen atoms
have the same cusps. The shape of the 1o, and 1o, suggests that they
can be approximated by a sum and difference, respectively, of hydrogen 1s
orbitals, such that

Y(logu) = P(1sa) £ ¢(1sp) (4)

Figure 3. H; orbitals along internuclear axis.



This linear combination of atomic orbitals is the basis of the so-called LCAO
approximation. The other orbitals pictured in Fig. 2 can likewise be ap-
proximated as follows:

Y(204.4) = Y(254) £ Y(25B)

V(30gu) = Y(2poa) £ Y(2pop)
Y(1mu,g) = p(2pma) £ (2p7B) (5)

The 2po atomic orbital refers to 2p., which has the axial symmetry of a
o-bond. Likewise 2pr refers to 2p, or 2p,, which are positioned to form
m-bonds. An alternative notation for diatomic molecular orbitals which
specifies their atomic origin and bonding/antibonding character is the fol-
lowing:

log lo, 20, 20, 304 30, 1m, Im,
ols oc*ls o02s oc*2s  o2p oc*2p Tm2p T*2p

Almost all applications of molecular-orbital theory are based on the LCAO
approach, since the exact H;r functions are far too complicated to work
with.

The relationship between MO’s and their constituent AO’s can be rep-
resented in a correlation diagram, show in Fig. 4.



AO MO AO
30

2p \ ' 2p

30g

2s o 2s

20g

Figure 4. Molecular-orbital correlation diagram.
The 1s — 1oy, 1oy, is similar to the 2s correlations.

MO Theory of Homonuclear Diatomic Molecules

A sufficient number of orbitals is available for the Aufbau of the ground
states of all homonuclear diatomic species from Hs to Ney. Table 1 sum-
marizes the results. The most likely order in which the MQO’s are filled is
given by

log < loy, <204 <20, <30y ~1m, <l1my <30y

The relative order of 30, and 17, depends on which other MO’s are occu-
pied, much like the situation involving the 4s and 3d atomic orbitals. The
results of photoelectron spectroscopy indicate that 17, is lower up to and
including No, but 30, is lower thereafter.

The term symbol X, II, A ..., analogous to the atomic S, P, D... sym-
bolizes the axial component of the total orbital angular momentum. When
a m-shell is filled (4 electrons) or half-filled (2 electrons), the orbital angular
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momentum cancels to zero and we find a ¥ term. The spin multiplicity
is completely analogous to the atomic case. The total parity is again des-
ignated by a subscript g or u. Since the many electron wavefunction is
made up of products of individual MQO’s, the total parity is odd only if the
molecule contains an odd number of u orbitals. Thus a o2 or a 72 subshell
transforms like g.

For ¥ terms, the superscript + denotes the sign change of the wave-
function under a reflection in a plane containing the internuclear axis. This
is equivalent to a sign change in the variable ¢ — —¢. This symmetry is
needed when we deal with spectroscopic selection rules. In a spin-paired
72 subshell the triplet spin function is symmetric so that the orbital factor
must be antisymmetric, of the form

1
75 (mal0m, () = 7 (D)) (6)

This will change sign under the reflection, since x — = but y — —y. We
need only remember that a 72 subshell will give the term symbol 329_.
The net bonding effect of the occupied MO'’s is determined by the bond
order, half the excess of the number bonding minus the number antibond-
ing. This definition brings the MO results into correspondence with the
Lewis (or valence-bond) concept of single, double and triple bonds. It is
also possible in MO theory to have a bond order of 1/2, for example, in HJ
which is held together by a single bonding orbital. A bond order of zero gen-
erally indicates no stable chemical bond, although helium and neon atoms
can still form clusters held together by much weaker van der Waals forces.
Molecular-orbital theory successfully accounts for the transient stability of
a 32: excited state of Hes, in which one of the antibonding electrons is pro-
moted to an excited bonding orbital. This species has a lifetime of about
10~* sec, until it emits a photon and falls back into the unstable ground
state. Another successful prediction of MO theory concerns the relative
binding energy of the positive ions NJ and OF, compared to the neutral
molecules. Ionization weakens the N-N bond since a bonding electron is
lost, but it strengthens the O—-O bond since an antibonding electron is lost.
One of the earliest triumphs of molecular orbital theory was the pre-
diction that the oxygen molecule is paramagnetic. Fig. 5 shows that liquid
O is a magnetic substance, attracted to the region between the poles of a
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permanent magnet. The paramagnetism arises from the half-filled 1%3 sub-
shell. According to Hund’s rules the two electrons singly occupy the two
degenerate 1w, orbitals with their spins aligned parallel. The term sym-
bol is 329_ and the molecule thus has a nonzero spin angular momentum
and a net magnetic moment, which is attracted to an external magnetic
field. Linus Pauling invented the paramagnetic oxygen analyzer, which is
extensively used in medical technology.

Figure 5. Demonstration showing blue liquid O»
attracted to the poles of a permanent magnet. From
http://jchemed.chem.wisc.edu/jcesoft/cca/CCA2/
STHTM/PARANIO/9.HTM

Variational Computation of Molecular Orbitals

Thus far we have approached MO theory from a mainly descriptive point
of view. To begin a more quantitative treatment, recall the LCAO approx-
imation to the HJ ground state, Eq (4), which can be written

Y =catba+cYB (7)
Using this as a trial function in the variational principle (4.53), we have
[ wHydr
E = 8
(CA?CB) f wQ dT ( )

where H is the Hamiltonian from Eq (1). In fact, these equations can be
applied more generally to construct any molecular orbital, not just solu-
tions for H;’ . In the general case, H will represent an effective one-electron
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Hamiltonian determined by the molecular environment of a given orbital.
The energy expression involves some complicated integrals, but can be sim-
plified somewhat by expressing it in a standard form. Hamiltonian matrix
elements are defined by

HAAZ/@DAFIZDACZT

HBB:/¢Bﬁ¢Bd7'

Hap =Hpa = / Wa Hppdr (9)

while the overlap integral is given by

S = / Yot dr (10)

Presuming the functions ¢4 and ¢p to be normalized, the variational energy
(8) reduces to

4 Haa+2cacg Hap+ c¢% Hpp

E(ca,cp) =
(ca,¢5) ¢4 4 2cacg Sap + %

(11)

To optimize the MO, we find the minimum of E wrt variation in c4 and
cB, as determined by the two conditions

E E

— 12
Oca ’ Ocp 0 (12)

The result is a secular equation determining two values of the energy:

Han — F Hap — ESap| _ 0 (13)
Hap — ESap Hpp—E

For the case of a homonuclear diatomic molecule, for example H;L,
the two Hamiltonian matrix elements Hy4 and Hpp are equal, say to .
Setting Hap = 3 and Sap = S, the secular equation reduces to

a—F (-—ES
6—ES a—F

—@-EP-(-BSP-0 ()



with the two roots
a+f

T 1+s

The calculated integrals o and 3 are usually negative, thus for the bonding
orbital

E* (15)

E+_oz+ﬁ

=133 (bonding) (16)
while for the antibonding orbital
E- = ‘f:g (antibonding) (17)

Note that (E~ — «) > (a — ET), thus the energy increase associated with
antibonding is slightly greater than the energy decrease for bonding. For
historical reasons, « is called a Coulomb integral and (3, a resonance integral.

Heteronuclear Molecules

The variational computation leading to Eq (13) can be applied as well to the
heteronuclear case in which the orbitals 14 and g are not equivalent. The
matrix elements H4 4 and Hpgp are approximately equal to the energies of
the atomic orbitals 1) 4 and g, respectively, say £ 4 and Eg with F4 > Ep.
It is generally true that |F 4|, |Eg| > |Hap|- With these simplifications,
secular equation can be written

EFy—F Hip —ESap|
Hyp —ESap Ep—FE N

(Ea—E)(Ep —E) — (Hap — ESap)* =0 (18)
This can be rearranged to

(Hap — ESap)?
E—Eg

E—FEy = (19)

To estimate the root closest to E 4, we can replace E by E4 on the right
hand side of the equation. This leads to

(Hap — EaSaB)?
Ear— Ep

EF~ =~ FE4+ (20)
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and analogously for the other root,

(21)

The following correlation diagram represents the relative energies of these
AO’s and MO’s:

A simple analysis of Eqs (18) implies that, in order for two atomic
orbitals 14 and 1 p to form effective molecular orbitals the following con-
ditions must be met:

(i) The AO’s must have compatible symmetry.

For example, 14 and v p can be either s or po orbitals to form a o-bond
or both can be pr (with the same orientation) to form a 7-bond.

(i1) The charge clouds of ¢4 and 15 should overlap as much as possible.

This was the rationale for hybridizing the s and p orbitals in carbon. A
larger value of S4p implies a larger value for Hzp.

(ii1) The energies F4 and Ep must be of comparable magnitude.

Otherwise, the denominator in (20) and (21) will be too large and the MO’s
will not differ significantly from the original AO’s. A rough criterion is that
E 4 and Ep should be within about 0.2 hartree or 5 eV. For example, the
chlorine 3p orbital has an energy of —13.0 eV, comfortably within range of
the hydrogen 1s, with energy —13.6 eV. Thus these can interact to form a
strong bonding (plus an antibonding) MO in HCI. The chlorine 3s has an
energy of —24.5 eV, thus it could not form an effective bond with hydrogen
even if it were available.
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Hiickel Molecular Orbital Theory

Molecular orbital theory has been very successfully applied to large conju-
gated systems, especially those containing chains of carbon atoms with al-
ternating single and double bonds. An approximation introduced by Hiickel
in 1931 considers only the delocalized p electrons moving in a framework of
o-bonds. This is, in fact, a more sophisticated version of the free-electron
model introduced in Chap. 3. We again illustrate the model using buta-
diene CH,=CH-CH=CH,. From four p atomic orbitals with nodes in the
plane of the carbon skeleton, one can construct four 7 molecular orbitals
by an extension of the LCAO approach:

1 = c1Y1 + covh2 + 313 + 4ty (22)

Applying the linear variational method, the energies of the MQO’s are the
roots of the 4 x 4 secular equation

Hy —FE Hiy — ESio
His — ESio Hoy — E ce =0 (23)

Four simplifying assumptions are now made
(i) All overlap integrals S;; are set equal to zero.

This is quite reasonable since the p-orbitals are directed perpendicular to
the direction of their bonds.

(73) All resonance integrals H;; between non-neighboring atoms are set equal
to zero.

(749) All resonance integrals H;; between neighboring atoms are set equal
to (3.
(iv) All coulomb integrals H;; are set equal to .

The secular equation thus reduces to

a—F 16} 0 0

15} a—F 15} 0 _

0 3 0 E 3 =0 (24)
0 0 I} a—F

12



Dividing by $* and defining

a—F
T = 25
; (25)
the equation simplifies further to

z 1 0 0

1 = 1 0
0 1 = 1| 0 (26)

0 0 1 =

This is essentially the connection matrix for the molecule. Each pair of
connected atoms is represented by 1, each non-connected pair by 0 and
each diagonal element by x. Expansion of the determinant gives the 4th
order polynomial equation

't — 3 +1=0 (27)

Noting that this is a quadratic equation in z?, the roots are found to be
22 = (3++/5)/2, so that x = £0.618, +1.618. This corresponds to the four
MO energy levels

EF=a+1.6180, a+0.61873 (28)
Since a and 3 are negative, the lowest MO’s have
E(lr) = a+ 1.6180

and
EQ27) =a+0.6180

and the total melectron energy of the 172272 configuration equals
E. =2(a+1.61803) + 2(a + 0.6180) = 4o + 4.4723 (29)

The simplest application of Hiickel theory, to the ethylene molecule
CH,=CH, gives the secular equation

=0 (30)
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This is easily solved for the energies £ = a 4+ 3. The lowest orbital has
E(1m) = a + 8 and the 172 ground state has FE, = 2(a + ). If butadiene
had two localized double bonds, as in its dominant valence-bond structure,
its m-electron energy would be given by E, = 4(a + (3). Comparing this
with the Hiickel result (29), we see that the energy lies lower than the that
of two double bonds by 0.483. The thermochemical value is approximately
—17 kJmol~!. This stabilization of a conjugated system is known as the
delocalization energy. It corresponds to the resonance-stabilization energy
in valence-bond theory.

Aromatic systems provide the most significant applications of Hiickel
theory. For benzene, we find the secular equation

zx 1 0 0 0 1
1 2 1 0 0 O
O 1 = 1 0 O
0O 01 = 1 0 0 (31)
0O 0 0 1 = 1
1 0 0 0 1 =z

with the six roots x = £2, +1, £1. The energy levels are £ = o + 23 and
two-fold degenerate £ = a + . With the three lowest MO’s occupied, we
have

Er=2(a+28)+4(a+B) =6a+ 85 (32)

Since the energy of three localized double bonds is 6a+63, the delocalization
energy equals 23. The thermochemical value is —152 kJmol~1.
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HOMONUCLEAR DIATOMICMOLECULES

ELECTRON BOND
MOLECULE CONFIGURATION ORDER D./eV
H lo, 2%f 0.5 2.79
H, lo2 'of 1 4.75
He, lo2102 107 0 0.0009 [1]
10310u209 3y F 2] 1 2.6
Hes lolloy, 2% 0.5 2.5
Liy 102162202 157 1 1.07
Bes 103103203203 12;’ 0 0.1
Bs L Am 3%, [3] 1 3.0
Co 1wy 1S 2 6.3
Ny ST VR  Vs 3 9.91
NS o Amg3o, 2XF 2.5 8.85 [4]
02 .30l ln 38, [3,5] 2 5.21
oF S U U U 2.5 6.78 [4]
Fs ...1ﬂ330§1ﬂ§ 12;’ 1 1.66
Ney o Amy302img30l TR 0 0.0036 [1]

NOTES:

[1] Van der Waals bonding.

[2] Lifetime ~ 10~% sec.

[3] Note application of Hund’s rules.

[4] Compare effects of ionization on relative binding energies for N3 and OF .

[5] Paramagnetism of Oy predicted by MO theory.

R./A

1.06
0.741
3.0
1.05
1.08
2.67
2.5
1.59
1.24
1.10
1.12
1.21
1.12
1.41

3.1



Chapter 11. Exercises

1. After separation of variables in the Hy problem, the function Z(¢) obeys
the differential equation

d
dé

d=
dg

] + (A+2R§+§R2E§2— X )E(f) =0

[(52 —1) 2 _1

where A is a constant, R is the internuclear distance, A is the angular
momentum quantum number, an integer, and F is the energy, a negative
number for bound states. Find the asymptotic solution of the above equa-
tion as & — oo.

2. Write out the two-electron orbital function for the H, molecule

¢(17 2) = ¢1ag(1) wlag<2)

assuming the LCAO approximation for each MO. Expand this result and
show how it relates to the corresponding valence-bond wavefunction. What
is the meaning of the left-over terms?

3. Give the electron configuration, term symbol and bond order for the
ground state of each of the following species: N3, Ny and N5

4. Predict the electronic configuration and term symbol for the ground
state of the superoxide ion O5 and of the peroxide ion O .

5. Propose electron configurations and term symbols for the two lowest
singlet excited states of Os.

6. Rationalize why the Be; molecule, unlike Hes, is weakly bound (Dy ~ 0.1
eV). Hint: 2s-2p hybridization is involved.

7. The overlap integral between a 1s and a 2po orbital on nuclei separated
by a distance R (in bohr) is given by

RS
S = <R+R2+?> e It



Determine the value of R which gives the maximum overlap. (It may be of
interest that the internuclear distance in HF equals 0.916A.)

8. Carry out a Hiickel calculation on the allyl radical
CH; = CH — CHy°

Determine, in terms of the empirical parameters o and 3, the energies of the
m-molecular orbitals, the resonance stabilization energy and the wavelength
of the lowest-energy electronic transition.

9. The species Hs occurs as an intermediate in the hydrogen exchange

reaction
H +H+=Hs+= H+ H>

Is Hs a linear or a triangular molecule? For both the linear and equilateral
triangular configurations, apply a variant of the Hiickel theory based on
hydrogen 1s orbitals (rather than carbon 2p) to predict which has the lower
energy. Also predict the shapes of the ions Hi and Hj .



Chapter 11. Solutions

1. As £ — 00, the equation reduces approximatly to

2’2 RAEIE
de? i -

(1]

§

Cancelling the £2 and noting that E is negative for bound states,

E(§) ~ exp (—g@&)

Yigg = 1sa + 1sp

Thus
¥(1,2) = <15A(1) + 153(1)> (15,4(2) + 133(2)> _

{18A(1)1SB(2) + 153(1)15A(2)} +1s4(1)1s4(2) + 1sp(1)1sp(2)

Term in brackets is the valence bond function for the bond. The remaining
terms represent ionic structures H'H™ and H™H™ with both electrons on
the same hydrogen atom.

3. Ny  ...1mi302 '¥F  BO=3
NS o Amg3e,  2EF BO=2.5

Ny o Amg3oiimg PO BO= 2.5
4. Og . .30317r317r§ 325

Oy .30 my 1w 11,

0, ? e 3031#31%3 12;’



5. Both excited states have same configuration as ground state,
. 303 1%31%3, but with the following occupancy of 17, orbitals:

11 'St and 1T _ A,
The plus superscript in the first term symbol is rather tricky. Don’t worry
about it. But if you insist ... two-electron singlet spin state has anti-

symmetric spin function, thus must have symmetric orbital function like
7 (1)my(2) + my(1)7(2) which doesn’t change sign upon transformation
¢ — —¢. Singlet oxygen and other active oxygen species are involved in
lipid metabolism.

6. Beg has configuration ... 202207 '¥F

The 20 orbitals are LCAO’s made from hybrids of 2s and 2po. The 20,
MO probably becomes more strongly bonding while the 20, becomes more
weakly antibonding, with the net effect being weak bonding.

7. Setting dS/dR = 0 find maximum at R = 2.1038 bohrs or 2.1038 x .593 =
1.115 A.

8. Secular determinant

z 1 0

1 = 1|=2-22x=0

0 1 =z
where z = (o — E)/B. Roots x = 0, £/2, thus E = o — V206, o, o +
V2. Remember both a and 3 are negative. Ground state energy (3
electrons) = 2(a+v/28) + o = 3a+2v/23. One localized m-orbital plus one
unpaired electron would have energy = 2(a+ ) + a = 3a+ 23. Resonance
stabilization energy = (2 — 2v/2)3 = —.828 3 = .828|3|. Lowest energy
electronic transition given by

hc
he _ valg)

9. For linear Hs, the secular equation is

z 1 0
1 z 1|=22-22=0
0 1 =z



with roots = 0, £1/2. Thus the three MO energies are a—v/23, o, a++v/20.
The energy of the three-electron ground state is 3a + 2v/23 ~ 3a + 2.8280.

For triangular Hg,

__= 8

1 1
r 1|=2>-32+2=0
1 =«

One obvious root is « = 1. Division of 23 — 3z +2 by x — 1 gives 2?4+ x — 2,
with roots x = 1 and —2. The three MO’s are a + 23, — B, — 3. The
energy of the ground state is 3a + 3.

Apparently the triangular form of H3 has a slightly lower energy.



CHAPTER 12
MOLECULAR SYMMETRY

In many cases, the symmetry of a molecule provides a great
deal of information about its quantum states, even without a
detailed solution of the Schrodinger equation. A geometrical
transformation which turns a molecule into an indistinguish-
able copy of itself is called a symmetry operation. A symmetry
operation can consist of a rotation about an axis, a reflection
in a plane, an inversion through a point, or some combination
of these.

The Ammonia Molecule

We shall introduce the concepts of symmetry and group theory
by considering a concrete example—the ammonia molecule NHs.
In any symmetry operation on NHj3, the nitrogen atom remains
fixed but the hydrogen atoms can be permuted in 3!=6 differ-
ent ways. The axis of the molecule is called a C3 axis, since
the molecule can be rotated about it into 3 equivalent orienta-
tions, 120° apart. More generally, a C,, axis has n equivalent
orientations, separated by 27 /n radians. The axis of highest
symmetry in a molecule is called the principal azxis. Three
mirror planes, designated o1, 09, 03, run through the principal
axis in ammonia. These are designated as o, or vertical planes
of symmetry. Ammonia belongs to the symmetry group desig-
nated Cs,, characterized by a three-fold axis with three vertical
planes of symmetry.

Let us designate the orientation of the three hydrogen
atoms in Fig. 1 as {1,2,3}, reading in clockwise order from
the bottom. A counterclockwise rotation by 120°, designated



/?\ S .7 H,

o
\
&
/
/

Figure 1. Two views of the ammonia molecule.

by the operator Cs, produces the orientation {2,3,1}. A sec-
ond counterclockwise rotation, designated C%, produces gives
{3,1,2}. Note that two successive counterclockwise rotations
by 120° is equivalent to one clockwise rotation by 120°, so the
last operation could also be designated C5 . The three reflec-
tion operations o1, 09,03 applied to the original configuration
{1,2,3} produces {1,3,2}, {3,2,1} and {2,1, 3}, respectively.
Finally, we must include the identity operation, designated F,
which leaves an orientation unchanged. The effects of the six
possible operations of the symmetry group Cs, can be summa-
rized as follows:

E{1,2,3} ={1,2,3}  (C3{1,2,3} ={2,3,1}
C2{1,2,3} ={3,1,2} o1{1,2,3} = {1,3,2}
02{1,2,3} ={3,2,1}  03{1,2,3} ={2,1,3}

We have thus accounted for all 6 posssible permutations of the
three hydrogen atoms.



The successive application of two symmetry operations is
equivalent to some single symmetry operation. For example,
applying ('3, then o1 to our starting orientation, we have

01 03{1,2,3} — 01 {2,3,1} = {2,1,3}

But this is eqivalent to the single operation o3. This can be
represented as an algebraic relation among symmetry operators

01 Cs =03

Note that successive operations are applied in the order right
to left when represented algebraically. For the same two oper-
ations in reversed order, we find

Cs01{1,2,3} =C5{1,3,2} ={3,2,1} = 02 {1,2,3}
Thus symmetry operations do not, in general commute
AB#BA (1)

although they may commute, for example, C3 and C?.
The algebra of the group Cs, can be summarized by the
following multiplication table.

1St E Cg C?? 01 09 03

2nd

E E 03 Og 01 09 03
03 03 032 E 03 01 092
Cg C?? E 03 (X)) 03 01
01 01 09 03 E 03 C§
() 092 03 01 C% E 03
03 03 01 (02 Cg Cg E

Notice that each operation occurs once and only once in each
row and each column.



Group Theory

In mathematics, a group is defined as a set of g elements G =
{G1,Gy...Gy} together with a rule for combination of ele-
ments, which we usually refer to as a product. The elements
must fulfill the following four conditions.

(i) The product of any two elements of the group is another
element of the group. That is G;G; = G| with G, € G

(7) Group multiplication obeys an associative law, G;(G,;Gy) =
(i17) There exists an identity element E such that EG; = G;FE =
G; for all 7.

(iv) Every element G; has a unique inverse G ', such that
G:G;7' =G;'G; = E with G ' €G.

The number of elements h is called the order of the group.
Thus Cg, is a group of order 6.

a set of quantities which obeys the group multiplication
table is called a representation of the group. Because of the
possible noncommutativity of group elements [cf. Eq (1)], sim-
ple numbers are not always adequate to represent groups; we
must often use matrices. The group Cs, has three irreducible
representations, or IR’s, which cannot be broken down into
simpler representations. A trivial, but nonetheless important,
representation of any group is the totally symmetric represen-
tation, in which each group element is represented by 1. The
multiplication table then simply reiterates that 1 x 1 = 1. For
Csy this is called the A; representation:

Al E=1,C3=1,05=1,00=1,00=1,03=1 (2)
A slightly less trivial representation is As:

Ay: E=1,C3=1,05=1,01=—1,00=—1,03 =1 (3)
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Much more exciting is the E representation, which requires 2 x 2
matrices :

(1) e (2 )

ci=(4n ) =5 )

n=(Van i) (Ve )

(4)

The operations C3 and C% are said to belong to the same
class since they perform the same geometric function, but for
different orientations in space. Analogously, o1, 09 and o3 are
obviously in the same class. E is in a class by itself. The class
structure of the group is designated by {F,2C5, 30, }. We state
without proof that the number of irreducible representations of
a group is equal to the number of classes. Another important
theorem states that the sum of the squares of the dimension-
alities of the irreducible representations of a group adds up to
the order of the group. Thus, for Cs,, we find 1% 412 + 22 = 6.

The trace or character of a matrix is defined as the sum of
the elements along the main diagonal:

X(M) =" My, (5)

For many purposes, it suffices to know just the characters of
a matrix representation of a group, rather than the complete

5



matrices. For example, the characters for the E representation
of Csy in Eq (4) are given by

X(E) =2, x(C3)=-1, x(C3)=-1,
X(Ul) =0, X(02) =0, X(03) =0 (6)

It is true in general that the characters for all operations in the
same class are equal. Thus Eq (6) can be abbreviated to

X(E) = 2, X(OES) = —1, X(UU) =0 (7)

For one-dimensional representations, such as A; and A,, the
characters are equal to the matrices themselves, so Eqs (2) and
(3) can be read as a table of characters.

The essential information about a symmetry group is sum-
marized in its character table. We display here the character
table for Cs,

Cgv E 2C3 30‘U

Aq 1 1 1 2z 22, 2% + y?
Ao 1 1 -1
B 2 —1 0 (xay) ($y7 ” —y2),(ZCZ,yZ)

The last two columns show how the cartesian coordinates x, vy, 2
and their products transform under the operations of the group.

Group Theory and Quantum Mechanics

When a molecule has the symmetry of a group G, this means
that each member of the group commutes with the molecular
Hamiltonian

G, H|=0 i=1...h (8)
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where we now explicitly designate the group elements G, as
operators on wavefunctions. As was shown in Chap. 4, com-
muting operators can have simultaneous eigenfunctions. A rep-
resentation of the group of dimension d means that there must
exist a set of d degenerate eigenfunctions of H that transform
among themselves in accord with the corresponding matrix
representation. For example, if the eigenvalue FE,, is d-fold

degenerate, the commutation conditions (2) imply that, for
i=1...h,

GiHpy = HGi o, = By, Githpyy for k=1...d (9)

Thus each G’Z Uk is also an eigenfunction of H with the same
eigenvalue FE,,, and must therefore be represented as a linear
combination of the eigenfunctions ,r. More precisely, the
eigenfunctions transform among themselves according to

d

m=1

where D(G;)km, means the {k,m} element of the matrix rep-
resenting the operator G;.

The character of the identity operation E immediately
shows the degeneracy of the eigenvalues of that symmetry. The
C3y character table reveals that NHs, and other molecules of
the same symmetry, can have only nondegenerate and two-fold
degenerate energy levels. The following notation for symmetry
species was introduced by Mulliken:

(i) One dimensional representations are designated either A
or B. Those symmetric wrt rotation by 27 /n about the C,
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principal axis are labelled A, while those antisymmetric are
labelled B.

(i) Two dimensional representations are designated E; 3, 4
and 5 dimensional representations are designated T, F and G,
respectively. These latter cases occur only in groups of high
symmetry: cubic, octahedral and icosohedral.

(4i7) In groups with a center of inversion, the subscripts g and
u indicate even and odd parity, respectively.

(4v) Subscripts 1 and 2 indicate symmetry and antisymmetry,
respectively, wrt a Co axis perpendicular to C,, or to a o,
plane.

(v) Primes and double primes indicate symmetry and antisym-
metry to a o plane.

For individual orbitals, the lower case analogs of the symmetry
designations are used. For example, MO’s in ammonia are
classified a1, as or e.

For ammonia and other Cs, molecules, there exist three
species of eigenfunctions. Those belonging to the classification
A are transformed into themselves by all symmetry operations
of the group. The 1s, 2s and 2p, AQO’s on nitrogen are in this
category. The z-axis is taken as the 3-fold axis. There are no
low-lying orbitals belonging to Ay. The nitrogen 2p, and 2p,
AQO’s form a two-dimensional representation of the group Cg, .
That is to say, any of the six operations of the group transforms
either one of these AO’s into a linear combination of the two,
with coefficients given by the matrices (4). The three hydrogen
1s orbitals transform like a 3 x 3 representation of the group.
If we represent the hydrogens by a column vector {H;, Ho, Hs},

8



then the six group operations generate the following algebra

1 00 0 1 0
E=(0 1 0 C3=10 0 1
0 0 1 1 00
0 0 1 1 00
C:=11 0 0 oco=10 0 1
0 1 0 0 1 0
0 0 1 0 1 0
09 — 0O 1 O 03 — 1 0 O (11)
1 00 0 0 1

Let us denote this representation by I'. It can be shown that
I' is a reducible representation, meaning that by some unitary
transformation the 3 x 3 matrices can be factorized into block-
diagonal form with 2x2 plus 1x1 submatrices. The reducibility
of I' can be deduced from the character table. The characters
of the matrices (11) are

I x(B)=3,  x(C3)=0, x(oy)=1  (12)

The character of each of these permutation operations is equal
to the number of H atoms left untouched: 3 for the identity,
1 for a reflection and O for a rotation. The characters of I
are seen to equal the sum of the characters of A; plus E. This
reducibility relation is expressed by writing

[=A &E (13)

The three H atom 1s functions can be combined into LCAO
functions which transform according to the IR’s of the group.
Clearly the sum

Y = P15(1) + P15(2) + Y15(3) (14)

9



transforms like A;. The two remaining linear combinations
which transform like E must be orthogonal to (14) and to one
another. One possible choice is

wl — w13(2) - ¢18<3)7 ¢,/ — 2¢1s(1) - ¢1s(2) - 1013(3) (15)

Now (14) can be combined with the N 1s, 2s and 2p, to form
MO’s of A; symmetry, while (15) can be combined with the
N 2p,and 2p, to form MO’s of E symmetry. Note that no hy-
bridization of AQO’s is predetermined, it emerges automatically
in the results of computation.
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CHAPTER 13
MOLECULAR SPECTROSCOPY

Our most detailed knowledge of atomic and molecular structure has been
obtained from spectroscopy—study of the emission, absorption and scat-
tering of electromagnetic radiation accompanying transitions among atomic
or molecular energy levels. Whereas atomic spectra involve only electronic
transitions, the spectroscopy of molecules is more intricate because vibra-
tional and rotational degrees of freedom come into play as well. Early
observations of absorption or emission by molecules were characterized as
band spectra—in contrast to the line spectra exhibited by atoms. It is now
understood that these bands reflect closely-spaced vibrational and rota-
tional energies augmenting the electronic states of a molecule. With im-
provements in spectroscopic techniques over the years, it ha become pos-
sible to resolve individual vibrational and rotational transitions. This has
provided a rich source of information on molecular geometry, energetics
and dynamics. Molecular spectroscopy has also contributed significantly to
analytical chemistry, environmental science, astrophysics, biophysics and
biochemistry.

Reduced Mass

Consider a system of two particles of masses m; and ms interacting with
a potential energy which depends only on the separation of the particles.
The classical energy is given by

I r
E = 5 2+ §m2r§+V(|r2 — 1)) (1)

the dots signifying derivative wrt time. Introduce two new variables, the
particle separation r and the position of the center of mass R:

miry + malo
r =ry — Iy, R = (2)
m

where m = mq + mo. In terms of the new coordinates

r1:R—|—@r, rQ:R—ﬁr (3)
m m



and | .
E = §mR2+§,u1"2+V(r) (4)

where 7 = |r| and p is called the reduced mass

mimsa
0

1l
—~

ot
~—

mi1 + mo

An alternative relation for reduced mass is

1ot -

H mi mo

reminiscent of the formula for resistance of a parallel circuit. Note that,
if my — 00, then 4 — my. The term containing R represents the kinetic
energy of a single hypothetical particle of mass m located at the center
of mass R. The remaining terms represent the relative motion of the two
particles. It has the appearance of a single particle of effective mass u
moving in the potential field V(r).

Jo '2+V()—p2+V() (7)
1"61—2,ur T—zlu r

We can thus write the Schrodinger equation for the relative motion

{‘ZTLVZ +V(r)}¢(1') — By(r) ®)

When we treated the hydrogen atom, it was assumed that the nuclear mass
was infinite. In that case we can set = m, the mass of an electron. The
Rydberg constant for infinite nuclear mass was calculated to be

2m2me?

Roo =
h3c

= 109,737 cm™! (9)

If instead, we use the reduced mass of the electron-proton system

mM 1836
m+ M " 1837

= m ~ 0.999456 m (10)



This changes the Rydberg constant for hydrogen to
Ry ~ 109,677 cm™* (11)
in perfect agreement with experiment.

In 1931, H. C. Urey evaporated four liters of hydrogen down to one
milliliter and measured the spectrum of the residue. The result was a set of
lines displaced slightly from the hydrogen spectrum. This amounted to the
discovery of deuterium, or heavy hydrogen, for which Urey was awarded in
1934 Nobel Prize in Chemistry. Estimating the mass of the deuteron, 2H;,
as twice that of the proton, gives

Rp =~ 109,707 cm ™! (12)

Another interesting example involving reduced mass concerns positron-
ium, a short-lived combination of an electron and a positron—the electron’s
antiparticle. The electron and positron mutually annihilate with a half-life
of approximately 107 sec and positronium decays into gamma rays. The
reduced mass of positronium is

m X m m

_ _m 13
p= =5 (13)

half the mass of the electron. Thus the ionization energy equals 6.80 eV, half
that of hydrogen atom. Positron emission tomography (PET) provides a
sensitive scanning technique for functioning living tissue, notably the brain.
A compound containing a positron-emitting radionuclide, for example, 11C,
13N, 120 or '®F, is injected into the body. The emitted positrons attach to
electrons to form short-lived positronium, and the annihilation radiation is
monitored.

Vibration of Diatomic Molecules

A diatomic molecule with nuclear masses M4, Mp has a reduced mass

(14)



Figure 1. Jens Zorn sculpture depicting positronium annihilation.
Outside University of Michigan Physics Building.

Solution of the electronic Schrodinger equation gives the energy as a func-
tion of internuclear distance Eeec(R). This plays the role of a potential
energy function for motion of the nuclei V(R), as sketched in Fig. 2. We
can thus write the Schrodinger equation for vibration

B d?
{ - V0 ) = Ex() (15)
If the potential energy is expanded in a Taylor series about R = R,

V(R)=V(Re)+ (R—R)V'(Re) + 2(R— Re)*V"(Re) + ... (16)

An approximation for this expansion has the form of a harmonic oscillator
with

Q

V(R) ~ Sh(R— R.)? (17)
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Figure 2. Vibrational energies of a diatomic molecule,
as approximated by a Morse oscillator.

The energy origin can be chosen so V(R.) = 0. At the minimum of the
potential, V/(R.) = 0. The best fit to the parabola (17) is obtained with a
force constant set equal to

_ d’V(R)

ks (18)

R=R.

From the solution for the harmonic oscillator, we identify the ground state
vibrational energy, with quantum number v = 0

E():hw:h E (19)
v

The actual dissociation energy from ground vibrational state is then ap-

proximated by
Dy~ D, — $hw (20)



In wavenumber units

hcDy ~ heD, — 37 cm™ (21)

An improved treatment of molecular vibration must account for anhar-
monicity, deviation from a harmonic oscillator. Anharmonicity results in a
finite number of vibrational energy levels and the possibility of dissociation
of the molecule at sufficiently high energy. A very successful approximation
for the energy of a diatomic molecule is the Morse potential:

(R—R.) 2 pw” Ve

= heD, {1 - e"(F=Re)} - 22

V(R) c e a < 2heD. ) (22)
Note that V(R.) = 0 at the minimum of the potential well. The Schrédinger
equation for a Morse oscillator can be solved to give the energy levels

E, = (v+ 1Hhw — (v + 1)’hwz, (23)
or, expressed in wavenumber units,
heE, = (v+ 30 — (v+ 1)’z (24)

Higher vibrational energy levels are spaced closer together, just as in real
molecules. Vibrational transitions of diatomic molecules occur in the in-
frared, roughly in the range of 50-12,000 cm™!. A molecule will absorb or
emit radiation only if it has a non-zero dipole moment. Thus HCl is infrared
active while Hy and Cly are not.

Vibration of Polyatomic Molecules

A molecule with N atoms has a total of 3N degrees of freedom for its nu-
clear motions, since each nucleus can be independently displaced in three
perpendicular directions. Three of these degrees of freedom correspond
to translational motion of the center of mass. For a nonlinear molecule,
three more degrees of freedom determine the orientation of the molecule
in space, and thus its rotational motion. This leaves 3N — 6 vibrational



modes. For a linear molecule, there are just two rotational degrees of free-
dom, which leaves 3N — 5 vibrational modes. For example, the nonlinear
molecule HyO has three vibrational modes while the linear molecule COs
has four vibrational modes. The vibrations consist of coordinated motions
of several atoms in such a way as to keep the center of mass stationary and
nonrotating. These are called the normal modes. Each normal mode has
a characteristic resonance frequency ;, which is usually determined exper-
imentally. To a reasonable approximation, each normal mode behaves as
an independent harmonic oscillator of frequency ;. The normal modes of
H50 and CO; are pictured below.

A R N

Syrmetric stretch Asymmetric stretch Bend
vy 3650 coor'! vs 3750 cnor'! v5 1600 cm!

Figure 3. Normal modes of HyO.
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Figure 4. Normal modes of COs.

A normal mode will be infrared active only if it involves a change in the
dipole moment. All three modes of HoO are active. The symmetric stretch
of CO is inactive because the two C-O bonds, each of which is polar, ex-
actly compensate. Note that the bending mode of COs is doubly degenerate.
Bending of adjacent bonds in a molecule generally involves less energy than
bond stretching, thus bending modes generally have lower wavenumbers
than stretching modes.



Rotation of Diatomic Molecules

The rigid rotor model assumes that the internuclear distance R is a constant.
This is not a bad approximation since the amplitude of vibration is generally
of the order of 1% of R. The Schrodinger equation for nuclear motion
then involves the three-dimensional angular momentum operator, written
J rather than L when it refers to molecular rotation. The solutions to this
equation are already known and we can write

72
SINE Yim(0,0) = E;Yinm(0,9)

J=0,1,2... M=0,+1...4+J (25)

where Y;/(0, ¢) are spherical harmonics in terms of the quantum numbers
J and M, rather than [ and m. Since the eigenvalues of J? are J(J + 1)h?,
the rotational energy levels are

2

I
Ey=570(J+1) (26)

The moment of inertia is given by
I =pR? = MaAR% + MpR2 (27)

where Rp and Rp are the distances from nuclei A and B, respectively, to
the center of mass. In wavenumber units, the rotational energy is expressed

hcE;=BJ(J+1) cm™* (28)

where B is the rotational constant. The rotational energy-level diagram
is shown in Fig.5. Each level is (2J + 1)-fold degenerate. Again, only
polar molecules can absorb or emit radiation in the course of rotational
transitions. The radiation is in the microwave or far infrared region. The
selection rule for rotational transitions is AJ = +£1.
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Molecular Parameters from Spectroscopy

Following is a table of spectroscopic constants for the four hydrogen halides:

7/cm™1 B/em™!
THYF 4138.32 20.956
TH35C1 2990.95 10.593
TH3 By 2648.98 8.465
TH127] 2308.09 6.511

The force constant can be found from the vibrational constant. Equating
the energy quantities hw = hcv, we find

k
w=2mcr =4[ — (29)
i
Thus
k= (2me ) (30)
with
mamp  MaMg

— U 31
ma +mp  Ma + Mg (31)

where u = 1.66054 x 10727 kg, the atomic mass unit. M, and Mgy are the
conventional atomic weights of atoms A and B (on the scale 12C = 12).
Putting in numerical factors

MMz

k=589x%x107%(y/em )2 —2—=
7/ ) Ma + Mp

N/m (32)



This gives 958.6, 512.4, 408.4 and 311.4 N/m for HF, HCIl, HBr and HI,
respectively. These values do not take account of anharmonicity.

The internuclear distance R is determined by the rotational constant.
By definition,

52
hcB = 33
cB =5 (33)
Thus
B (34)
 dmel
with YRy
mama 2 AVB 2 2
I=pR*=——"R*= —""" u4R? kgm 35
: ma + mp My + Mg & (35)
Solving for R,
Ma Mg
=41 B —1
06/\/MA+MB /em~1)  pm (36)

For the hydrogen halides, HF', HCI, HBr, HI, we calculate R = 92.0, 127.9,
142.0, 161.5 pm, respectively.

Rotation of Nonlinear Molecules

A nonlinear molecule has three moments of inertia about three principal
axes, designated [,, I, and I.. The classical rotational energy can be written

2, 2L, 2I.

(37)

where J,, Jy,, J. are the components of angular momentum about the prin-
cipal axes. For a spherical rotor, such as CH4 or SFg, the three moments of
inertia are equal to the same value I. The energy simplifies to J?/2I and
the quantum-mechanical Hamiltonian is given by

=2 (38)
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The eigenvalues are

h2
Ej=-J(J+1)  J=012... (39)

just as for a linear molecule. But the levels of a spherical rotor have degen-
eracies of (2J + 1)? rather than (2J + 1).

A symmetric rotor has two equal moments of inertia, say I. = I, # I,.
The molecules NH3, CH3Cl and CgHg are examples. The Hamiltonian takes
the form

H= J? (40)

a

J§+J§+J3_ j2+ I
oI, 2y, 21, 2I, 21,

Since it its possible to have simultaneous eigenstates of J? and one of its
components J,, the energies of a symmetric rotor have the form

J(J+1) 11\
Ejx = ~ K
TE oL, (QIa 21b>

J=0,1,2... K=0,41,42...+J (40)

There is, in addition, the (2J + 1)-fold M degeneracy.

Electronic Excitations in Diatomic Molecules

The quantum states of molecules are composites of rotational, vibrational
and electronic contributions. The energy spacings characteristic of these
different degrees of freedom vary over many orders of magnitude, giving
rise to very different spectroscopic techniques for studying rotational, vi-
brational and electronic transitions. Electronic excitations are typically of
the order of several electron volts, 1 eV being equivalent to approximately
8000 cm~! or 100 kJ mol~'. As we have seen, typical energy differences
are of the order of 1000 cm™! for vibration and 10 cm~! for rotation. Fig.
6 gives a general idea of the relative magnitudes of these energy contribu-
tions. Each electronic state has a vibrational structure, characterized by
vibrational quantum numbers v and each vibrational state has a rotational
structure, characterized by rotational quantum numbers J and M.

11
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Figure 6. Schematic representation of the electronic ground state and an
excited state of a diatomic molecule. Vibrational levels of the ground state
are shown in red, those of the excited state, in blue. The rotational levels
for v = 0 are also shown.

Every electronic transition in a molecule is accompanied by changes in
vibrational and rotational states. Generally, in the liquid state, individual
vibrational transitions are not resolved, so that electronic spectra consist
of broad bands comprising a large number of overlapping vibrational and
rotational transitions. Spectroscopy on the gas phase, however, can often
resolve individual vibrational and even rotational transitions.

When a molecule undergos a transition to a different electronic state,
the electrons rearrange themselves much more rapidly than the nuclei. To a
very good approximation, the electronic state can be considered to occur in-
stantaneously, while the nuclear configuration remains fixed. This is known
as the Franck-Condon principle. It has the same physical origin as the Born-
Oppenheimer approximation, namely the great disparity in the electron and
nuclear masses. On a diagram showing the energies of the ground and ex-
cited states as functions of internuclear distance, Franck-Condon behavior

12



is characterized by wvertical transitions, in which R remains approximately
constant as the molecule jumps from one potential curve to the other.

Figure 7. Franck-Condon principle

In a vibrational state v = 0 the maximum of probability for the internuclear
distance R is near the center of the potential well. For all higher values
vibrational states, maxima of probability occur near the two turning points
of the potential—where the total energy equals the potential energy. These
correspond on the diagrams to the end points of the horizontal dashes inside
the potential curve.
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Chapter 13. Exercises

1. From the spectroscopic constants in the table, calculate the force con-
stant k& and the internuclear distance R. for each of the hydrogen halides.
The answers are given in the text.

2. The following spectroscopic constants have been assigned for the N160
molecule: 7 = 1904 cm™!, .7 = 13.97 cm~!, B = 1.705 cm ™!

(i) Calculate the wavenumber of the J = 0 to J = 1 transition.
(ii) Calculate the equilibrium internuclear distance in pm.
(iii) Calculate the force constant in N/m.

(iv) Taking account of the anharmonic correction, calculate the wavenumber
of the v = 0 to v = 1 transition.

3. Allowed electronic transitions in a homonuclear diatomic molecule obey
the following selection rules: AS =0 and g < u; ¥ « X, ¥ < [l and II «
II are all allowed. Predict the lowest excited state of N, which can be
attained by absorption of radiation from the ground state (not necessarily
the lowest excited state).



Chapter 13. Solutions

hCEJ = BJ(J-|- 1)
he(By — Ey) = 2B = 3.410cm ™!

14 x 16
410, B=11
R 06/ 14+ 16 o pm

R=115 pm

(iii)
14 x 16
k: . 1 _6~2—:
589 x 107" v 1+ 16 1590 N/m

(iv)

heE, = (v+ 10— (v+ 3)%z.0

he(E, — Ey) = (g — %)D — { (%)2 - (%)21331/ = 1876 cm™!

3. The ground state of Ny has the MO configuration ...307 17, '3 . The
lowest-energy excitation would be 1w, — 17, (which could be classified as
a ™ — 7* transition). This can give an excited state with term symbol 13,
with an allowed transition from the ground state.



Chapter 14
Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a versatile and highly-sophisticated
spectroscopic technique which has been applied to a growing number of
diverse applications in science, technology and medicine. This Chapter will
consider, for the most part, magnetic resonance involving protons.

Magnetic Properties of Nuclei

In all our previous work, it has been sufficient to treat nuclei as structureless
point particles characterized fully by their mass and electric charge. On a
more fundamental level, as was discussed in Chap. 1, nuclei are actually
composite particles made of nucleons (protons and neutrons) and the nu-
cleons themselves are made of quarks. The additional properties of nuclei
which will now become relevant are their spin angular momenta and mag-
netic moments. Recall that electrons possess an intrinsic or spin angular
momentum s which can have just two possible projections along an arbi-
trary spacial direction, namely :i:%h. Since h is the fundamental quantum
unit of angular momentum, the electron is classified as a particle of spin
one-half. The electron’s spin state is described by the quantum numbers
1

s = 5 and mg = :t%. A circulating electric charge produces a magnetic

moment g proportional to the angular momentum J. Thus

pu=J (1)

where the constant of proportionality v is known as the magnetogyric ratio.
The z-component of i1 has the possible values

W, = yhmy where my=—-J,—-J+1,...,4+J (2)

determined by space quantization of the angular momentum J. The energy
of a magnetic dipole in a magnetic field B is given by

E=-uB=—u,B (3)

where magnetic field defines the z-axis. The SI unit of magnetic field (more
correctly, magnetic induction) is the tesla, designated T. Electromagnets
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used in NMR produce fields in excess of 10 T. Small iron magnets have
fields around .01 T, while some magnets containing rare-earth elements
such as NIB (niobium-iron-boron) reach 0.2 T. The Earth’s magnetic field
is approximately 5 x 107° T (0.5 gauss in alternative units), dependent on
geographic location. At the other extreme, a neutron star, which is really a
giant nucleus, has a field predicted to be of the order of 103 T. The energy
relation (3) determines the most conveniently units for magnetic moment,
namely joules per tesla, J T~1.

For orbital motion of an electron, where the angular momentum is ¢,
the magnetic moment is given by

eh
flz = ——5— Mg = —[ip My (4)

2m
where the minus sign reflects the negative electric charge. The Bohr mag-
neton is defined by

h
up = 2€_m —0.274 x 107245 7! (5)

The magnetic moment produced by electron spin is written

P = —g LB Mg (6)

with introduction of the g-factor. Eq (4) implies g = 1 for orbital motion.
For electron spin, however, g = 2 (more exactly, 2.0023). The factor 2
compensates for my = % such that spin and ¢ = 1 orbital magnetic moments
are both equal to one Bohr magneton.

Many nuclei possess spin angular momentum, analogous to that of the
electron. The nuclear spin, designated I, has an integral or half-integral
value: 0, %, 1, %, and so on. Table 1 lists some nuclei of importance in
chemical applications of NMR. The proton and the neutron both are spin %
particles, like the electron. Complex nuclei have angular momenta which are
resultants of the spins of their component nucleons. The deuteron 2H, with
I =1, evidently has parallel proton and neutron spins. The *He nucleus has
I =0, as do '2C, 160, 2Ne, 28Si and 32S. These nuclei contain filled shells
of protons and neutrons with the vector sum of the component angular

momenta equal to zero, analogous to closed shells of electrons in atoms and
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molecules. In fact, all even-even nuclei have spins of zero. Nuclear magnetic
moments are of the order of a nuclear magneton

h
N = ;—M = 5.051 x 10727 J T (7)

where M is the mass of the proton. The nuclear magneton is smaller than
the Bohr magneton by a factor m/M =~ 1836.

Table 1. Some common nuclei in NMR spectroscopy

nuclide I gr /N v1/107 abundance %
in 2 |-3.8260 [-1.9130 | —18.324
1H 2 5.5857 | 2.7928 26.752 99.98
“H 1 0.8574 | 0.8574 4.1067 0.0156
'IB s 1.7923 | 2.6886 8.5841 80.4
aC 2 1.4046 | 0.7023 6.7272 1.1
IIN 1 0.4036 | 0.4036 1.9328 99.635
120 > |-0.7572 |—1.893 —3.627 0.037
F 2 5.2567 | 2.628 25.177 100
P 5 2.2634 | 1.2317 10.840 100

In analogy with Eqs (2) and (6), nuclear moments are represented by

[y = g1 uN M1 = hyrmy (8)

where g7 is the nuclear g-factor and ~;, the magnetogyric ratio. Most nuclei
have positive g-factors, as would be expected for a rotating positive electric
charge. It was long puzzling that the neutron, although lacking electric
charge, has a magnetic moment. It is now understood that the neutron
is a composite of three charged quarks, udd. The negatively-charged d-
quarks are predominantly in the outermost regions of the neutron, thereby
producing a negative magnetic moment, like that of the electron. The g-
factor for 17O, and other nuclei dominated by unpaired neutron spins, is
consequently also negative.



Nuclear Magnetic Resonance

The energy of a nuclear moment in a magnetic field, according to Eq (3),
is given by
EmI = —h'yImIB (9)

For a nucleus of spin I, the energy of a nucleus in a magnetic field is split
into 21 + 1 Zeeman levels. A proton, and other nuclei with spin %, have
just two possible levels:

1

with the a-spin state (m; = —1/2) lower in energy than the (-spin state
(m; =+1/2) by
AFE =h~vyB (11)

Fig. 1 shows the energy of a proton as a function of magnetic field. In zero
field (B = 0), the two spin states are degenerate. In a field B, the energy
splitting corresponds to a photon of energy AE = hw = hv where

_ B

wr, =vB or vy =
2T

(12)
known as the Larmor frequency of the nucleus. For the proton in a field
of 1 T, v, = 42.576 MHz, as the proton spin orientation flips from —|—%

to —2. This transition is in the radiofrequency region of the electromag-

2
netic spectrum. NMR spectroscopy consequently exploits the technology of

radiowave engineering.

Figure 1. Energies of spin % nucleus
in magnetic field showing NMR tran-
sition at Larmor frequency vr .




A transition cannot occur unless the values of the radiofrequency and the
magnetic field accurately fulfill Eq (12). This is why the technique is cat-
egorized as a resonance phenomenon. If some resonance condition is not
satisfied, no radiation can be absorbed or emitted by the nuclear spins. In
the earlier techniques of NMR spectroscopy, it was found more convenient
keep the radiofrequency fixed and sweep over values of the magnetic field B
to detect resonances. These have been largely supplanted by modern pulse
techniques, to be described later.

The transition probability for the upward transition (absorption) is
equal to that for the downward transition (stimulated emission). (The
contribution of spontaneous emission is neglible at radiofrequencies.) Thus
if there were equal populations of nuclei in the a and (3 spin states, there
would be zero net absorption by a macroscopic sample. The possibility of
observable NMR absorption depends on the lower state having at least a
slight excess in population. At thermal equlibrium, the ratio of populations
follows a Boltzmann distribution

Ny e Bs/kT

N. e BEa/kT = e~ (13)
« € o

Thus the relative population difference is given by

AN N,- Nz _hyB
N — No+Nsg ~ 2kT

(14)

Since nuclear Zeeman energies are so small, the populations of the a and (3
spin states differ very slightly. For protons in a 1 T field, AN/N =~ 3x107°.
Although the population excess in the lower level is only of the order of parts
per million, NMR spectroscopy is capable of detecting these weak signals.
Higher magnetic fields and lower temperatures are favorable conditions for
enhanced NMR sensitivity.

The Chemical Shift

NMR has become such an invaluable technique for studying the structure
of atoms and molecules because nuclei represent ideal noninvasive probes
of their electronic environment. If all nuclei of a given species responded
at their characteristic Larmor frequencies, NMR might then be useful for
chemical analysis, but little else. The real value of NMR to chemistry comes
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from minute differences in resonance frequencies dependent on details of the
electronic structure around a nucleus. The magnetic field induces orbital
angular momentum in the electron cloud around a nucleus, thus, in effect,
partially shielding the nucleus from the external field B. The actual or local
value of the magnetic field at the position of a nucleus is expressed

Bioe = (1 - U)B (15)

where the fractional reduction of the field is denoted by o, the shielding
constant, typically of the order of parts per million. The actual resonance
frequency of the nucleus in its local environment is then equal to

vB
v=(1- 0)% (16)
A classic example of this effect is the proton NMR spectrum of ethanol
CH3CH>OH, shown in Fig. 2. The three peaks, with intensity ratios 3 : 2 :
1 can be identified with the three chemically-distinct environments in which
the protons find themselves: three methyl protons (CH3), two methylene
protons (CHs) and one hydroxyl proton (OH).

Figure 2. Oscilloscope trace showing the first NMR spectrum of
ethanol, taken at Stanford University in 1951.  Courtesy Varian
Associates, Inc.

The variation in resonance frequency due to the electronic environment of
a nucleus is called the chemical shift. Chemical shifts on the delta scale are
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defined by

v —°

5 —

—— X 10° (17)
where 1° represents the resonance frequency of a reference compound, usu-
ally tetramethylsilane Si(CHjs)4, which is rich in highly-shielded chemically-
equivalent protons, as well as being unreactive and soluble in many liquids.
By definition 6 = 0 for TMS and almost everything else is “downfield”
with positive values of 9. Most compounds have delta values in the range
of 0 to 12 (hydrogen halides have negative values, e.g. ¢ ~ —13 for HI).
The hydrogen atom has 0 ~ 13 while the bare proton would have § ~ 31.
Conventionally, the d-scale is plotted as increasing from right to left, in the
opposite sense to the magnitude of the magnetic field. Nuclei with larger
values of  are said to be more deshielded, with the bare proton being the
ultimate limit. Fig. 3 shows some typical values of 6 for protons in some
common organic compounds.

'M resonances : ; sl
' | R
: i § R—MH,
; - RCOCH, 3 —CH-
f : ArOCH; 8
: : ¢ —COOCH,
L L=CH RROH
. —CHO  § Ar—H: :
—cooH [l :
: B 5 : : ' i
14 12 10 a i 4 2 0

Figure 3. Ranges of proton chemical shifts for common functional groups.
From P. Atkins, Physical Chemistry, (Freeman, New York, 2002).

Fig. 4 shows a high-resolution NMR spectrum of ethanol, including
a o-scale. The “fine structure” splittings of the three chemically-shifted
components will be explained in the next Section. The chemical shift of a
nucleus is very difficult to treat theoretically. However, certain empirical
regularities, for example those represented in Fig. 3, provide clues about
the chemical environment of the nucleus. We will not consider these in
any detail except to remark that often increased deshielding of a nucleus
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(larger §) can often be attributed to a more electronegative neighboring
atom. For example the proton in the ethanol spectrum (Fig. 4) with § =5
can be identified as the hydroxyl proton, since the oxygen atom can draw
significant electron density from around the proton.

Figure 4. High-resolution NMR spectrum of ethanol showing ¢ scale of
chemical shifts. The line at 6 = 0 corresponds to the TMS trace added as
a reference.

Neighboring groups can also contribute to the chemical shift of a given
atom, particularly those with mobile m-electrons. For example, the ring
current in a benzene ring acts as a secondary source of magnetic field. De-
pending on the location of a nucleus, this can contribute either shielding
or deshielding of the external magnetic field, as shown in Fig. 5. The
interaction of neighboring groups can be exploited to obtain structural in-
formation by using lanthanide shift reagents. Lanthanides (elements 58
through 71) contain 4 f-electrons, which are not usually involved in chem-
ical bonding and can give large paramagnetic contributions. Lanthanide
complexes which bind to organic molecules can thereby spread out pro-
ton resonances to simplify their analysis. A popular chelating complex
is Eu(dpm)s, tris(dipivaloylmethanato)europium, where dpm is the group

(CH3)3C-CO=CH-CO-C(CHs)s.



Figure 5. Magnetic field produced by ring current in benzene, shown as
red loops. Where the arrows are parallel to the external field B, including
protons directly attached to the ring, the effect is deshielding. However,
any nuclei located within the return loops will experience a shielding effect.

Spin-Spin Coupling

Two of the resonances in the ethanol spectrum shown in Fig. 4 are split
into closely-spaced multiplets—one triplet and one quartet. These are the
result of spin-spin coupling between magnetic nuclei which are relatively
close to one another, say within two or three bond separations. Identical
nuclei in identical chemical environments are said to be equivalent. They
have equal chemical shifts and do not exhibit spin-spin splitting. Nonequiv-
alent magnetic nuclei, on the other hand, can interact and thereby affect
one another’s NMR frequencies. A simple example is the HD molecule, in
which the spin—% proton can interact with the spin-1 deuteron, even though
the atoms are chemically equivalent. The proton’s energy is split into two
levels by the external magnetic field, as shown in Fig. 1. The neighboring
deuteron, itself a magnet, will also contribute to the local field at the pro-
ton. The deuteron’s three possible orientations in the external field, with
M; = —1,0,+1, with different contributions to the magnetic field at the
proton, as shown in Fig. 6. The proton’s resonance is split into three evenly
spaced, equally intense lines (a triplet), with a separation of 42.9 Hz. Cor-
respondingly the deuteron’s resonance is split into a 42.9 Hz doublet by its
interaction with the proton. These splittings are independent of the exter-
nal field B, whereas chemical shifts are proportional to B. Fig. 6 represents

the energy levels and NMR transitions for the proton in HD.
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Figure 6. Nuclear energy levels for proton in HD molecule. The two
Zeeman levels of the proton when B > 0 are further split by interaction
with the three possible spin orientations of the deuteron My; = —1,0, +1.
The proton NMR transition, represented by blue arrows, is split into a
triplet with separation 42.9 Hz.

Nuclear-spin phenomena in the HD molecule can be compactly represented
by a spin Hamiltonian

H=—hyuMy(1—o0p)B—hypMp(1 —op)B + hJupla -Ip  (18)

The shielding constants oy and op are, in this case, equal since the two
nuclei are chemically identical. For sufficiently large magnetic fields B, the
last term is effectively equal to hJgp My Mp. The spin-coupling constant
J can be directly equated to the splitting expressed in Hz.

We consider next the case of two equivalent protons, for example, the
CH; group of ethanol. Each proton can have two possible spin states with
M; = :I:%, giving a total of four composite spin states. Just as in the case of
electron spins, these combine to give singlet and triplet nuclear-spin states
with M = 0 and 1, respectively. Also, just as for electron spins, transitions
between singlet and triplet states are forbidden. The triplet state allows
NMR transitions with AM = %1 to give a single resonance frequency, while
the singlet state is inactive. As a consequence, spin-spin splittings do not
occur among identical nuclei. For example, the Hy molecule shows just a
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single NMR frequency. And the CH, protons in ethanol do not show spin-
spin interactions with one another. They can however cause a splitting of
the neighboring CHs protons. Fig. 7 (left side) shows the four possible
spin states of two equivalent protons, such as those in the methylene group
CHs, and the triplet with intensity ratios 1 : 2 : 1 which these produce in
nearby protons. Also shown (right side) are the eight possible spin states
for three equivalent protons, say those in a methyl group CHs, and the
quartet with intensity ratios 1 : 3 : 3 : 1 which these produce. In general,
n equivalent protons will give a splitting pattern of n + 1 lines in the ratio
of binomial coefficients 1 : n : n(n — 1)/2 ... The tertiary hydrogen in
isobutane (CHj3)3CH™*, marked with an asterisk, should be split into 10
lines by the 9 equivalent methyl protons.

METHYLENE CHy METHYL CH4

Figure 7. Splitting patterns from methylene and methyl protons.

The NMR spectrum of ethanol CH3CH;OH (Fig. 4) can now be in-
terpreted. The CHjs protons are split into a 1 : 2 : 1 triplet by spin-spin
interaction with the neighboring CHy. Conversely, the CHs protons are split
intoa1: 3: 3: 1 quartet by interaction with the CHs. The OH (hydroxyl)
proton evidently does not either cause or undergo spin-spin splitting. The
explanation for this is hydrogen bonding, which involves rapid exchange of
hydroxyl protons among neighboring molecules. If this rate of exchange is
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greater than or comparable to the NMR radiofrequency, then the splittings
will be “washed out.” Only one line with a motion-averaged value of the
chemical shift will be observed. NMR has consequently become a useful
tool to study intramolecular motions.
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Chapter 14. Exercises

1. Analyze the proton NMR spectrum of diethylketone, shown below.

I
CH,CH,CCH,CH,
ErEissas FASREALEE: g G S LAERSEEREE R DR 18 i

2. The NMR spectrum of methane CH, shows just a single peak. Explain
why. Now explain the proton NMR spectrum of the isotopically-substituted
dideuteromethane, shown below.

CD,H,




3. The proton magnetic resonance spectrum of toluene (methylbenzene)
shows two peaks with relative intensities 5 : 3. Explain this spectrum.

4. Analyze the proton magnetic resonance spectrum of 1,1-dibromomethane.
The bromine nuclei do not cause any detectable splittings.




Chapter 14. Solutions

1. Each CHy group is split by the neighboring CH3 group into a 1:3:3:1
quartet. Correspondingly, each CHj3 group is split by the neighboring CH,
into a 1:2:1 triplet. Protons in different ethyl groups are too far apart to
interact.

2. The protons in methane are equivalent and do not exhibit spin-spin
splittings. In CDyH, each deuteron has a spin of 1, which by itself would
cause splitting into a 1:1:1 triplet. Two deuterons will give a splitting
pattern of 1:2:3:2:1, which is what we see for the proton resonances.

3. The 3 protons in the methyl group are equivalent with a chemical shift
0 ~ 2. The 5 protons on the phenyl group are not strictly equivalent but,
evidently, their chemical shifts are nearly equal. Note that the ring protons
are significantly deshielded, as shown in Fig. 5.

4. The methyl protons are split into a doublet by the lone proton on the
other carbon atom. The latter proton is itself split into a 1:3:3:1 quartet.
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PERIODIC TABLE OF THE ELEMENTS

(http://pearll.lanl.gov/periodic/default.htm)



