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1 Background & Motivation

This is a “pedagogical supplement” to the paper “Contrails in the radio sky” by S. R.
Kulkarni (in prep.).1 The paper is concerned about the physical evolution of dense gas
(ne ∼ 102 to 103 cm−3) which is invoked to explain extreme scattering events and related
phenomenon. The paper does not rely on this supplement. The supplement is useful
for graduate students who are not familiar with the topics discussed in the paper. The
notes are organized as follows. In (§2) and (§3) I summarize the essential physics involved
in cooling and ionization and heating, respectively. In §4, using the results in §2 and
§3 I reproduce the classic equilibrium temperature and ionization of the two phases of
the atomic interstellar medium (ISM): the Cold Neutral Medium and the Warm Neutral
Medium. In §5, I apply my newly developed numerical suite to a novel situation: a nebula
which is irradiated by strong flux of cosmic rays.

1The paper arose of out my visit to the Netherlands as a van der Waals Visiting Professor at the
University of Amsterdam, NL. It was expected that I would give three lectures. My first lecture was
a colloquium on my current research (the Zwicky Transient Facility). The students and postdocs were
intrigued with my research style, namely switching topics every now and then. This led me to giving my
second lecture on on “How (and why) to change research areas?”. I then decided that the best way to
demonstrate a concept is a live demonstration. To this end, I chose a new project and worked on that
feverishly and the preliminary findings – the paper discussed above – constituted my third lecture.

I attended a LOFAR annual symposium at Leiden and listened carefully to the talks. It became clear to
me that while there has been great progress in low frequency astronomy (LOFAR, MWA, LWA) particularly
in amassing of data there was less progress, relatively speaking, in our physical understanding. This opened
an opportunity for an old fox like me to reenter the field!

Following the Leiden LOFAR meeting I decided to visit the topic of extreme-scattering events and related
phenomena. I was broadly familiar with the basic concepts and physics germane for the proposed investiga-
tion. However, I did not have the necessary precision understanding to undertake numerical modeling. To
this end I undertook a self-taught course making “deep dives” into three textbooks: Draine (2011), Tielens
(2005) and the classic book by Spitzer (1978). I reproduced critical figures in the relevant chapters of these
books and satisfied myself that my understanding was precise. Along the way I wrote notes to myself so
that I could use the notes for teaching a graduate level course.
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2 Cooling

The principal cooling lines are fine structure lines of C II and O I and recombination of
electrons and atoms on dust. In steady state, free-bound and free-free radiation of electrons
are minor contributors. Only when the temperature approaches 104 K does cooling from
Lyman alpha and forbidden line of OI become important.

2.1 Fine structure line of C II

The ground configuration of C II (or C+, for short) is 1s22s22p1 consists of the ground
level (subscript, “l”) 2P1/2 (g0 = 2) and the upper level (“u”) 2P3/2 (g1 = 4) separated
by E10/kB = 91.21 K. The radiative de-excitation of the upper level results in the famous
157.7µm line. The A10, the A-coefficient for this 1→ 0 transition is 2.4× 10−6 s−1.

It is traditional to quote de-excitation coefficients, kul where u refers to the upper level
and l to the lower level. For all electron-ion interactions it is conventional to state kul in
the following form:

kul(e) =
8.629× 10−8

√
T4

Ωul

gu
cm3 s−1 (1)

where Ωul is the “collisional strength” and the T−1/2 factor accounts for Coulomb focusing.
From the principle of detailed balance we know that the de-excitation coefficient is related
to the excitation coefficient (klu) as follows

klu(T )

kul(T )
=
gu
gl

exp
(
− Eul
kBT

)
≡ R. (2)

For the C+ line the experimental data are modeled as

Ω10 =
1.55 + 1.25T4

1 + 0.35T 1.25
4

(3)

(Draine 2011; [D11]; Table F.1). Over the range 10–103 K, Ω10 ranges from 1.55 to 1.65.
Following Draine (2011; [D11]) we adopt a mean value of 1.6. Thus,

k10(e−) ≈ 3.45× 10−8T
−1/2
4 cm−3 s−1. (4)

The de-excitation coefficient for H I is

k10(H) ≈ 7.58× 10−10T
0.1281+0.0087ln(T2)
2 cm−3 s−1 (5)

and that for helium is k10(He) = 0.38k10(H) (Draine 2011; [D11]; Table F.6). Since, by
number, helium is 10% of hydrogen, the former increases H excitation by only 3.8%. He

collisions are not included in my MATLAB routine-- yet.
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Considering only collisions by electrons, in equilibrium, the rate of excitation per unit
volume is nen0k01 is balanced by n1(nek10 +A10). Here, n0 and n1 is the number density
of C+ ions in the ground state and excited state, respectively. After some manipulation it
can be shown that

n1

nt
=

R

1 + ncr/ne +R
(6)

where nt = n0 + n1 and the “critical density”, ncr ≡ A10/k10. The radiative loss per unit
time per unit volume is

L = n1A10E10 = ntA10E10
R

1 +R+ ncr/ne
. (7)

For ne � ncr, we expect every collision to result in emission of a photon and indeed find
that L ≈ ntnek01E10. For ne � ncr, the levels are populated by the Boltzmann distribution
and radiative losses saturates (that is, L no scales linearly with ne) to ntA10E10R/(1 +R).
The critical density for electron collisions varies from 3 cm−3 (at T = 30 K) to 47 cm−3

(at T = 8000 K). In contrast, the critical density for collisions with H atoms varies from
3600 cm−3 to 1500 cm−3 over the same range of temperature.

Moving on, Equation 6 can be generalized to include excitation by electrons and H atoms:

n1

nt
=

R

1 +R+A10/C
(8)

where C = nek10(e) + nHk10(H). The radiative loss per unit time per unit volume is
then

L(C+) = nbACA10E10
R

1 +R+A10/C
erg cm−3 s−1, (9)

where AC is the abundance of carbon in gas phase, by number, to that of hydrogen. We
adopt AC = 1× 10−4. The usual “cooling function” is Λ ≡ L/n2

b .

2.2 Fine-structure lines of O I

The ground configuration of O I is 1s22s22p4 which splits into three fine structure levels:
3P2 (ground), 3P1 (level 1) and 3P0 (level 2). The temperature equivalent of the 1 and
2 energy states is T1 = 227 K and T2 = 326 K. The famous OI 63.18µm fine structure
line is the transition from 1 → 0 (A10 = 8.95 × 10−5 s−1). The lesser known 145.53µm
line (A21 = 1.7 × 10−5 s−1) results from 2 → 1 de-excitations. The 2 → 0 transition is
forbidden,2 A20 = 1.34 × 10−10 s−1. The OI fine structure lines play an important role in
the cooling of WNM (Draine 2011; [D11]; §17.6).

2A-coefficient obtained from the Leiden and Atomic Molecular Database (LAMDA): https://home.

strw.leidenuniv.nl/~moldata/
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The OI-H collisional coefficients are from from Draine (2011; [D11]; Appendix F):

k10(H) = 3.57× 10−10T 0.419−0.003lnT2
2 cm3 s−1 (10)

k20(H) = 3.19× 10−10T 0.369−0.006lnT2
2 cm3 s−1 (11)

k21(H) = 4.34× 10−10T 0.755−0.160lnT2
2 cm3 s−1. (12)

For the electron de-excitation we use the revised coefficients given in the Errata of Draine
2011 ([D11]; first edition)3 where the collisional strengths are given by

Ω10(e) = 0.0105T
0.4861+0.0054ln(T4)
4 (13)

Ω20(e) = 0.00459T
0.4507−0.0066ln(T4)
4 (14)

Ω21(e) = 0.00015T
0.4709−0.1396ln(T4)
4 . (15)

We verified that the resulting de-excitation coefficients are in line with those at the LAMDA
website. The electron de-excitation coefficient is very weakly dependent on temperature
(in line with the fact that this is an electron-neutral collision) whereas the H de-excitation
coefficient increases with increasing temperature.

There are two other colliders that should be considered: molecular hydrogen and protons
(T05). We discount the former by stopping our calculation when molecules start forming
(new excitation and radiation channels open up and considerations of these is beyond the
ability of the author). The latter can be quite important since it is well known that ion-
neutral reactions have large cross-sections (arising from the polarization of the neutral
by the ion) that are essentially independent of temperature (see Draine 2011, D11; §2.4).
From Tielens (2005; [T05]; Table 2.7)) we find k10(H+) ≈ 1.4 × 10−8 cm3 s−1, k20(H+) ≈
1.4× 10−8 cm3 s−1 and k21(H+) ≈ 5× 10−9 cm3 s−1 and we assume that these coefficients
are independent of temperature. I remark here that for typical CNM or WNM parameters
the principal excitation is via H collisions and so including proton excitation results in a
few percent additional luminosity.

For a multi-level system the critical density is justifiably given by

ncr =
Aul∑

0≤l′≤l kul′
(16)

where the sum in the denominator is over all possible de-excitations to lower levels. For
the 1→ 0 transition the critical electron density range is 2.5× 105 cm−3 to 2.9× 105 cm−3

3Specifically, see Table F.3, p498 on page 23 of the Errata. As an aside we note the fitting formula for
the O I-electron interactions is given, curiously, in a form that is appropriate for ion-electron interaction
even though this is an electron-neutral interaction. It should be simply interpreted as a fitting formula.
but not motivated by physical considerations. Note that the de-excitation coefficient is almost independent
of temperature.
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and that for H atoms is 2.5 × 105 cm−3 to 5.1 × 104 cm−3. For the 2 → 1 transition, the
electron critical density varies from 2.2×104 cm−3 (at T = 100 K) to 5.8×103 cm−3 (at T ≈
5, 000 K). Over the same temperature range, that for H-atoms ranges from 2.3× 104 cm−3

to 8.7 × 103 cm−3. The corresponding critical densities from collisions with protons are
9× 103 cm−3 (1→ 0) and 1.5× 103 cm−3 (2→ 1), respectively.

We use the full 3-level solution to derive ratio of the population of level 1 (f1 = n1/n0) and
level 2 (f2 = n2/n0) with respect to level 0 (Draine (2011; [D11]; §17.5). The volumetric
luminosity in the two lines is then

L(OI) =
nbAO

1 + f1 + f2

(
f1A10E10 + f2A21E21

)
erg cm−3 s−1 (17)

where E10 = kBT1, E21 = kB(T2 − T1) and AO = 5 × 10−4 is the cosmic abundance
of oxygen (and assumed to be largely in the gas phase) relative to that of hydrogen, by
number.

Figure 1: Cooling via the two fine fine structure lines of OI.

In Figure 1 I plot the cooling via the two OI fine structure lines for typical CNM. This
figure should be compared with Figure 30.1 of Draine (2011; [D11]). In both the CNM and
WNM there is not much cooling through the 145µm line. So a simplified model can ignore
the second excited state (3P0). In effect, the OI fine structure system can be regarded as
a two-level system (3P2, ground state and 3P1, excited state) and the formulation stated
in Equation 9 can be used with appropriate excitation coeffcients.

2.3 Cooling from H I Resonance Line Excitation

For warm gas, the primary loss channel is electronic excitation of H I atoms to the n = 2
state. This excitation dominates when temperature exceeds 104 K. Spitzer (1978; [S78];
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§6.2a) provides a fitting formula4

LeH = 7.3× 10−19nenH exp(−118, 400/T ) erg cm−3 s−1, (18)

which is valid for temperatures between 4,000 K and 12,000 K. Next, using 〈σv〉 from Draine
(2011; [D11]; Table 2.1) I find the volumetric luminosity from proton excitation (to the
n = 2 state) is

LpH = 0.44× 10−19npnH exp(−118, 400/T ) erg cm−3 s−1, (19)

independent of temperature (see above). Clearly, excitation by protons provides a mi-
nor contribution, relative to that from electron excitation, to the cooling luminosity. For
completeness I include collisional ionization of H I by electron impact:

Li,H = 1.27× 10−21T 1/2nenH
exp(−1.578× 105/T )

1 + (T/1.58× 106)
erg cm−3 s−1 (20)

(Shull & Woods 1985; [sw85]). However, over the temperature range of interest, T . 104 K,
the loss due to ionization is even smaller than the loss via resoance line cooling from proton
excitation. The summary is that Equation 18 sufficiently captures the cooling losses in the
temperature range of interest to this paper.

What about ionization by protons? Is it smaller because of velocity difference?

2.4 Cooling from recombination

An electron with velocity v recombines with a proton to level j of the H I atom and in
the process radiates away energy equal to the sum of the kinetic energy, 1/2mev

2 and the
electrostatic potential of the level. The electron rapidly then cascades down to deeper
energy states radiating line photons along the way. Nonetheless, the energy lost from the
thermal store is only the kinetic energy of the electron.The loss of energy per unit time per
unit volume from free-bound process is

Lfb = n2
e

∑
j

〈1

2
mev

2σcj(v)v
〉

(21)

where the angular bracket implies averaging over the Maxwellian distribution of velocity
and σcj(v) is the cross-section for an electron with velocity v (“continuum”) to be cap-
tured to level j and is ∝ gjf j

−3(1/2mev
2)−1 where gjf is the “Gaunt” factor for level j

(Spitzer 1978, [S78]; §5.1, §6.1). Clearly, recombination to deeper states is favored, as is
the preference for slow moving electrons.

4See Table 2 of Dalgarno & McCray 1968 [dm72] for data.
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We can re-express Equation 21 as Lfb = αffbkBT where α is the recombination rate (case
A or case B, as needed) which would then allow us to interpret ffbkBT as the average
energy lost from the thermal bath per recombination. In Figure 2, we display the value of
ffb as a function of temperature. We find the following simple fits for ffb:

ffb(caseA) = 0.89− 0.06log(T2) (22)

ffb(caseB) = 0.87− 0.11log(T2) (23)

where T2 = T/102. Thus, per recombination, the free-bound loss (case B) is 0.87kBT to
0.65kBT .

Figure 2: [Top] The mean energy of the recombining electron, ffb, for case A (subscript index 1)
and case B (index 2). It can be shown that Lfb/α = χ/β where these two functions, over the range
30 K to 64,000 K, are tabulated in Tables 5.2 and 6.2 of Spitzer (1978; [S78]). The red lines show
a simple linear fit to ffb. [Bottom]. Run of fff (Equation 24) as a function of temperature (black,
dash-dot) and fr(j) ≡ fff + ffb(j) (see Top) where j = 1 is recombination to level n = 1 and j = 2
is recombination to level n = 2.

Following Draine (2011; [D11];§27.32.) we consider the ratio of the volumetric rate of
free-free cooling to the recombination rate and find

fff ≡
Lff

n2
eαB

= 0.54T 0.37
4 kBT. (24)
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However, note that this approximation is valid for WIM-like temperatures (read Rybiki

and derive a fitting formula at lower temperatures). Ignoring this caveat, the
loss per recombination varies from 0.18kBT (cold gas) to 0.54kBT (warm gas). Thus,
over the entire temperature range of interest, the cooling from free-bound (Equation 23)
and free-free (Equation 24) add to yield, rather conveniently fr = fff + ffb ≈ 1kBT loss
per recombination (case B).

In §3.2 we will discuss the cooling due to recombination of electrons and atoms onto
grains.

3 Ionization & Heating

In the previous section we discussed cooling. Here, we discuss heating of the ISM. There are
three microscopic heating processes which also result in providing electrons: photoelectric
ionization & heating of C0 (§3.1), photoelectric ionization & heating by dust particles
including Polycyclic Aromatic Hydrocarbons (PAH; §3.2) and ionization & heating by
cosmic rays (§3.3).

3.1 Photoelectric Ionization of & Heating by C0

The far-UV (FUV) stellar radiation field can ionize metals provided their ionization poten-
tial is below that of H I. Of the FUV-photoionizable metals C, Na, Mg, Si, S, Fe, Al and
Ca it is carbon that provides two thirds of the electrons (Draine 2011; [D11]; Table 9.5).
So we will focus on ionization of carbon. The ionization potential of carbon is 11.3 eV.
Thus the FUV field of interest is in the range 11.3–13.6 eV.

The stellar radiation field is usually stated in terms of a relative factor, G0, where the base
is the stellar radiation density originally determined by H. Habing (Tielens 2005; T05;
Table 8.1). The average energy of the photoelectrons, 〈EC0〉, appears to ≈ 1 eV (after
accounting for the rapid decrease of FUV stellar radiation field as it approaches 912 Å; see
Tielens 2005; T05; §3.2). The FUV photo-ionization rate per C I atom is

ζ(C0) = 2.58× 10−10G0 exp(−2.6AV) s−1 (25)

where the V-band extinction, AV, accounts for extinction within the cloud (Draine 2011;[D11];
Table 13.1). Check with Wolfire if 1 eV per ionization is the standard practice.

It is instructive to carry out a pedagogical exercise in which carbon acts as the sole heating,
ionizing and cooling source. In steady state, the rate of ionization per unit volume is
matched by the rate of recombinations in the same volume:

ζ(C0)[1− x(C+)] = nex(C+)αrr(C
+) (26)
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where x(C+) is the fraction of C+ relative to the total number of carbon nuclei. The
ionized carbon fraction is then

x(C+) =
ζ(C0)

ζ(C0) + neαrr(C+)
. (27)

The radiative recombination coefficient for carbon is

αrr(C
+) = 9.5× 10−12T−0.6

2 cm3 s−1 (28)

(Tielens 2005;T05; Table 8.1). In our pedagogical model, ne = n(C+). Thus,

1− x(C+)

x(C+)2
= nbAC

αrr(C
+)

ζ(C0)
≈ 3.6× 10−4n2T

−0.6
2 (29)

where n2 = nb/100 cm−3. Here, for the right term on RHS was evaluated with assuming
G0 = 1, AC = 10−4 and AV = 0. Clearly, most of the carbon will be ionized. Going
forward, we assume that x(C+) = 1 but 1 − x(C+) 6= 0. The volumetric heating rate
is

H = nbΓC0 (30)

where
ΓC0 = ζ(C0)AC [1− x(C+)]〈EC0〉 (31)

is the FUV photoionization heating rate, per H atom, by C0. With the help of Equation 29,
the above equation simplifies to

H = n2
bA

2
Cx(C+)2〈EC0〉αrr(C+). (32)

The principal cooling is via the fine structure line of C+. If so, provided that the electron
and H atom densities are below their critical densities (§2.1), the volumetric cooling rate
is

L = [nen(C+)k01(e) + nHn(C+)k01(H)]E10

= n2
b [A

2
Cx(C+)2k01(e) +ACx(C+)k01(H)]E10 (33)

where we approximated nH = nb, given the small abundance of carbon relative to hydrogen.
The values of E10, k10(H) and k10(e) can be found in §2.1.

The temperature of the cloud can be derived by setting H = L. In the approximation we
are using, x(C+) = 1. The classical simplification of Equation 33 retains electron collision
(which has a T dependence similar as k10) and ignores collisional excitation of C+ by H
(Sptizer 1978; [S78]; §6.2b) and results in

k01(e, T ) = αrr(C
+)
〈EC0〉
E10

(34)
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Figure 3: The run of equilibrium temperature (Top) and fraction of neutral carbon (Bottom) as
a function of H atom density, assuming only heating via star light ionization of C I and radiative
recombination.

– an equation which we could have constructed on physical grounds. For our choice of
〈EC0〉, the resulting equilibrium temperature is 14 K and 1 − x(C+) = 1.3 × 10−5. Note
that the inclusion of H collisions results in the reduction of the minimum temperature
to 12 K. For densities which approach the critical densities, even within the pedagogical
framework, we need to use the full framework described in §2.1, namely use L given by
Equation 9. The run of temperature with density is shown in Figure 3. As expected the
temperature rises once nb and/or ne exceeds critical densities. In this limit, the upper level
population saturates to that given by the Boltzmann formula and so cooling is reduced
with concomitant increase in temperature.

There are two additional concerns. First, we should evaluate the radiative excitation of
the 158µm line by the ambient field. Next, we should compute the optical depth of the
C+ line through the nebula. If the column density is sufficiently large then the cooling is
reduced.

3.2 Photo-ionization of & Heating by Grains

Small grains including large molecules, particularly the Polycyclic Aromatic Hydrocarbons
(PAHs; Tielens 2008; [T08] ), play an out-sized role in the thermodynamics and chemistry
of the diffuse interstellar medium (Watson 1972; [W72]). Numerically, for instance, the
relative number of small PAHs to that hydrogen is 5 × 10−7 (REF; QUANTIFY). The
principal reason for the major role of dust in the ISM is that dust grains and for that
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matter PAHs have far more energy levels than that of atoms or ions. This opens up
the entire FUV band for photoelectron heating. Equally, again in contrast to radiative
recombination, dust grains, thanks to the availability of many energy states, can partake
in charge exchange and recombination over a wide range of pre-collision and post-collision
configurations.

As in a CCD, a photoelectron is liberated when an FUV photon is absorbed by a dust grain,
typically at a depth of 100 Åwhich is larger than the typical mean free path for an electron
in solid materials. The electron moves through the grain, heating the grain. In order to
join the free electron pool the electron has to be energetic to overcome the work-function
and the Coulomb field (if the grain was charged owing to prior photoelectron emission) of
the grain. The work function of grains is smaller than that of bulk material (Watson 1972;
[W72]).

In this model, the charge distribution of dust grains naturally depends on the radiation
field, G0. Grains will be increasingly charged positive as the strength of the radiation
field increases. Equally, deeper into the cloud, where the FUV field is attenuated, grains
will become increasingly neutral or even negatively charged up. The reader is referred to
Tielens 2005; [T05] and Draine 2011 ([D11]) for a full elucidation of this rather complex
subject.

Heating Rate. The typical work function for dust is 5 eV. The cross-section for photo-
electric emission is zero at threshold and rises gradually. The primary radiation field that
matters is in the range 8–13.6 eV. After accounting for the mean kinetic energy of electrons
that recombine onto grains the net gain is about 〈E〉 ≈ 1 eV.

The photoelectric heating rate is dominated by small grains. Grains or PAHs with fewer
than, say, 1000 carbon atoms contribute to half the heating rate and the remaining half is
from grains with size of 15 Å to 100 Å. The total heating rate per unit volume is

nbΓd = 10−24εnbG0 erg cm−3 s−1 (35)

(Bakes & Tielens 1994; [bt94]) where the quantum efficiency is given by

ε =
4.87× 10−2

1 + 4× 10−3ψ0.73
+

3.65× 10−2T 0.7
4

1 + 2× 10−4ψ
(36)

where ψ = G0T
1/2/ne which is proportional to the ratio of ionization rate to the recom-

bination rate (Tielens 2005; [T05]; §3.3.3). For low value of ψ the heating rate is linearly
proportional to the ambient FUV field, Γ≈5×10−26G0 erg s−1 per atom. However, for high
value of ψ, the heating rate is independent of G0 and is only related to nenb.

In the CNM the peak quantum efficiency (≈ 0.05) can be realized. However, ε ≈ 0.01 in the
WNM. The grain photoelectron heating can be compared with with photo-electron heating

11



by carbon, ΓC0 ≈ 5 × 10−26[1 − x(C+)] erg cm−3 s−1. The heating rate from the latter is
entirely decided by the ionization fraction of carbon which is close to unity. It is for this
reason that photo-electron heating by dust dominates over that from C0. Separately, at
least in our neighborhood, it happens that the dust heating rate is larger than that due to
cosmic rays (§3.3).

Ionization Equlibrium. Dust grains and PAHs may have strong affinity for electrons.
That is wandering electrons may readily stick to grains and PAHs. The resulting PAH−

readily recombine with cations such as H+ and C+. In fact, these recombination coefficients
are four to five orders of magnitude bigger than that of radiative recombinations. As a
result, even after accounting for the small fraction of dust (relative to even C), “dust
assisted” recombination can dominate the ionization fraction of elements (not just H but
also ionizable metals such as C, Mg etc). Equally, charged grains, depending on their
charge, can be neutralized by electrons or ions.

It is instructive to visit the pedagogical model that we discussed earlier, namely a nebula
ionized, heated and cooled by only carbon. The grain-assisted volumetric recombination
rate for a cation, X+, is n(X+)nbαgr(G0, T, ne) where the dependence on G0 and ne takes
into account grain charging into account. Draine (2011; [D11]; Table 14.9) provides fitting
formula for αgr for various cations including H+ and C+. The ionization-recombination
balance equation for carbon now has an additional path for recombination:

ζ(C0)[1− x(C+)] = nex(C+)αrr(C
+) + nbx(C+)αgr(C

+) (37)

which yields

x(C+) =
ζ(C0)

ζ(C0) + neαrr(C+) + nbαgr(C+)
. (38)

Comparing Equation 28 to the above equation we can see that if the grain-assisted re-
combination term is larger than the radiative recombination then the carbon ionization
fraction will be reduced.

While αrr(C
+) depends only on T , αgr(C

+) depends on ne, G0 and T . So the solution
requires an iterative approach (Draine 2011; [D11]; §16.1.1). The resulting run of ionization
as function of density is given in Figure 4. Clearly, grain-assisted recombination has a major
impact on the ionization state of metals (and as we will see below on hydrogen as well).
The reduction in the ionization of carbon translates to a higher photoelectric heating by C0

(raising the gas temperature to 18 K at low density). To this we must add the considerable
heating by dust itself. Thus CNM temperatures of 100 K can be explained.

Separately, it is worth noting that for, say, ε ≈ 0.03 and above 〈E〉 we find the grain
ionization rate per atom is 3 × 10−14 s−1. Thanks to large recombination coefficients the
ionization rate, unlike that for C0, is not limited by the availability of neutral species.
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Figure 4: The run of carbon ionization as a function of particle density, nb at two different tem-
peratures. Carbon atoms are ionized by FUV and recombine via radiative recombination (“rr”) or
via a path involving grains (“gr”). Note the strong effect grain recombination has on the ionization
fraction of the gas.

Recombination Cooling. We adopt the electron-grain recombination cooling from Bakes
& Tielens 1(994; [bt94]):

Ld,r = 3.49× 10−30TαψβnenH erg cm−3 s−1 (39)

where α = 0.944, β = 0.735T−0.068

3.3 Ionization & Heating from Cosmic Rays

A cosmic ray moving faster than the Bohr velocity, αc where α is the fine structure constant,
can ionize an electron in a hydrogen atom (and for that matter, helium also). The low
energy cosmic rays, energy of a few MeV, naturally dominate this process. Unfortunately,
the solar wind keeps such low energy protons from reaching Earth and so considerable
extrapolation is needed in estimating the primary ionization rate (protons, helium). With
this caveat the cosmic ray ionization rate is usually taken to be

dne
dt

= 1.1nHζCR

(
1− xe

1.2

)[
1 + φs

]
(40)

where ζCR is the primary ionization rate per H atom and

φs =
(

1− xe
1.2

) 0.67

1 + (xe/0.05)
(41)
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is a multiplicative factor accounting for the secondary ionization (D11, §13.5). Each pri-
mary cosmic ray injects 35 eV of energy which goes into secondary ionization, heating and
line excitation. The heating rate from cosmic rays from H/He ionization and Compton
scattering of electrons is, respectively,

ΓCR,n = 10−27nH

[
1 + 4.06

( xe
xe + 0.07

)1/2]( ζCR

10−16 s−1

)
erg cm−3 s−1, (42)

ΓCR,e = 46× 10−27ne

( ζCR

10−16 s−1

)
erg cm−3 s−1 (43)

(D11; §30.1).

4 Equilibrium Temperature & Ionization

In the previous three sections we discussed the injection of electrons and heat by photo-
electron ionization of C0, photo-electron ionization of dust and PAHs and ionization of H
and He by cosmic rays. We are ready to construct the governing equations which determine
the electron density, ne and the temperature, T , of the cloud.

There are three sources of electrons: photo-ionization of metals with ionization potential
less than that of hydrogen, photo-electron emission from dust grains including PAHs and
ionization of hydrogen and helium by cosmic rays. The first contribution, dominated by
carbon, is estimated to be about x(M) ≈ 1.5×10−4. The number density of dust particles,
relative to H, is extremely. Even if we consider PAHs (such as Pyrene, C16H10, through,
say, Circumcoronene, C54H18, the relative number density is 5 × 10−7. Thus, even if one
assumes that all these particles are ionized, their contribution to the pool of electrons is
small, ∼ 10−6. In fact, thanks to the large recombination coefficients, the PAHs are largely
neutral (Tielens 2005; [T05]; §6.3.7). Thus while the photo-electron rate of dust and PAHs
is high (§3.2) their contribution to the interstellar electron store is small when compared
to that from C0. We conclude that the main sources of electrons in diffuse medium is
photo-ionization of C0 and cosmic ray ionization of H and He. Additionally, cosmic rays,
unlike FUV radiation, can penetrate dark clouds and so are, even with a low ionization
rate, are important for dark clouds.

We will start off with the ionization-recombination equilibrium for photo-ionizable metals
(M; cf. Equation 38):

x(M+) =
ζ(M0)

ζ(M0) + neαrr(M+, T ) + nbαgr(M+, ne, T,G0)
. (44)

We will simplify this by assuming that carbon represents all metals and thus set M=C in
the above Equation and therefore set AC = AM = 1.4 × 10−4 (instead of the traditional
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value of 1×10−4 for AC). Next, we need an equation to determine the total electron denstiy,
ne. In order to compute the equilibrium ne it is sufficient to consider the balance equation
for a given species. For this purpose we will consider H I atoms. The atoms are ionized by
cosmic rays. The resulting proton can recombine either via radiative recombination with
an electron or with a dust/PAH particle. The resulting ionization-recombination balance
equation is

ζCR(1+φs)
[
1−x(H+)

]
= nbαrr(H

+)
[
x(H+)+AMx(M+)

]
x(H+)+nbαgr(H

+)x(H+). (45)

The total electron ionization fraction is xe = x(H+) +x(M+). Finally we have the thermal
balance:

nb

[
ΓCR,n + xeΓCR,e + Γd + ΓC0

]
= L(C+) + L(OI) + L(HI) + (g − fr)n2

bx
2
eαBkBT (46)

where we have assumed that cooling and heating is done at constant volume (isochoric),
hence g = 3/2. In §2.4 we found that fr ≈ 1, through the entire range of temperature of
interest.

These three coupled Equations 44–46 have to be solved numerically. The locus of the
temperature, the proxy to the pressure, P = P/kB and the metal and electron ionization
fractions of a nebula in thermal and ionization equilibrium, subject to G0 = 1 and ζCR =
10−16 s−1, is presented in Figure 5. The reflected “S” shaped locus is the signature result
of the two-phase ISM model (Field, Goldsmith and Habing; 1969; [fgh69]). The inflection
points marked A (P ≈ 7200 cm−3 K, T ≈ 8, 000 K) and B (P ≈ 1300 cm−3 K, T ≈ 300 K)
define the two branches, The lower branch, the cold neutral medium, is stable for P >
1300 cm−3 K whereas the upper branch, the warm neutral medium, is stable for P <
7200 cm−3 K.

4.1 Comparison to previous work

The cooling and heating per atom of a nebula in ionization and thermal equilibrium is
shown in Figure 6. The importance of dust heating is quite apparent. Notice the switch
of cooling from the C+ fine structure line to the OI fine structure line.

We have not included ionization and heating from soft X-rays. In some ways, cosmic ray
heating can substitute for this lack of inclusion. The primary difference is that soft X-
rays would preferentially ionize high-Z elements whereas cosmic ray predominantly ionizes
hydrogen. The result is that an absorption spectrum of the nebula would be quite rich for
X-ray ionization. Another issue that we have not considered is the optical depth to the C+

line. This may become important for high density nebula with large column densities.
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Figure 5: The locus of an optically thin interstellar nebula in thermal and ionization equilibrium.
Top: Temperature versus the proxy to pressure, P = P/kB . Bottom: total ionization fraction
(xH + xM ) and metal ionization fraction (xM ).
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Figure 6: The cooling (top) and hearing (bottom) rate per atom of a nebula in ionization and
thermal equilibrium for G0 = 1 and ζCR = 1× 10−16 s−1.
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5 A Nebula Irradiated by Strong Flux of Cosmic Rays

Our simple numerical modeling suite allows us to explore novel settings. For instance,
explore the the equilibrium conditions for an H I cloud located in the general vicinity of
a pulsar. Such clouds will experience a higher flux of cosmic rays. As can be seen from
Figure 7 the inflection points are quite different from that of the fiducial case (for which
the inflection points are marked by A and B). The points are now located as follows:
2200 cm−3 K, 53 K and 105 cm−3 K, 7900 K. The increased ionization in the CNM leads to
stronger cooling and the result is that the maximum temperature on the CNM branch is
100 K. With increasing ζCR the high pressure limit of the WNM branch is considerably
extended. Despite higher cosmic ray rate the electron density remains low, either in the
CNM or WNM.

Figure 7: Same as Figure 5 but for ζCR = 1× 10−13 s−1.

The WNM branch should be regarded as illustrative and not accurate. We have ignored
cooling via forbidden lines of OI, OII, NII and so on. Thanks to cooling via these forbidden
lines the temperature will be below 104 K (and lower than that indicated in Figure 7). Next,
cosmic rays will not only ionize H but also He, NI, OI and so on. Subject to variations
in recombination coefficients the ionization fraction of He, NI and OI will follow that of
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hydrogen. The nebula will be teeming with all sorts of ions, unusual for CNM such as N+,
Ne+ and Ar+ and will be a hotspot for gas-ion chemistry!
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