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The hydrogen atom
Introduction - The nuclear atom

• To understand matter, you have to begin by 
understanding the atom

• First step: the H atom (the least complex)

• After that: one gradually increases the complexity

• Keep in mind: the theory about atomic structure is 
based on experimental observations in spectroscopy
⁃ often, the experiments were made before the 

theory was worked out

• Atomic physics is a very instructive application of 
quantum mechanics

The electron

• Faraday, 1833 : electrolysis
⁃ electricity can be liberated by matter

• Storey, 1874 ; Helmholz 1880: Electric charge can only 
exist in discrete units
⁃ “electrons”

• J. J. Thomson : Electrons have mass and charge 
⁃ The ratio e/m can be measured and is constant

srk
http://sites.unice.fr/site/kastberg/My_Sites/Physique_Atomique/Home.html
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• Millikan, 1909 : measure of the charge
⁃ e ⇡ 1.60⇥ 10�19 C
⁃ ) m ⇡ 9.11⇥ 10�31 kg

The nuclear atom

• ≈ 1900 : Clear that an atom contain both negative and 
positive charges
⁃ But how are they distributed?

• Geiger ; Marsden ; Rutherford, ≈ 1910 : Experiments 
with alpha particles scattered against metallic foils
⁃ The Rutherford model: 

The Rutherford model

• All the positive charge of an atom, and most of its mass, 
is concentrated in the centre of the atom
⁃ “the nucleus”

• The negative charges, the electrons, orbit around this 
charge
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The hydrogen spectrum

• What is an atomic emission spectrum?

1. Take a sample of an element
2. Make it emit light (heating, discharge ….)
3. Spectrally resolve the emitted light (analysing the 

colours”)

• The recorded spectrum is characteristic for this element

• This can be used for chemical analysis

• And it can be used in order to gain understanding of 
the atomic structure 
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hydrogen discharge

(dissociation of H2 to H ; characteristic emission from H)

1. Distinct red light, centered around  � = 656 nm

2. A light blue component  � = 486 nm

3. A series of other weak rays, most of them in UV
4. The spectral lines seem to follow some regular order

• The inverse of the wavelength, the wave number, turns 
out to be more practical to use for calculation:

� = ⌫̄ ⌘ 1

�

• The regularity was deciphered mathematically by 
Rydberg:

� = R

✓
1

n2
� 1

n02

◆

⁃ R : The Rydberg constant
⁃ n and n' : integer numbers, n � 1 , n0 > n
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Spectral series

• n = 1 ; Lyman series
n = 1 , n0 = 2 : Ly↵ ; �Ly↵ = 121 nm
n = 1 , n0 = 3 : Ly� ; �Ly� = 103 nm
n = 1 , n0 = 4 : Ly� ; �Ly� = 97 nm

. . .

• n = 2 ; Balmer series
n = 2 , n0 = 3 : H↵ ; �H↵ = 656 nm
n = 2 , n0 = 4 : H� ; �H� = 486 nm
n = 2 , n0 = 5 : H� ; �H� = 434 nm

. . .

• n = 3 ; Paschen series
n = 3 , n0 = 4 : Pa↵ ; �Pa↵ = 1870 nm

. . .
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The Bohr model

• An extension of the Rutherford model: 

Assumptions:

1. The electrons orbit a heavy nucleus with positive 
charge

2. An electron in an orbit does not radiate - the orbit is 
stable

3. The angular momentum is quantified in integers of  ~
l = n~ = n

h

2⇡

⁃ This means that only certain “orbits” are allowed

4. When an atom emit (or absorb) light, an electron 
“jumps” from one orbit to another

⁃ Energy conservation then requires: 
�light =

c

⌫
=

c

h�E

• Using classic mechanics and electrodynamics:
⁃ Total energy of an electron on an allowed orbit:

E = � e2

4⇡"0 2r

⁃ r : the radius of the orbit

⁃ rn = a0n
2 ; n � 1
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⁃ a0 is the “Bohr radius”

⁃ a0 =
4⇡" ~2
me e2

⇡ 5.292⇥ 10�11 nm

⁃ Allowed energies: 

En = � e2

4⇡"0 2a0

1

n2

⁃ n : “the principal quantum number” 
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Transitions in H, according to the Bohr model
The “spectral rays” of H

� =
1

�
/ En � En0

) � = R1

✓
1

n2
� 1

n02

◆

⁃ R1 : The Rydberg constant for an infinite mass

hcR1 =
e4 me

(4⇡"0)2 2~2 ⇡ 13.606 eV

⁃ With a different nuclear mass (< 1), R has to be 
modified, and will be slightly different for different 

atomic masses (“isotope shift”)
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Quantum mechanics, the two-particle 
Hamiltonian

• Quantum mechanical approach: solve the Schrödinger 
equation

• The solution will give:
⁃ eigenstates (allowed wave functions)
⁃ eigenvalues of the energy (allowed energies)

• This is “the structure of the H atom”

• The “energy levels” should be consistent with recorded 
spectra

• With the exact solution for the eigenstates (the wave 
function), in principle everything can be calculated.
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The Schrödinger equation for H

• Coulomb potential:

V = V (r) = � Z e2

4⇡"0 r

• Complete two-body Hamiltonian:

H =
(~pp)2

2mp
+

(~pe)2

2me
+ V (|~rp � ~re|) = � ~2

2mp
r2

p � ~2
2me

r2
e + V (|~r|)

⁃ substitutions:
⁃ ~r ⌘ ~rp � ~re  ;  relative position

⁃ ~R =
mp~rp +me~re
mp +me

  ;  centre of mass

⁃ M ⌘ mp +me  ;  total mass

⁃ µ =
mpme

mp +me
  ;  reduced mass

⁃ ) H = � ~2
2M

r2
R

| {z }
� ~2
2µ

r2
r + V (r)

                         (centre-of-mass motion)

• In centre-of-mass coordinates:

⁃ H = � ~2
2µ

r2 + V (r)

⁃ )
✓
� ~2
2µ

r2 � Z e2

4⇡"0 r

◆
 (~r) = E  (~r)
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⁃ and  ~r = (r, ✓,')

⁃ The Laplacian in spherical coordinates:

r2 =
1

r2
@

@r

✓
r
@

@r

◆
� 1

r2
~l2

where  ~l2 =

⇢
1

sin ✓

@

@✓

✓
sin ✓

@

@✓

◆
+

1

sin2 ✓

@2

@'2

�

⁃ The entire angular part is contained in  ~l2

⁃ (~~l)2  is the operator for angular momentum

• We are looking for separable solutions, with one radial 
part and one angular part:

 (r, ✓,') = R(r)Y (✓,')

⁃ Substitution in the Schrödinger equation:
1

R

@

@r

✓
r2

@R

@r

◆
� 2µr2

~2 (V (r)� E)

| {z }
=

1

Y
~l2 Y

| {z }
= const.

                       r dependence                             dependence        ⇑
                                                                            on θ and φ

8
<

:

1
R

@
@r

�
r2 @R

@r

�
� 2µr2

~2 (V (r)� E) = b

~l2 Y = b Y

⁃ The constant b must be an eigenvalue of the 
operator ~l2 

⁃ Therefore, we take:
⁃ b = l(l + 1) 
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The radial part of the wave function 

• Introduce the substitution:
u(r) = r R(r)

⁃ ) d2u

dr2
+

2µ

~2 [E � Ve↵(r)]u(r) = 0

⁃ with  Ve↵(r) ⌘ � Ze2

4⇡"0 r| {z }
+

l(l + 1)~2
2µr2| {z }

                                                        Coulomb   centrifugal barrier

⁃ For  r ! 1 ) V (r) ! 0

⁃ E > 0  :  oscillatory solutions
⁃ ⇒  scattering states (non-bound)
⁃ ⇒  continuous spectrum

• For bound states:
⁃ We have to have :  E < 0
⁃ E = 0   corresponds to the ionization limit 
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• The solution is in the form of a series

• Quantization : 
Ze2

4⇡"0 ~

r
� µ

2E
= n

⁃ with  n = 1, 2, 3 …
⁃ n  is “the principal quantum number” 

• The energies of the bound states:

En = � 1

2n2

✓
Ze2

4⇡"0

◆
µ

~2 = � e2

4⇡"0 a0

µ

me

Z2

2n2

⁃
✓
a0 =

4⇡"0 ~2
mee2

◆

⁃ or

En = �1

2
µc2

✓
Z↵

n

◆2

⁃ ↵ =
e2

4⇡"0 ~c
  is the "fine-structure constant"

• E0 ⇡ �13.6 ev ; E1 ⇡ �3.4 eV

• Note:
⁃ The energy does not depend on  l
⁃ Restriction in  l  :  l = 0, 1, 2, 3, ... , n-1
⁃ The energies agree with the Bohr model
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The radial wave function

• Solutions:

Rnl(r) = �
(✓

2Z

naµ

◆3 (n� l � 1)!

2n [(n+ 1)!]3

)1/2

e�⇢/2 ⇢l L2l+1
n+l (⇢)

⁃ with  aµ = a0
me

µ

⁃ and  ⇢ =
2Z

naµ
r

⁃ Lj
i  is a "Laguerre polynomial”
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Charge distribution

• The probability to find the electron in the centre (r = 0) 
is finite only for  l = 0
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The angular function

~l2 Y (✓,') = l(l + 1)Y (✓,')

• We separate variables yet again: 
⁃ Y (✓,') = ⇥(✓)�(')

sin ✓

⇥

@

@✓

✓
sin ✓

@⇥

@✓

◆
+ l(l + 1) sin2 ✓ = � 1

�

@2�

@'2
= m2

• The solution are the "spherical harmonics":  Ylm

(
Ylm = (�1)

m
h
(2l+1)(l�m)!

4⇡(l+m)!

i1/2
P

m
l (cos ✓) eim' , m � 0

Yl,�m = (�1)

m Y ⇤
lm

⁃ P j
i   are "Legendre polynomials"

⁃ l  : quantum number for the orbital angular 
momentum

⁃ m  : projection on ẑ  of  l  ,  |m|  l

• Notation convention:
l = 0 ! s orbital

l = 1 ! p orbital

l = 2 ! d orbital

l = 3 ! f orbital

l = 4 ! g orbital
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Y0,0(✓,') =

1
2

1p
⇡

Y1,0(✓,') =

1
2

q
3
⇡ cos ✓

Y1,±1(✓,') = ⌥ 1
2

q
3
2⇡ sin ✓ e±i'

Y2,0(✓,') =

1
4

q
5
⇡ (3 cos

2 ✓ � 1)

Y2,±1(✓,') = ⌥ 1
2

q
15
2⇡ sin ✓ cos ✓ e±i'

Y2,±2(✓,') =

1
4

q
15
2⇡ sin

2 ✓ e±2i'

Y3,0(✓,') =

1
4

q
7
⇡ (5 cos

3 ✓ � 3 cos ✓)

Y3,±1(✓,') = ⌥ 1
8

q
21
⇡ sin ✓(5 cos2 ✓ � 1) e

±i'

Y3,±2(✓,') =

1
4

q
105
2⇡ sin

2 ✓ cos ✓ e±2i'

Y3,±3(✓,') = ⌥ 1
8

q
35
⇡ sin

3 ✓ e±3i'
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1.2 Formulation of the Schrödinger equation for the hydrogen
atom

In this initial treatment, we will make some practical approximations and simplifi-
cations. Since we are for the moment only trying to establish the general form of
the hydrogenic wave functions, this will suffice. To start with, we will assume that
the nucleus has zero extension. We place the origin at its position, and we ignore
the centre-of-mass motion. This reduces the two-body problem to a single particle,
the electron, moving in a central-field potential. To take the finite mass of the nu-
cleus into account, we replace the electron mass with the reduced mass, µ , of the
two-body problem. Moreover, we will in this chapter ignore the effect on the wave
function of relativistic effects, which automatically implies that we ignore the spins
of the electron and of the nucleus. This makes us ready to formulate the Hamilto-
nian.

The potential is the classical Coulomb interaction between two particles of op-
posite charges. With spherical coordinates, and with r as the radial distance of the
electron from the origin, this is:

V (r) =− Ze2

4πε0 r
, (1.1)

with Z being the charge state of the nucleus. The Schrödinger equation is:

− h̄2

2µ
∇

2
ψ(rrr)+V (r)ψ = Eψ(rrr) , (1.2)

where the Laplacian in spherical coordinates is:

∇
2 =

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2 sin2

θ

∂ 2

∂ϕ2 . (1.3)

Since the potential is purely central, the solution to (1.2) can be factorised into
a radial and an angular part, ψ(r,θ ,ϕ) = R(r)Y (θ ,ϕ). Substitution this into (1.2),
the Schrödinger equation becomes:

1
R(r)

∂

∂ r

(
r2 ∂R(r)

∂ r

)
− 2µr2

h̄2

(
− Ze2

4πε0 r
−E

)
=− 1

Y (θ ,ϕ)

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂ϕ2

]
Y (θ ,ϕ) . (1.4)

Before proceeding we will simplify the notation, by introducing atomic units,
and the angular momentum operator. The motivation for using atomic units is that
when performing long derivations, a large number of constants make the work cum-
bersome. To circumvent that, a number of constants are set to unity:
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e = me = h̄ =
1

4πε0
= 1 . (1.5)

Then, units for involved physical quantities have to be adapted accordingly, when-
ever quantified answers are sought. A brief introduction to, and a list of, atomic units
are given in appendix A. For the continuation of this book, we will use atomic units,
when we do not explicitly state otherwise.

The expression within the square brackets in (1.4) is identical to the quantum
mechanical operator for the square of the orbital angular momentum, LLL2. A more
thorough discussion on angular momentum is presented in appendix C. In that ap-
pendix, it is also shown that for an angular wave function that is eigenfunction to
LLL2, we have:

LLL2 Y (θ ,ϕ) = l(l +1)Y (θ ,ϕ) , (1.6)

where the introduced quantum number l has to be a positive integer, or zero. In
atomic units, and using (1.6) and (1.1), the Schrödinger equation can now be written
as:

1
R(r)

∂

∂ r

(
r2 ∂R(r)

∂ r

)
+2Zr+2Er2 =− 1

Y (θ ,ϕ)
LLL2 Y (θ ,ϕ) = l(l +1) . (1.7)

Here, we have set µ ≈ me, utilising the fact that for a one-electron system, the
nucleus is at least 1800 times heavier than the electron.

Equation (1.7) has to be valid for all spatial parameters, so when the radial and
angular parts have been separated, both sides of (1.7) have to be constant, for a given
wave function. In (1.7), we have used (1.6) and set that constant to l(l +1).

We are now left with two uncoupled differential equations, which can be solved
independently. The angular part of (1.7) is independent of the potential, as is the case
for any kind of central potential, and the solution will be in the form of the standard
spherical harmonics. The energy solely appears in the radial part of the equation,
and therefor the energies will, at this level of approximation, be independent of the
angular coordinates. In the following sections, we will treat the radial and angular
solutions separately.

1.3 Solution of the radial equation

The radial part of (1.7) can be rewritten as:

1
r2

∂

∂ r

[
r2 ∂

∂ r
R(r)

]
+

[
2Z
r

+2E− l(l +1)
r2

]
R(r) = 0 . (1.8)

Equation (1.8) represents a one dimensional problem of a particle moving in an
effective potential, consisting of the central Coulomb term and a centrifugal term, as
shown in fig. 1.1 (for the case Z = 1). Positive energies will give diffusive solutions,
which are relevant for scattering phenomena, but which will not be dealt with in this
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Fig. 1.1 Effective potential
for the radial part of the
Schrödinger equation for the
hydrogen atom (1.8), with Z =
1, for three different values
of the angular momentum
quantum number: l = 0 (blue),
l = 1 (green), and l = 2 (red).
The axes are in atomic units
and zero energy corresponds
to an electron infinitely distant
from the nucleus. The three
dashed horizontal lines shows
the energies of the three
lowest energy eigenstates (se
section 1.5.1).
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chapter. In the current treatment we explicitly look for bound states, i.e., solutions
for E < 0. In the following, we will give a very brief outline the solution. For a
more thorough treatment, see appendix B and general works in the suggested further
reading.

A first step is to introduce the substitution U(r)≡ r R(r). This leaves us with the
equation:

∂ 2

∂ r2 U(r)+
[

2Z
r

+2E− l(l +1)
r2

]
U(r) = 0 . (1.9)

Note that since we have formulated the Schrödinger equation in atomic units, the
energy in (1.9) will be in Eh and r has to be given in a0 (cf. appendix A).

The solution to (1.9) is periodical and discretized in two quantum numbers: the
orbital angular momentum quantum number l (also called the azimuthal quantum
number) introduced in section 1.2, and the principal quantum number n. From the
solutions, we also get the following constraints for the integer quantum numbers n
and l (cf. appendix B):

0≤ l < n . (1.10)

1.3.1 Eigenstates

The eigenstates found from the solution of (1.9) are in the form of associated La-
guerre polynomials (cf. appendix B ):

Unl(ρ) =−

√
(n− l−1)!

n2 [(n+ l)!]3
ρ

l+1 e−ρ/2 L2l+1
n+l (ρ) . (1.11)

Here, ρ is a rescaled radial parameter:
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ρ =
2Zr

n
, (1.12)

and equation (1.11) has been normalised such that:∫
∞

0
U∗nl(r)Unl(r)dr = 1 . (1.13)

Moreover, the functions Unl(r) are mutually orthogonal.
Throughout this book, we will use the standard spectroscopic notation for the

orbital angular momentum quantum number l, as presented in table (1.1): With this

Table 1.1 Standard letter symbols used for different values of the angular momentum quantum
number l

l-quantum number 0 1 2 3 4 5 6
spectroscopic symbol s p d f g h i

notation, some of the lowest order normalized radial functions, in the format Unl(r),
are presented in (1.14), for the case Z = 1.

U1s = 2r e−r

U2s =
1√
2

r e−r/2
(

1− r
2

)
U2p =

1
2
√

6
r2 e−r/2

U3s =
2

3
√

3
r e−r/3

(
1− 2r

3
+

2r2

27

)
U3p =

8
27
√

6
r2 e−r/3

(
1− r

6

)
U3d =

4
81
√

30
r3 e−r/3 (1.14)

U4s =
1
4

r e−r/4
(

1− 3r
4
+

r2

8
− r3

192

)
U4p =

√
5

16
√

3
r2 e−r/4

(
1− r

4
+

r2

80

)
U4d =

1
64
√

5
r3 e−r/4

(
1− r

12

)
U4f =

1
768
√

35
r4 e−r/4 .
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From (1.14), we can note that the wave function will be non-zero at r = 0 only
for s-states (l = 0). Hence, only an s-electron, which lacks a centrifugal term, has a
finit probability of being very close to the nucleus.

1.4 Solution of the angular equation

Since both the radial and the angular sides of (1.7) are equal to l(l +1), for a given
wave function, the angular part of the equation is:

−
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂ϕ2

]
Y (θ ,ϕ) = l(l +1) Y (θ ,ϕ) . (1.15)

As already stated, the operator on the left side of (1.15) is the operator for the square
of the orbital angular momentum (cf. appendix C) divided by h̄2, which justifies the
definition of the constant as l(l + 1), and the eigenvalue equation in (1.6). For the
projection of LLL2 along a quantisation axis êz, we will use the quantum number ml
(eigenvalue to Lz).

With (1.15) being in the form of the standard generator for the spherical harmon-
ics, the solution to this differential equation is very general, and it is outlined in
appendix D. The solutions are:

Yl,ml (θ ,ϕ) = (−1)(ml+|ml |)/2

√
(2l +1)(l−|ml |)!

4π (l + |ml |)!
P|ml |

l (cosθ)eiϕ ml , (1.16)

where Pl(cosθ) is a l’th order associated Legendre function, cf. (D.13) and (D.12).
The different functions Yl,ml (θ ,ϕ) are normalised and mutually orthogonal.

The explicit form of some of the lowest order solutions are:
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Y0,0(θ ,ϕ) =
1
2

1√
π

Y1,0(θ ,ϕ) =
1
2

√
3
π

cosθ

Y1,±1(θ ,ϕ) =∓
1
2

√
3

2π
sinθ e±iϕ

Y2,0(θ ,ϕ) =
1
4

√
5
π
(3cos2

θ −1)

Y2,±1(θ ,ϕ) =∓
1
2

√
15
2π

sinθ cosθ e±iϕ

Y2,±2(θ ,ϕ) =
1
4

√
15
2π

sin2
θ e±2iϕ (1.17)

Y3,0(θ ,ϕ) =
1
4

√
7
π
(5cos3

θ −3cosθ)

Y3,±1(θ ,ϕ) =∓
1
8

√
21
π

sinθ(5cos2
θ −1)e±iϕ

Y3,±2(θ ,ϕ) =
1
4

√
105
2π

sin2
θ cosθ e±2iϕ

Y3,±3(θ ,ϕ) =∓
1
8

√
35
π

sin3
θ e±3iϕ .

The angular probability distribution for an electron in a specific orbital can be
calculated by taking the modulus squared of the spherical harmonics for the different
combinations of l and ml . The lowest orders of these, corresponding to (1.17) are
depicted in fig. 1.2.

1.5 The total hydrogenic wave function

Since the total wave function is the product of R(r) and Y (θ ,ϕ), the complete hy-
drogenic wave function (from (1.11) and (1.16)) is:

ψnlml (r,θ ,ϕ) = (−1)
ml+|ml |

2 +1

√
(n− l−1)!(2l +1)(l−|ml |)!

4πn2[(n+ l)!]3(l + |ml |)!

×
(

2Z
n

)l+1

rl e−Zr/n L2l+1
n+l

(
2Zr

n

)
P|ml |

l (cosθ)eimlϕ . (1.18)

Equation (1.18) is the wave function in atomic units. This means that for any quan-
titative results, r must be given in a0.
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Fig. 1.2 Angular probability distribution for a one-electron atom (identical to the modulus squared
of the spherical harmonics). The figures correspond to the equations in (1.17), starting fom the top
left, Y0,0, Y1,0, Y1,±1, Y2,0, Y2,±1, Y2,±2, Y3,0, Y3,±1, Y3,±2, and Y3,±3.

1.5.1 Energy levels

The eigenenergies corresponding to the solutions in (1.18), with the ionisation limit
taken as zero, are:

En =−
Zs

2n2 . (1.19)
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In SI-units this is:

En =−
Z2mee4

2(4πε0)2 h̄2n2
. (1.20)

Thus, the energies depend only on the principal quantum number, and they are de-
generate in l and ml . For every value of l, there are 2l+1 values of ml , and for every
value of n, there are values of l from 0 up to n−1. This means that the degeneracy
for a certain n is:

D =
n−1

∑
l=0

(2l +1) = 2
(n+1)n

2
+n = n2 . (1.21)

The degeneracy in ml is obvious, since we have spherical symmetry and no external
field, and this will hold true also for atoms with more electrons. The degeneracy for
l in unique to hydrogenlike atoms.

The energies in (1.20) are identical with the ones found from the Bohr model,
which is not surprising given that the Bohr model was adapted to fit experimental
data. The energy levels have been included in the graph in fig. (1.1). This provides a
graphical illustration to the constraint in (1.10). For example, for l = 1, the centrifu-
gal barrier inhibits energies lower than about −0.25Eh, excluding the ground state.
For the latter, E1 = 0.5Eh and the potential for l = 0 is the only one possible, and so
on.

1.5.2 Radial probability distribution

The probability of finding the electron inside a spherical shell of radius r is found
from:∫ 2π

0

∫
π

0
|ψnlml (r,θ ,ϕ)|

2r2 sinθdrdθdϕ

= |Rnl(r)|2r2dr
∫ 2π

0

∫
π

0
|Ylml (θ ,ϕ)|

2 sinθdθdϕ = |Unl(r)|2 , (1.22)

where we have used the fact the the spherical harmonics are normalised. In order to
calculate the radial charge density, it suffices to use the radial functions in (1.14).
The probability amplitude is proportional to R2, and this is distributed on a spherical
surface of area 4πr2. Thus, the charge density in atomic units is r2R2, which is the
square of the functions in (1.14).

In fig. 1.3, we have plotted this radial distribution for the lowest principal quan-
tum numbers, for different l. Note that the number of anti-nodes in each distribution
is given by n− l, and that most of the charge density is centered around the outer-
most anti-node. Moreover, for a given n, the maximum of the charge density lies
closer to the nucleus for a larger l, even though the energy is higher.



10 1 Hydrogen orbitals

Fig. 1.3 Radial distribution
of the electron charge density,
corresponding to the radial
wave functions in (1.14). The
blue curve is for n = 1, the
green ones for n = 2, the
orange for n = 3, and the red
for n = 3. The top graph, with
full lines, are for l = 0, the
second graph, with dashed
lines, for l = 1, the third
graph, with dotted lines, for
l = 2, and the bottom graph,
with a dash-dotted line, for
l = 3.
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1.5.3 Spin

In the treatment of the hydrogen atom, we have ignored the fact that both the electron
and the nucleons have spins, and we have also ignored all other relativistic effects.
We will still not treat the relativistic version of the one-electron Schrödinger equa-



Appendix B
The radial part of the hydrogenic wave function

In this appendix, we will derive the solution to the radial part of the Schrödinger equa-
tion for hydrogen, R(r). We begin by the expression (1.9), derived in chapter 1.3:

∂ 2

∂ r2 U(r)+
[

2Z
r

+2E− l(l +1)
r2

]
U(r) = 0 . (B.1)

This is the equation given in atomic units, and with the substitution U(r) ≡ rR(r).
To solve this equation, we first look at the limiting cases where r→ 0 and r→ ∞,
and investigate the respective solutions, U (0)(r) and U (∞)(r).

In the case of r→ 0, the terms 2Z/r and 2E in (B.1) can be neglected, and we
have:

∂ 2

∂ r2 U (0)(r)− l(l +1)
r2 U (0)(r) = 0 . (B.2)

This equations has the two solutions U (0)(r) = rl+1 and U (0)(r) = r−l . From the
definition of U(r) we can se that this function must be finite also as r→ 0. Therefore,
the latter of the two solutions above can be discarded.

We then consider the other limit, where r→ ∞. In this case, it is the two terms
proportional to 1/r and 1/r2 that can be discarded, and we have:

∂ 2

∂ r2 U (∞)(r)+2EU (∞)(r) = 0 . (B.3)

Also here we get two solutions: U (∞)(r) = exp(±
√
−2Er). For bound states, E < 0,

this gives real solutions. Moreover, we cannot allow U(r) to diverge, and thus we
can keep only the negative exponential.

With the form of U(r) determined for r → 0 and r → ∞, we introduce a trial
solution that is a product of these limiting solutions and a polynomial function:

U(r) = rl+1e−
√
−2Er(A0 +A1r+A2r2 +A3r3 + . . .) . (B.4)

29
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This will have the correct behavior for very small and very large r. The trial solution
is then substituted into (B.1), which will give us a recursion formula for the A’s in
(B.4):

Ak =−2Ak−1
Z− (l + k)

√
−2E

(l + k)(l + k+1)− l(l +1)
. (B.5)

However, the problem with this is that when r goes to infinity, the infinite series in
(B.4) increases as exp(2

√
−2Er), and thus U(r) will no longer be finite.

The way to counter that is to force the series in (B.4) to break off at some point,
and form a limited polynomial. This can be achieved if the numerator in (B.5) be-
comes zero for some k. Thus, we get a limiting condition for k when the numerator
in (B.5), that is when:

(l + k)
√
−2E = Z . (B.6)

From (B.6), we can get an expression for the energy in terms of the integers l and
k, and in order to get an analogy with the Bohr model, we introduce the principal
quantum number n≡ l + k, and get:

E =−1
2

Z2

n2 . (B.7)

Next step is to make the substitution:

ρ =
2Zr

n
, (B.8)

and to rewrite (B.4) and (B.5) in terms of ρ and n. This way, U(r) can be written as
a Laguerre polynomial:

Unl(ρ) =

√
(n− l−1)!Z
n2[(n+ l)!]3

ρ
l+1 e−ρ/2 L2l+1

n+l (ρ) . (B.9)

The definition of the Laguerre polynomial in (B.9) is here:

L2l+1
n+l (ρ) = B0 +B1ρ +B2ρ

2 +B3ρ
3 + · · ·+Bn−l−1ρ

n−l−1

Bk =−Bk−1
n− l− k

(l + k)(l + k+1)− l(l +1)
(B.10)

Bn−l−1 = (−1)n+l (n+ l)!
(n− l−1)!

.

Here, (n− l−1) must be zero or positive, and thus we get a condition for l:

l = 0,1,2, . . . ,n−1 . (B.11)



Appendix C
Angular momentum

In classical mechanics, the orbital angular momentum is defined as LLL = rrr× ppp. In
cartesian coordinates, the components of this vector are:

Lx = ypz− zpy

Ly = zpx− xpz (C.1)
Lz = xpy− ypx .

Using the quantum mechanical operator forms for the linear momenta, we have:

Lx =−i h̄
(

y
∂

∂ z
− z

∂

∂y

)
Ly =−i h̄

(
z

∂

∂x
− x

∂

∂ z

)
(C.2)

Lz =−i h̄
(

x
∂

∂y
− y

∂

∂x

)
.

This is in SI-units, and in this appendix, we will stick to this. Changing to atomic
units would here simply mean discarding the factors of h̄.

C.1 General angular momentum

From (C.2), we can calculate the commutators of the components of LLL. Moreover,
the resulting commutation rules are general; they will be the same for any type of
angular momentum, and therfore we can write them in terms of a generalised one,
JJJ:

31



32 C Angular momentum

[Jx,Jy] = i h̄Jz

[Jy,Jz] = i h̄Jx (C.3)
[Jz,Jx] = i h̄Jy .

Next, we define the ladder operators; the operators that increment (or decrement)
the projection of the angular momentum of JJJ along the êz-axis by one unit of h̄:

J+ ≡ Jx + iJy

J− ≡ Jx− iJy , (C.4)

and by taking the products of these raising and lowering operators, we find that they
do not commute:

J+J− = J2
x + J2

y + h̄Jz

J−J+ = J2
x + J2

y − h̄Jz (C.5)

[J+,J−] = 2h̄Jz .

C.1.1 Eigenvalues

Since different cartesian components of an angular momentum never commute, the
least ambiguous way in which one can be specified is by the combination of the
square of its absolute value JJJ2, and its projection along the êz-axis Jz. We have

JJJ2 = JJJ · JJJ = J2
x + J2

y + J2
z . (C.6)

JJJ2 commutes with Jz (as well as with Jx and Jy), and thus they have common eigen-
functions ψab:

JJJ2
ψab = aψab

Jz ψab = bψab . (C.7)

Here a and b are the eigenvalues of the respective operators, and together a and b
will also provide a unique label for the wave function. From (C.6) and (C.7), we see
that:

(J2
x + J2

y )ψab = (JJJ2− J2
z )ψab = (a−b2)ψab , (C.8)

and since this sum of two squares necessarily has to be positive or zero, we have the
inequality:

a≥ b2 . (C.9)

Next, we apply the ladder operators, defined in (C.4), on ψab. From the fact that
JJJ2 commutes with all the components of JJJ follows that the functions J±ψab are also
eigenfunctions of JJJ2, with the same eigenvalue a. Then we let Jz operate on J±ψab,
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and using the commutation relations in (C.3) we find:

Jz J±ψab = (JzJx ± iJzJy)ψab = [(JxJz + i h̄Jy) ± i(JyJz − i h̄Jx)]ψab

= [(Jx ± iJy)(Jz ± h̄)]ψab = (b± h̄)J±ψab . (C.10)

Thus, unless J±ψab is zero, it must be an eigenfunction of Jz, with eigenvalue (b±
h̄). If we now apply J± repeatedly to ψab, we find that the eigenvalues of JJJ2 and Jz
are:

JJJ2 (J±)n
ψab = a(J±)n

ψab

Jz (J±)n
ψab = (b±nh̄)(J±)n

ψab , (C.11)

except for the cases where (J±)nψab is zero.
The equations (C.11) show that the ladder operators do indeed either increase or

decrease the projection of the angular momentum JJJ along the z-axis, with units of
h̄. They also show, that for a given eigenvalue of JJJ2, a, there is a discrete spectrum
of eigenvalues for Jz:

b = . . . , b′−2h̄ , b′− h̄ , b′ , b′+ h̄ , b′+2h̄ , . . . . (C.12)

Because of the restriction in (C.9), this spectrum must have a lower and an upper
bound, set by ±

√
a.

As a consequence, the eigenfunctions corresponding to these limits in the spec-
trum of Jz must return zero if they are acted on by an appropriate ladder operators.
We have:

J− (J+ψabmax) = 0

J+
(
J−ψabmin

)
= 0 . (C.13)

Using (C.5), we get:

(J2
x + J2

y − h̄Jz)ψabmax = (JJJ2− J2
z − h̄Jz)ψabmax

= (a−b2
max− h̄bmax)ψabmax = 0

(J2
x + J2

y + h̄Jz)ψabmin = (JJJ2− J2
z + h̄Jz)ψabmin

= (a−b2
min + h̄bmin)ψabmin = 0 .

Since the eigenfunctions ψabmax and ψabmin , are non-zero, albeit limiting cases, we
have:

(a−b2
min + h̄bmin) = (a−b2

max− h̄bmax) = 0 . (C.14)

From that we can derive:

(bmax +bmin)(h̄+bmax−bmin) = 0 . (C.15)
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The second parenthesis above must be non-zero, and therefore the limits to the spec-
trum of Jz must be symmetrically placed around zero: bmin =−bmax. This together
with (C.12) means that all values of b are either integers or half integers of h̄. This
characteristic will hold for any quantum mechanical angular momentum.

From (C.14), we can also get a condition for the eigenvalues of JJJ2:

a = bmax(bmax + h̄) . (C.16)

Introducing the quantum numbers j ≡ bmax/h̄, and m j ≡ b/h̄, we have now shown
that:

JJJ2
ψ jm j = j( j+1)h̄2

ψ jm j

Jz ψ jm j = m jh̄ψ jm j . (C.17)

We end this section by computing a normalisation constant c± for the ladder
operators. We take:

J±ψ jm j = c±ψ j,m j±1 . (C.18)

It is convenient to express this in Dirac notation:

J± | j,m j 〉= c± | j,m j±1〉 . (C.19)

We consistently assume normalised wave functions and thus, by using (C.5), we get:

|c±|2 = 〈 j,m j±1 |(c±)∗c±| j,m j±1〉=
〈

j,m j|J∓J± | j,m j
〉

=
〈

j,m j|(J2
x + J2

y ∓ h̄Jz) | j,m j
〉
=
〈

j,m j|(JJJ2− J2
z ∓ h̄Jz) | j,m j

〉
(C.20)

= h̄2 [ j( j+1)−m(m±1)] .

The phase is irrelevant so, without loss of generality, we can take:

c± = h̄
√

j( j+1)−m(m±1) . (C.21)

C.2 Orbital angular momentum

In order to get explicit expressions for the orbital angular momentum, we first chose
spherical coordinates, with θ and ϕ respectively as the zenith and azimuthal angles: x = r sinθ cosϕ

y = r sinθ sinϕ

z = r cosθ

,

 r = (x2 + y2 + z2)1/2

cosθ = z(x2 + y2 + z2)−1/2

tanϕ = y/x
. (C.22)

From this, we can find spherical coordinate forms of the partial derivatives in (C.2):
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∂ r
∂x

= x(x2 + y2 + z2)−1/2 =
x
r
= sinθ cosϕ

∂ r
∂y

= sinθ sinϕ

∂ r
∂ z

= cosθ

∂

∂x
(cosθ) =−sinθ

∂θ

∂x
=−zx(x2 + y2 + z2)−3/2 =− z

r2 sinθ cosϕ

=− sinθ cosθ cosϕ

r
(C.23)

−sinθ
∂θ

∂y
=− z

r2 sinθ sinϕ =− sinθ cosθ sinϕ

r

−sinθ
∂θ

∂ z
=− z

r2 cosθ +
1
r
=

sin2
θ

r
∂

∂x
(tanϕ) =

1
cos2 ϕ

∂ϕ

∂x
=− y

x2 =− tanϕ

x
=− sinϕ

r sinθ cos2 ϕ

1
cos2 ϕ

∂ϕ

∂y
=

1
x
=

1
r sinθ cosϕ

∂ϕ

∂ z
= 0 ,

which leads to:

∂

∂x
= sinθ cosϕ

∂

∂ r
+

cosθ cosϕ

r
∂

∂θ
− sinϕ

r sinθ

∂

∂ϕ

∂

∂y
= sinθ sinϕ

∂

∂ r
+

cosθ sinϕ

r
∂

∂θ
+

cosϕ

r sinθ

∂

∂ϕ
(C.24)

∂

∂ z
= cosθ

∂

∂ r
− sinθ

r
∂

∂θ
.

Combining (C.24) with (C.2), we get the operator expressions for the orbital angular
momentum components:

Lx = ih̄
(

sinϕ
∂

∂θ
+

cosϕ

tanθ

∂

∂ϕ

)
Ly = ih̄

(
−cosϕ

∂

∂θ
+

sinϕ

tanθ

∂

∂ϕ

)
(C.25)

Lz =−ih̄
∂

∂ϕ
.

When we have explicit expressions for all components of LLL, we can derive differen-
tial forms of its ladder operators:
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L± = h̄e±iϕ
(
± ∂

∂θ
+ i

1
tanθ

∂

∂ϕ

)
. (C.26)

Using also (C.5), the operator for LLL2 becomes:

LLL2 = L2
x +L2

y +L2
z = L2

z +L−L++ h̄Lz

= L2
z + h̄Lz− h̄2

(
∂ 2

∂θ 2
1

tanθ

∂

∂θ
− i

∂

∂ϕ

1
tan2 θ

∂ 2

∂ϕ2

)
(C.27)

=−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂ϕ2

]
.

The general properties of angular momenta, described in sect. C.1.1, are still
valid, and with l and ml as the respective quantum numbers for orbital angular mo-
mentum and its projection along êz, we have:

LLL2
ψlml = l(l +1)h̄2

ψlml

Lz ψlml = ml h̄ψlml . (C.28)

In the case of LLL, however, we have an extra constraint. The equation for Lz in
(C.25) shows that the solution to the eigenvalue equation for Lz must be of the form:

ψlml (r,θ ,ϕ) = f (r,θ)eiϕml . (C.29)

Since this function has to be periodic, with the periodicity 2π , we have:

e2πiml = 1 , (C.30)

and thus the the projection quantum number ml for orbital angular momentum must
be a whole integer (positive or negative). As a consequence, the quantum number l
also has to be a positive integer.



Appendix D
Spherical harmonics

For an atom with a single electron, the spherical harmonics are solutions to the
angular part of the Schrödinger equation. This solution will be the same for any
potential V (r) that only depends on the radial parameter. Stated even more generally,
the spherical harmonics are the angular part of the solutions to the Laplace equation:

∇
2
ψ = 0 . (D.1)

In spherical coordinates, with standard definitions of the zenith and azimuthal an-
gles, and calling the angular part of the wave function Y (θ ,ϕ) = Ylml , the equation
we have to solve is:

− 1
Y (θ ,ϕ)

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂ϕ2

]
Y (θ ,ϕ)

= LLL2 Y (θ ,ϕ) = l(l +1)Y (θ ,ϕ) , (D.2)

where we have used the definition of LLL2 used in (C.27), and we have eliminated
factors of h̄ by using atomic units. That is, for a bound electron, LLL2 corresponds to
the square or the orbital angular momentum. Likewise, the quantum numbers l and
ml are the same as those used in (C.28).

The differential equation (D.2) can be integrated directly, but we shall instead
take an algebraic route, which involves first separating the total angular function
Ylml into two components, a zenith function and an azimuthal function:

Ylml (θ ,ϕ) =Θlml (θ)Φml (ϕ) . (D.3)

We then start with the solution that has the minimum projection of Lz (that is we
set ml = −l), which is Yl,−l = Θl,−lΦ−l . Then, we let the lowering ladder operator
L− (cf. Appendix C) act on this. This should yield zero, which in turn gives us a
solvable differential equation.

From (C.26) we have:

37
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L−Yl,−l(θ ,ϕ) = e−iϕ
(
− ∂

∂θ
+ i cotθ

∂

∂ϕ

)
Θl,−l(θ)Φ−l(ϕ) = 0 . (D.4)

In the second term within the parenthesis above, we can identify the expression for
Lz from (C.25). Substituting this, we can eliminate Φ−l(ϕ), as well as the initial
exponential. We now have:

−
∂Θl,−l

∂θ
+ l cotθ Θl,−l = 0 . (D.5)

The solution to this is a sine function to the power of l. Then we chose an integration
constant such that the zenith function becomes normalised:

〈Θl,−l |Θl,−l 〉=
∫

π

0
Θ
∗
l,−lΘl,−l sinθ dθ = 1 . (D.6)

The result is:

Θl,−l(θ) =

√
(2l +1)!

2
sinl

θ

2l l!
. (D.7)

For all other functions Θlml we can now use the other ladder operator, the raising
one. This will yield a recursion equation for the general case. We have:

Θl,ml+1 Φml+1 =
√

l(l +1)−ml(ml +1)L+Θl,ml Φml , (D.8)

where we have taken the prefactor from (C.21). Now, the azimuthal function is taken
from (C.29), and as above we take the rising operator from (C.26):

Θl,ml+1 ei(ml+1)ϕ

=
√

l(l +1)−ml(ml +1)eiϕ
(

∂

∂θ
+ i cotθ

∂

∂ϕ

)
Θl,ml ei(ml)ϕ . (D.9)

Now we again identify the expression (C.25) for Lz, and we get the equation:

Θl,ml+1 =
√

l(l +1)−ml(ml +1)
(

∂

∂θ
−ml cotθ

)
Θl,ml . (D.10)

With (D.10) and (D.7), we can get normalised zenith wave functions for any
allowed combination of l and ml . The solution is:

Θl,ml (θ ,ϕ) =
(−1)l+ml

2l l!

√
(2l +1)(l−ml)!

2(l +ml)!
sinml θ

dl+ml

d(cosθ)l+ml
sin2l

θ

= (−1)(ml+|ml |)/2

√
(2l +1)(l−|ml |)!

2(l + |ml |)!
P|ml |

l (cosθ) . (D.11)

In the second line of (D.11), Pl(cosθ) is the l’th order associated Legendre function
for cosθ , given by the formula:
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Pn(x) =
1

2n n!
dn

dxn (x
2−1)n . (D.12)

Including the azimuthal function from (C.29), we get the complete expression
for the spherical harmonics:

Yl,ml (θ ,ϕ) = (−1)(ml+|ml |)/2

√
(2l +1)(l−|ml |)!

4π (l + |ml |)!
P|ml |

l (cosθ)eiϕml . (D.13)

These spherical harmonics, provide a set of orthonormal functions:

〈Ylml |Yl′,m′l
〉=

∫ 2π

0

∫
π

0
Y ∗lml

Yl′,m′l
sinθ dθdϕ = δll′δmlm′l

. (D.14)
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Interactions/Spectroscopy I
Transitions ; Fermi golden rule

• Absorption or/and emission of light is accompanied by 
a change in energy (state) for the atom

• Conservation of energy  ⇒  the energy difference 
between the two states involved must equal the photon 
energy

• A study of emitted/absorbed colours give information 
about the atomic structure :  “Spectroscopy” 

Transitions

• Is a transition, accompanied by absorption/emission of 
light, possible between any states?
⁃ According to experiments: No! 
⁃ This cannot be explained without QM

• The absorption/emission is an interaction between the 
atom and light
⁃ governed by an interaction Hamiltionian
⁃ possible transitions : “allowed”
⁃ impossible transitions : “forbidden”
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2

Fermi’s golden rule

• “The rate (probability) for a transition induced by a 
specific perturbation is proportional to the modulus 
squared of the matrix element for the perturbation” 

⁃ Consider a transition from state  | 1 i  to state  | 2 i
⁃ Assume the interaction Hamiltonian :  Hpert
⁃ Transition rate :

A1$2 /
����
Z
 ⇤
2Hpert 1 dV

����
2

= |h 2 |Hpert| 1 i|2
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3

Interaction Hamiltonian

Interaction between an atom and light

• The light (the electric field):
~E =

~E0 cos(!t� ~k · ~r) = E0 ~p cos(!t� ~k · ~r)
⁃ E0  :  amplitude
⁃ ~p   :  polarization vector 

⁃ For an atom in an optical field:
⁃ |~r| ⇡ 0.1 nm
⁃ � ⇡ 500 nm
⁃ ) cos(!t� ~k · ~r) ⇡ cos!t

⁃ ) ~E = E0 ~p cos!t
⁃ “the electric-dipole approximation” 

• The atomic dipole moment (for hydrogen):
~D = e~r

⁃ where  ~r   is an operator

• Interaction Hamiltonian (a dipole in an electric field):

HI = e~r · ~E

• Transition rate (according to Fermi golden rule, and 
time averaged):

A1$2 /
����
Z
 ⇤
2HI 1 dV

����
2

= |h 2 |HI| 1 i|2 = |eE0|2 |h 2 |~r · ~p| 1 i|2
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4

The meaning of “allowed” and “forbidden”

• Consider the matrix element :  h 2 |~r · ~p| 1 i

• If  h 2 |~r · ~p| 1 i = 0   ⇒  the transition 1⟷2 is forbidden

• If  h 2 |~r · ~p| 1 i 6= 0   ⇒  the transition 1⟷2 is allowed
⁃ the magnitude of  h 2 |~r · ~p| 1 i  gives the transition 

probability

• Currently, all we want to know is which transitions that 
are allowed and which are forbidden

• The matrix element can be divided into one radial part 
and one angular part:

h 2 |~r · ~p| 1 i = D12 Iang

D12 =

Z 1

0
R⇤

n2l2(r) r Rn1l1(r) r
2 d3r

⁃ gives a characteristic rate for the transition 1⟷2
⁃ typically  D12 > 0

• To find forbidden (allowed) transitions, we look for 
cases with  Iang = 0  ( Iang 6= 0 )

Iang =

Z 2⇡

0

Z ⇡

0
Y ⇤
l2m2

(✓,')
~r · ~p
r

Yl1m1(✓,') sin ✓ d✓d'

• To proceed, how can we parametrize  ~p  ?
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σ-  and  π- transitions

• We choose one preferred direction, say  ẑ

• This will be our “quantization axis”
⁃ Angular momenta will be projected along this axis 

( Lz , Sz , Jz . . . )

• This essentially leaves us with cylindrical symmetry

Parametrising a beam of light 

• A light field contains two vectors:
⁃ The wave vector (propagation direction) :  ~k
⁃ Polarisation :  ~p
⁃ ~k ? ~p

• “π-light”:
⁃ ~p k ẑ   (linear polarization)
⁃ ~

k k xy�plane

• “σ+-light”:
⁃ ~k k ẑ
⁃

~p = x̂+ iŷ  (right hand circular polarisation) 

• “σ--light”:
⁃ ~k k ẑ
⁃ ~p = x̂� iŷ  (left hand circular polarisation) 
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π -transitions

⁃ ~p = ẑ  ;  linear polarisation along  ẑ
⁃ The light propagates in the xy-plane

~r · ~p
r

= (sin ✓ cos' , sin ✓ sin' , cos ✓) ·

0

@
0

0

1

1

A
= cos ✓



LNPhysiqueAtomique2016

7

I⇡ang =

Z 2⇡

0
�

⇤
m2

�m1 d'

Z ⇡

0
⇥

⇤
l2,m2

cos ✓⇥l1,m1 sin ✓ d✓

⁃ where :  �m1 = eim1' , �⇤
m2

= e�im2'

• Cylindrical symmetry  ⇒  No φ dependence  
⁃ ) I⇡ang(') = I⇡ang('+ '0) = ei(m1�m2)'

0
I⇡ang(')

⁃ (rotation around  ẑ )

• So, for a π-transition to be allowed, we have to have :

⁃ I⇡ang(') 6= 0 ) m1 = m2

• Selection rule for π-transitions :

⁃ �m = 0

σ± -transtions

⁃ ~p =
1p
2
(x̂± iŷ)  ;  circular polarisation

⁃ The light propagates along ẑ

~r · ~p
r

= (sin ✓ cos' , sin ✓ sin' , cos ✓) ·

0

B@

1p
2

± ip
2

0

1

CA =

1p
2

sin ✓ e

±i'

•

I�
±

ang =

Z 2⇡

0

Z ⇡

0
Y ⇤
l2,m2

1p
2
sin ✓ e±i' Yl1,m1 sin ✓ d✓d'

• Cylindrical symmetry  ⇒  No φ dependence  

) I�
±

ang(') = I�
±

ang('+ '0) = ei(m1�m2±1)'0
I�

±

ang(')
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• Selection rule for σ±-transitions :

⁃
⇢

�m = +1 , �+

�m = �1 , ��

Summary

• Example :
⁃ Transition from a  l = 0  state to a  l = 1  state 

• These selection role can also be seen as conservation of 
angular momentum 
⁃ A  �+-photon carries the angular momentum  ~
⁃ A  ��-photon carries the angular momentum  -~
⁃ A ⇡-photon does not carry angular momentum 
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Parity

• Parity transformation of a wave function,  
⁃ P  :  ~r ! � ~r

⁃

8
<

:

x ! � x

y ! � y

z ! � z

or

8
<

:

r ! r

✓ ! ⇡ � ✓

' ! '+ ⇡

• A wave function is either even or odd at a parity 
transformation
⁃ P  = p where p = ±1

⁃ (P 2  = p2 =  )

• Consider the angular eigenfunctions (the spherical 
harmonics)
⁃ Y0,0  : even
⁃ Y1,m  : odd
⁃ Y2,m  : even
⁃ Y3,m  : odd

P Yl,m = (�1)l Yl,m

• How does this affect the integral  Iang ?

Iang = (�1)l2+l1+1 Iang
⁃ gives an allowed transition

• For  Iang 6= 0 ,  (l1 + l2)  must be an odd number

• The quantum number  l  must change for an electric 
dipole transition to be allowed
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Selection rules , electric dipole transitions

Summary

•  1  and   2  must have opposite parities

• �l 6= 0

• �m = 0  for  π-transitions

• �m = ±1  for σ±-transitions
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Fine structure in hydrogen - 
relativistic effects

Electron spin ; relativistic effects

• In a spectrum from H (or from an alkali), one finds 
that spectral lines appears in pairs.
⁃ take a Na spectrum as example:

• Moreover, the rays are slightly shifted in comparison 
with the non-relativistic theory 

• The origins of these “new” effects:
⁃ Electron spin
⁃ Relativity  

Relativistic Hamiltonian

• Recall the one-electron Hmiltonian:

H = Hkin + V =
p2

2m
� Ze2

4⇡"0 r
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• So far, we have treated the term  
p2

2m
  classically

• For a more exact solution, this has to be replaced with 
a relativistic version 

• This gives the “Dirac equation”
⁃ An analytical solution is possible, but very 

complex
⁃ Instead, we treat the problem with perturbation 

theory 
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Perturbative treatment

• As a zero-order Hamiltonian, we take the non-
relativistic version

• We the treat the relativistic corrections as perturbations 

H = H0 +H 0 = � ~2
2m

r2 + V (~r) +H 0

• The corrections to the energy levels:
�E = h 0|H 0| 0i

• It turns out that the relativistic corrections  can be 
divided into three parts:

H 0 = HSO +Hrel +HDarwin

⁃ HSO  : Spin-orbit interaction
⁃ Hrel  : Relativistic treatment of the kinetic energy
⁃ HDarwin  : the Darwin term

  
⁃ This is consistent with the exact treatment
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Relativistic treatment of the kinetic energy 

Hrel

• Classical kinetic energy :

E0
kin =

p2

2m

• Relativistic kinetic energy :

Ekin =
p

p2c2 +m2c4 �mc2 =
p2

2m
� p4

8m3c2
+ . . .

• First order correction (ignoring terms of order  
⇣v
c

⌘4
  

or higher) :

Hrel = � p4

8m3c2
= � ~4

8m3c2
r4

⁃ This does not depend on spin
⁃ It is diagonal in  n  and  l

�Erel,nl = �En0
(Z↵)2

n2

✓
3

4
� 4

l + 1
2

◆

⁃ where  ↵ =
e2

4⇡"0 c2~
⁃ is the fine-structure constant
⁃ ↵�1 ⇡ 137.036

• �Erel  is more important for small  n
⁃ (small  n  ⇒  small orbital radius
⁃ ⇒  high velocity)



LNPhysiqueAtomique2016

5

The Darwin term 

HDarwin

• Very difficult to explain ……
⁃ Related to the singularity at  r = 0 

HDarwin =
⇡~2

2m2c2

✓
Ze2

4⇡"

◆
�(r)

)
(

�EDarwin,nl = En,0
(Z↵)2

n ; l = 0
�EDarwin,nl = 0 ; l 6= 0
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Spin-orbit interaction

HSO

• Interaction between the orbital angular momentum and 
the spin

Spin

• An electron has a magnetic moment, which can be 
associated with a spin
⁃ Wave function :   s,ms

⁃ Vectorial representation :  | s ms i

• The  | s ms i  are eigenvectors to the operators:

⁃ S2 | s ms i = s(s+ 1)~2 | s ms i
⁃ Sz | s ms i = ms~ | s ms i

• For a single electron, we have (always):

      -   s =
1

2
)

⌦
S2
↵
= s(s+ 1)~2 =

3~2
4

=

 p
3~
2

!2

      -   ms = ±1

2
) hSzi = ±~

2

⁃ “spin-up” and “spin-down”



LNPhysiqueAtomique2016

7

• The total wave-function :
⁃  nlmlms

⁃ |n lml ms i

Interaction between  ~l   and  ~s      

• The electron has a magnetic moment :  ~µ / ~s

• Consider a system of reference centered at the electron
⁃ ⇒  an orbiting proton (positive charge)

• An orbiting charge
⁃ ⇒ induced magnetic field :  ~B / ~l
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• Interaction between  ~B   and  ~µ

HSO = �~µ · ~B / ~l · ~s| {z } / ~L · ~S| {z }
                                                                 vectors          operators

• HSO  is separable in radial and angular coordinates

HSO = ⇠(r) ~L · ~S

⁃ where  ⇠(r) =
1

2m2c2
1

r

dV

dr

• For example, the hydrogenic potential:

V = � Ze2

4⇡"0 r
) ⇠(r) =

1

2m2c2
Ze2

4⇡"0

1

r3

• The energy shift due to the interaction is the 
expectation value of  HSO 

h |HSO | i = hRnl(r) | ⇠(r) | Rnl(r) i
D
l ml ms | ~L · ~S | l ml ms

E

h⇠(r)i = 1

2m2c2
Ze2

4⇡"0

⌧
1

r3

�
=

1

2m2c2
Ze2

4⇡"0

Z3

a30n
3 l(l + 1

2 )(l + 1)
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Fine structure

• For the angular part of  HSO :
⁃ we have to look for eigenvectors to h~L · ~Si

• What about the vector :  | l ml ms i ?
⁃ (eigenvector to the operators  L2 ,  Lz , and  Sz )

• This will NOT do, since  
h
~L · ~S , Lz

i
6= 0  and  h

~L · ~S , Sz

i
6= 0

• ⇒  We need some other operator (and quantum 
number)

The total angular momentum

• We introduce : 
~J = ~L+ ~S

J2 = L2 + 2 ~L · ~S + S2

) ~L · ~S =
1

2

�
J2 � L2 � S2

�

• Consider the wave functions   nljmj  ( |n l j mj i ) that 
are eigenstates to  H0 , L

2 , J2 and Jz :

H0 |n l j mj i = E0 |n l j mj i
L2 |n l j mj i = l(l + 1)~2 |n l j mj i
J2 |n l j mj i = j(j + 1)~2 |n l j mj i
Jz |n l j mj i = mj~ |n l j mj i



LNPhysiqueAtomique2016

10

• For hydrogen, we have one single electron
(

s = 1
2

ms = ± 1
2  

(
j = l ± 1

2 , (l 6= 0)

j = 1
2 , (l = 0)

• j  is a “good quantum number”
⁃ it makes the total Hamiltonian diagonal

• ml  and  ms  are NOT good quantum numbers
⁃ due to the spin-orbit interaction,  ~L  and  ~S   will 

precess around each other
⁃ thus, their projections are not constant

• The sum,  ~J   , IS constant
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The Fine-structure energy

• Expectation value of the angular part of the 
hamiltonian:

D
~L · ~S

E
=

⌧
1

2

�
J2 � L2 � S2

��
=

1

2

⌦
l j mj | J2 � L2 � S2 | l j mj

↵

=
~2
2

[j(j + 1)� l(l + 1)� s(s+ 1)]

⁃ with  s =
1

2
 :

D
~L · ~S

E
=

~2
2


j(j + 1)� l(l + 1)� 3

4

�

hHSOi = h⇠(r)i
D
~L · ~S

E

=
1

2m2c2
Ze2

4⇡"0

Z3

a30n
3 l(l + 1

2 )(l + 1)

~2
2


j(j + 1)� l(l + 1)� 3

4

�

= �
1

2


j(j + 1)� l(l + 1)� 3

4

�

• The two possible values of  ms  ( ±1

2
 ) gives two 

possible values for  j  ( l +
1

2
  and  l �

1

2
 ) 

• ⇒  The energy level  E0  is split into a doublet 

�ESO =
⌦
H+

SO

↵
�
⌦
H�

SO

↵
= �

✓
l +

1

2

◆
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Energy levels in hydrogen and 
spectroscopy

Spectroscopic notation

• There is a convention for how to annote quantum 
numbers
⁃ l-quantum numbers are described by a letter
⁃ The s-quantum number does not need description
⁃ The j-quantum number is given by its numerical 

value

• The combination of n and l  (nl)  is referred to as an 
“orbital”

• For a many-electron atom, the “electron configuration” 
is the list of all orbitals  ( n1l1, n2l2, . . . )

• Coding for l :
l = 0 ! s

l = 1 ! p

l = 2 ! d

l = 3 ! f

l = 4 ! g

• For a multi-electron atom, total angular momenta have 
to be defined.
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• These are given quantum numbers with capital letters:
~L = ~l1 +~l2 + . . . quantum numbers L and ML

~S = ~s1 + ~s2 + . . . quantum numbers S and MS

~J = ~l1 + ~s1 +~l2 + ~s2 + . . . quantum numbers J and MJ

• Coding for L :
L = 0 ! S

L = 1 ! P

L = 2 ! D

L = 3 ! F

• Coding for S  (multiplicity) :
S = 0 ! (2S + 1) = 1 ! singlet

S = 1/2 ! (2S + 1) = 2 ! doublet

S = 1 ! (2S + 1) = 3 ! triplet

S = 3/2 ! (2S + 1) = 4 ! quartet

• J is given as its number
⁃ (for a multi-electron atom, the definition of  J  is 

ambiguous)

• The L and S together gives the “atomic term”
2S+1L

⁃ (examples :  3S , 2P , 4D , 1F )
⁃ (not always a good description)

• J is the fine structure level
2S+1LJ

⁃ (examples :  1S0  ,  
2P1/2   )
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Energy levels in hydrogen 

• Ground state 

⁃
n = 1 ) l = 0

s = 1/2 ) j = 1/2
) 1s 2S1/2 (1 level)

• Excites states

- n = 2 )
⇢

l = 0
l = 1

, s = 1/2

2s ) j = 1/2 ) 2s 2S1/2

2p )
⇢

j = 1/2 ) 2p 2P1/2

j = 3/2 ) 2p 2P3/2

9
=

; (3 levels)

- n = 3 )

8
<

:

l = 0
l = 1
l = 2

, s = 1/2

3s ) 3s 2S1/2
3p ) 3p 2P1/2 and 3p 2P3/2

3d ) 3d 2D3/2 and 3d 2D5/2

9
=

; (5 levels)
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Atoms with two electrons
The Schrödinger equation for a 3-body 

system

• The He-atom (or an ion with two electrons)
⁃ Two electrons + a nucleus with charge +Ze
⁃ ⇒  a 3-body problem

• Exact, analytic solutions are not possible

• We will need approximation methods
⁃ Perturbation theory

The Schrödinger equation

• In centre-of-mass coordinates:
✓
� ~2
2µ

r2
r1 �

~2
2µ

r2
r2 �

~2
M

rr1 ·rr2 �
Ze2

4⇡✏0 r1
� Ze2

4⇡✏0 r2
+

e2

4⇡✏0 r12

◆
 (~r1, ~r2)

= E (~r1, ~r2)

here:  r12 = |~r1 � ~r2|
Simplifications:  M = 1 ) µ = me

• We introduce Atomic units 
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Atomic units

• Atomic units  (a.u) are used to simplify calculations
⁃  Most constants disappear from Hamiltonians and 

the Schrödinger 

• Starting point :  the following natural constants are set 
to one:

e = me = ~ =
1

4⇡"0
= 1

• Be careful with quantitative calculations
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• The 2-electron system Hamiltonian in atomic units: 

✓
�
r2

r1

2
�

r2
r2

2
� Z

r1
� Z

r2
+

1

r12

◆
 (~r1, ~r2) = E (~r1, ~r2)

• Consequences of the term : /
1

r12
⁃  (~r1, ~r2)  cannot be factorised 
⁃ The exact solutions must be entangled states
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Symmetry

• With two electrons, symmetry becomes important
⁃  Spin will matter, due to symmetry

• Total wave function: product of spatial and spin parts

 (q1, q2) =  (~r1,~r2) �(~s1,~s2)

• The Hamiltonian does not depend on spin
⁃ the wave function can be factorised

The Pauli principle

• The total wave function for two identical fermions is  
antisymmetric with respect to exchange of the particles

• Two identical fermions cannot occupy the same 
quantum state simultaneously 

• For the product function  (q1, q2) , we have two 
options:
⁃  (~r1,~r2)  symmetric and  �(~s1,~s2)  anti-symmetric
⁃  (~r1,~r2)  anti-symmetric and  �(~s1,~s2)  symmetric

Exchange symmetry

• The exchange operator:  P12 

P12 (q1, q2) =  (q2, q1)
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• A permutation of spatial coordinates: 
⁃ if  P12 (q1, q2) = � (q1, q2) 
⁃ P 2

12 (q1, q2) = �2 (q1, q2) =  (q1, q2)
⁃ ) � = ±1
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Spin wave functions

• For each of the two spin functions, there are only two 
options
⁃  Spin-up or Spin-down

• We define kets in the two spin-spaces:8
>>><

>>>:

|+ i1 =

✓
1
0

◆

1

|�i1 =

✓
0
1

◆

1

8
>>><

>>>:

|+ i2 =

✓
1
0

◆

2

|�i2 =

✓
0
1

◆

2

• Compound spin function ;
⁃ four possibilities:

�1(~s1,~s2) : |+ i1 ⌦ |+ i2 = | + + i
�2(~s1,~s2) : |+ i1 ⌦ |�i2 = | + �i
�3(~s1,~s2) : |�i1 ⌦ |+ i2 = | � + i
�4(~s1,~s2) : |�i1 ⌦ |�i2 = | � �i

⁃ (assume that the spatial functions are different, so 
the Pauli principle does not forbid  �1  and  �4 )

• There are 2 problems with this basis:

• Problem 1 :
⁃ �1  and  �4  are exchange symmetric , BUT
⁃ �2  and  �3  are neither symmetric, nor anti-

symmetric 
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• We need a description for the “total spin”
⁃ In absence of spin-spin interaction:  

h
~S1 , ~S2

i
= 0

⁃ ⇒  Logical choice :  ~S ⌘ ~S1 + ~S2

⁃ )
⇢

Sz = S1z + S2z

S2 = S2
1 + S2

2 + 2 ~S1 · ~S2

⁃ ⇒  Quantum numbers S and MS

⁃ The action of  S2  and  Sz  on  �1 , �2 , �3 , �4  can 
be calculated (using the Pauli spin matrices)

• Problem 2 :

⁃ Sz | + + i = | + + i
S2 | + + i = 2 | + + i

⁃ Sz | + �i = 0
S2 | + �i = | + �i+ | � + i

⁃ Sz | � + i = 0
S2 | � + i = | + �i+ | � + i

⁃ Sz | � �i = �| � �i
S2 | � �i = 2 | � �i

⁃ �2  and  �3 are not eigenfunctions to S2

⁃ ⇒  To have a diagonal basis, where all basis 
functions are either symmetric or anti-symmetric 
at exchange, we need to replace �2  and  �3

• New functions:

⁃ | S i / | + �i+ | � + i
|A i / | + �i � | � + i



LectureNotesPhysiqueAtomique

8

• ⇒  A basis of four functions:  |SMS i

• 3 symmetric functions (a triplet) :

⁃
8
<

:

| 1, 1 i = | + + i
| 1, 0 i = | S i = 1p

2
(| + �i+ | � + i)

| 1,�1 i = | � �i

• 1 anti-symmetric function (a singlet) :

⁃ | 0, 0 i = |A i = 1p
2
(| + �i � | � + i)
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The ground state of He

Perturbation Theory

• Assume that the interaction term can be treated as a 
perturbation:

H = H0 +H 0

H0 = �
r2

r1

2
�

r2
r2

2
� Z

r1
� Z

r2

H 0 =
1

r12

• The zero-order solution can be factorized

H0  
(0)(~r1, ~r2) = E0 

(0)(~r1, ~r2)

 (0)(~r1, ~r2) =  
(0)
1 (~r1) 

(0)
2 (~r2)

E0 = E1 + E2

• The zero order ground state will be both electron is 
hydrogenic 1s-orbitals, with Z = 2

 (0) =  1s  1s = (R1sY00) (R1sY00) =  1s2

Identical electrons - the Pauli principle

• We have
⁃ n1 = n2 = 1 , l1 = l2 = 0 , ml1 = ml2 = 0

⁃ The compound spatial wave function HAS to be 
symmetric
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⁃ To avoid violation the Pauli principle, the two 
spins HAVE to be opposite

)  (0) =  1s2 �0,0

| (0) i = | 1s2 i ⌦ | 0, 0 i = | 1s2, 0 0 i

) 1s2 1S) 1s2 1S

The energy of the ground state

• We define this as the ionization energy E
ion

• The zero-order energy (without the perturbation) :

⁃ E0 = E1 + E2 = 2E1s(Z = 2) = 2
�
�Z2hcR1

�

⇡ 2 (�54.4 eV) ⇡ �109 eV

• The perturbation : 
�E = h 1s2 |H 0 | 1s2 i
H 0 = 1

r12

 1s2 =

⇣
Z

amu

⌘3/2
2e�⇢

�2 hq
1
4⇡

i2

) �E ⇡ 34 eV
) E(1s2) ⇡ �109 eV + 34 eV = �75 eV

• This means that 75 eV is the energy needed to remove 
BOTH electrons from the nucleus 
⁃ Suppose one electron has already been removed; 

how much energy is needed to remove the other 
one?

⁃ ⇒ the ionization energy of He+
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⁃ E
ion

(He+) = E
1s

(Z = 2) ⇡ �54.4 eV

• The ionization energy of He :
E

ion

(He) = E(1s2)� E
ion

(He+) ⇡ �21 eV

• Experimental value of the heliume ionization energy : 
-24.6 eV
⁃ The order of magnitude is right, but 
⁃ The energy contribution from the electron-

electron interaction is too great to be treated as a 
perturbation
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Excited states of He

⁃ One of the electrons is in the 1s-orbital
⁃ The other in an nl-orbital (n ≠ 1)

1snl

Exchange degeneracy

• We have two states with the same energy:
 1s(~r1) nl(~r2)

and 
 nl(~r1) 1s(~r2)

• This is the “exchange degeneracy”

Degenerate perturbation theory

• We must use superposition states

• (H0 +H 0)  = (E0 +�E) 
⁃ where:
⁃  = ↵ 1s(~r1) nl(~r2) + �  nl(~r1) 1s(~r2)

⁃ E0 = E1s + Enl

H 0  = �E  

H 0
✓

↵
�

◆
= �E

✓
↵
�

◆
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H 0 =

✓
J K
K J

◆

J =

Z
| 1s(~r1)|2

1

r12
| nl(~r2)|2 d~r1 d~r2

K =

Z
 ⇤
1s(~r1) 

⇤
nl(~r2)

1

r12
 1s(~r2) nl(~r1) d~r1 d~r2

• J : the “direct integral”
⁃ Coulomb interaction between the two charge 

clouds
⁃ Increases energy

• K : the “exchange integral”
⁃ a quantum interference effect

�E = J ±K

E±
1snl = E0

1snl + J ±K

• The wave functions are symmetric or anti-symmetric :
(

 (0)
+ (~r1,~r2) ⌘ 1p

2
[ 1s(~r1) nl(~r2) +  nl(~r1) 1s(~r2)]

 (0)
� (~r1,~r2) ⌘ 1p

2
[ 1s(~r1) nl(~r2)�  nl(~r1) 1s(~r2)]

⁃ entangled states
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Transitions in He

• Selection rule for the total spin : 
�S = 0

• A two-electron atom will only have singlets ( S = 0 ) 
and triplets ( S = 1 )

• There will never be transitions between a singlet and 
triplet

• He gives an appearance of having two separate spectra
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Towards bigger atoms
The central field approximation (CFA)

• To start with, we still ignore the spin-orbit interaction

• The Schrödinger equation for the spatial part  :2

4
NX

1=1

✓
�1

2
r2

i �
Z

ri

◆
+

NX

j>i

1

rij

3

5 (~r1,~r2, . . . ,~rN ) = E  (~r1,~r2, . . . ,~rN )

⁃ 3N-dimensional differential equation
⁃ Not separable
⁃ The 1/rij -term is too large for a very accurate 

perturbation treatment

Effective potential

• A large part of the  1/rij -term will be radial

• On an individual valence electron, the other electrons 
will act like an almost spherical screening of the nuclear 
charge

• The effective radial part of the total potential, felt by 
one electron:

VCF(r) = �Z

r
+ S(r)

⁃ with  S (r)  being the screening potential from the 
(N-1) other electrons
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• The term S (r) will include all the radial part of  
NX

j>i

1

rij

• The angular part of the mutual interaction term, we 
will treat as a perturbation

Form of VCF

• Asymptotically, when  ri ! 1 :
) rij ⇡ ri

VCF(r) ⇡ �Z

ri
+

N�1X

j=1

1

ri
= �Z �N + 1

ri

⁃ for a neutral atom, Z = N :

VCF(r) ⇡ � 1

ri

• Asymptotically, when  ri ! 0 :
) rij ⇡ rj

VCF(r) ⇡ �Z

ri
+

*
N�1X

j=1

1

rj

+
⇡ �Z

ri

• In between the limits, an electron will feel an effective 
Z, between 1 and Z 

VCF(r) = �Ze↵(r)

ri
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• Usually, we can only guess VCF , or calculate it 
numerically  

• Nevertheless, even without knowing the exact form of 
VCF and ψ0 , we can understand a lot of atomic 
structure
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Perturbative treatment

• We now treat the reminder of the total Hamiltonian, 

the angular part of 
NX

j>i

1

rij
, as a perturbation; Hres

H = HCF +Hres

H =
NX

i=1

✓
�1

2
r2

ri

◆
+

NX

i=1

✓
�Z

ri

◆
+

NX

j>i

1

rij

V (all)
CF (r) =

NX

i=1

✓
�Z

r

◆
+

NX

i=1

S(r)

HCF =
NX

i=1

✓
�1

2
r2

ri

◆
+ V

(all)
CF (ri) =

NX

i=1

Hi

Hres = H �HCF

=
NX

i=1

✓
�1

2
r2

ri

◆
+

NX

i=1

✓
�Z

ri

◆
+

NX

j>i

1

rij
�

NX

i=1

✓
�1

2
r2

ri

◆
� V

(all)
CF (ri)

=
NX

i=1

✓
�Z

ri

◆
+

NX

j>i

1

rij
�

NX

i=1

✓
�Z

ri

◆
�

NX

i=1

S(ri)

=
NX

j>i

1

rij
�

NX

i=1

S(ri)
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zero-order wave functions, ψCF

• Schrödinger equation:

HCF  CF =
NX

i=1


�1

2
r2

ri + VCF(ri)

�
 CF = ECF  CF

• This is a separable equation : 
 CF = u1(~r1)u2(~r2) . . . uN (~rN )

• This is N separate equations, of the type :
�1

2
r2

r + VCF(r)

�
unlml(~r) = Enl unlml(~r)

⁃ where
unlml(~r) = Rnl(r)Ylml(✓,')

• The solutions will be similar to the hydrogenic ones
n = 1, 2, 3, . . .

l = 0, 1, . . . , n� 1

m = �l,�l + 1, . . . , l

• The total (zero-order) energy :

ECF =
NX

i=1

Enili



LNPhysiqueAtomique2016

6

Electron configurations, Orbitals

• The individual one-electron wav functions will be a bit 
different from hydrogenic ones

• But the potential is central, and the will be close to the 
hydrogenic
⁃ Logical to use the hydrogenic notation

• Possible solutions :
u1s, u2s, u2p, u3s, u3p, . . .

• We say the electrons “occupy the orbitals” :
1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, . . .

The Pauli principle

• Two electrons may not be in the same state:
• the set of quantum numbers, ( n , l , ml , ms ) has to be 

unique for every electron  

• For one combination of ( n , l , ml ) , there may be two 
electrons ( ms=+½  ,  ms=-½  ) 

• For one particular orbit ( n , l ), there may be         
2 ( 2l + 1 ) electrons
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   l = 0   ;   “s-orbital”   ;   2 electrons
   l = 1   ;   “p-orbital”   ;   6 electrons
   l = 2   ;   “d-orbital”   ;   10 electrons
   l = 3   ;   “f-orbital”   ;   14 electrons

……

• For the ground sate, the electrons will gradually fill up 
the lowest energy orbitals

• Energy order (with lowest first) :

1s
2s
2p
3s
3p
4s
3d
4p
5s
4d
5p
6s
4f
5d
6p
7s
5f
6d
7p
8s
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The periodic system

• We gradually “build up” the atom
⁃ “the aufbau-principle”
⁃ (“règle de Klechkowski”)

• Electronic configuration of the ground states of the 
atoms:

1 H : 1s
2 He : 1s2 (full)
3 Li : 1s2 2s
4 Be : 1s2 2s2 (full)
5 B : 1s2 2s2 2p
6 C : 1s2 2s2 2p2

7 N : 1s2 2s2 2p3

8 O : 1s2 2s2 2p4

9 F : 1s2 2s2 2p5

10 Ne : 1s2 2s2 2p6 (full)
11 Na : 1s2 2s2 2p6 3s = [Ne] 3s

…………



LNPhysiqueAtomique2016

9

89-103  

actinides 

1  
H 

hydrogen 
1s

3  
Li 

lithium 
2s

2  
He 

helium 
1s2

4  
Be 

beryllium 
2s2

5  
B 

boron 
2p

6  
C 

carbon 
2p2

7  
N 

nitrogen 
2p3

8  
O 

oxygen 
2p4

9  
F 

fluorine 
2p5

10  
Ne 

neon 
2p6

11  
Na 

sodium 
3s

12  
Mg 

magnesium 
3s2

13  
Al 

aluminium 
3p

14  
Si 

silicon 
3p2

15  
P 

phosphorus 
3p3

16  
S 

sulphur 
3p4

17  
Cl 

chlorine 
3p5

18  
Ar 

argon 
3p6

19  
K 

potassium 
4s

20  
Ca 

calcium 
4s2

21  
Sc 

scandium 
3d 4s2

22  
Ti 

titanium 
3d2 4s2

23  
V 

vanadium 
3d3 4s2

24  
Cr 

chromium 
3d5 4s

25  
Mn 

manganese 
3d5 4s2

26  
Fe 
iron 

3d6 4s2

27  
Co 

cobalt 
3d7 4s2

28  
Ni 

nickel 
3d8 4s2

29  
Cu 

copper 
3d10 4s

30  
Zn 
zinc 

3d10 4s2

31  
Ga 

gallium 
4p

32  
Ge 

germanium 
4p2

33  
As 

arsenic 
4p3

34  
Se 

selenium 
4p4

35  
Br 

bromine 
4p5

36  
Kr 

krypton 
4p6

37  
Rb 

rubidium 
5s

38  
Sr 

strontium 
5s2

39  
Y 

yttrium 
4d 5s2

40  
Zr 

zirconium 
4d2 5s2

41  
Nb 

niobium 
4d4 5s

42  
Mo 

molybdenum 
4d5 5s

43  
Tc 

technetium 
4d5 5s2

44  
Ru 

ruthenium 
4d7 5s1

45  
Rh 

rhodium 
4d8 5s

46  
Pd 

palladium 
4d10

47  
Ag 

silver 
4d10 5s

48  
Cd 

cadmium 
4d10 5s2

49  
In 

indium 
5p

50  
Sn 
tin 

5p2

51  
Sb 

antimony 
5p3

52  
Te 

tellurium 
5p4

53  
I 

iodine 
5p5

54  
Xe 

xenon 
5p6

55  
Cs 

cesium 
6s

56  
Ba 

barium 
6s2

57-71  

lanthanides 

72  
Hf 

hafnium 
5d2 6s2

73  
Ta 

tantalum 
5d3 6s2

74  
W 

tungsten 
5d4 6s2

75  
Re 

rhenium 
5d5 6s2

76  
Os 

osmium 
5d6 6s2

77  
Ir 

iridium 
5d7 6s2

78  
Pt 

platinum 
5d9 6s

79  
Au 
gold 

5d10 6s

80  
Hg 

mercury 
5d10 6s2

57  
La 

lanthanum 
5d 6s2

58  
Ce 

cerium 
4f 5d 6s2

59  
Pr 

praseodymium 
4f3 6s2

60  
Nd 

neodymium 
4f4 6s2

61  
Pm 

promethium 
4f5 6s2

62  
Sm 

samarium 
4f6 6s2

63  
Eu 

europium 
4f7 6s2

64  
Gd 

gadolinium 
4f7 5d 6s2

65  
Tb 

terbium 
4f9 6s2

66  
Dy 

dysprosium 
4f10 6s2

67  
Ho 

holmium 
4f11 6s2

68  
Er 

erbium 
4f12 6s2

69  
Tm 

thulium 
4f13 6s2

70  
Yb 

ytterbium 
4f14 6s2

71  
Lu 

lutetium 
4f14 5d 6s2

81  
Tl 

thallium 
6p

82  
Pb 
lead 

6p2

83  
Bi 

bismuth 
6p3

84  
Po 

polonium 
6p4

85  
At 

astatine 
6p5

86  
Rn 

radon 
6p6

87  
Fr 

francium 
7s

88  
Ra 

radium 
7s2

89  
Ac 

actinium 
6d 7s2

90  
Th 

thorium 
6d2 7s2

91  
Pa 

protactinium 
5f2 6d 7s2

92  
U 

uranium 
5f3 6d 7s2

93  
Np 

neptunium 
5f4 6d 7s2

94  
Pu 

plutonium 
5f6 7s2

95  
Am 

americium 
5f7 7s2

96  
Cm 

curium 
5f7 6d 7s2

97  
Bk 

berkelium 
5f9 7s2

98  
Cf 

californium 
5f10 7s2

99  
Es 

einsteinium 
5f11 7s2

100  
Fm 

fermium 
5f12 7s2

101  
Md 

mendelevium 
5f13 7s2

102  
No 

nobelium 
5f14 7s2

103  
Lr 

lawrencium 
5f14 7s2 7p

104  
Rf 

rutherfordium 
6d2 7s2

105  
Db 

dubnium 
6d3 7s2

106  
Sg 

seaborgium 
6d4 7s2

107  
Bh 

bohrium 
6d5 7s2

108  
Hs 

hassium 
6d6 7s2

109  
Mt 

meitnerium 
6d7 7s2

110  
Ds 

darmstadtium 
6d8 7s2

111  
Rg 

roentgenium 
6d9 7s2

112  
Cn 

copernicium 
6d10 7s2

113  
Uut 

ununtrium 
7p

114  
Fl 

flerovium 
7p2

115  
Uup 

ununpentium 
7p3

116  
Lv 

livermorium 
7p4

117  
Uus 

ununseptium 
7p5

118  
Uuo 

ununoctium 
7p6
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• Chemical properties are given by the number of 
valence electrons (outermost orbital)
⁃ alkalis
⁃ alkaline earths
⁃ ……
⁃ metals
⁃ ……
⁃ halogens
⁃ rare gases

• Optical properties are also given by the valence 
electrons

• Inner orbital are typically only accessible with x-rays
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LS-coupling and jj-coupling
Spin-orbit interaction in multi-electron 

atoms

• We now have two effects to consider:

• 1: Interaction between ~s  and ~l  for every electron
⁃ ~j = ~l + ~s

• 2: Angular part of the electrostatic interaction between 
the electrons

⁃
(

~l1 +~l2 +~l3 + · · · = ~L
~s1 + ~s2 + ~s3 + · · · = ~S

• Both these effects have to be included in a total 
Hamiltonian

H = HCF +Hres +HSO

The parts of the Hamiltonian

• The central field Hamiltonian

HCF =
NX

i=1

Hi =
NX

i=1


�1

2
r2

ri + VCF(ri)

�
=

NX

i=1


�1

2
r2

ri �
Z

ri
+ S(ri)

�

⁃ kinetic energy of all electrons
⁃ Coulomb attraction to the nucleus for all electrons 
⁃ the central (radial) part of the Coulomb repulsion 

between all electrons
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• The residual Coulomb Hamiltonian

Hres =
NX

j>i

1

rij
�

NX

i=1

S(ri)

⁃ The angular (residual) part of the Coulomb 
interaction between electrons

⁃ coupling of the angular momenta of the individual 
electrons

• The spin-orbit Hamiltonian

HSO =
NX

i=1

⇠(ri)~li · ~si

⁃ the sum of all spin-orbit interactions

Filled shells

• For a filled orbital :
⁃ half of the electrons spin-up, the other half spin-

down
⁃ ⇒ contribution to S from filled shells : zero
⁃ all electrons with +ml  are balanced by �ml

⁃ ⇒ contribution to L from filled shells : zero

• For the sum in HSO , we only need to include the 
electrons outside the last closed orbital
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Total angular momentum

• The interactions between electrons (angular Coulomb + 
spin-orbit) will couple all electronic angular momenta 
together

• The only thing that will stay constant is the sum of all 
of them

~J = ~L+ ~S
⁃ where (

~L =
P

i
~li

~S =
P

i ~si

• A crucial point will be in which order all these 
momenta should be added

• That depends on in which order the perturbations are 
added
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Ordering of the Hamiltonians 

• We cannot solve the entire Hamiltonian analytically
⁃ perturbation theory is necessary
⁃ but, in which order should we take the 

Hamiltonians? 

• Always true:
HCF � Hres and HCF � HSO

• But then, there are two possibilities: 
⁃ Hres > HSO

⁃ HSO > Hres

Hres > HSO___________

• In this case, the interaction between the electrons is 
stronger than the spin-orbit interaction in each of them

⁃ example with a 2-electron atom:

             and             
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⁃ Then,  L  and  S  couple to a total  J

• This situation is called “LS-coupling”

• This approximation is valid for most atoms
⁃ in particular for light atoms
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HSO > Hres___________

• In this case, the individual coupling between the 
electrons, via the spin-orbit interaction, is stronger than 
the electrostatic interaction between  them

⁃ example with a 2-electron atom:

             and             

⁃ Then,  j1  and  j2  couple to a total  J
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• This situation is called “jj-coupling”

• This approximation has importance for heavy atoms
⁃ pure jj-coupling is rare

• There are often intermediate cases between LS and jj
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LS-coupling 

H = H1 +HSO

where
H1 = HCF +Hres

• Begin with : 
⁃ HCF  CF = ECF  CF

⁃ ) | CF i = |n1l1, n2l2, . . . , nN lN i
⁃ this gives the electronic configuration 

• Then, calculate the fist perturbation :
⁃ h CF |Hres |  CF i
⁃ (for the moment, we wait with the spin-orbit 

Hamiltonian)
⁃ [Hres , L ] = [Hres , S ] = 0

⁃ ⇒  this atomic term can carachterised by the 
quantum numbers  L  and  S

⁃ 2S+1L
⁃ Eigenvector :  | CF i = | � LSML MS i
⁃ (γ : the electronic configuration)
⁃ Degenerescence in ML and MS
⁃ ) (2L+ 1)(2S + 1)  degenerate states 

How to find L and S 

• Take into account : 
⁃ Rules for addition of angular momenta 
⁃ The Pauli principle
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• For a filled shell :
⁃ MS =

X

i

msi  and  ML =
X

i

mli

⁃ ) L = S = 0
⁃ no contribution from the inner shells to the global  

L  and  S
⁃ It is enough to consider the valence electrons 

Electrons in different orbitals (non-equivalent)

• The Pauli principle is already taken into account

• As an example, take a 2-electron atom :
⁃  nl1 , n0l2 (n 6= n0)

⁃
⇢

L = |l1 � l2|, |l1 � l2|+ 1, . . . , l1 + l2
S = |s1 � s2|, |s1 � s2|+ 1, . . . , s1 + s2

⁃ (s1 = s2 =

1

2

) ) S = 0 or S = 1 
⁃ (singlets and triplets)

• example 1 :
⁃ l1 = l2 = 1 ) configuration : np, n0

p

⁃ L = 0 or L = 1 or L = 2

⁃ ⇒  possible terms are : 
⁃ 1S , 1P , 1D , 3S , 3P , 3D
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• example 2 :
⁃ l1 = 1, l2 = 2 ) configuration : np, n0

d

⁃ L = 1 or L = 2 or L = 3

⁃ ⇒  possible terms are : 
⁃ 1P , 1D , 1F , 3P , 3D , 3F

• More than 2 electrons
⁃ a bit more complicated

Electrons in the same orbital (equivalent electrons)

• This will normally be the case for ground state 
configurations

• More complicated, due to the Pauli principle

• Many states become forbidden
⁃ we will not cover this in detail

• Example 1 : 
⁃ n1 = n2 , l1 = l2 = 1 ) configuration : np2

⁃ (the case for, for example : C, Si, Ge ….. )
⁃ ⇒  possible terms :  1S , 1D , 3P
⁃ ( other terms possible for npnp’ are forbidden due 

to the Pauli principle)

• Example 2 : 
⁃ n1 = n2 = n3 , l1 = l2 = l3 = 1

) configuration : np3

⁃ (the case for, for example : N, P, As ….. )
⁃ ⇒  possible terms :  2P , 2D , 4S
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More complicated cases

• More than two electrons

• Some equivalent and some non-equivalent electrons 

• Configuration mixing ……….
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Fine structure in LS-coupling 

• Now, we add the spin-orbit term of the Hamiltonian : 
⁃ H = H1 +HSO

• The atomic terms have been found :
⁃ 2S+1L , corresponding to the ket :
⁃ | � LSML MS i

• We now have to find the corrections given by:
⁃ h � LSML MS | HSO | � LSML MS i

• Problem :
⁃ HSO  is not diagonal in this representation
⁃ (  [HSO , Lz] 6= 0 and [HSO , Sz] 6= 0  )

Change of basis 

• We have to change to the diagonal basis : 
⁃ | � LS J MJ i 
⁃ (diagonalisation of  HSO )

|LS J MJ i =
X

ML,MS

C(LSJMJ ;MLMS) | � LSML MS i

• The coefficients  C(LSJMJ ;MLMS)  are the 
“Clebsch-Gordan coefficients”
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Finding the find-structure levels

• ~J = ~L+ ~S
• addition of angular momenta⇢

J = |L� S|, |L� S|+ 1, . . . , L+ S
MJ = �J,J +1, . . . , J

• For every atomic term, there are  (2S + 1)  fine-
structure levels
⁃ ( or (2L+ 1)  if  L < S  )

• example 1 :
⁃ configuration : npnp’

3D ) J = 3, 2, 1 ) 3D1,3 D2,3 D3
1D ) J = 2 ) 1D2
3P ) J = 2, 1, 0 ) 3P0,3 P1,3 P2
1P ) J = 1 ) 1P1
3S ) J = 1 ) 3S1
1S ) J = 0 ) 1S0
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• example 2 :
⁃ configuration : np2

⁃ 1D2 , 3P2 , 3P1 , 3P0 , 1S0
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Spin-orbit energies

• The energy corrections due to the spin-orbit 
interaction, the fine-structure splitting, can be found 
via the Hamiltonian

HSO = �LS
~L · ~S

⁃ here, �LS is a constant typical for the term | � LS i

ESO = h � LS J MJ | HSO | � LS J MJ i
= �LS hLS J MJ | ~L · ~S |LS J MJ i
= �LS

2 hLS J MJ | J2 � L2 � S2 |LS J MJ i
= �LS

2 [J(J + 1)� L(L+ 1)� S(S + 1)]

• Separation between two fine-structure levels

E(J) � E(J � 1) =
= �LS

2 {[J(J + 1)� L(L+ 1)� S(S + 1)]
� [(J � 1)J � L(L+ 1)� S(S + 1)]}
= �LS

2

⇥
J2 + J � J2 + J

⇤

= �LS

2 J

• “Landé’s interval rule”
⁃ This rule cam be used as a test of how well system 

can be described by LS-coupling
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jj-coupling 

• This applies when  HSO > Hres

⁃ The Hamiltonians have to be applied in a different 
order 

H = H2 +Hres

where
H2 = HCF +HSO

• Remember that : 
⁃ HSO / Z4

⁃ Hres / Z

⁃ ⇒  jj-coupling will be relevant for heavy atoms

H2 =
NX

i=1

✓
�1

2
r2

ri �
Z

ri
+ S(ri)

◆
+

NX

i=1

⇠(ri) ~L · ~S

• In this case, we have to begin with the SO-coupling for 
the individual electrons :
⁃ we form :
⁃ ~j1 = ~l1 + ~s1 , ~j2 = ~l2 + ~s2 . . . , ~jN = ~lN + ~sN

• The jj-coupling terms, we write as a parentheses with 
all the j-values  

• As an example, take a 2-electron atom :
⁃ l1 = 0, l2 = 1 ) configuration : ns, n0

p

⁃
⇢

l1 = 0
l2 = 1

and

⇢
s1 = 1/2
s2 = 1/2
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⁃ ( ji = |li � si|, |li � si|� 1, . . . , li + si )

⁃ ) j1 = 1/2 and j2 = 3/2 , 1/2
⁃ ⇒ Two possibilities : 

⁃
✓

1

2
,
1

2

◆
and

✓
1

2
,
3

2

◆

Fine-structure in jj-coupling

• When the terms are determined,  Hres  is added as a 
perturbation
⁃ this leads to fine-structure levels, classified by J

• J = |j1 � j2|, |j1 � j2|� 1, . . . , j1 + j2

✓
1

2
,
1

2

◆
) J = 1, 0 )

( �
1
2 ,

1
2

�
0�

1
2 ,

1
2

�
1

✓
1

2
,
3

2

◆
) J = 2, 1 )

( �
1
2 ,

3
2

�
1�

1
2 ,

3
2

�
2
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Comparison between coupling schemes

• For light atoms, LS-coupling dominates, since the SO-
term is small

• For heavy atoms, the situation is often intermediate 
between LS and jj
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• As example, take the isoelectronic sequence of  np2 
atoms
⁃ C , Si , Ge , Sn , Pb
⁃ Look at the splittings in the first excites states  

( 1P and  3P )
⁃ C  has almost pure LS-coupling
⁃ Pb is well described by jj-coupling
⁃ The others are intermediate
⁃ This can be seen by studying spectra

• In the case of C, the Landé rule holds 
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Nuclear effects
• The structure and characteristics of the nucleus has an 

effect on atomic structure 

⁃ The finite mass  –  Isotope shift
⁃ The nuclear spin  –  Hyperfine structure
⁃ The finite volume and non-spherical shape  –  

Higher order hyperfine structure 

Isotope shift

• So far, we have assumed a nucleus with infinite mass

• With the finite mass taken into account, the solutions to 
the Schrödinger equation will be slightly different
⁃ The Rydberg constant will be different thanR1

• For an atom with different isotopes (different nuclear 
masses), the energy levels will be slightly different 
⁃ “Isotope shift”
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Example : hydrogen and deuterium

• hydrogen :  1H
⁃ nucleus : 1 proton

⁃ ratio :  
MT

Mnuc
=

Mnuc +Me

Mnuc
⇡ 1837

1836
⇡ 1.000545 

• deuterium :  2H  or  2D
⁃ nucleus : 1 proton + 1 neutron

⁃ ratio :  MT

Mnuc
=

Mnuc +Me

Mnuc
⇡ 3671

3670
⇡ 1.000272

• The spectra of  1H  and  2D  differ by
⁃ a factor  1.000545 / 1.000272 ≈ 1.00027
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Hyperfine structure 

• Nuclear magnetic moment : 
⁃ the nucleus is charged
⁃ many nuclei (not all) have spin
⁃ ⇒  magnetic moment

• Interaction between the nuclear magnetic moment and 
the total electronic angular momentum J
⁃ “hyperfine structure” (hfs)
⁃ (more precisely, first-order hfs, or magnetic dipole 

hfs )

Nuclear spin 

⁃ electron : spin  ½ ħ  ,  charge  -e  
⁃ proton : spin  ½ ħ  ,  charge  +e 
⁃ neutron : spin  ½ ħ  ,  charge  0

• A nucleus is composed of protons and neutrons

• The nuclear spin, ~I , depends on the composition

• The nuclear spin is typically looked up in a table, or in 
a chart of nuclides
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Magnetic moment of the nucleus

~µI = gI µN
~I

• Much smaller than the electron magnetic moment
⁃ µN  : the nuclear magneton

⁃ µN = µB
me

mp
= µB

1

1836

⁃ ( µB = 9.2740154⇥ 10�24 JT�1  : the Bohr 
magneton)

⁃ gI  : the nuclear gyromagnetic ratio
⁃ (different for different nuclei)

Interaction between  ~I  and  ~J

• The total electronic angular momentum  ~J  will cause 
an effective magnetic field at the position of the nucleus

~Be / ~J

• The magnetic moment of the nucleus will interact with 
this :
⁃ Hhfs = �~µI · ~Be = Ahfs

~I · ~J
⁃ the hyperfine structure Hamiltonian 

• Ahfs  is a factor that depends on the nuclear and 
electronic charge distributions 
⁃ typially,  Ahfs  has to be determined experimentally 

• Coupling between  ~I   and  ~J
⁃ the sum is constant
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• New quantum number for the total angular 
momentum, including the nucleus :
⁃ F  et  MF

⁃
⇢

F = |I � J |, |I � J |� 1, . . . , I + J
MF = �F,�F + 1, . . . , F

• The good representation will be : 
⁃ | IJFMF i

⁃
⇢

F 2 | IJFMF i = F (F + 1) | IJFMF i
FZ | IJFMF i = MF | IJFMF i

Perturbation theory

• Hhfs  has smaller energy than  Hres  and  HSO 
⁃ ⇒  it can be treated as a perturbation after the 

other Hamiltonians

Ehfs = Ahfs

D
~I · ~J

E
=

Ahfs

2
[F (F + 1)� I(I + 1)� J(J + 1)]
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Example ; hydrogen 

• Ground state of hydrogen : 
⁃ 1s 2S1/2

⁃ I =
1

2

• ) F = 0 or F = 1

Ehfs =
Ahfs

2
[F (F + 1)� I(I + 1)� J(J + 1)]

)
(

E(F = 0) = Ahfs
4

E(F = 0) = � 3Ahfs
4

• For H :  Ahfs(H , 1s 2S1/2) ⇡ h⇥ 1.42 GHz

⁃ this can be measured very accurately :
⁃ �E = Ahfs = h⇥ 1 420 405 751.766 7 Hz

• Very important for radio astronomy 
⁃ the “21 cm line”

• Applications in atomic clocks
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Interactions/Spectroscopy II

Selection rules in LS-coupling

• For electric dipole transitions, the conditions for 
allowed transitions are :

• The parity of the two involved states MUST be 
different

One-electron transitions (change in configuration)

• �l = ±1

• �ml = 0 , ±1
⁃ depending on polarisation 

Additional rules for multi-electron atoms

• �J = 0 , ±1
⁃ J = 0 $ J 0 = 0   forbidden

• �MJ = 0 , ±1
⁃ depending on polarisation
⁃ MJ = 0 $ M 0

J = 0   forbidden if   J = J 0 
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Additional rules for LS-coupling

• �S = 0

• �L = 0 , ±1

Additional rules for hyperfine strufture

• �F = 0 , ±1
⁃ F = 0 $ F 0 = 0   forbidden

• �MF = 0 , ±1
⁃ depending on polarisation
⁃ MF = 0 $ M 0

F = 0   forbidden if   F = F 0
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Analysis of spectra : example 

• Knowledge of the elections rules is dispensable for 
analysis of spectra

• As en example, take a part of a cadmium spectrum

• Compare to a table of energy levels 
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• The ground state is almost 3.7 eV lower than all excited 
states
⁃ 3.7 eV correspond to about 229 nm
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• By applying the selection rules, we can identify the 
spectral lines

• For example, we can control the Landé rule by 
comparing lines
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x-rays 

Inner shell excitations

• Optical spectra (visible light)
⁃ excitations of valence electrons

• x-ray spectra
⁃ ionization of core electrons

• Suppose that an 1s-electron is ionized, for example via 
a collision with an energetic electron
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• The valence in the inner shell will be filled by another 
electron

• This will result in emission of high energy radiation

• By convention, x-ray emission lines are labeled with 
chemical notation “for shells”

• The energy of an x-ray emission line is given by the 
difference in binding energies for the two involved 
electron shells
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• These can be found via experimentally measured values 
(tables)

• Approximation  (in atomic units) : 

En ⇡ 1

2

(Z � �n)2

n2

⁃ Z : nuclear charge (atomic number)
⁃ n : principal quantum number 
⁃ �n : screening term (depends on Z)

• Empiric values 
⁃ �1 ⇡ 1 , �2 ⇡ 7.4

⁃ ⇒  results within 10% - 20% of experimental 
values

Example ; Fe 

• Z = 26 

⁃ E1s =
1

2

(26� 1)2

12
= 312 a.u. = 8.5 keV

⁃ E2s,2p =
1

2

(26� 7.4)2

22
= 43 a.u. = 1.2 keV

• ) EK↵ ⇡ (8.5� 1.2) keV = 7.3 keV

⁃ experimental value : 6.4 eV

• ) �K↵ ⇡ 170 pm

⁃ experimental value : 1.94 Å
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Generation of x-rays
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Atomic spectroscopy 

• Study of the distribution of energies (or frequencies, or 
wavelengths)
⁃ ⇒   information about the energetic structure of 

the atom

• Many types of spectroscopy. One classification is
⁃ Emission spectroscopy
⁃ Absorption spectroscopy

Emission spectroscopy

• Typical experimental setup
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• The result reveals atomic structure : 

Absorption spectroscopy

• Typical experimental setup
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• The result reveals atomic structure :
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Laser spectroscopy , selective excitation

• Laser as a light source
⁃ quasi-monochriomatic
⁃ potentially tunable

• One single, selectable, level can be excited



LNPhysiqueAtomique2016

14

Spectral broadening 

• A spectral line is never infinitely narrow

• Many different broadening mechanisms 
⁃ different spectral widths
⁃ different spectral shapes

• Homogeneous broadening mechanisms
⁃ the broadening is present for every individual 

atom
⁃ examples : natural broadening, collisional 

broadening , saturation broadening 

• Inhomogeneous broadening mechanisms
⁃ the resonance frequency is different for different 

atoms
⁃ example : Doppler broadening

Natural linewidth 

• All excited states have a finite decay time (lifetime)
⁃ ⇒   spectral broadening

• Can be explained in two different ways
⁃ with the same result



LNPhysiqueAtomique2016

15

• The uncertainty principle
⁃ limited lifetime of the excited state :  �t < 1
⁃ ) �E > 0

⁃
✓
�E�t � ~

2

◆

• Fourier transform
⁃ an oscillation that is not on for an infinite time 

must have a spectrum of frequencies with  �! > 0

• Spectral profile 

g(!) =
1

⇡

�/2

(! � !0)2 + �/2

⁃ γ  is the spectral width

⁃ � =
1

⌧
• τ  : the lifetime of the excited state

• Lorentzian profile
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Doppler broadening

• Consider a moving atom, emitting or absorbing
⁃ emitted/absorbed radiation :  !0 = !0 + ~k · ~v

• Consider a gas of temperature  T
⁃ ⇒  Maxwell-Boltzmann distribution of velocities

⁃ ni(vz) dvz =
Ni

vp
p
⇡
e
�
⇣

vz
vp

⌘2

dvz

⁃ vp =

r
2kBT

m
  : “most probable velocity”

⁃ Ni  : number off particles in state i

• This leads to a distribution of emitted frequencies 

⁃ I(!) = I0 exp

"
�
✓
! � !0

!0

c

vp

◆2
#

• Gaussian profile 


