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	 	 Hylleraas	wavefunction	for	He		
	
The	reason	why	the	Hartree	method	cannot	reproduce	the	exact	solution	is	due	to	
the	inability	of	the	Hartree	wave-function	to	account	for	electron	correlation.	We	
know	that	the	two	electrons	in	He	repel	one	another	and	absent	any	other	factor	
they	would	stay	as	far	apart	as	possible	so	that	the	probability	of	finding	them	close	
to	one	another	would	be	small.	Given	the	wave-function	ψ the	probability	of	finding	
electron	1	at	the	terminus	of	   

!
r1 	and	in	the	volume	element	  dV1while	electron	2	is	at	

   
!
r2 in	the	volume	element	  dV2 is	   ψ

2(
!
r1,
!
r2 )dV1dV2which	for	the	Hartree	function	is	

   ϕ
2(
!
r1)ϕ 2(

!
r2 )dV1dV2 and	the	probability	is	uncorrelated	in	that	the	location	of	electron	

1	is	independent	of	the	location	of	electron	2.	Another	way	of	looking	at	this	is	to	
realize	that	the	wave-function	for	the	ground	(spherically	symmetric)	state	is	a	
function	of	three	variables:  r1 & r2 the	distances	of	the	two	electrons	from	the	nucleus	
and	  r12 the	distance	between	the	electrons	and	the	Hartree	or	orbital	model	doesn’t	
include	  r12 in	the	trial	function.	A	simple	trial	function	that	does	include	  r12 	is	

  ϕ(r1)ϕ(r2 ) f (r12 ) and	if	we	expand	  f (r12 ) around	  r12 = 0 ,	the	region	of	interest,	our	
trial	function	becomes   ϕ(r1)ϕ(r2 ) f (r12 ) =ϕ(r1)ϕ(r2 )( f (0)+ f (1) (0)r12 + f (2) (0)r12

2 / 2+!) 	
and	if	we	factor	out	  f (0) 	we	have	an	un-normalized	trial	function	

   ϕ(r1)ϕ(r2 )(1+ br12 + cr12
2 +!)where	   b,c,!are	variational	parameters.	The	first	to	

propose	a	trial	function	of	this	form	was	Hylleraas	and	using	the	function		
	

	   ψ = e−αr1e−αr2 (1+ br12 ) = e−α (r1+r2)(1+ br12 ) 	
	
	he	determined	the	optimum	values	  α = 1.849 & b = 0.364 resulting	in	an	energy	-
2.8913	au	that	is	greater	than	the	exact	energy	-2.90372	by	0.42%,	a	significant	
improvement	over	the	simple	product	result.	Since	this	calculation	is	somewhat	
tedious	we	reserve	the	details	to	the	appendix	.	Hylleraas	explored	several	trial	
functions	containing	what	are	called	the	Hylleraas	coordinates	
	

  s = r1 + r2 ,t = r2 − r1 & u = r12 and	laid	the	groundwork	for	subsequent	calculations	
using	trial	functions	of	the	form	

 
ψ = e−αs cijks

i

ijk
∑ t juk 	

Pekeris	(vide	supra)	used	this	functional	form	with	1078	terms	and	found	
  E = −2.903724375and	after	correcting	for	the	size	of	the	nucleus	and	relativistic	
effects	predicts	the	ionization	energy	198,310.69	cm-1	compared	to	the	
experimental	energy	198,310.82	cm-1.		While	trial	functions	involving	  r12 can	give	
excellent	results	they	are	not	easily	interpreted	whereas	a	function	consisting	of	
optimized	orbitals	gives	a	reasonable	energy	and	is	more	in	keeping	with	qualitative	
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chemical	ideas.	Also	wavefunctions	consisting	of	orbital	products	are	almost	always	
the	starting	point	for	more	accurate	calculations.		
	
	

Appendix	.	He	like	atoms	and	a	Hylleraas	wavefunction.	
	
Preliminaries	
	
Our	goal	is	to	use	the	variation	principle	to	calculate	the	energy	of	a	two-electron	
atom	in	an	S	state	using	the	simplest	Hylleraas	wavefuntion	
	

  ψ = e−α (r1+r2 )(1+ br12 ) 	
	
where	  α & b are	variational	parameters	and	  r12 is	the	separation	between	electrons.	
The	energy	is	given	by		
	

  
E =

ψ *Ĥψ dτ∫
ψ *ψ dτ∫

	

	
with	the	Hamiltonian	in	atomic	units		
	

  
Ĥ = − 1

2
∇1

2 − 1
2
∇2

2 − Z
r1

− Z
r2

+ 1
r12

	

	
Because	of	  r12 	in	the	wavefunction	it’s	convenient	to	use	what	are	called	Hylleraas	

coordinates	
  
s,t,u( ) 	instead	of	  r1,θ1,ϕ1 	and	  r2,θ2,ϕ2 .	These	are	defined	as		

	

  s = r1+ r2,t = r2 − r1 &u = r12 .	
	
We	need	to	have	the	integrand	  ψ

*Ĥψ and	the	volume	element	 dτ in	these	
coordinates	so	let’s	begin	with	the	volume	element.	
First	write	 dτ as	(figure	1)	
	
Figure	1	
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 θ12

   

!r1

   

!r2

  r12

nucleus	

z	

x	

y	

	
	

  dτ = 8π 2r1
2dr1r2

2dr2 sinθ12dθ12 	
	
The	factor	 8π 2 	comes	about	because	the	orientation	of	the	triangle	defined	by	

  r1,r2 &θ12 	is	arbitrary	and	we	have	integrated	over	 ϕ1 &ϕ2 each	contributing	a	factor	
of	 2π 	and	then	one	θ 	contributing	a	factor	of	2.	
Using	
	

  r12
2 = r12 + r2

2 − 2r1r2 cosθ12 	
	
we	have	  r12dr12 = r1r2 sinθ12dθ12 = udu giving	
	

  dτ = 8π 2r1r2udr1dr2du 	
	

from	the	definition	of	  s & t we	have	
  
r1r2 =

s2 − t2

4
	and	using	the	Jacobian	

  

∂(r1,r2 )
∂(s,t)

= 1
2
	

we	have	
  
dr1dr2 =

1
2

dsdt 	with	the	final	result	

	

  dτ = π 2u(s2 − t2 )dsdudt 	
	
with	the	limits	  0 ≤ s ≤ ∞,  0 ≤ u ≤ s,  &  − u ≤ t ≤ u 	
	
Now	for	the	integrand.	When	we	use	Hylleraas	coordinates	it	will	be	simpler	to	
rewrite	the	kinetic	energy	terms	as	follows.	Let’s	consider	the	integral	
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f∇2∫ fdV = f

∂2 f
∂x2 + ∂2 f

∂y2 + ∂2 f
∂z2

⎛
⎝⎜

⎞
⎠⎟∫ dxdydz 	

	
and	consider	the	term	
	

  
f
∂2 f
∂x2∫ dxdydz = dy dz∫ f

∂ f
∂x −∞

∞

− ∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

dx
⎛

⎝
⎜

⎞

⎠
⎟ = − dy dz∫

∂ f
∂x

⎛
⎝⎜

⎞
⎠⎟

2

dx 	

	

where	the	term	
  
f
∂ f
∂x −∞

∞

= 0 	because	we	assume  f (±∞) = 0 	

Extending	this	to	the	remaining	coordinates	results	in	
	

   
f∇2∫ f  dxdydz = − ∂ f

∂x
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ f
∂y

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ f
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟∫ dxdydz = − ∇f i∫ ∇f  dxdydz 	

	
and	so	
	

   
ψ Ĥ∫ ψ dτ = 1

2
∇1ψ i∇1ψ +∇2ψ i∇2ψ − Z

r1

− Z
r2

+ 1
r12

⎛
⎝⎜

⎞
⎠⎟∫ dτ 	

	
Our	goal	is	to	express	the	integrand	in	terms	of	the	Hylleraas	coordinates.	Lets	first	
consider	 ∇1ψ .	
	

  
∇1ψ = ∂ψ

∂x1

î + ∂ψ
∂y1

ĵ + ∂ψ
∂z1

k̂
	

	
using	the	chain	rule	
	

  

∂ψ
∂x1

= ∂ψ
∂s

∂s
∂x1

+ ∂ψ
∂t

∂t
∂x1

+ ∂ψ
∂u

∂u
∂x1

=
x1

r1

∂ψ
∂s

−
x1

r1

∂ψ
∂t

−
(x2 − x1)

u
∂ψ
∂u

	

	
and	by	symmetry	
	

  

∂ψ
∂y1

=
y1

r1

∂ψ
∂s

−
y1

r1

∂ψ
∂t

−
( y2 − y1)

u
∂ψ
∂u

	

	
and	
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∂ψ
∂z1

=
z1

r1

∂ψ
∂s

−
z1

r1

∂ψ
∂t

−
(z2 − z1)

u
∂ψ
∂u

	

	
so	after	some	algebra	
	

   
∇1ψ i∇1ψ = ∂ψ

∂s
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂t

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

2

− 2 ∂ψ
∂s

∂ψ
∂t

+ 2 − ∂ψ
∂s

∂ψ
∂u

+ ∂ψ
∂t

∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

!
r1 i
!
r2

r1u
−

r1

u
⎛
⎝⎜

⎞
⎠⎟
	

	
in	a	similar	fashion	
	

   
∇2ψ i∇2ψ = ∂ψ

∂s
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂t

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

2

− 2 ∂ψ
∂s

∂ψ
∂t

+ 2 ∂ψ
∂s

∂ψ
∂u

+ ∂ψ
∂t

∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

−
!
r1 i
!
r2

r2u
+

r2

u
⎛
⎝⎜

⎞
⎠⎟
	

	
Adding	these	and	recognizing	that		
	

   

!r1 i
!r2 =

s2 + t2 − 2u2

8  &  1
r1
+ 1

r2
= 4s

s2 − t2  &  1
r1
− 1

r2
= 4t

s2 − t2 	

	
we	obtain	
	

  

∂ψ
∂s

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂t

⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

2

− 2 ∂ψ
∂s

∂ψ
∂t

+ 2 s(u2 − t2 )
u(s2 − t2 )

⎛
⎝⎜

⎞
⎠⎟
∂ψ
∂s

∂ψ
∂u

− 2 t(u2 − s2 )
u(s2 − t2 )

⎛
⎝⎜

⎞
⎠⎟
∂ψ
∂t

∂ψ
∂u

− 4sZψ 2

s2 − t2 +ψ
2

u

	
In	the	text	we	calculated	the	energy	of	Helium	using	the	trial	function		
	

  
ψ = α 3

π
e−αr1 α 3

π
e−αr1 = α 3

π
e−α (r1 + r2 )

=
α 3

π
e−αs 	

	

and	found	
  
α = 27

8
& E = − 27

16
⎛
⎝⎜

⎞
⎠⎟

2

.	Let’s	redo	this	calculation	using	Hylleraas	

coordinates	to	see	how	the	integrations	work.	Since	this	trial	function	depends	only	
on	 s 	and	ψ 	is	normalized	the	energy	is	given	by		
	

  
E = π 2 ∂ψ

∂s
⎛
⎝⎜

⎞
⎠⎟

2

− 4sZψ 2

s2 − t2 +ψ
2

u

⎛

⎝
⎜

⎞

⎠
⎟∫ u(s2 − t2 )dsdudt 	

There	are	three	terms	in	the	integrand.	First	the	kinetic	energy	.	
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∂ψ
∂s

⎛
⎝⎜

⎞
⎠⎟

2

u(s2 − t2 )ds du dt∫ = α 8

π 2 e−2αs∫ u(s2 − t2 )dsdudt = α 8

π 2 e−2αs ds u du (s2 − t2 )dt
−u

u

∫
0

s

∫
0

∞

∫ 	

	

  
e−2αs ds u du (s2 − t2 )dt

−u

u

∫
0

s

∫
0

∞

∫ = 2 e−2αs ds u(us2 − u3

3
)du

0

s

∫
0

∞

∫ = 8
15

e−2αss5 ds
0

∞

∫ = 1
α 6 	

	
so	
	

  

∂ψ
∂s

⎛
⎝⎜

⎞
⎠⎟

2

u(s2 − t2 )ds du dt∫ = α 2

π 2 	

	
now	the	nuclear	attraction..	

  
− 4sZψ 2

s2 − t2∫ u(s2 − t2 )dsdudt = −4Zα 6

π 2 se−2αs ds
0

∞

∫ u du
0

s

∫ dt
−u

u

∫ = −2Zα
π 2 	

	
and	lastly	the	electron	–electron	repulsion	contribution	
	

  

E = π 2 ∂ψ
∂s

⎛
⎝⎜

⎞
⎠⎟

2

− 4sZψ 2

s2 − t2 +ψ
2

u

⎛

⎝
⎜

⎞

⎠
⎟∫ u(s2 − t2 )dsdudt

ψ 2∫ (s2 − t2 )dsdudt = α 6

π 2 e−2αs

0

∞

∫ ds du
0

s

∫ (s2 − t2 )dt =
−u

u

∫
5α
8π 2

	

	

  
E =α 2 − 2Zα + 5

8
α 	

	
and	so		
	

  
dE
dα

= 2α − 2Z + 5
8
= 0 	

	

results	in	
  
α = Z − 5

16
	and	for	He	

 
α = 27

16
	with	

  
E = − 27

16
⎛
⎝⎜

⎞
⎠⎟

2

as	required.	

	
Now	lets	evaluate	the	energy	associated	with	the	Hylleraas	function	
	

  ψ = e−α (r1+r2 )(1+ br12 ) = e−αs(1+ bu) 	
	
When	we	evaluate	the	energy	associated	with	a	trial	function	that	depends	only	on	s	
&	u	such	as	above	we	will	encounter	integrals	that	have	the	form		
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I(N , M ) = sN

0

∞

∫ e−2αsds u M

0

s

∫ du (s2 − t2

−u

+u

∫ )dt = 4M + 20
3( M + 2)( M + 4)

⎛
⎝⎜

⎞
⎠⎟

( M + N + 4)!
(2α )M+N+5 	

	
The	first	few	being	
	

N	 M	 I	(N,M)	
0	 0	

 

5
8α 5 	

1	 0	

 

75
48α 6 	

1	 1	

 

3
α 7 	

0	 1	

 

1
α 6 	

0	 2	

 

35
16α 7 	

0	 3	

 

6
α 8 	

	
First	the	overlap	integral	
	
	

  
ψ ψ = e−2αS∫ (1+ bu)2u s2 − t2( )dsdudt = e−2αS ds u(1+ 2bu+ b2u2 )du s2 − t2( )dt

−u

+u

∫
0

s

∫
0

∞

∫ 	

	

  
ψ ψ = I(0,1)+ 2bI(0,2)+ b2I(0,3) = 1

α 6 + b 35
8α 7 + b2 6

α 8 	

	
and	now	for	the	expectation	value.	Note	that	derivatives	wrt	 t vanish.	
	

  
ψ Ĥ ψ = ∂ψ

∂s
⎛
⎝⎜

⎞
⎠⎟

2

+ ∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟

2

+ 2s(u2 − t2 )
u(s2 − t2 )

∂ψ
∂s

∂ψ
∂u

−ψ 2 4sZ
s2 − t2

⎛
⎝⎜

⎞
⎠⎟
+ψ

2

u

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∫ u(s2 − t2 )dsdudt 	

	

  

∂ψ
∂s

⎛
⎝⎜

⎞
⎠⎟∫

2

u(s2 − t2 )dsdudt =α 2(I(0,1)+ 2bI(0,2)+ b2I(0,3)) = 1
α 4 + b 35

8α 5 + b2 6
α 6 	
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∂ψ
∂u

⎛
⎝⎜

⎞
⎠⎟∫

2

u(s2 − t2 )dsdudt = b2I(0,1) = b2

α 6 	

	

  
2s(u2∫ − t2 ) ∂ψ

∂s
∂ψ
∂u

dsdudt = −2αb se−2αs

0

∞

∫ (1+ bu)du (u2

−u

+u

∫
0

s

∫ − t2 )dt = −b 5
4α 5 − b2 3

α 6 	

	

  
−4Z ψ 2∫ sudsdudt = −Z 2

α 5 + b 15
2α 6 + b2 9

α 7

⎛
⎝⎜

⎞
⎠⎟
	

	
and	lastly	
	

  
ψ 2∫ (s2 − t2 )dsdudt = I(0,0)+ 2bI(0,1)+ b2I(0,2) = 5

8α 5 + b 2
α 6 + b2 35

16α 7 	

	
The	energy	is	given	by	the	ratio	
	

  

E =
α 2 − (5

8
− 2Z )α + b 25α

8
+ 2− 15Z

2
⎛
⎝⎜

⎞
⎠⎟
+ b2 4+ 1

α
(35
16

− 9Z )⎛
⎝⎜

⎞
⎠⎟

1+ b 35
8α

+ b2 6
α 2

	

	
and	for	He		
	
	

  

E =
α 2 − 27

8
α + b 25α

8
−13⎛

⎝⎜
⎞
⎠⎟
+ b2 4− 253

16α
⎛
⎝⎜

⎞
⎠⎟

1+ b 35
8α

+ b2 6
α 2

= N
D
	

	
minimizing	 E 	with	respect	to	  α & b results	in		
	
  α = 1.849 & b = 0.365& E = −2.8911 	
	
	
	


