
Homework 3: Rate Coefficients

S. R. Kulkarni

Background & Motivation. Two particle interactions lie at the core of the physics
of interstellar gas. Collisions of atoms and ions lead to line emission and thence loss of
energy from the gas. In ionized plasma, there is continual “recombination” (e.g. p++e− →
H0) which is balanced by photo-ionization or ionization by collisions with electrons. The
formation of molecules – cosmochemistry – starts with interactions usually between simple
ions and atoms. This homework provides the foundation to reaction kinetics.

Due February 2, 2023

Each problem (1ab, 2–5) carries 10 points.

[1a] Center of Mass (CM) Frame. Consider two particles, i = 1, 2, of mass mi and
velocity1 ~vi, as measured in the lab frame. We apply a Galilean transformation, ~V in which
case the velocities of the particles are ~ui = ~vi − ~V . Show that the choice of

~V =
m1~v1 +m2~v2

M

not only minimizes the total kinetic energy of the system but also the (absolute) linear
momentum of the system; here, M = m1 +m2. The former property explains why the CM
frame should be used for considering reactions (as opposed to the lab frame). The latter
property simplifies calculations of velocities following a reaction. [5 pt]

[1b] Velocity Distribution. We now assume that the both species are in thermal equilib-
rium with temperature, T . The velocity density distribution for ~vi = (vxi, vyi, vzi) is given
by the Maxwell-Boltzmann (M-B) function:

fi(~vi)d
3vi =

(βmi

2π

)3/2
e−

1/2βm1v21d3vi

where β = 1/kBT . Note that the M-B velocity distribution is isotropic. Thus, d3v =
dvxdvydvy = 4πv2dv where v2 = v2x + v2y + v2z . Verify that

∫
fi(~vi)d

3vi = 1. [5 pt]

1We use the convention ~v for the 3-D velocity vector while v is the speed of the particle, v =
√
~v · ~v.
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Incidentally, I prefer to remember the velocity distribution as

fv(v) =
4√
π
x2e−x

2
dx

where x = v/vp with vp =
√

2kBT/m (the most probable velocity). The normalization, if
forgotten, can be computed readily.

[2] Distribution of the relative and CM velocities. Since the particles of the two
species are independently the joint probability of velocity distribution is given by the
product of the probability functions:

f1,2(~v1, ~v2)d
3v1d

3v2 = f1(~v1)d
3v1f2(~v2)d

3v2

Consider the transformation, (~v1, ~v2)→ (~u, ~V ) where ~V is the CM velocity and ~u = ~v1−~v2
is the relative velocity. Show that the

f1,2(~v1, ~v2)d
3v1d

3v2 = fu(~u)d3vfV (~V )d3V (1)

where

fu(~u) =
(µβ

2π

)3/2
exp

(
−1/2βµu2

)
,

fV (~V ) =
(Mβ

2π

)3/2
exp

(
−1/2βMV 2

)
.

where µ = m1m2/M is the so-called reduced mass. Note that ~v and ~V are independently
distributed, since the RHS of Equation 1 is product of of the probability distributions for
~u and ~V .

[3] Rate Coefficients. Let ni be the number density of species i. Let σ(u) be the
cross-section for an interaction between species 1 and 2 to occur; here, as above, u is
the relative speed of particle 1 and particle 2. The “reaction” volume covered by, say,
one particle of species 1, in time dt is uσ(u)dt. Thus the probability that a reaction
will occur within this volume is n2uσ(u)dt. Since there are n1 particles of species 1 in a
unit volume, the number of reactions per unit volume is n1n2uσ(u)dt. Thus, the rate of
reactions per unit volume isR = n1n2uσ(u). It is traditional to quote the “rate coefficient”,
k ≡ R/(n1n2) = uσ(u).

Now we generalize this to the case where the two species are in thermal equilibrium with
temperature T . The relative velocity distribution, fu(u) is given by Equation 2. The rate
coefficient for a thermal plasma is then

k = 〈uσ(u)〉 =

∫
uσ(u)fu(u)d3u
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where the angular bracket indicate averaging over the M-B velocity distribution. Assume
a simple “power law” model2, σ(u) = σ0(u/u0)

−n. Develop an analytical expression for k.

[4] Recombination energy loss. Consider the reaction, p++e− → H0 (“recombination”).
In the CM frame, the total kinetic energy prior to the reaction is E = 1/2µu2. Following the
reaction, this energy along with the ionization potential energy is radiated away via the a
“free-bound” photon. The recombination cross-section can be approximated as σ(u) ∝ u−n
with n ≈ 2.6. Compute the average kinetic energy of the recombining electron. Comment
on the fact that 〈E〉 is less than 3/2kBT . Does this mean that a recombining plasma heats
up as it recombines? Next, what is the velocity distribution of the H atom?

[5] Collisional Ionization. In hot gas, energetic electrons collide with atoms or ions
and eject an electron. The collisional ionization cross-section can be approximated by the
following simple model:

σci(E) = C

(
1− I

E

)
where E is the energy of the colliding electron and I is the ionization energy. Develop an
expression for the collisional ionization rate coefficient, kci and compute the mean energy
of the ejected electron.

[6] C+ Fine Structure Line. The ground state of C+ (1s22s22p) is split by spin-orbit in-
teraction. The wavelength of this fine structure line (FSL) is 157.77µm. The A-coefficient
is 2.4× 10−6 s−1. The collisional de-excitation rate coefficients due to collisions with elec-
trons and H atoms are as follows:

k10(e
−) = 4.5× 10−10T

−1/2
2 cm3 s−1

k10(H) = 7.6× 10−10T 0.1281+0.0087lnT2
2 cm3 s−1

Explain the temperature dependency. Next, compute the critical density for each process.
The cooling timescale is defined as tcool = 3/2nkBT/Λ where n is the total particle density
and Λ is the cooling rate per unit volume due to C+ FSL cooling. Compute the cooling
timescale for the CNM [nH = 30 cm−3, xe = ne/nH = 3 × 10−4 and T = 100 K] and the
WNM [nH = 0.6 cm−3, xe = 0.02 and T = 5, 000 K].

2The use of power-law approximation is common in astronomy. The power law model need only hold
over the range of temperature of interest. n = 0 corresponds to “hard spheres”, n ≈ 1 corresponds to
ion-neutral collisions and also electron-positron collisions, n ≈ 2 corresponds to ion-electron collision, while
n ≈ 2.6 corresponds to the recombination of protons with electrons to form H atoms.
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