Ay 121: Homework 4

S. R. Kulkarni

Due COB, November 1, 2025

[1] Acceleration in special relativity. Problem 4.3 (R & L). [15 points]

[2] **Super-luminal expansion** (now routinely seen in BL Lac objects).¹ Problem 4.7 (R & L).

[15 points]

[3] A Puzzle.

Problem 4.10 (R& L).

[10 points]

[4] Poynting-Robertson² Effect.

Problem 4.12 (R & L).

[20 points]

[5] The Great Dipole in the Sky.

Problem 4.13a (R & L).

[5 points]

[6] Particle Motion in EM fields.³

[25 points]

Consider a particle moving in an inertial frame S under the influence of spatially and temporally constant, orthogonal \mathbf{E} and \mathbf{B} fields, so $\mathbf{E} \cdot \mathbf{B} = 0$.

a) If B > E in frame S, show that you can Lorentz transform to a frame S' in which E' = 0. What is the vector 3-velocity \mathbf{v}' of frame S' as seen from frame S, in terms of E, B and c?

¹Pioneered by the Caltech VLBI group of M. Cohen and A. Readhead.

²An amazing mathematician, physicist and astronomer. A Caltech PhD who returned to Caltech as a faculty member. This is an important process for astronomers studying the formation of planets and debris disks.

³Contributed by E. S. Phinney

- b) Describe the particle's motion in frame S' and in frame S.
- c) Now suppose that E>B in frame S. Show that you can Lorentz transform to a frame S'' in which B'=0.
 - i. What is the vector 3-velocity \mathbf{v} of frame S" as seen from frame S, in terms of \mathbf{E} , \mathbf{B} and c?
 - ii. Give a simple expression in terms of **E**, **B** for the Lorentz factor $\gamma = 1/\sqrt{1-\beta^2}$. of the Lorentz boost between S and S". Here, $\beta = v/c$.
 - iii. What is the electric field E" in frame S"?
 - iv. Suppose that the particle has charge q, mass m, and proper time in the particles rest frame is measured by τ , with the particle at rest in frame S'' at $\tau = 0$. Show that the particles Lorentz factor in frame S is given by $u^0 \equiv u^t = \gamma \cosh(qE\tau/\gamma mc)$
 - v. Give similar expressions for u^x , u^y , and u^z .
- d) d) Qualitatively describe what would be different if the orthogonal E and B were those of a vacuum electromagnetic wave. You may wish to refer to Gunn & Ostriker (1971).⁴ This case is important to Fast Radio Bursts and to laser fusion.

⁴https://ui.adsabs.harvard.edu/abs/1971ApJ...165..523G/abstract