Next: Zeeman Effect Up: Time-Independent Perturbation Theory Previous: Linear Stark Effect

Fine Structure of Hydrogen

According to special relativity, the kinetic energy (i.e., the difference between the total energy and the rest mass energy) of a particle of rest mass m and momentum p is

$$T = \sqrt{p^2 c^2 + m^2 c^4} - m c^2. \tag{966}$$

In the non-relativistic limit $p \ll m c$, we can expand the square-root in the above expression to give

$$T = \frac{p^2}{2m} \left[1 - \frac{1}{4} \left(\frac{p}{mc} \right)^2 + \mathcal{O} \left(\frac{p}{mc} \right)^4 \right]. \tag{967}$$

Hence.

$$T \simeq \frac{p^2}{2m} - \frac{p^4}{8m^3c^2}. (968)$$

Of course, we recognize the first term on the right-hand side of this equation as the standard non-relativistic expression for the kinetic energy. The second term is the lowest-order relativistic correction to this energy. Let us consider the effect of this type of correction on the energy levels of a hydrogen atom. So, the unperturbed Hamiltonian is given by Eq. (911), and the perturbing Hamiltonian takes the form

$$H_1 = -\frac{p^4}{8\,m_s^3\,c^2}. (969)$$

Now, according to standard first-order perturbation theory (see Sect. $\underline{12.4}$), the lowest-order relativistic correction to the energy of a hydrogen atom state characterized by the standard quantum numbers n, l, and m is given by

$$\Delta E_{nlm} = \langle n, l, m | H_1 | n, l, m \rangle = -\frac{1}{8 m_e^3 c^2} \langle n, l, m | p^4 | n, l, m \rangle$$

$$= -\frac{1}{8 m_e^3 c^2} \langle n, l, m | p^2 p^2 | n, l, m \rangle. \tag{970}$$

However, Schrödinger's equation for a unperturbed hydrogen atom can be written

$$p^2 \psi_{n,l,m} = 2m_e (E_n - V) \psi_{n,l,m},$$
(971)

where $V=-e^2/(4\pi\epsilon_0\,r)$. Since p^2 is an Hermitian operator, it follows that

$$\Delta E_{nlm} = -\frac{1}{2m_e c^2} \langle n, l, m | (E_n - V)^2 | n, l, m \rangle$$

$$= -\frac{1}{2m_e c^2} \left(E_n^2 - 2E_n \langle n, l, m | V | n, l, m \rangle + \langle n, l, m | V^2 | n, l, m \rangle \right)$$

$$= -\frac{1}{2m_e c^2} \left[E_n^2 + 2E_n \left(\frac{e^2}{4\pi \epsilon_0} \right) \left\langle \frac{1}{r} \right\rangle + \left(\frac{e^2}{4\pi \epsilon_0} \right)^2 \left\langle \frac{1}{r^2} \right\rangle \right]. \tag{972}$$

It follows from Eqs. $(\underline{695})$ and $(\underline{696})$ that

$$\Delta E_{nlm} = -\frac{1}{2m_e c^2} \left[E_n^2 + 2 E_n \left(\frac{e^2}{4\pi \epsilon_0} \right) \frac{1}{n^2 a_0} + \left(\frac{e^2}{4\pi \epsilon_0} \right)^2 \frac{1}{(l+1/2) n^3 a_0^2} \right]. \tag{973}$$

Finally, making use of Eqs. $(\underline{676})$, $(\underline{678})$, and $(\underline{679})$, the above expression reduces to

$$\Delta E_{nlm} = E_n \frac{\alpha^2}{n^2} \left(\frac{n}{l+1/2} - \frac{3}{4} \right), \tag{974}$$

where

$$\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} \simeq \frac{1}{137} \tag{975}$$

is the dimensionless fine structure constant.

Note that the above derivation implicitly assumes that p^4 is an Hermitian operator. It turns out that this is not the case for l=0 states. However, somewhat fortuitously, our calculation still gives the correct answer when l=0. Note, also, that we are able to use *non-degenerate* perturbation theory in the above calculation, using the ψ_{nlm} eigenstates, because the perturbing Hamiltonian commutes with both L^2 and L_x . It follows that there is no coupling between states with different l and l quantum numbers. Hence, all coupled states have different l quantum numbers, and therefore have different energies.

Now, an electron in a hydrogen atom experiences an electric field

$$\mathbf{E} = \frac{e\,\mathbf{r}}{4\pi\epsilon_0\,r^3} \tag{976}$$

due to the charge on the nucleus. However, according to electromagnetic theory, a non-relativistic particle moving in a electric field ${\bf E}$ with velocity ${\bf v}$ also experiences an effective magnetic field

$$\mathbf{B} = -\frac{\mathbf{v} \times \mathbf{E}}{c^2}.\tag{977}$$

Recall, that an electron possesses a magnetic moment [see Eqs. (759) and (760)]

$$\boldsymbol{\mu} = -\frac{e}{m_c} \mathbf{S} \tag{978}$$

due to its spin angular momentum, S. We, therefore, expect an additional contribution to the Hamiltonian of a hydrogen atom of the form [see Eq. (761)]

$$H_{1} = -\boldsymbol{\mu} \cdot \mathbf{B}$$

$$= -\frac{e^{2}}{4\pi\epsilon_{0} m_{e} c^{2} r^{3}} \mathbf{v} \times \mathbf{r} \cdot \mathbf{S}$$

$$= \frac{e^{2}}{4\pi\epsilon_{0} m_{e}^{2} c^{2} r^{3}} \mathbf{L} \cdot \mathbf{S}, \tag{979}$$

where $\mathbf{L} = m_e \mathbf{r} \times \mathbf{v}$ is the electron's orbital angular momentum. This effect is known as *spin-orbit coupling*. It turns out that the above expression is too large, by a factor 2, due to an obscure relativistic effect known as *Thomas precession*. Hence, the true spin-orbit correction to the Hamiltonian is

$$H_1 = \frac{e^2}{8\pi \,\epsilon_0 \, m_e^2 \, c^2 \, r^3} \, \mathbf{L} \cdot \mathbf{S}. \tag{980}$$

Let us now apply perturbation theory to the hydrogen atom, using the above expression as the perturbing Hamiltonian.

Now

$$\mathbf{J} = \mathbf{L} + \mathbf{S} \tag{981}$$

is the total angular momentum of the system. Hence,

$$J^2 = L^2 + S^2 + 2\mathbf{L} \cdot \mathbf{S}. \tag{982}$$

giving

$$\mathbf{L} \cdot \mathbf{S} = \frac{1}{2} \left(J^2 - L^2 - S^2 \right). \tag{983}$$

Recall, from Sect. $\underline{11.2}$, that whilst J^2 commutes with both L^2 and S^2 , it does not commute with either L_z or S_z . It follows that the perturbing Hamiltonian ($\underline{980}$) also commutes with both L^2 and S^2 , but does not commute with either L_z or S_z . Hence, the simultaneous eigenstates of the unperturbed Hamiltonian ($\underline{911}$) and the perturbing Hamiltonian ($\underline{980}$) are the same as the simultaneous eigenstates of L^2 , S^2 , and J^2 discussed in Sect. $\underline{11.3}$. It is important to know this since, according to Sect. $\underline{12.6}$, we can only safely apply perturbation theory to the simultaneous eigenstates of the unperturbed and perturbing Hamiltonians.

Adopting the notation introduced in Sect. $\underline{11.3}$, let $\psi_{l,s;j,m_j}^{(2)}$ be a simultaneous eigenstate of L^2 , S^2 , J^2 , and J_z corresponding to the eigenvalues

$$L^{2} \psi_{l,s;j,m_{j}}^{(2)} = l(l+1) \hbar^{2} \psi_{l,s;j,m_{j}}^{(2)}, \tag{984}$$

$$S^{2}\psi_{l,s;j,m_{j}}^{(2)} = s(s+1)\hbar^{2}\psi_{l,s;j,m_{j}}^{(2)},$$
(985)

$$J^{2} \psi_{l,s;j,m_{j}}^{(2)} = j(j+1) \hbar^{2} \psi_{l,s;j,m_{j}}^{(2)}, \tag{986}$$

$$J_z \psi_{l,sj,m_j}^{(2)} = m_j \hbar \psi_{l,sj,m_j}^{(2)}.$$
 (987)

According to standard first-order perturbation theory, the energy-shift induced in such a state by spin-orbit coupling is given by

$$\Delta E_{l,1/2;j,m_{j}} = \langle l, 1/2; j, m_{j} | H_{1} | l, 1/2; j, m_{j} \rangle
= \frac{e^{2}}{16\pi \epsilon_{0} m_{e}^{2} c^{2}} \left\langle 1, 1/2; j, m_{j} \left| \frac{J^{2} - L^{2} - S^{2}}{r^{3}} \right| l, 1/2; j, m_{j} \right\rangle
= \frac{e^{2} \hbar^{2}}{16\pi \epsilon_{0} m_{e}^{2} c^{2}} \left[j (j+1) - l (l+1) - 3/4 \right] \left\langle \frac{1}{r^{3}} \right\rangle.$$
(988)

Here, we have made use of the fact that s = 1/2 for an electron. It follows from Eq. (697) that

$$\Delta E_{l,1/2;j,m_j} = \frac{e^2 \hbar^2}{16\pi \epsilon_0 m_e^2 c^2 a_0^3} \left[\frac{j(j+1) - l(l+1) - 3/4}{l(l+1/2)(l+1) n^3} \right], \tag{989}$$

where n is the radial quantum number. Finally, making use of Eqs. (676), (678), and (679), the above expression reduces to

$$\Delta E_{l,1/2;j,m_j} = E_n \frac{\alpha^2}{n^2} \left[\frac{n \left\{ 3/4 + l \left(l + 1 \right) - j \left(j + 1 \right) \right\}}{2l \left(l + 1/2 \right) \left(l + 1 \right)} \right], \tag{990}$$

where α is the fine structure constant. A comparison of this expression with Eq. (974) reveals that the energy-shift due to spin-orbit coupling is of the same order of magnitude as that due to the lowest-order relativistic correction to the Hamiltonian. We can add these two corrections together (making use of the fact that $j=l\pm 1/2$ for a hydrogen atom--see Sect. 11.3) to obtain a net energy-shift of

$$\Delta E_{l,1/2;j,m_j} = E_n \frac{\alpha^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right). \tag{991}$$

This modification of the energy levels of a hydrogen atom due to a combination of relativity and spin-orbit coupling is known as fine structure.

Now, it is conventional to refer to the energy eigenstates of a hydrogen atom which are also simultaneous eigenstates of J^2 as nL_j states, where n is the radial quantum number, $L=(S,P,D,F,\cdots)$ as $l=(0,1,2,3,\cdots)$, and j is the total angular momentum quantum number. Let us examine the effect of the fine structure energy-shift (991) on these eigenstates for n=1,2 and 3.

For n=1, in the absence of fine structure, there are two degenerate $1S_{1/2}$ states. According to Eq. $(\underline{991})$, the fine structure induced energy-shifts of these two states are the same. Hence, fine structure does not break the degeneracy of the two $1S_{1/2}$ states of hydrogen.

For n=2, in the absence of fine structure, there are two $2S_{1/2}$ states, two $2P_{1/2}$ states, and four $2P_{3/2}$ states, all of which are degenerate. According to Eq. (991), the fine structure induced energy-shifts of the $2S_{1/2}$ and $2P_{1/2}$ states are the same as one another, but are different from the induced energy-shift of the $2P_{3/2}$ states. Hence, fine structure does not break the degeneracy of the $2S_{1/2}$ and $2P_{1/2}$ states of hydrogen, but does break the degeneracy of these states relative to the $2P_{3/2}$ states.

For n=3, in the absence of fine structure, there are two $3S_{1/2}$ states, two $3P_{1/2}$ states, four $3P_{3/2}$ states, four $3D_{3/2}$ states, and six $3D_{5/2}$ states, all of which are degenerate. According to Eq. (991), fine structure breaks these states into three groups: the $3S_{1/2}$ and $3P_{1/2}$ states, the $3P_{3/2}$ and $3D_{3/2}$ states, and the $3D_{5/2}$ states.

The effect of the fine structure energy-shift on the n=1,2, and 3 energy states of a hydrogen atom is illustrated in Fig. 23.

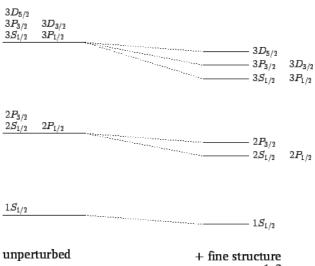


Figure 23: Effect of the fine structure energy-shift on the $\,n=1,2\,$ and 3

states of a hydrogen atom. Not to scale.

Note, finally, that although expression (990) does not have a well-defined value for l=0, when added to expression (974) it, somewhat fortuitously, gives rise to an expression (991) which is both well-defined and correct when l=0.

Next Up Previous

Next: Zeeman Effect Up: Time-Independent Perturbation Theory Previous: Linear Stark Effect Richard Fitzpatrick 2010-07-20