Ay 121 Radiative Processes

Problem Set 5

Due in class before midnight, Monday Nov 18, 2024

Readings: Reading for this week is Chapter 4 of Rybicki and Lightman.

Homework Problems: (50 pts total)

- 1. **Relativistic relative velocity** (10pts) Rybicki and Lightman Problem 4.8 (very useful in computing flux factors for cross-sections!).
- 2. Radiated momentum (7pts: 2+2+3) Rybicki and Lightman Problem 4.10
- 3. Poynting-Robertson drag (10pts: 1+3+2+4) Rybicki and Lightman Problem 4.12
- 4. Invariants and electromagnetic waves (6 points: 3+3) Pulsar and magnetar winds are often modelled using either relativistic magnetohydrodynamics, or its negligible-inertia limit, force-free electrodynamics. These are defined by the existence of a frame with a time-like 4-velocity \vec{u} in which $F_{\mu\nu}u^{\nu} = 0$ Considering the electromagnetic invariants (Rybicki & Lightman eqs 4.66 and 4.67),
 - a) For these wind models, is $\det F > 0$, = 0 or < 0?
 - b) For these wind models, is $F_{\mu\nu}F^{\mu\nu} > 0$, = 0 or < 0?
- 5. Particle Motion in EM fields (17 points: 3+2+10(=2+2+2+2+2)+3) Consider a particle moving in an inertial frame S under the influence of spatially and temporally constant, orthogonal \mathbf{E} and \mathbf{B} fields, so $\mathbf{E} \cdot \mathbf{B} = 0$.
 - a) If B > E in frame S, show that you can Lorentz transform to a frame S' in which $\mathbf{E}' = 0$. What is the vector 3-velocity \mathbf{v} of frame S' as seen from frame S, in terms of \mathbf{E} , \mathbf{B} and c?
 - b) Describe the particle's motion in frame S' and in frame S.
 - c) Now suppose that E > B in frame S. Show that you can Lorentz transform to a frame S'' in which $\mathbf{B'} = 0$.
 - i. What is the vector 3-velocity \mathbf{v} of frame S'' as seen from frame S, in terms of \mathbf{E} , \mathbf{B} and c?
 - ii. Give a simple expression in terms of **E**, **B** for the Lorentz factor $\gamma = 1/\sqrt{1 \mathbf{v} \cdot \mathbf{v}}$ of the Lorentz boost between S and S''.
 - iii. What is the electric field \mathbf{E}'' in frame S''?
 - iv. Suppose that the particle has charge q, mass m, and proper time in the particle's rest frame is measured by τ , with the particle at rest in frame S'' at $\tau=0$. Show that the particle's Lorentz factor in frame S is given by $u^0 \equiv u^t = \gamma \cosh \frac{qE\tau}{\gamma mc}$, where $\gamma = 1/\sqrt{1-\mathbf{v}\cdot\mathbf{v}}$, the Lorentz factor of the Lorentz boost velocity between frame S and frame S''.
 - v. Give similar expressions for u^x, u^y , and u^z .

d) Qualitatively describe what would be different if the orthogonal **E** and **B** were those of a vacuum electromagnetic wave. You may wish to refer to Gunn & Ostriker 1971. https://ui.adsabs.harvard.edu/abs/1971ApJ...165..523G/abstract This case is important to Fast Radio Bursts and to laser fusion.