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1A). The electronic configuration of Na I is 1s22s22p63s1. Thus the spec-
troscopic term for the ground state is 2S1/2. The principal series is thus
transitions from the ground state to levels where the valence electron is in
np states with n = 3, 4, 5....

We have the following: ionization potential of 5.139 eV which corre-
sponds to I = 41, 423.0 cm−1. The first member of the principal series is
λ ≈ 5983 Å or k3 = 16, 969.3 cm−1.

Let the energy levels (in wave numbers) of the S and P states be given
by

Es(n) = − Z2R

(m− µs)2
(1)

Ep(n) = − Z2R

(n− µp)2
. (2)

For neutral sodium the effective charge experienced by the valence elec-
tron is Z = 1. We equate I = −Es(3) and find µs = 1.3723. This is not
needed for the problem at hand but useful to relate to µp.

The wave numbers of the principal series are given by

kp(n) = I + Ep(n) (3)

where n = 3 is the first member of the principal series and n = 4 is the
second member and so on. Thus we have

n− µp =

√
Z2R

I − kp(n)
. (4)

Substituting kp(3) into this equation we find µp = 0.8816. Substituting this
into Equation 3 for n = 4 we find kp(4) = 30, 132.8 cm−1 or λ = 3318 Å.
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Figure 1: The quantum defect and Grotrian diagram for Na I.
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From Bacher & Goudsmidt the term values are Es(3) = 41, 449 cm−1,
Ep(3) = 24, 483 cm−1 and Ep(4) = 11, 176.9 cm−1. Thus kp(4) = 30, 270 cm−1,
which is agreeable with our finding. See also Figure 1.

1B). The electronic configuration of C is 1s22s22p2 and that of CIV is thus
1s22s1. Thus the ground state is 2S1/2. The principal series will thus have
to be from S to P states. The principal series will 1s22s1 2S → 1s2np1 2P .
The first member is thus 1s22s1 → 1s22p1. This problem is thus the same
as the previous one except that Z = 4 and the series starts at n = 2 instead
of 3.

We have R = 109737.3 cm−1 and equivalently 13.605 eV. The ionization
potential from the ground state is 64.4766 eV which is I = 519709.9 cm−1.
The first member of the principal series has a wave number, kp(2) = 64555.6 cm−1.

The effective charge as seen from the valence electron is Z = 4. We
equate I = −Es(2) and find µs = 0.1619. This is not needed for the problem
at hand but useful to relate to µp. Substituting kp(2) = 64, 555.6 cm−1 and
n = 2 we find µp = 0.03593.

Substituting µp into Equation 3 we find kp(3) = 319, 863.6 cm−1 or λ =
312.6 Å. [The observed value is 312.43 Å.]

1C). We have four lines with wave numbers: k = [1.301, 2.471, 2.900, 3.107]×
104 cm. Since these are seen in absorption we can safely assume that the
four lines constitute the principal series. Thus the energy of the ground
state is the ionization potential, I. The wavenumber of the transitions is
given by

kj = I − R

(n′ + j)2
(5)

where j = 0, 1, 2, 3. Here R is the Rydberg constant and is 109,677.8 cm−1.
The unknowns are the ionization potential (I) where n′ = n0−µ; here n0 is
the energy quantum number of the ground state. We have three unknowns
and four measurements and so the problem is solvable, in principle.

We have

k2 − k1
R

=
1

n′2
− 1

(n′ + 1)2
= 0.1067

k3 − k1
R

=
1

n′2
− 1

(n′ + 2)2
= 0.1458

k4 − k1
R

=
1

n′2
− 1

(n′ + 3)2
= 0.1647, (6)

This leads to a mean value of n′ = 2.225. Quantum defects can be larger
unity. Thus possible values of n0 are either 3 or 4. To sort out this ambiguity
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Table 1: Term values for Potassium

Conf. term value (cm−1)

4s 2S 35005.58
4p 2P 22002.77, 21963.06
5s 2S 13980.28
3d 2D 13470.26, 13467.52
5p 2P 10304.39, 10285.70

we need a clue. As can seen from Equation 5

I =
〈
kj +

R

(n′ + j)2

〉
(7)

where the angular brackets refer to an average. We find I = 0.3205R or
35168 cm−1 or 4.36 eV. I looked up the periodic table and found the element
to be potassium whose electronic configuration is 1s2s222p63s23p64s1. Thus
I infer n0 = 4. The quantum defect is then 1.775. The transitions in question
are thus 4s1 → np1 where n = 4, 5, ....

I then looked up Bacher & Goudsmidt’s compilation of energy levels
(Table 1). The principal first line of the principal series, 4s→4p1, is consistent
with that stated in the problem set. After some sleuthing I found the term
value for 5p and found the second line to be consistent with that stated in
the problem.

2. The noble elements are characterized by full shells, e.g., the electron
configuration of Ar is 1s22s22p63s23p6. Two electrons are present in each
orbital of a given subshell, and by the Pauli exclusion principle, the electrons
must be antiparallel such that S = 0. This gives a spin multiplicity of
gS = 2S+ 1 = 1 for all noble elements with completely filled electron shells.

For half-filled subshells, each electron is in an orbital that is unoccupied
by another electron, since it will experience less Coulomb repulsion than
a filled orbital, and thus corresponds to a lower energy state (i.e. Hund’s
rules). Let us assume that three occupied orbitals are 2px, 2py, and 2pz.
This implies

ρ2p = Ψ2
2px+Ψ2

2py+Ψ2
2pz = (x2+y2+z2)×some function of r = some other function of r,

which is equivalent to spherical symmetry. The total orbital angular
momentum is zero, L = 0, as is the case for an s-orbital. This is true of all
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half-filled shells (p3, d7, f7), and the same is true for all filled shells. This
implies that half-filled and filled shells correspond to S terms.

Another way to think of subshells is in terms of the z-components of
angular momentum, e.g., 2p−1, 2p0, 2p1. The z-components cancel for half-
filled (and filled) shells, and since this is the only component that is observ-
able, we can conclude that orbital angular momentum is zero.

Thus, for filled shells, the spectroscopic term will be 1S0, since S = 0 and
L = 0 =⇒ J = 0. For half-filled shells, the value s of S and J correspond
to the specific atom (e.g. 4S3/2 for Nitrogen, 2p3, where S = 3/2 according
to Hund’s rules), however, it will always be an S term.

In general, when considering total spin and orbital angular momentum,
it is only necessary to consider valence electrons outside of closed shells.

3. For Titanium, Z = 22, therefore its electron configuration is
1s22s22p63p23p64s23d2. Thus, the d2 electrons will determine our spectro-
scopic terms.

The maximum orbital angular momentum quantum number that one of
the electrons can have is ml = 2, since 0 ≤ l < n and ml = −l . . . 0 . . . l, so
we have ml = ±2,±1, 0. Each electron must have ms = ±1/2. Thus, there
are 5 × 2 = 10 possible states for a single electron. For the combination
of both electrons, there are 10× 10 = 100 total states, however 10 of these
states involve identical states of the electrons, and so are excluded, leaving
90 remaining states. Due to the indistinguishability of electrons, there are
only 90/2 = 45 unique combinations of the pair of electrons, and so we must
account for these 45 states.

Given that ml,max = 2, we know that ML = 4, 3, 2, 1, 0, which corre-
sponds to G, F , D, P , and S spectroscopic terms. Let us start by assuming
that both electrons have ml = 2, such that ML = 4 and MS = 0 (the spins
must be antiparallel, otherwise the states of the electrons would be iden-
tical). Since gs = 2MS + 1 = 1, ML = 4, and MJ =| ML + MS | · · · |
ML −MS |= 4, we have the term 1G4. This accounts for the multiplicity
g = (2ML + 1)(2MS + 1) = 9 of the 45 states.

Let us now consider the case that ml = 1 for both electrons, so ML = 2,
MS = 0, MJ = 2, and g = 5. This corresponds to the term 1D2. If
both electrons have ml = 0, then ML = 0, MS = 0, and MJ = 0, which
corresponds to a singlet, 1S0. 30 states remaining.

We know that there must be F (ML = 3) and P (ML = 1) states that we
have not yet accounted for. The only way to obtain ML = 3 from the two
electrons is to have ml = 1 and ml = 2. Since the ml quantum numbers are
not identical, we can have ms = ±1/2, such that MS = 1. So MJ = 4, 3, 2,
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g = 21, and our spectroscopic terms are 3F2,3,4. 9 states remaining.
Lastly, the P term (ml = 0, ml = 1). Similarly, we find that ML = 1,

MS = 1, MJ = 2, 1, 0, and g = 9. This corresponds to the term 3P0,1,2. All
states have been accounted for.

Extra point : Let us consider Hund’s rules, which dictate the ordering of
the energy levels of the atom:

1. The state with the maximum spin multiplicity gs = 2S + 1 has the
lowest energy for a given electron configuration. Orbitals of a subshell
are each occupied singly with electrons of parallel spin before double
occupation occurs, due to repulsive Coulomb forces, which result in a
higher energy state.

2. For states with the same spin multiplicity gs, the state with the largest
value of L has the lowest energy, since this corresponds to electrons
orbiting in the same direction (reduced repulsion).

3. The lowest J-level has the lowest energy for less than half-filled sub-
shells, whereas for more than half-filled subshells, the highest J− level
corresponds to the lowest energy.

The first rule states that either 3P or 3F is the lowest energy state of
the atom (the ground state). To distinguish between the two states,
we invoke the second rule, which indicates that 3F is the ground state
term since L = 3 > L = 1. Thus, the predicted order of the terms by
Hund’s rules is

3F2,3,4,
3 P0,1,2,

1G4,
1D2,

1 S0.

This is likely not the actual ordering of the energy levels. However,
Hund’s rules can reliably predict the ground state, which is 3F2.

4. For a survey of fine structure lines from the literature, see Table 2.

5. The total fine-structure perturbation to the Bohr energy level is given by

∆E(n, j) = En

(
Zeffα

n

)2( n

j + 1/2
− 3

4

)
where En is the unperturbed energy level, n is the principal quantum

number, j is the total angular momentum quantum number, Z is the effec-
tive nuclear charge, and α is the fine structure constant.
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Atom/ion λ (µm) k (cm−1) Terms Telescope Object

C II 158 63.3 2P3/2 →2 P1/2 Herschel ULIRG

O I 145 69.0 3P0 →3 P1 Herschel ULIRG
O I 63 159 3P1 →3 P2 Herschel ULIRG
O III 52 192 3P2 →3 P1 Herschel ULIRG
N II 122 82.0 3P2 →3 P1 Herschel ULIRG
N III 57 175 2P1/2 →2 P1/2 Herschel ULIRG

Fe II 26 385 6D7/2 →6 D9/2 ISO-SWS AGB

Fe II 35.4 282 6D5/2 →6 D7/2 ISO-SWS AGB

Si II 35 286 2P1/2 →3 P3/2 ISO-SWS AGB/SFR

Ne II 12.8 781 2P1/2 →3 P3/2 Spitzer IRS SFR

Ne II 15.6 641 3P1 →3 P2 Spitzer IRS SFR

Table 2: An example of fine structure lines from the literature

We will consider the example of C II (Z = 6) with the electron config-
uration [He]2s22p1. An approximation to the effective nuclear charge due
to shielding is Zeff = 2, since the chemical species is singly ionized and we
are considering the outer valence electron. We use an ionization table and
find that the ionization energy I = 24.4 eV for C II. We are concerned with
transitions relative to n = 2, the energy level that corresponds to the ground
state of the valence electron, so in this case En = I.

Thus, we have a wavelength

λ = hc/(∆E(j = 1/2)−∆E(j = 3/2)) ≈ 195 µm

,
where h is Planck’s constant and c is the speed of light. This is off

compared to the observed wavelength at 158 µm, which is expected, since
the Bohr model is not a good approximation to non-hydrogenic atoms.
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