
Pulsational Pair Instability Supernovae

Woosley (2017)

How do massive stars evolve?

- → Black hole mass distribution
- → Pop III evolution
- → Superluminous supernovae?
- → Other weird transients?

6. Entropy loss and fuel depletion stabilize the core

Outline

Jean

- The simplest case: a pure He core, no nuclear burning
- More realistic models of He core, no envelope

Viraj

- Models of red supergiants (i.e., H envelope, no rotation)
- Models of bright blue stars
- The effects of rotation
- Superluminous supernovae

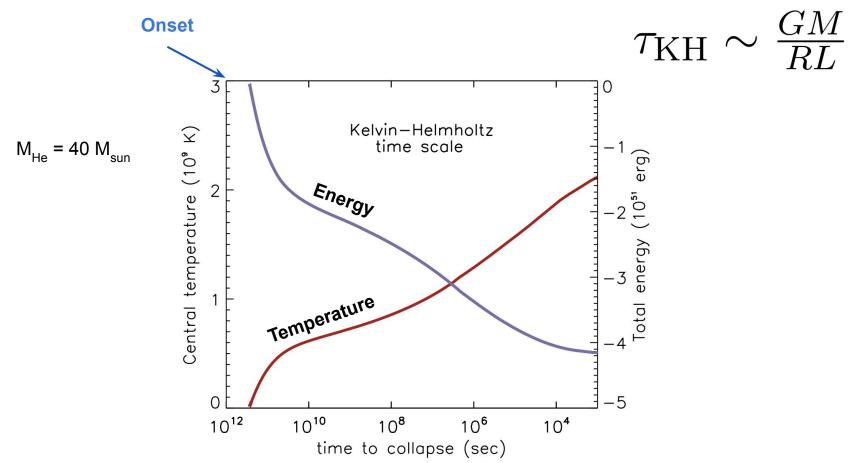
Dillon

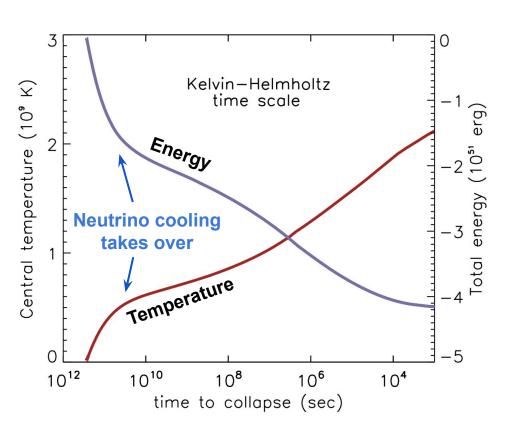
- Eta Carinae
- GW 150914
- The nucleosynthetic signatures of PPISN
- Conclusions

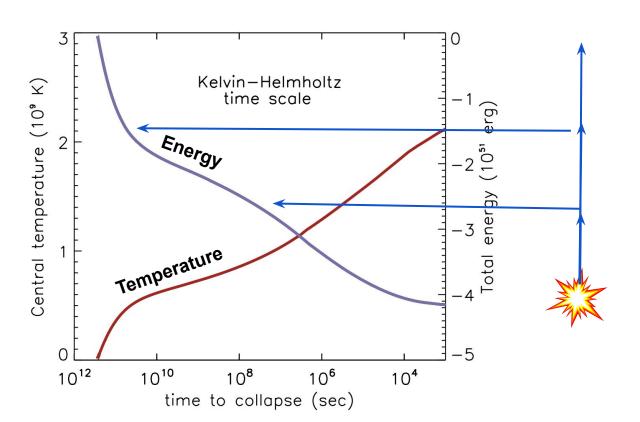
Code

KEPLER code

- Stellar evolution/explosion
- Implicit hydrodynamics
- Nuclear reactions complete up to germanium

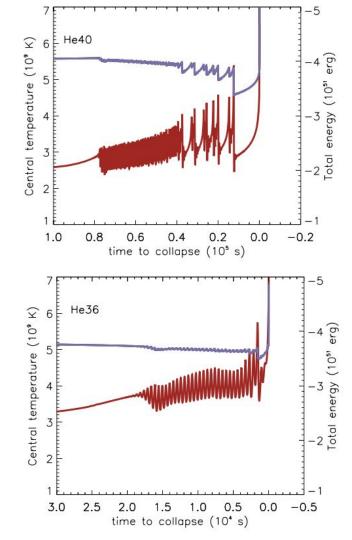

Biggest uncertainties:


- Mass loss! (they fiducially assume
 0.1 Z, and test varying assumptions)
- 1D code → no mixing/overturn → artifacts (spikes in density)
- Possible opacity uncertainties


$$\dot{M} = 9.63 \times 10^{-15} \left(\frac{L}{L_{\odot}}\right)^{1.24} \left(\frac{M}{M_{\odot}}\right)^{0.16} \left(\frac{R}{R_{\odot}}\right)^{0.81} M_{\odot} \text{ yr}^{-1}.$$

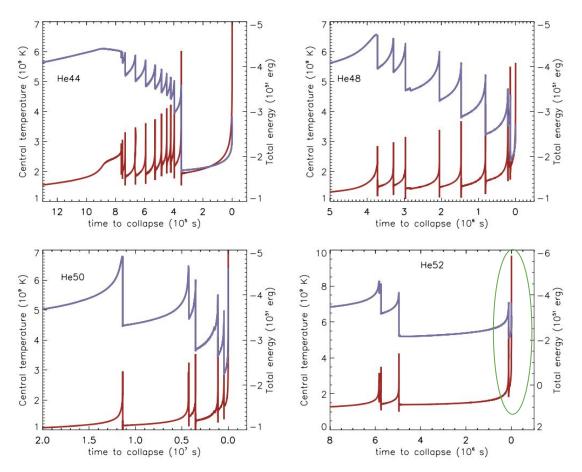
$$\Delta M = (8 \ M_{100}^{2.83} + 55 \ R_{14}^{0.81} M_{100}^{1.40}) \left(\frac{Z}{Z_{\odot}}\right)^{1/2}$$

A toy model - a pure He core, no nuclear burning



Linear regime

- Increased mass → more weak pulses which start earlier
- Each pulse is only a small perturbation on the core structure (relatively small temperature increase, only small mass ejection)

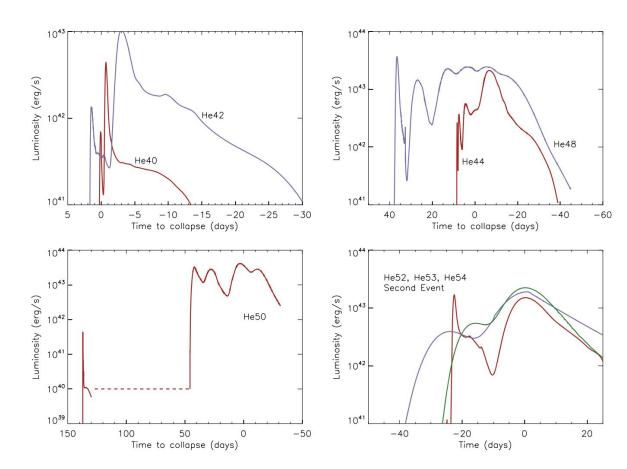

Linear regime Increased mass \rightarrow more, earlier pulses

Mass (M_{\odot})	$M_{ m CO} \ (M_{\odot})$	Pulses	Duration (s)	KE-pulse (10 ⁵¹ erg)	$M_{ m Fe} \ (M_{\odot})$	$M_{ m eject} \ (M_{\odot})$	$M_{ m remnant} \ (M_{\odot})$
30	24.65	stable	•••		2.34	•••	30.00
32	26.30	stable	•••	•••	2.38	•••	32.00
34	28.01	5 weak	2.3(3)	0.0012	2.51	0.13	33.87
36	29.73	33 weak	1.8(4)	0.0037	2.53	0.18	35.82
38	31.40	>100 weak	4.2(4)	0.0095	2.65	0.34	37.66
40	33.05	9 strong	7.8(4)	0.066	2.92	0.97	39.03
42	34.77	18	2.0(5)	0.26	2.68	2.65	39.35
44	36.62	11	7.7(5)	0.83	3.18	5.02	38.98
46	38.28	11	1.2(6)	0.77	2.40	5.51	40.49
48	40.16	8	3.8(6)	0.94	2.53	6.65	41.35
50	41.83	6	1.2(7)	0.86	2.76	6.31	43.69
51	42.59	6	1.9(7)	1.00	2.37	7.80	43.20
52	43.52	5	1.4(8)	0.99	2.47	7.87	44.13
53	44.34	4	7.8(8)	0.86	2.68	4.73	46.70
54	45.41	4	4.7(9)	0.94	2.16	6.85	47.15
56	47.14	3	3.4(10)	0.56	2.04	7.99	48.01
58	48.71	3	8.0(10)	1.1	2.00	12.14	45.86
60	50.54	3	8.5(10)	0.75	1.85	12.02	47.98
62	52.45	7	2.2(11)	2.3	3.19	27.82	34.18
64	54.14	1		4.0		64	

Strong regime

- Fewer, stronger pulses
- "Discrete explosive events"
- Above 52 M_{sun}, a couple fast pulses before collapse
- At highest masses, the remnant is barely bound after each pulse

 → will appear as the remnant of a faint supernova with a bright
 Wolf-Rayet star at the center
 ("dormant/zombie" supernovae)
- The final result is a massive iron core with dense Si/O shells → hard to explode → most likely will form BH
- BH mass range: ~35-50 M_{sun}

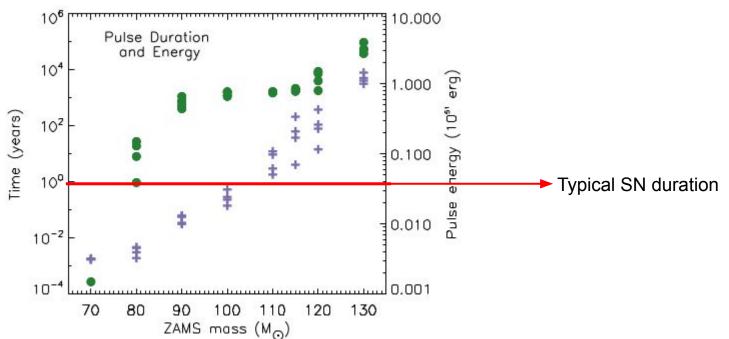


Strong regime Increased mass \rightarrow fewer, more powerful pulses

Mass (M_{\odot})	$M_{ m CO} \ (M_{\odot})$	Pulses	Duration (s)	KE-pulse (10 ⁵¹ erg)	$M_{ m Fe} \ (M_{\odot})$	$M_{ m eject} \ (M_{\odot})$	$M_{ m remnant} \ (M_{\odot})$
30	24.65	stable			2.34	•••	30.00
32	26.30	stable			2.38	•••	32.00
34	28.01	5 weak	2.3(3)	0.0012	2.51	0.13	33.87
36	29.73	33 weak	1.8(4)	0.0037	2.53	0.18	35.82
38	31.40	>100 weak	4.2(4)	0.0095	2.65	0.34	37.66
40	33.05	9 strong	7.8(4)	0.066	2.92	0.97	39.03
42	34.77	18	2.0(5)	0.26	2.68	2.65	39.35
44	36.62	11	7.7(5)	0.83	3.18	5.02	38.98
46	38.28	11	1.2(6)	0.77	2.40	5.51	40.49
48	40.16	8	3.8(6)	0.94	2.53	6.65	41.35
50	41.83	6	1.2(7)	0.86	2.76	6.31	43.69
5 1	42.59	6	1.9(7)	1.00	2.37	7.80	43.20
52	43.52	5	1.4(8)	0.99	2.47	7.87	44.13
53	44.34	4	7.8(8)	0.86	2.68	4.73	46.70
54	45.41	4	4.7(9)	0.94	2.16	6.85	47.15
56	47.14	3	3.4(10)	0.56	2.04	7.99	48.01
58	48.71	3	8.0(10)	1.1	2.00	12.14	45.86
60	50.54	3	8.5(10)	0.75	1.85	12.02	47.98
62	52.45	7	2.2(11)	2.3	3.19	27.82	34.18
64	54.14	1		4.0		64	

Wide variety of possible lightcurves

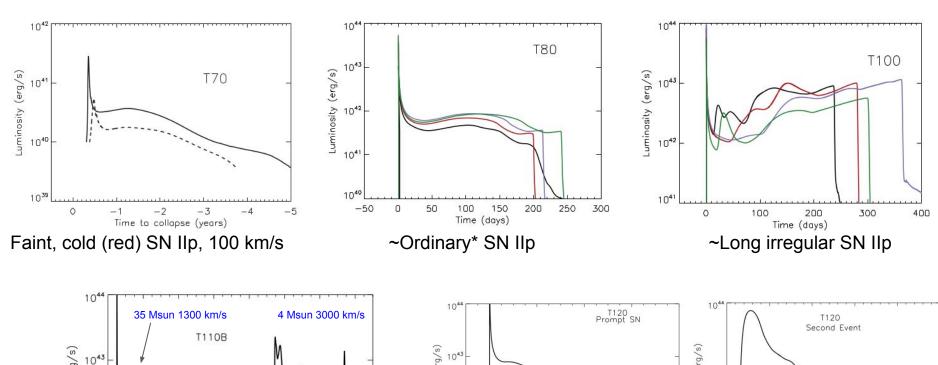
- Many will be characterized as SNe lbn/lcn
- Heavier masses show faint, brief transients from the first, powerful pulse. Followed by brighter event caused by second pulse + collision of ejected material from two pulses
- Nothing extremely bright

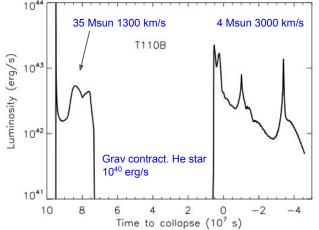

RSGs (adding H envelope, no rotation)

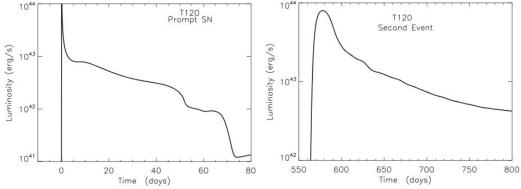
Adding H envelope:

- First pair-instability same as before
- Envelope "tamps" expansion of core, more core falls back
- Increases mass of remnant core
- Shortens interval between pulses, increases max energy slightly
- H envelope available for ejection, interaction

RSGs (adding H envelope, no rotation)

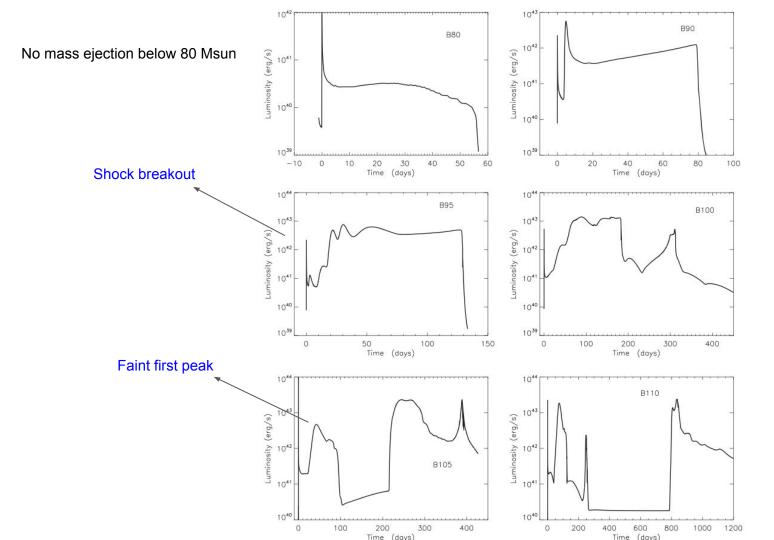

He core : 30-70 Msun -> ZAMS \sim 70-150 Msun , Z \sim 0.1 Zsun




Explosions from RSG

Mechanism:

- First pulse ejects maximum mass (including H envelope) at ~1000 km/s
- Most of the radiation comes from recombination in this ejecta
- Subsequent pulses eject more mass, that collides with the pre-existing outflows radiating through shocks
- Similar to SN IIp or SN IIn
- No radioactive Ni ejected



BSGs / bright blue stars

- LBVs could be progenitors of peculiar type IIn SN
- Photospheric radii: RSG ~10¹⁴ cm, BSG ~10¹² cm, Teff 25000-30000 K
- First outburst is significantly fainter than RSG case.
- Lower pulsational mass loss as the star is more tightly packed

The second increase in luminosity is caused by subsequent mass ejections at ~3000 km/s that collide with previously ejected mass

1040

100

200

Time (days)

300

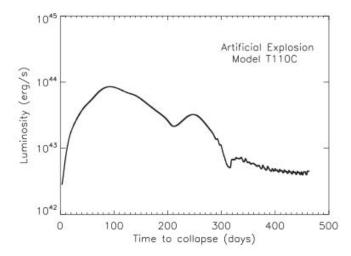
400

500

110-120 Msun, very faint first peak for few weeks -> dramatic rebrightening

Observed in some SN IIn SN1961v, SN20009ip, SN2010mc Thought to come from LBVs

Rotation

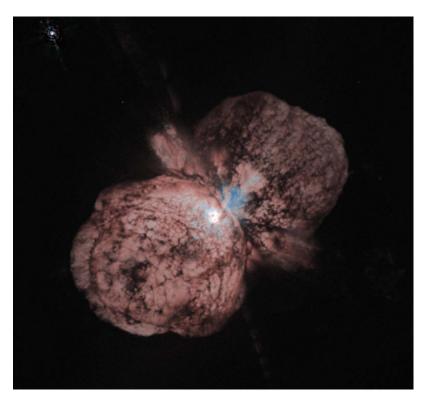

- Rotation -> chemical mixing -> increases He core mass
- Rotation reduces ZAMS threshold for PPI
- Once PPI happens, evolution is similar to non-rotating counterparts

Can PPI explain SLSNe?

- No, L_{PPI}^{\sim} < 10⁴³ erg/s, L_{SLSN}^{\sim} ~ 10⁴⁴ erg/s
- Iron core collapse -> Rotation!
- BH with an accretion disk, or a millisecond magnetar?

Bipolar outflows during the formation of a BH, interacting with previous PPI

shells

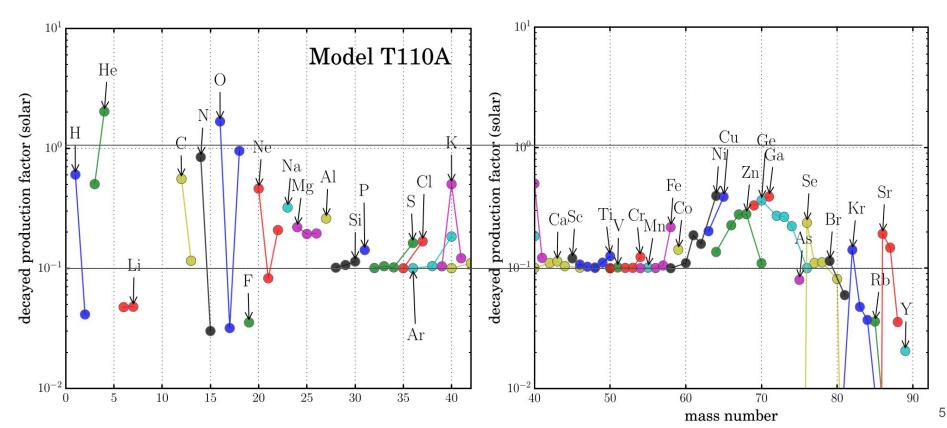


Eta Carinae as a PPISN progenitor?

- Great eruption (1840s)
- Tail of CSM velocities observed to be 3500-6000 km/s (explosive)
- Can reproduce timing of multiple eruptions. But model is too bright / ejecta not naturally asymmetric

Table 6 125 *M*_☉ Models for Eta Carinae

Model	M_{ej1}	E_1	t_{1-2}	M_{ej2}	E_2	t_{PreSN}	M_{now}
T125A	22.5	8.3	70	7.1	8.0	2650	51.8
T125B	34.0	9.6	470	7.4	5.8	1100	58.2


GW 150914 & BH production

- 36 + 29 M_o BH's
- 90 + 70 M_{\odot} ZAMS (non rotating, low Z)
- 70 + 60 M_{\odot} ZAMS (rotating, low Z)
 - Initial masses in the pulsational pair instability range. Final outcome of PPISNe = massive black holes (as opposed to nothing for PISNe)
 - Many (most?) PPISNe produce black holes of ~30M_☉
 - BH's can be produced up to ~52 M_o. Above that mass, nothing gets left behind

· ·		
$Model$ (M_{\odot})	$M_{\rm preSN}$ (M_{\odot})	$M_{ m rem} \ (M_{\odot})$
	()	(-12-0)
R60A	46.58	46.6
R70A	54.41	37.0
R80A	62.20	43.6
R80Ar	62.47	47.8
R90A	68.84	48.1
R100A	75.32	44.8
R110A	80.91	0
C60A	26.30	26.3
C60B	35.40	35.3
C60C	46.45	41.2
C70A	28.35	28.4
C70B	40.72	38.1
C70C	53.24	41.7
C80A	30.46	30.5
C80B	44.88	40.4
C80C	59.69	46.3
C90A	31.43	31.4
C90B	49.39	43.4
C90C	65.81	0

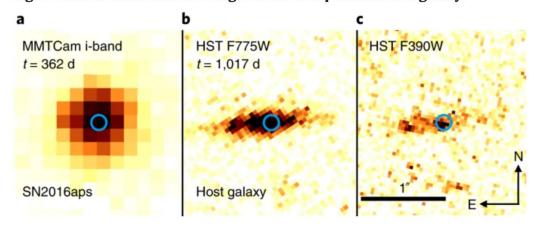
Nucleosynthesis

Mostly He and CNO produced, very few iron peak elements. Implications for lightcurve? Weird element ratios in early stars perhaps?

 \bullet Helium cores 30-62 M $_{\odot}$ undergo pulsational pair instability

- Helium cores 30-62 M_Θ undergo pulsational pair instability
- Low mass cores → frequent, short, weak pulsations
- High mass cores → fewer strong pulsations

- Helium cores 30-62 M_o undergo pulsational pair instability
- Low mass cores → frequent, short, weak pulsations
- High mass cores → fewer strong pulsations
- Pulsations can last from ~hours to ~10,000 years


- Helium cores 30-62 M_o undergo pulsational pair instability
- Low mass cores → frequent, short, weak pulsations
- High mass cores → fewer strong pulsations
- Pulsations can last from ~hours to ~10,000 years
- Afterwards, the star finishes its nuclear fusion and undergoes core collapse as normal

- Helium cores 30-62 M_o undergo pulsational pair instability
- Low mass cores → frequent, short, weak pulsations
- High mass cores → fewer strong pulsations
- Pulsations can last from ~hours to ~10,000 years
- Afterwards, the star finishes its nuclear fusion and undergoes core collapse as normal
- Major production channel for LIGO black holes?

Conclusions (2): What might a PPISN look like?

- Low metallicity host
- **Rare** (< 3% of CCSNe)
- He cores can be surrounded by envelopes (RSG, BSG, LBV) or not (WR) leading to a wide range of explosion types
- CSM interaction important in identifying these events
- Possible exotic behaviors (e.g. SN imposters followed by SN, multi-peak SNe), but many uncertainties remain

Fig. 1: Ground-based and HST images of SN2016aps and its host galaxy.

A claimed PPISN: 2016aps (Nicholl et al. 2020)