Information from fine structure lines: How to excite C⁺, O and N⁺?

Volker Ossenkopf,

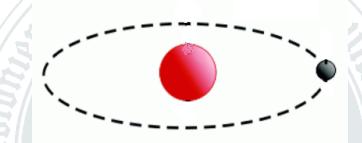
Kölner Observatorium für SubMm Astronomie, KOSMA I. Physikalisches Institut, Universität zu Köln

Table of contents

Line frequencies

- Basic atomic physics: The hydrogen atom
- Fine structure
- Hyperfine structure
- Metals

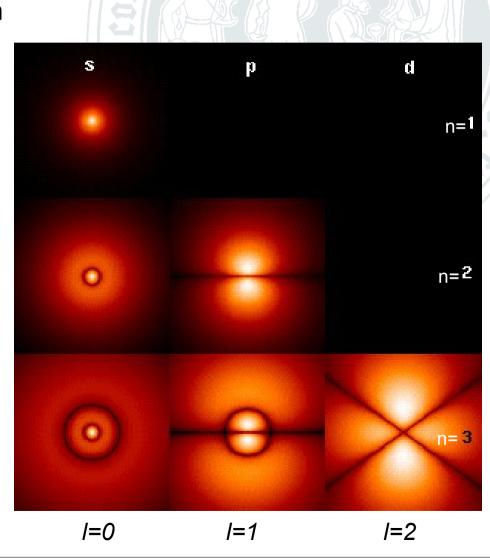
Line intensities


- Excitation: n-level, 2-level, 3-level problems
- LTE
- Collision partners
- Optically thin emission
- Radiative trapping
- Abundances

Repetition of basic atomic physics:

The H-atom

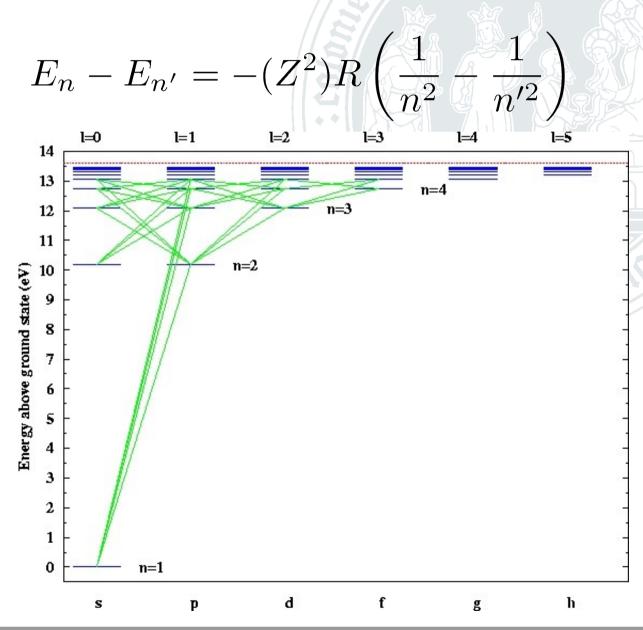
- Simple problem: p + e⁻
 - Pure Coulomb problem: $\hat{H}=rac{ec{p}^2}{2m_r}-rac{(Z)e^2}{4\pi\epsilon_0|ec{r}|}$
 - With reduced mass
- $m_r = \frac{m_e m_p}{m_e + m_p}$
- Solution has eigenvalues
 - With Rydberg constant
- $E = -R\frac{(Z^2)}{n^2}$
- $R = \frac{1}{2} \left(\frac{e^2}{4\pi\epsilon_0} \right)^2 \frac{m_r}{\hbar^2} \approx 13.605 \text{eV}$


Z = charge for more general case of multiple protons

number

Repetition of basic atomic physics:

The H-atom


- Orbits: Solution of the full spatial problem
 - Provides in total 3 quantum numbers:
 n, l, m_l
 - *I* = orbital quantum number *I*=0...*n*-1
 - m_1 = projection of I on z-axis: m_1 =-I...I
 - Energy levels n are degenerate with respect to l and m_l
 - Corresponding eigenvector: |n, I, m₁>

Repetition of basic atomic physics:

The H-atom

- Possible transitions
 - from level *n* to *n'*

Repetition of basic atomic physics:

The H-atom

- Possible transitions
 - from level *n* to *n'*
- Gives series for different n'
 - *n'*=1 = Lyman
 - *n*'=2 Balmer
 - *n'*=3 Paschen
 - *n'*=4 Bracket
 - n'=5 Pfund

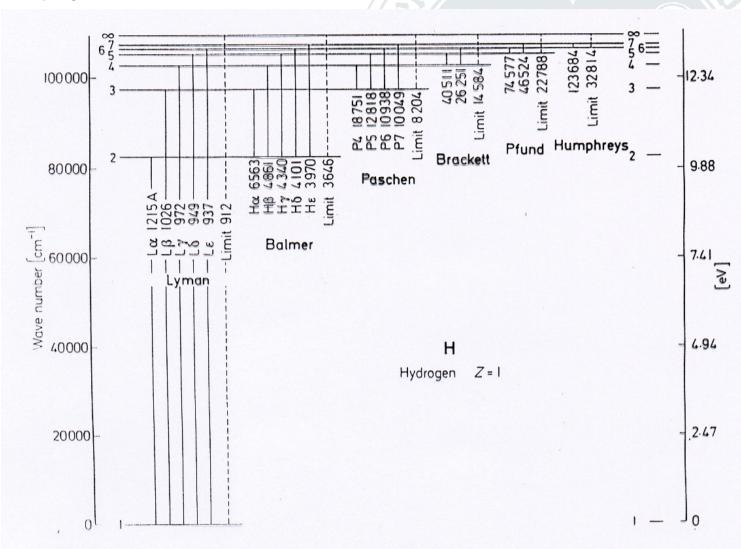


Fig. 13. Grotrian diagrams for H, He I, He II, C III, C III, C IV, O I, O II, O III, N II, Mg I, Mg II, Ca I, Ca II, Fe I, and Fe II. (After Moore and Merrill, 1968)

Basics of spectroscopy: Fine structure

The electron spin

- Adds spin system |s,m_s> with s=1/2
- Provides additional coupling term between orbital momentum and spin

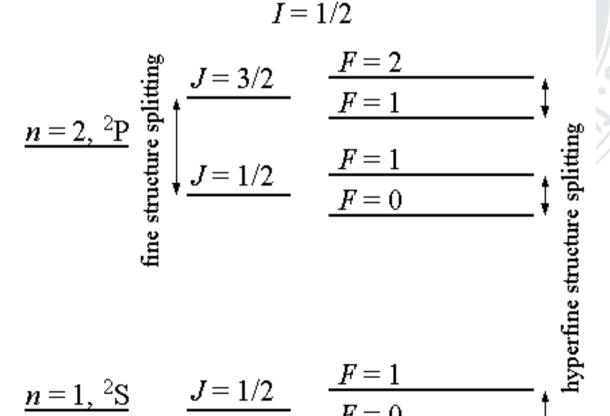
$$\hat{H}_{fs} = \frac{e}{2m_e^2c^2} \left(-\frac{1}{r} \frac{\partial}{\partial r} \frac{(Z)e^2}{4\pi\epsilon_0 |\vec{r}|} \right) \hat{\vec{s}} \hat{\vec{l}}$$

- Solution has eigenvalues

$$E_{FS} = \alpha^2 R \frac{(Z^4)}{n^3} \frac{j(j+1) - l(l+1) - s(s+1)}{l(l+1)(2l+1)}$$

• j = total angular momentum from $\vec{j} = \vec{l} + \vec{s}$ \rightarrow j=l-s...l+s

•
$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} pprox \frac{1}{137}$$
 Sommerfeld fine structure constant


Basics of spectroscopy: Fine structure

The electron spin

- Fine structure energies are scaled by α² relative to main level energies
- H-atom
 - No split for n=1, l=0 because j=1/2 independent of m_s
 - First split for n=2, l=1 $\rightarrow j=1/2$, 3/2

$$\Delta E_{fs} = 4.53 \, 10^{-5} \text{eV}$$

= 10.9GHz

- Requires *n*=2 excitation: 10.2eV = 120000K
- Not directly observable due to other splits

Basics of spectroscopy: Notation

Spectroscopy notation

$$2s+1l_j^{(p)}$$

I encrypted in letters

$$-0 = s$$
, $1 = p$, $2 = d$, $3 = f$, $4 = g$, $5 = h$, ...

- p = parity
 - Blank for parity = even, o for parity = odd
 - Characterizes whether wave function changes sign under reflection of all electron positions through the origin.

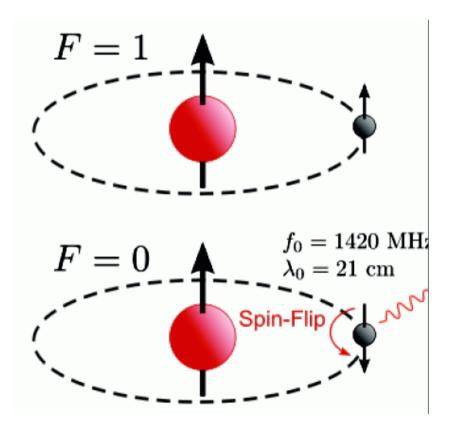
• Examples:

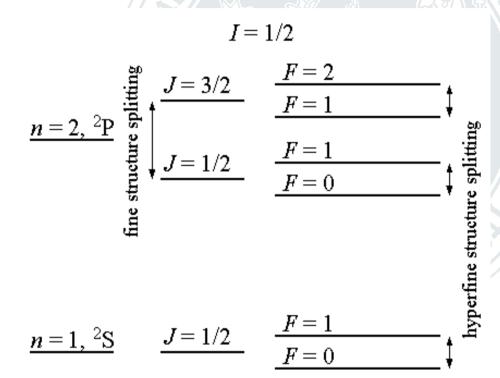
- $-2s_{1/2}$ = ground state
- $-2p_{1/2}$, $2p_{3/2}$ = first excited state (Balmer level)

Basics of spectroscopy: Hyperfine splitting

The nuclear spin

- Adds nuclear spin system |i,m| with i=1/2 for every nucleon
- Treatment equivalent to fine-structure splitting
- New quantum number $\vec{f} = \vec{j} + \vec{i}$
 - f = total angular momentum from → f=j-i...j+i
- Eigenvalues of hyperfine coupling

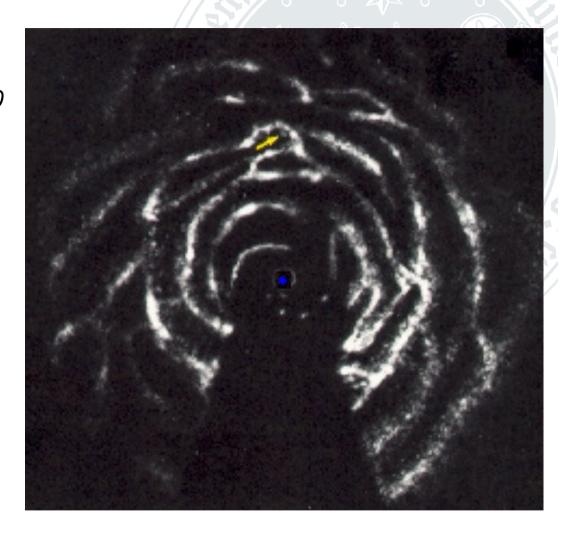

$$E_{HF} = g_N \frac{m_e}{m_p} \alpha^2 R \frac{(Z^4)}{n^3} \frac{f(f+1) - j(j+1) - i(i+1)}{j(j+1)(2j+1)}$$


- Hyperfine splitting typically lower than fine-structure splitting by factor $\frac{m_e}{m_p}$
- g_N Gaunt factor of the core
- Spectroscopic notation: explicite writing of f

Basics of spectroscopy: Hyperfine structure splitting

Hyperfine structure

- H-atom
 - for n=1 (ground state, l=0): ${}^{2}S_{1/2}$: f=1-0
 - Can be observed for "cold hydrogen"



- famous 21cm line = 1.42GHz
- allows for mapping of the Milky Way
- magnetic dipole transition → forbidden
 - $A = 2.9 \ 10^{-15} \ s^{-1}$
 - $t=10^7$ a

Basics of spectroscopy: Hyperfine structure splitting

Hyperfine structure

- H-atom
 - for n=1 (ground state, l=0): ${}^{2}S_{1/2}$: f=1-0
 - Can be observed for "cold hydrogen"
- allows for mapping of neutral interstellar gas

1951 Lyman Spitzer: Mapping of the Milky Way

12

Basics of spectroscopy: Atoms

Multiple electrons

- Arrangement in subshells with increasing energy level
 - = increasing main and orbital quantum numbers n, l
 - Example: $C^+ = 1s^2 2s^2 2p^1$
 - 3 subshells occupied
 - Closed shells: Sum of orbital momenta and spins always = 0
 - No contribution to radiative interaction
 - Can be ignored
 - 3rd subshell is open:
 - can take 6 electrons: m_l = -1,0,1, m_s = -½, ½
 - dominates radiative interaction as
 - Only electrons in open shell need to be considered

Basics of spectroscopy: Atoms

Multiple electrons

- Coupling between different electrons
 - Provides additional term to Hamiltonian
 - No analytic solution
 - Approximation through Russell-Sounders coupling
 - Inter-electron coupling stronger than spin-orbit coupling
 - Individual orbital momentums and spins add up $\sum ec{l} = ec{L} ext{ and } \sum ec{s} = ec{S}$ $ec{J} = ec{L} + ec{S}$
 - Remember: approximation only $\rightarrow L, S, J$ are no "good" quantum numbers
 - Different approximation for heavy elements
- Spectroscopic notation:
 - capital letters for sum over multiple electrons in open shell
 - explicite writing of *F* for sum of total angular momentum including nuclear spin

Basics of spectroscopy: Multiple electrons

Astrophysically relevant subterms

- ullet Remember H-atom: ${}^{2s+1}l_j^{(p)}$
- Equivalently for multi-electron atoms

2S+1	$L_I^{(P)}$
	/\\

Ground	Terms	
configuration	(in order of increasing energy)	Examples
ns^1	$^{2}S_{1/2}$	HI, He II, CIV, NV, OVI
ns^2	$^{1}\mathrm{S}_{0}$	He I, C III, N IV, O V
np^1	${}^{2}P_{1/2,3/2}^{o}$	CII, NIII, OIV
np^2	${}^{2}\mathrm{P}_{1/2,3/2}^{\mathrm{o}} \ {}^{3}\mathrm{P}_{0,1,2}^{\mathrm{o}},{}^{1}\mathrm{D}_{2}^{\mathrm{o}},{}^{1}\mathrm{S}_{0}^{\mathrm{o}}$	CI, NII, OIII, Ne V, SIII
np^3	${}^{4}\mathrm{S}^{\mathrm{o}}_{3/2}$, ${}^{2}\mathrm{D}^{\mathrm{o}}_{3/2,5/2}$, ${}^{2}\mathrm{P}^{\mathrm{o}}_{1/2,3/2}$	NI, OII, Ne IV, SII, Ar IV
np^4	${}^{4}S_{3/2}^{o}$, ${}^{2}D_{3/2,5/2}^{o}$, ${}^{2}P_{1/2,3/2}^{o}$ ${}^{3}P_{2,1,0}$, ${}^{1}D_{2}$, ${}^{1}S_{0}$	OI, Ne III, Mg V, Ar III
np^5	${}^{2}\mathrm{P}^{\mathrm{o}}_{3/2,1/2}$	Ne II, Na III, Mg IV, Ar IV
np^6	${}^{1}\mathrm{S}_{0}$	Ne I, Na II, Mg III, Ar III

Basics of spectroscopy: Multiple electrons

Russel-Sounders coupling

- Solution
 - "Hund rules": 1) higher $S \rightarrow lower energies$
 - 2) higher L \rightarrow lower energies
 - 3) lower J and shell ≤ half-full → lower energies shell > half-full → higher energies
 - Example: $C^+ = 1s^2 2s^2 2p^1$
 - 2p electron has $S = \frac{1}{2}$, L = 1

$$\rightarrow$$
 gives $J = \frac{1}{2} (m_J = -\frac{1}{2}, \frac{1}{2})$
or $J = \frac{3}{2} (m_J = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}) = \frac{2\text{-level system}}{2}$

- Only 3rd Hund rule applies:

$$\Delta E = 7.86 \text{meV}$$
 $= 1900.536 \text{GHz}$ $= 157.7 \mu \text{m}$ $= 2P_{3/2} g = 4$ $^2P_{3/2} g = 4$

- Equivalent for N⁺⁺: ΔE=57μm

Basics of spectroscopy: Hyperfine structure in atoms

Hyperfine structure

Superimposed if nuclear spin does not sum up to 0

Table 17. A table of hyperfine transitions at radio frequencies¹

Atom	or molecule	Spin	Transition	Frequency (Hz)	$A_{mn}(\sec^{-1})$
ні	neutral hydrogen	1/2	$^{2}S_{1/2}, F = 0 - 1$	$1.420405751.786 \times 10^9 \pm 0.01$	2.85 × 10 ⁻¹⁵
Ð	deuterium	1	$^{2}S_{1/2}, F = \frac{1}{2} - \frac{3}{2}$	$3.27384349 \times 10^8 \pm 5$	4.65×10^{-17}
HeII	singly ionized helium	1/2	$^{2}S_{1/2}, F=1-0$	$8.66566 \times 10^9 \pm 1.8 \times 10^5$	6.50×10^{-13}
NVII	ionized nitrogen	1	$^{2}S_{1/2}, F = \frac{1}{2} - \frac{3}{2}$	5.306×10^{7}	1.49×10^{-19}
NI	neutral nitrogen	1	$^{4}S_{3/2}, F = \frac{3}{2} - \frac{5}{2}$ $F = \frac{1}{2} - \frac{3}{2}$	2.612×10^7 1.567×10^7	1.78×10^{-20} 3.84×10^{-21}
H ₂ ⁺	ionized molecular hydrogen	1	$F_2, F_{\frac{3}{2}}, \frac{5}{2} - \frac{1}{2}, \frac{3}{2}$ $F_2, F_{\frac{3}{2}}, \frac{3}{2} - \frac{1}{2}, \frac{3}{2}$	$1.40430 \times 10^9 \pm 10^7$ $1.41224 \times 10^9 \pm 10^7$	2.75×10^{-15} 2.80×10^{-15}
Na I	neutral sodium	3 2	$^{2}S_{3/2}, F=1-2$	1.77161 × 10 ⁹	5.56×10^{-15}

From Townes (1957), FIELD, SOMERVILLE, and Dressler (1966), and Kerr (1968).


Basics of spectroscopy: Hyperfine structure in atoms

Hyperfine structure

• Example: ¹³C+

$$-I = \frac{1}{2}$$
 combines with $J = \frac{1}{2}$ to $F = 0$ ($m_F = 0$) or $F = 1$ ($m_F = -1, 0, 1$)
with $J = \frac{3}{2}$ to $F = 1$ ($m_F = -1, 0, 1$) or $F = 2$ ($m_F = -2, -1, 0, 1, 2$)

C+ levels split up

$${}^{2}P_{3/2} F = 2 g = 5$$
 ${}^{2}P_{3/2} F = 1 g = 3$

$${}^{2}P_{1/2} F = 1 g = 3$$

 ${}^{2}P_{1/2} F = 0 g = 1$

- 3 possible transitions, F = 2 → 0 is forbidden

Basics of spectroscopy: Multiple electrons in one subshell

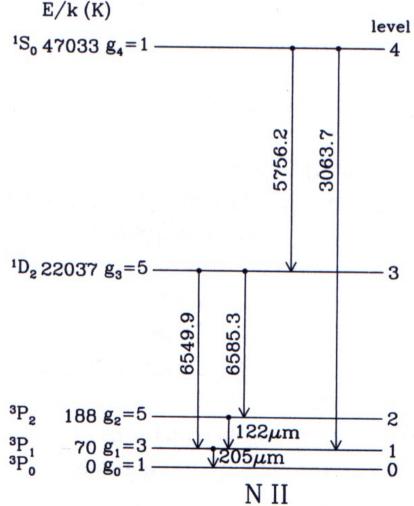
Combination of states

- Example: $N^+ = 1s^2 2s^2 2p^2$
 - Combination of two electrons with $s = \frac{1}{2} (m_s = -\frac{1}{2}, \frac{1}{2}), l = 1 (m_l = -1, 0, 1)$
 - → gives 6x6=36 possible combinations
 - Pauli exclusion principle:
 - 2 electrons never in same state
 - Electrons indistiguishable, i.e. wave functions antisymmetric with respect of exchange of 2 electrons
 - 15 allowed combinations remaining

•
$$I_1 \uparrow \uparrow I_2$$
, $s_1 \uparrow \downarrow s_2$: L=2, S=0 $\rightarrow J=2$ $(m_J=-2,-1,0,1,2)$ $\rightarrow {}^1D_2$, $g=5$

•
$$I_1 \uparrow \downarrow I_2$$
, $s_1 \uparrow \downarrow s_2$: L=0, S=0 $\rightarrow J=0 \ (m_J=0)$ $\rightarrow {}^1S_0$, $g=1$

•
$$I_1 \perp I_2$$
, $s_1 \uparrow \uparrow s_2$: L=1, S=1 $\rightarrow J=0 \ (m_J=0)$ $\rightarrow {}^3P_0$, g=1


$$\rightarrow J=1 \ (m_J=-1,0,1) \rightarrow {}^3P_1 \ , \ g=3$$

$$\rightarrow J=2 (m_J=-2,-1,0,1,2) \rightarrow {}^3P_2, g=5$$

Basics of spectroscopy: Combination of states

$$N^+ = 1s^2 2s^2 2p^2$$

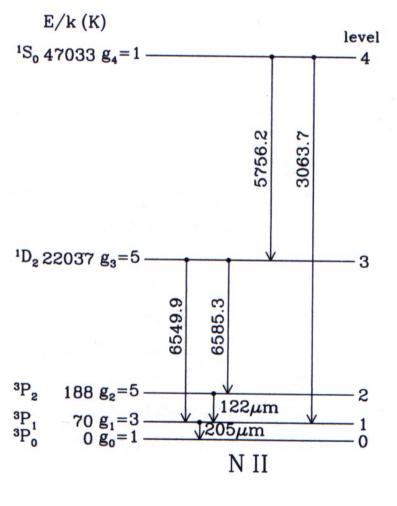
- 2) higher L
- "Hund rules": 1) higher S → lower energies
 - → lower energies
 - 3) lower J and shell \leq half-full \rightarrow lower energies
 - shell > half-full → higher energies

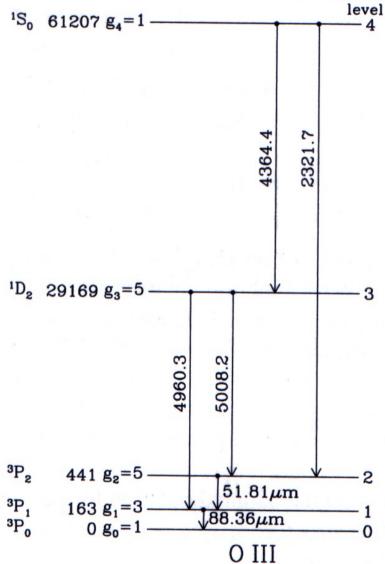
The S=0 states need very high excitation energy

→ usually not relevant for ISM physics

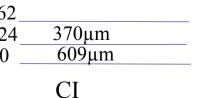
→ treat N⁺ as 3-level system

Only 2 radiative transitions. $J = 2 \rightarrow 0$ forbidden

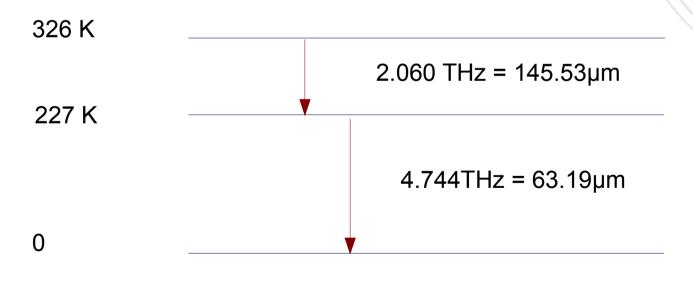

 $122\mu m = 2457 GHz$


 $205\mu m = 1458 GHz$

Basics of spectroscopy: Combination of states


Other atoms with same configuration: ³P_{0,1,2}

• $N^+ = O^{++} = C$



Basics of spectroscopy: Combination of states

$$O = 1s^2 2s^2 2p^4$$

- Similar addition of configurations for all 4 electrons
- Now third Hund rule with "shell > half-full" applies → reverse order: ³P_{2,1,0}
- Only S=1 states excited at moderate temperatures (below 20000K)
 - Effectively 3-level system as well
 - Radiative transitions only $J = 2 \rightarrow 1$ and $J = 1 \rightarrow 0$

$3P_0$
 $g=1$

$$^{3}P_{1} \ g = 3$$

$$^{3}P_{2}$$
 $g=5$

Basics of spectroscopy: Summary

Few cases to distinguish:

- 2-level systems: HI, C+, N++
- 3-level systems: C, N⁺, O⁺⁺, O
 - ²P_{0,1,2} (C, N⁺, O⁺⁺): ground-state transition has lower frequency
 - ²P_{2,1,0} (O): ground-state transition has higher frequency
- 4-level systems: ¹³C⁺

- 2p³ systems: N, O⁺ → "Darkness"
 - no fine-structure transitions excited at temperatures << 20000K

Excitation analysis: Introduction of quantities


 Consider transitions between 2 levels:

- Spontaneous emission: A_{ul}

- Stimulated emission: $B_{ul}U$

- Absorption: $B_{lu}U$

- Collisional transitions: C_{ul}, C_{lu}

$$U = \int \int \frac{I_{\nu}\phi(\nu)}{c} d\nu d\Omega = \frac{4\pi}{c} \langle I_{\text{line}} \rangle$$

 Rate coefficients are mutually dependent:

- Number conservation:

$$C_{lu} = C_{ul} \frac{g_u}{g_l} \exp\left(-\frac{h\nu}{kT_{kin}}\right)$$

$$B_{lu} = B_{ul} \frac{g_u}{g_l}$$

- Quantum mechanics:

$$B_{ul} = A_{ul} \, \frac{c^3}{8\pi h \nu^3}$$

Excitation analysis: Balance equation

General case: transitions between multiple levels

 To determine the excitation of the system the matrix of balance equations had to be solved

$$n_i \left(\sum_{j < i} A_{ij} + \sum_{j \neq i} B_{ij} u_{ij} + \sum_{j \neq i} C_{ij} \right)$$

$$= \sum_{j > i} A_{ji} n_j + \sum_{j \neq i} B_{ji} u_{ij} n_j + \sum_{j \neq i} C_{ij} n_j$$

• n_i - level population of level i

 n_{coll}

- A_{ij}, B_{ij} spontaneous, induced radiative rate coefficients u_{ij} radiative energy density at transition frequency
- $C_{ij} = \sum_{i_{coll}} n_{i_{coll}} \gamma_{ij,i_{coll}}$ collisional rate coefficients for different collision partners i_{coll} :

H₂, H, H⁺, He, electrons, ...

Excitation analysis: n-level systems

Description of level populations by excitation temperature T_{ex}

$$\frac{n_j}{n_i} = \frac{g_j}{g_i} \exp\left(-\frac{h\nu_{ij}}{kT_{ex,ij}}\right)$$

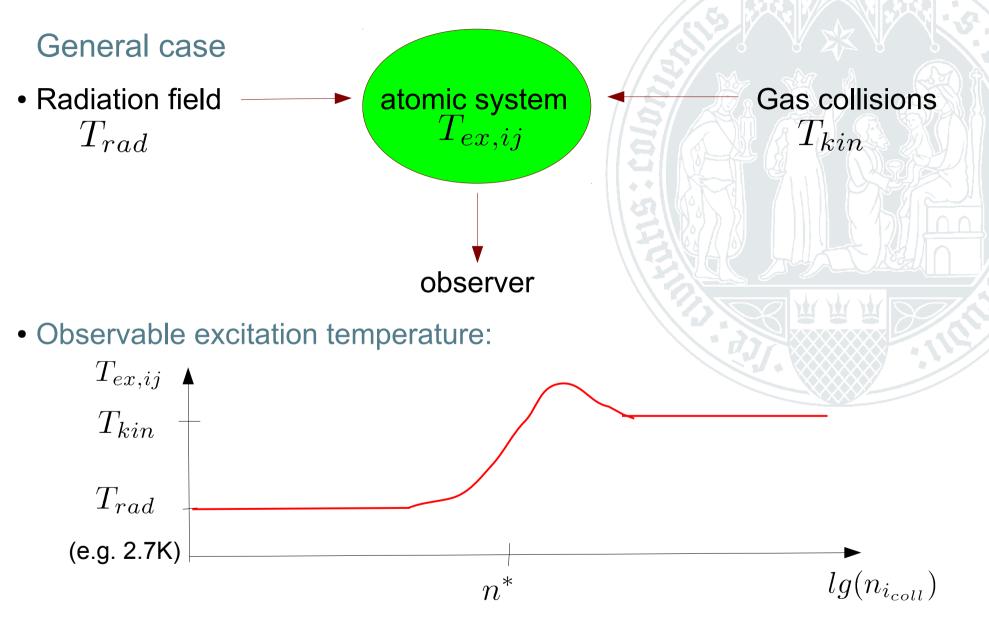
- Usually different for every pair of levels i,j
- Can be obtained exploiting properties of Einstein coefficients
- Radiation: $B_{ij}g_i=B_{ji}g_j$

• Collisions:
$$C_{ij} = C_{ji} \frac{g_j}{g_i} \exp\left(-\frac{h\nu_{ij}}{kT_{kin}}\right)$$

- for j > l
- → 3 limiting cases

Excitation analysis: Excitation temperature

Limiting cases


- Collision-dominated ($n_{i_{coll}}$ large): $C_{ij}\gg A_{ij}, B_{ij}u_{ij}$ for all i,j
 - ightarrow Balance equation: $\frac{n_i}{g_i} \sum_{j \neq i} C_{ij} = \sum_{j \neq i} \frac{n_j}{g_j} C_{ij} \exp\left(\frac{h\nu_{ij}}{kT_{kin}}\right)$
 - Solution:
 - $T_{ex,ij} = T_{kin}$ for all i,j
 - = LTE (local thermodynamical equilibrium)

Excitation analysis: Excitation temperature

Limiting cases

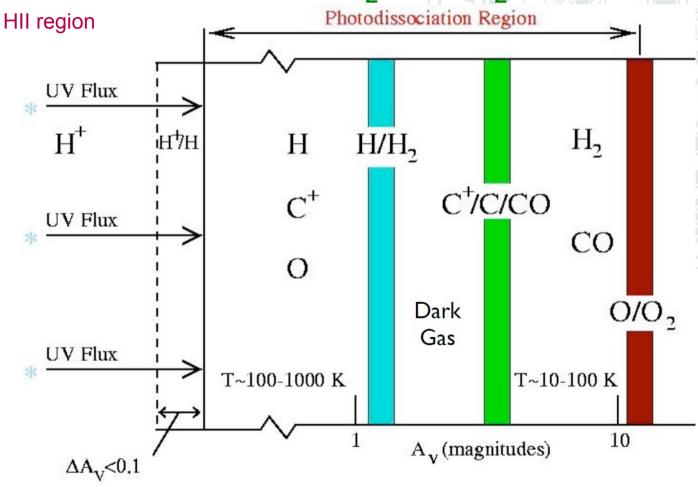
- Radiation dominated (u_{ij} large): $B_{ij}u_{ij}\gg A_{ij},C_{ij}$ for all i,j
 - ightarrow Balance equation: $\frac{n_i}{g_i}\sum_{j\neq i}B_{ij}u_{ij}=\sum_{j\neq i}\frac{n_j}{g_j}B_{ij}u_{ij}$
 - Solution:
 - $n_i/g_i = \text{const.}$
 - $T_{ex.ii} = \infty$
- Vacuum ($n_{i_{coll}}, u_{ij}$ small): $A_{ij} \gg B_{ij} u_{ij}, C_{ij}$ for all i,j
 - Solution:
 - $n_i \ll 1 \ \forall i > 0$
 - $T_{ex,ij} = T_{bg}$

Excitation analysis: Excitation temperature

• Transition roughly around critical density: $n_{i_{coll}}^* = A_{ij}/\gamma_{ij,i_{coll}}$

Collision partners: Environmental conditions

Gas-phase conditions


Element	number abundance	1 st ionization	tion	
– H	100	13.6 eV		
- He	9	24.6 eV	54.4 eV	
- O	0.026	13.6 eV	35.1 eV	
- C	0.012	11.3 eV	24.4 eV	
– N	0.008	14.5 eV	29.6 eV	Wakelam & Herbst (2008)

- O is neutral whenever H is neutral
- Only C can be (singly) ionized in regions where H is neutral
- OIII traces very energetic UV fields

Environmental conditions: abundances and collision partners

Spatial distribution

HII/OIII HII/NII/CII H/O/CII H₂/O/CII H₂/O/C

Determines the main collision partners

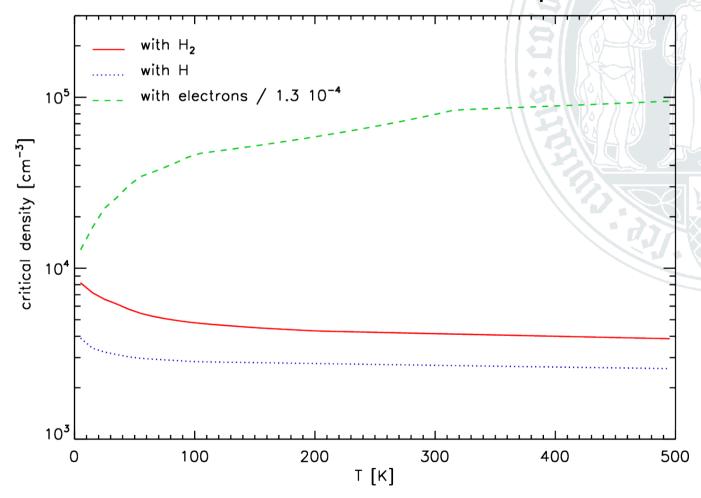
31

Environmental conditions: abundances and collision partners

Layering:

HII/OIII HII/NII/CII H/O/CII H₂/O/CII H₂/O/C

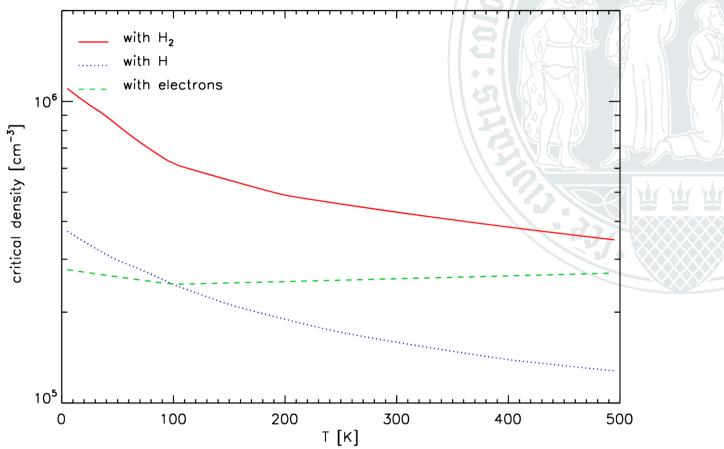
determines the main collision partners:


- · OIII
 - Electrons: density given by number of H atoms
- NII
 - Electrons: density given by number of H atoms
- · CII
 - Electrons: density given by H atoms or C atoms
 - H-atoms
 - H₂ molecules
- · CI
 - H₂ molecules

(all have additional minor contribution from He)

Excitation analysis: Collisions

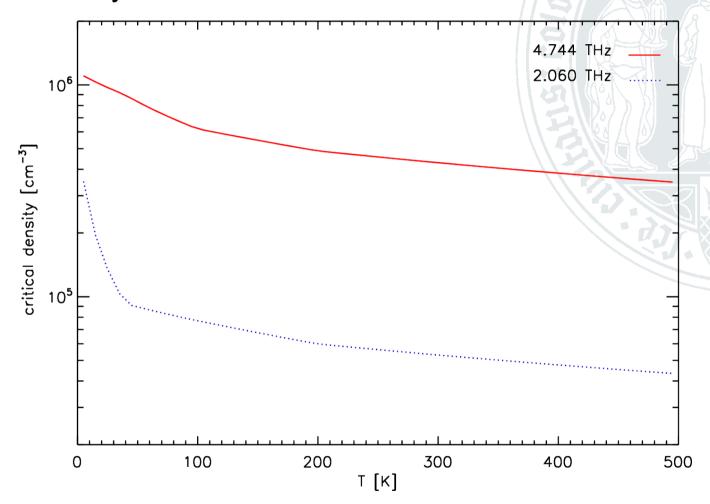
[CII] excitation:


Critical densities for different relevant collision partners

• Electrons only play a role if more than the carbon is ionized (X[C/H]=1.3 10⁻⁴), i.e. in HII regions

[OI] excitation:

63µm ground-state transition



- H-excitation is most efficient, but regions with high fraction of atomic H always have low densities (or volumes) so that there O⁺ is never in LTE
- High densities associated with H₂ factor 3 less efficient

Excitation analysis: Collisions

[OI] excitation:

• Full 3-level system - critical densities for two transitions:

- Critical densities are temperature-dependent!
- Non-trivial behavior for n-level systems (n > 2)!

V. Ossenkopf

Line emission: Emission and absorption coefficients

n_i from balance equations

- Emission coefficient: $\epsilon_{\nu}(\vec{n}) = h\nu_{ij}n_iA_{ij}\frac{\phi_{\nu}(\vec{n})}{4\pi}$ (spontaneous emission)
- Absorption coefficient: $\kappa_{\nu}(\vec{n}) = h\nu_{ij} \ (n_j B_{ji} n_i B_{ij}) \frac{\phi_{\nu}(\vec{n})}{c}$ (absorption and induced emission)
- With line profile $\phi_{\nu}(\vec{n}) = \int \delta \left(\nu \nu_{ij} \left[1 + \frac{\vec{v}\vec{n}}{c} \right] \right) p(\vec{v}) \ d^3\vec{v}$ $\approx \frac{1}{\sqrt{2\pi}\sigma} \frac{c}{\nu_{ij}} \exp \left(-\frac{c^2}{2\sigma^2} \left[\frac{\nu \nu_{ij}}{\nu_{ij}} \right]^2 \right)$

for Maxwellian velocity distribution

– normalized so that omission of $\phi_
u(ec{n})$ gives line-integrated quantities

Line emission: Emission and absorption coefficients

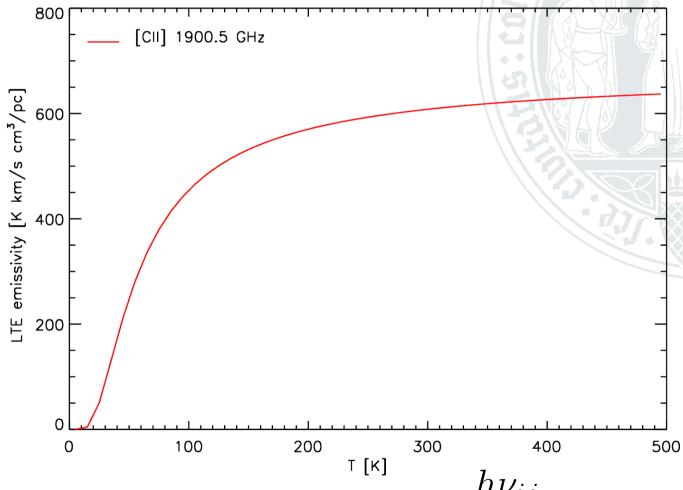
Alternative expression

- $\epsilon_{\nu}(\vec{n}) = \kappa_{\nu}(\vec{n}) \times B_{\nu_{ij}}(T_{ex,ij})$
 - $B_{
 u_{ij}}(T_{ex,ij})$ Planck function (blackbody emissivity)

Practical computation:

- LTE
 - Boltzmann distribution of level populations n_i : $n_i \propto g_i \times \exp\left(-\frac{E_i}{kT_{kin}}\right)$

-
$$T_{ex,ij} = T_{kin}$$
 i.e. $B_{\nu_{ij}}(T_{ex,ij}) = B_{\nu_{ij}}(T_{kin})$


37

Excitation analysis: LTE

LTE emissivity:

• Most simple: [CII] as two-level system

²P_{1/2,3/2}

• Constant emissivity at temperatures above

 $\frac{h\nu_{ij}}{k} = 91.2K$

Excitation analysis: LTE

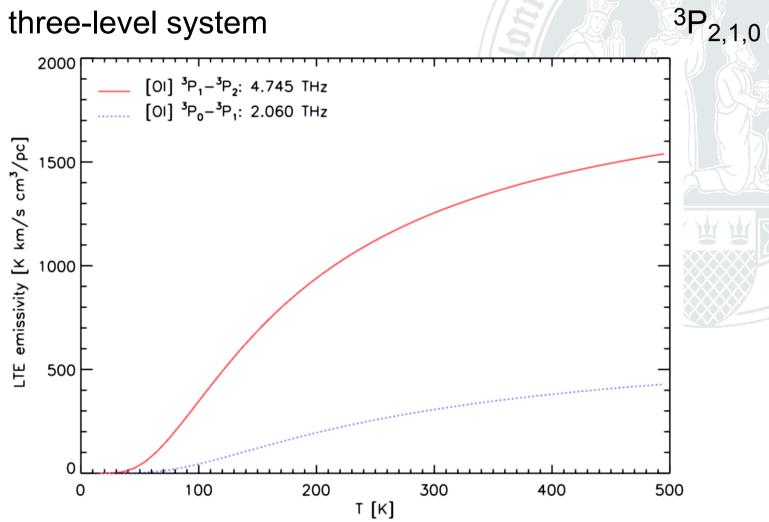
[CII] 1.9THz:

Analytic description for emissivity

$$\int \epsilon \, dv = \frac{hc^3 A}{8\pi k \nu^2} \times N_{\text{C}^+} \frac{g_u \exp(-\Delta E/kT_{\text{ex}})}{g_l + g_u \exp(-\Delta E/kT_{\text{ex}})}$$

$$\approx 1011 \frac{\text{K kms}^{-1}}{\text{cm}^{-3} \text{ pc}} \times N_{\text{C}^{+}} \frac{2 \exp(-91.2 \text{K}/T_{\text{ex}})}{1 + 2 \exp(-91.2 \text{K}/T_{\text{ex}})}$$

and absorption/optical depth

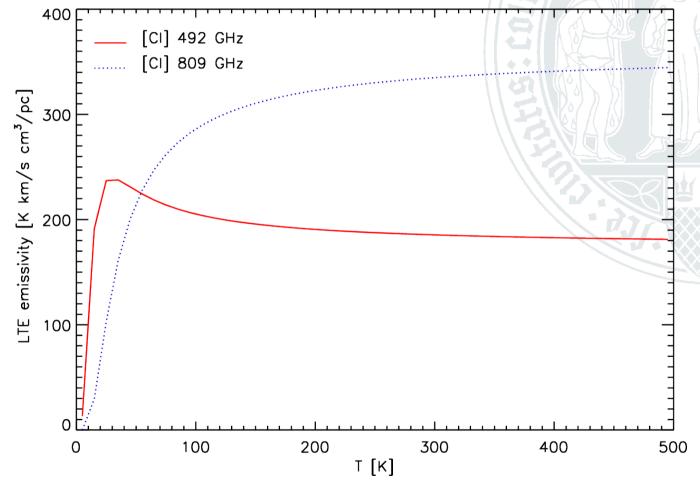

$$\int \tau dv = 7.15 \times 10^{-18} \frac{\text{kms}^{-1}}{\text{cm}^{-2}} \times N_{\text{C}^{+}} \frac{1 - \exp(-91.2 \text{ K}/T_{\text{ex}})}{1 + 2 \exp(-91.2 \text{ K}/T_{\text{ex}})}$$

$$\approx 7.15 \times 10^{-18} \frac{\text{kms}^{-1}}{\text{cm}^{-2}} \times N_{\text{C}^{+}} \frac{32.9 \text{ K}}{T_{\text{ex}}}.$$

 \rightarrow With X(C+/H) =1.3 10⁻⁴, [CII] turns optically thick for N_H ~ 2 10²¹ cm⁻², i.e. A_V ~ 1

LTE emissivity:

• [OI] as three-level system

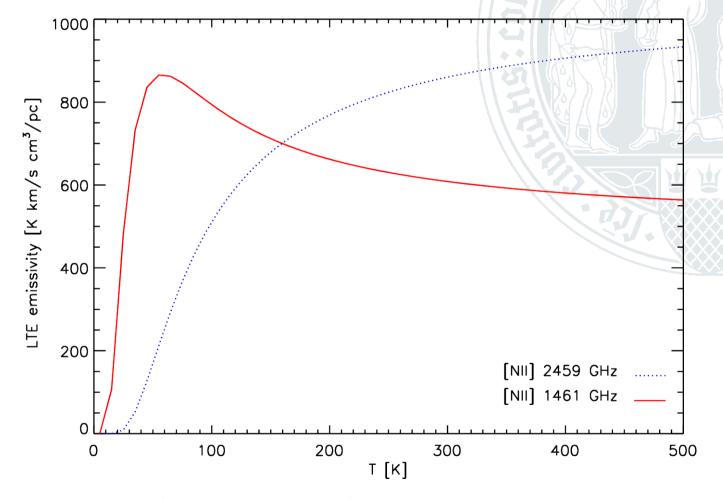


• Transition to constant emissivity shifted by factor 2 due to higher level energies

LTE emissivity:

• [CI] as three-level system

 $^{3}P_{0,1,2}$



• "Overshooting" in ground-state line for all ${}^3P_{0,1,2}$ systems

LTE emissivity:

• [NII] as equivalent system

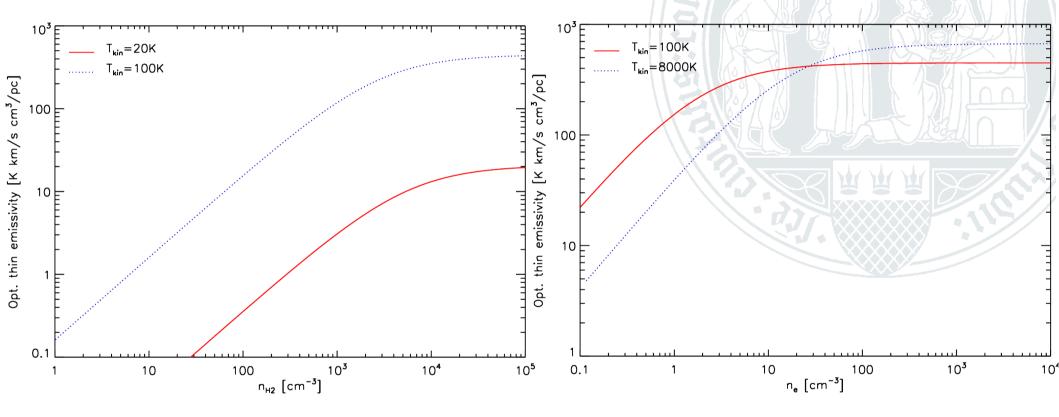
 $^{3}P_{0,1,2}$

• [OIII] fully equivalent (not shown here)

Line emission: Non-LTE

Next-step approximation:

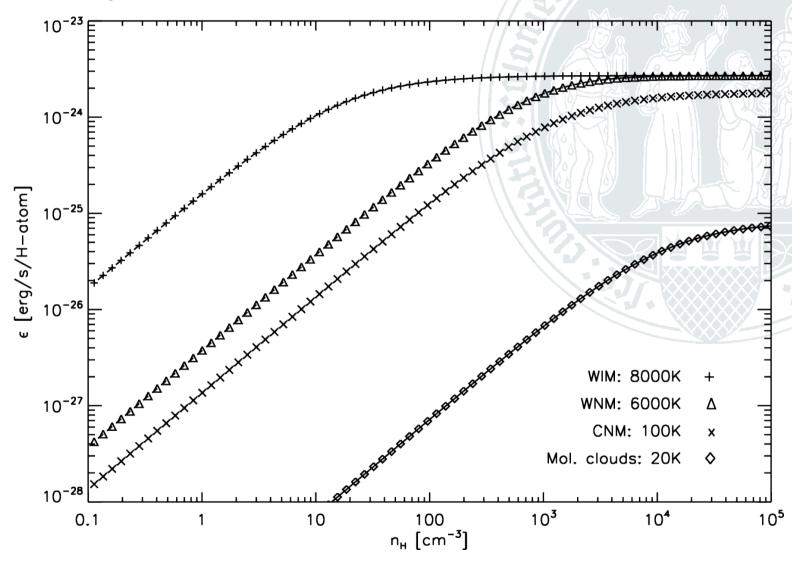
- Negligible radiative excitation: $B_{ij}u_{ij}\ll A_{ij}, C_{ij}$
 - Implies optically thin geometry
 - Analytic solutions for 2-level system:


$$n_u = \frac{g_u n_l}{g_l} \exp\left(-\frac{h\nu_{ul}}{kT_{kin}}\right) \frac{C_{ul} + A_{ul}}{C_{ul}}$$

- and 3-level system:

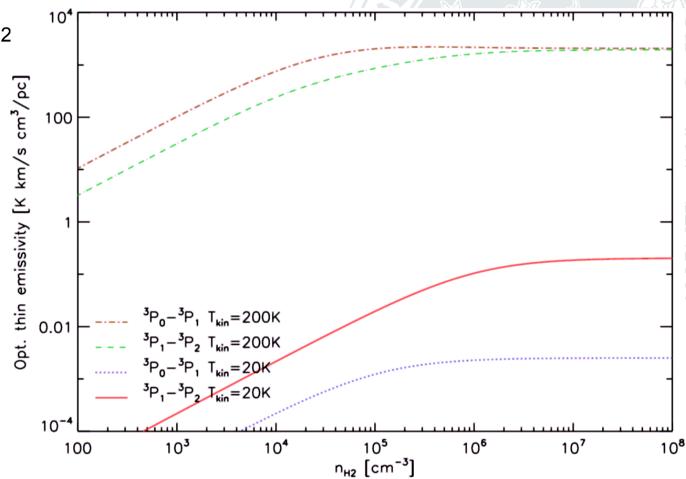
$$n_{2} = \frac{g_{2}n_{0}}{g_{0}} \frac{C_{12}C_{01} + C_{12}C_{10} + C_{02}C_{12}}{C_{21}C_{10} + C_{20}C_{10} + C_{21}C_{12}} + \frac{C_{20}A_{20}}{A_{10}(C_{21} + C_{20}) + A_{21}C_{10} + A_{10}A_{21}}$$

[CII] emissivity:


For collisions with H₂ (left) and e⁻ (right)

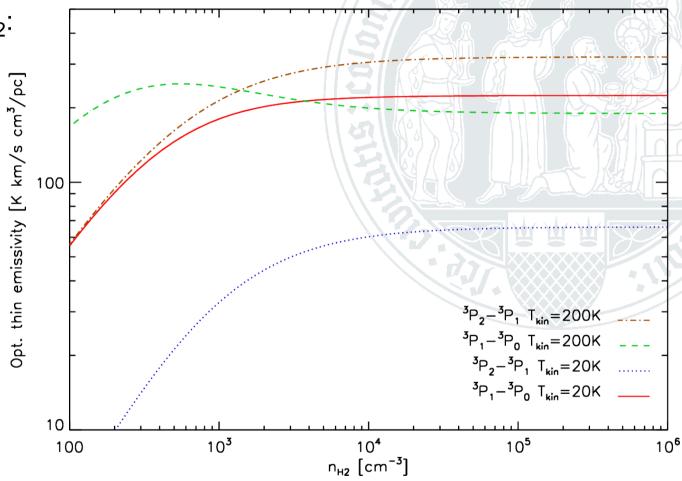
- Transition from subthermal excitation at low densities to LTE at high densities
- At high densities only T_{kin} counts
- Critical density for electron-collisions lower by factor 1000

V. Ossenkopf SOFIA Winter School 2014, Köln, 2/12/14 4


[CII] emissivity:

 Combination of higher emissivity above 91.2K and lower critical density for excitation through electron-collisions

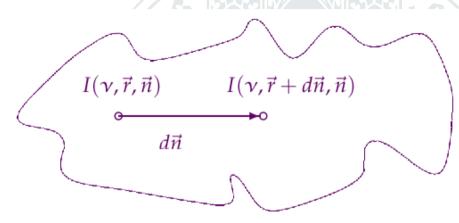
[OI] emissivity:

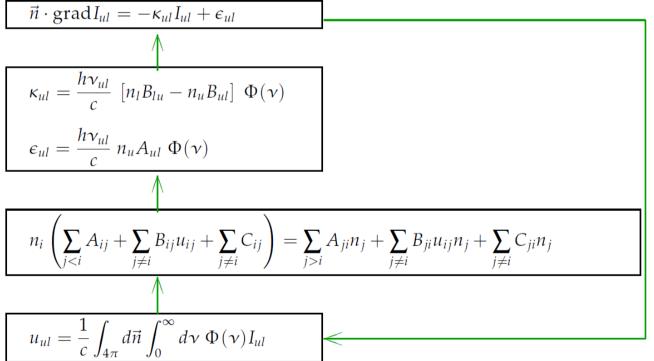

Excitation through H₂

- ullet Very simple: $\epsilon_
 u \propto n_{H_2}$ for subthermal excitation, monotonic transition to LTE
- High densities needed for thermal excitation
- Significant emission only for temperatures above 150K

[CI] emissivity:

• Excitation through H₂:




- Partially non-monotonic behaviour for ground-state transition
- Much lower densities and temperatures needed for excitation
- Qualitatively same for [NII]

Line emission: Non-LTE

General case

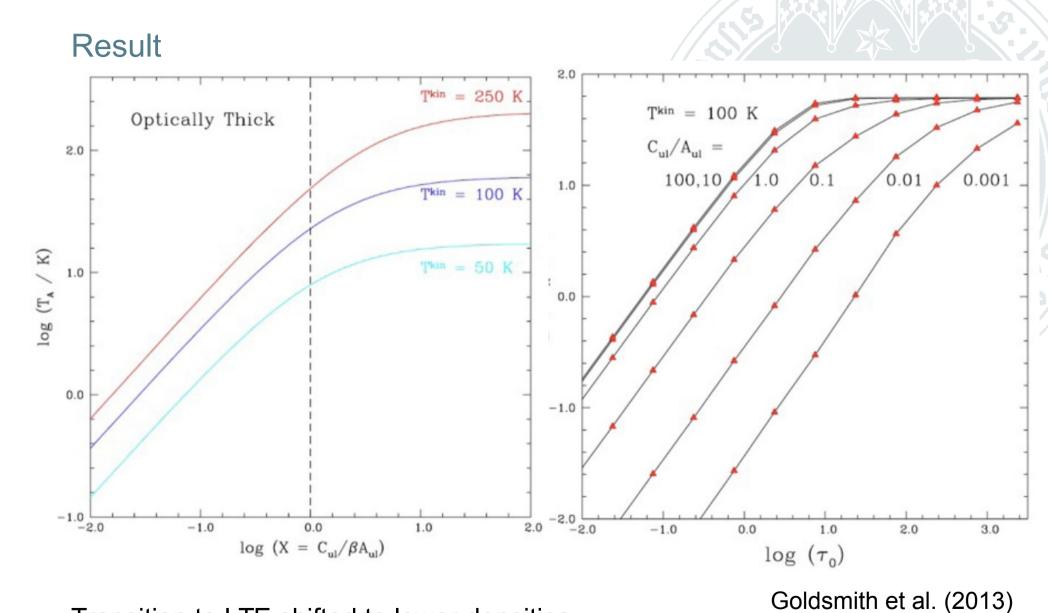
 To derive physical parameters, the full radiative transfer problem needs to be solved

Practical way out: Local approximation – escape probability

Line emission: Escape probability

Probability that a line-photon escapes from the cloud β:

- Same probability that a background photon enters the cloud
- Consequence:
 - Radiation field given by "trapped" radiation field and external field:

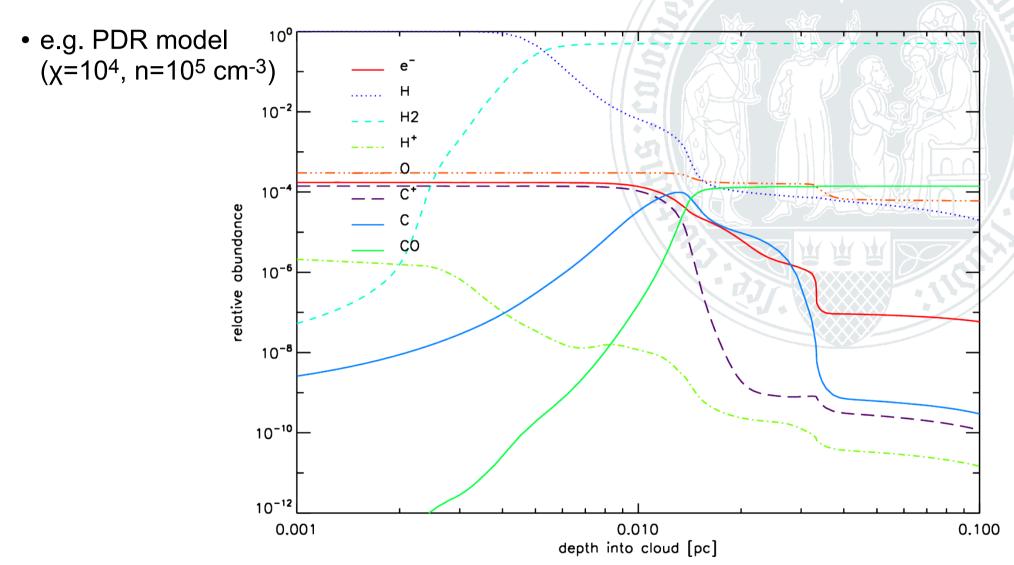

$$u = (1 - \beta)B_{\nu}(T_{ex}) + \beta B_{\nu}(T_{bg})$$

- "Cooling of the system" not through all spontaneously emitted photons, but only through those photons also escaping from the cloud
 - Modified Einstein-A coefficient: $A_{ul} imes eta$
- Analytic solution for 2-level system:

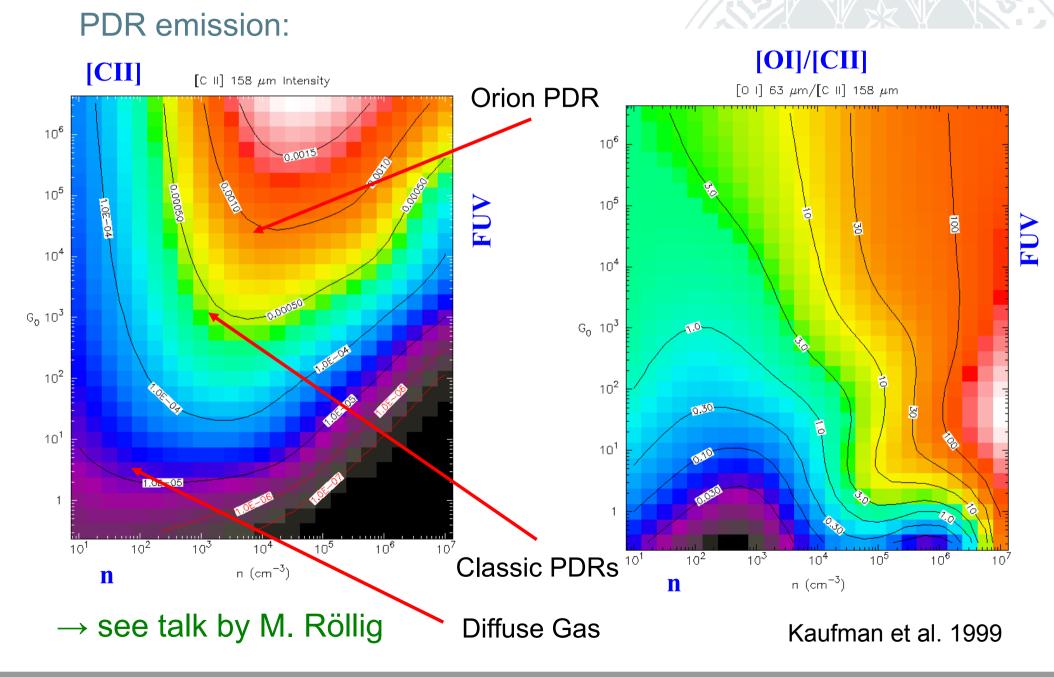
$$n_u = \frac{n_l g_u}{g_l} \frac{\beta A_{ul} G + C_{ul} \exp\left(-\frac{h\nu_{ul}}{kT_{kin}}\right)}{\beta A_{ul} \left(1 + G\right) + C_{ul}}$$
 • with
$$G = \frac{1}{\exp\left(\frac{h\nu_{ul}}{kT_{bg}}\right) - 1}$$

Goldsmith et al. (2013)

Line emissivity: Escape probability


- Transition to LTE shifted to lower densities
- Emissivity remains proportional to column density in subthermal range

50


V. Ossenkopf SOFIA Winter School 2014, Köln, 2/12/14

Line emissivity: Final step

Combination with model for chemical abundance

 Convolution of abundance profile with density and temperature for given chemical model needed.

V. Ossenkopf SOFIA Winter School 2014, Köln, 2/12/14 52

Summary

Fine structure transitions are simple!

- Just a few numbers to describe them
- But always think of the dominant collision partners

	OIII	NII	CII	OI	CI
Line frequencies [GHz]	3393.0 5785.9	1461.3 2459.4	1900.5	4745.8 2060.0	492.2 809.3
Formation energy [eV]	35.1eV (IP)	14.5eV (IP)	11.2eV (IP)	11.1eV (CO diss.)	11.1eV (CO diss.)
Main collision partners	e-	e-	e ⁻ H H ₂	H ₂	H ₂
Typical critical densities [cm ⁻³]	500 4000	200 100	10 3000 5000	5 10 ⁵ 8 10 ⁴	1000 1500
High-temperature LTE emissivities [K km/s cm ³ pc ⁻¹]		550 940	699	1990 670	182 345