ERRATA and additiona
Telescope Pointing E

1 comment on ‘'Software Correction of Astronomical |
rrors' ...... May 1974. |

PAGE , LINE

iv . 6 é?om bottom Appendix ﬁ“
1.3 5 from bottom Mortara (1969)
1.6 2 ffom bottom 88-inch Mauna Kea
1.12 1 Mortara (1969)
1.13 6 from bottom 88~-inch Mauna Kea
1.14 | ‘17' while A.A.T. Project planners intend to ...
1.15 20 dis-assembly of,
2.1 10 and x, = (xqi), cocsen
2.19 13 from bottom R.M.S. error of 13.7 arcsecond ......

F.4 reference 2

from bottom MORTARA, L.B.

F.6 reference 12

. SHOULD READ

(SYDENHAM, P.H. should include the source)

July 1968..

Additional Comment

(1.2,1.3)

(1.14)

(N.B. the relevant page is given in parentheses).

The argument of the first 3 lines of page 1.3 is
somewhat specious; radio source position accuracy
could, perhaps, set pointing accuracy goals for
optical instruments but not for steerable radio
instruments.

In addition to the treatments of software pointinc
correction by Meeks et al and Minnett et al, the
author's attention has been brought to CLARK B.G.
'V.L.A. Telescope Pointing Analysis;' V.L.A.
Computer Memorandum No. 104, N.R.A.0. June 28th
1973. This memorandum describes a proposed syster
of pointing corrections for interferometer antenn:
involving least-squares fitting of azimuth/elevati
pointing data for the parameters of a linear mode!
describing axis tilt, zero offsets, collimation
error, secondary structure sag (sine of zenith
angle) and receiver feed location. As in the
author's own work the R.M.S. pointing error is
minimized and proposal (similar to some of thosc
in Chapter 5) given for automatic updating of
pointing data.



(3.18) . 'Composite fitting,' that is the use of an ini~-
tial model fit followed by a surface fit, was not
attempted with the pointing data from the Mt.
Stromlo 74-inch since most of the improvement
obtained "from the model fitting was (in this
case) due to parameters (like encoder offsets)
which are also involved in a surface fit.

(5.3 point iii) Rejection of data points which appear to be
spurious with respect to a trend must cdepend upon
the total number of points and the statistical
nature of their distribution. The advice to
reject all those displaced by more than twice
the standard deviation is wrong and not consis-
tent with the preceeding discussion of outlier
rejection. It should also be mentioned that
fitting with the L. norm may be more useful for
locating outliers Than least-squares fitting.

(5.5,5.15) Consideration could be given to improved methods
of storing the results of a fit which would fac-
ilitate thec evaluation of such fits when using
small computers. Further work in this area
should include a reappraisal of the storage-
requirements/numerical accuracy compromise men-
tioned by Cadwell and Williams (1961).

(5.5 footnote) ' With regard to the number of bits precision
. required for various calculations, it should ke
noted that where angles (and simple trigonometric
S ' functions of them which are also periodic) alone
: are involved, the use of double length integer
representation (32 bit two's-complement) on
small 16-bit machines provides adequate accuracy
and also high speed.

(A.6) Slight inconsistencies exist in the accuracy to
which the various correction formulas in Appen-—
dix A are given., The elliptic E-terms are
usually less significant than the correction (in
aberration) for the barycentre of the solar
system, and also the additional term in the ex-
pression for zé in equation A.13, neither of whidi
are given.

The author is indebted to Dr. W.N. Brouw, Dr. A.A. Hoag and Dr. M.R.
Osborne fcaﬁdiscussion concerning the above points.

u‘_/ / <7ZL‘\£(/_[ -

G.R. HOVEY.
May, 1974.
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ABSTRACT

This thesis is concerned with the pointing errors of astronomical
telescopes, and examines means for their reduction which do not involve
physical modifications to the instrument itself. The current trends in
the engineering design of telescopes, which are relevant to pointing
performance, are discussed in the introductory chapter, which contains a
conprehensive review of the literature on the subject. The problem is,
having sampled the pointing errors of an instrument at various points on
the sky, to devise a numerical approximation to that pointing error data,
which will enable the prediction of the error at a desired point of ob-
servation. Two distinct approaches are possible: model fitting when the
causes of pointing error are known and quantifiable, and surface fitting
which is more general. In Chapter 2, various algorithms for estimating
the parameters in (nonlinear) models of the pointing error are investig-
ated using data generated synthetically from a simple, but representative,
error model. 'Descent' algorithms are shown to behave extremely poorly,
whereas certain !'Gaussian-type' algorithms prove quite successful, even
when the necessary model function derivatives are obtained by numerical
evaluation, rather than analytically. Chapter 3 describes the generation
of orthogonal polynomials in two dimensions, and their application to
producing surfaces of optimum fit to the pointing data. The constraints
on the manner in which pointing data can be acquired are severe, and
their effect on the surface fitting procedure, and statistical properties
of the fit, is described. Chapter 4 discusses the application of model
and surface fitting to real data from a typical telescope of moderate
size, and shows that the ultimate limit to the pointing improvement is
set by the non-repeatable or hysteresial errors. The problems involved
in devising error models are discussed, and an algorithm which permits
efficient and simple experimentation with a given model is presented.

The factors governing the choice of whether model or surface fitting
should be employed, and estimates of how much data is required for satis-
factory fitting are given, and the limitations of using model estimation
techniques for locating and measuring the physical causes of error are
delineated. The concluding chapter, Chapter 5, considers the practical
implementation of computer pointing error correction. Two cases are con-
sidered, the generation of error fits to a previously collected data set,
and an automatic correction package, which is unseen by the observer, and
which progressively improves telescope pointing with the accumulation of
fresh pointing data. The problems of implementing such a package are
discussed, and hysteresis singled out as the most general and serious of
them, Suggestions are made for future work in the areas of mechanical
hysteresis, improvements to telescope collimation and instrument change-
over procedures, and improved methods of approximating two-dimensional
data. Appendices include an algorithm for mean to apparent place correct-
ion which is more suited to a real-time environment .than the classical
method, a discussion of ambiguity errors in gear driven digital shaft en-
coder pairs, and a description of a digital co-ordinate readout system
designed by the author; +the latter employs optical shaft encoders, a
small computer, and a solar to sidereal frequency converter of the author's
design, and is currently in service.




PREFACE

Telescope pointing errors, whilst by no means a major concern of
astronomy, are highly detrimental to observing efficiency, and much of the
effort in recent telescope design has been directed towards their reduct-
ion. The bulk of this effort has involved improved structures, drives or
optic supports, and, although it has yielded beneficial results, tcle-
scopes still point erratically by tens of arcsecond. Here the philosophy
of approach is to reduce pointing errors by computer correction, rather
than by locating and remedying their causes. Its justification is three-
fold: (i) no single technique has so far proved universally effective;
(ii) it is usually prohibitively expensive and time consuming to modify
telescope components physically; and finally, (iii) computer or 'soft-
ware! error correction is an ideal remedial measure for existing (partic-
ularly older) telescopes.

The idea is not new, being cited extensively throughout such refer-
ences on telescope construction as the proceedings of the I.A.U. symposium
number 27 (1965), and those of the E.S.0./C.E.R.N. conference (1971).
However, very few of the references give details of the exact methods em-
ployed (or proposed) for error correction, nor the results of their
application, if any. There is certainly a need for a comprehensive treat-
ment of the problem, and this thesis aims to fulfil that need; it
considers the general mathematical problem, the problems of pointing data
acquisition, and the implementation of software correction methods on
typical telescope and computer hardware. It is written for astronomers
and telescope engineering personnel, and thus is apt to contain more
lengthy descriptions of algorithms, calculations and definitions of terms
etc., than would be the case were it aimed at the numerical analyst or
computing theorist. It seeks to unify the astronomical, engineering, and
computing aspects of the subject.

Although a factual summary of the contents appears in the abstract
preceeding this preface, a brief mention of certain points of originality
in the thesis is appropriate here. Although the model estimation algor-
ithms used in Chapters 2 and 4 have been culled from the literature in
the field, they have not, to the author's knowledge, been applied to model
functions of such complexity before, nor to telescope pointing models as
such. Since the success or otherwise of such algorithms is highly problem
dependent, it is fortunate that some of the better algorithms have been
shown here to be eminently satisfactory on the problem. (Certainly they
behave sufficiently well as not to warrant effort to devise better model
estimation algorithms). In Chapter 3 appears the first complete present-
ation of the computation of two-dimensional orthogonal polynomials suited
to practical application; only a few treatments of surface fitting with
a general data distribution occur in the literature, and these are far
less detailed and lack a discussion of the statistical aspects of surface
fitting. There appears to be some confusion amongst many telescope design
and maintenance personnel as to the role of orthogonal polynomials in
fitting. The author has often been referred to some specified standard
polynomial sequence 'because it may prove more effective than others'. It
is important to note that, once the dependent co-ordinate variables have
been chosen, fits generated with different types of polynomial produce
identical results, given unlimited arithmetic precision; however, orthog-
onal polynomials are optimal because they aviod the most serious causes
of numerical error, and (once the polynomials are generated) involve less
computational effort. '

The scheme in Chapter 4, for compression and expansion of matrix
equations, which permits the selective inclusion of model parameters in
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model estimation fits, although simple, has not previously been reported.
It is more versatile than similar ideas in regression analysis, and more
applicable to the type of data fitting problems encountered in the physical
sciences. It is hoped that the author's original proposal for an automatic
software correction package (in Chapter 5) proves a stimulus to workers
involved in telescope design and operation. By and large, authors in the
literature who consider the topic, can be divided into those who deem soft-
ware pointing error correction prohibitively difficult to bother with, and
those who propose to implement such a scheme, but fail to allow for the
numerical and statistical problems involved. Here we establish the feasi-
bility of software correction as well as delineating its problems and limit-
ations. Two further original pieces of work appear in appendices. The
computational method of mean to apparent place reduction in Appendix A is
more suited to use in data processing, or telescope control tasks than the
classical methods, which involve extraction of data from ephemerides etc.

A very similar method has been published by Harris and Large (1967), but
this was unknown to the author at the time Appendix A was written. Greater
detail and explanation is given here, but the method does not differ sub-
stantially to that published. An improved method of converting a frequency
based on the solar (or atomic) second to the equivalent sidereal frequency
is given in Appendix D, and was published in Hovey (1973). The prototype
converter based on this method is in service at Mt. Stromlo Observatory,
A.N.U,

Finally, the author would like to thank personnel of Mt. Stromlo
. Observatory, Department of Engineering Physics, the A.N.U. Computer Centre
and others for their suggestions and help in this interdisciplinary project.
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1.1

CHAPTER ONE
INTRODUCTION

(1.1) TELESCOPE POINTING AND POINTING ERRORS

One of the most demanding positional control problems is the pointing
of large astronomical telescopes, be they optical or steerable radio
instruments. The initial acquisition of a celestial object (setting)
involves orienting the telescope so that the co-ordinates read from the
telescope axes match the known co-ordinates of the object. In practice,
the position of the instrument's optical axis on the sky differs from the
position given by the axis readout and the telescope is said to exhibit
pointing errors. The magnitude and nature of these errors depends on the
accuracy of the axis readout system and how directly it measures the
position of the optic axis, i.e. how near the control loop illustrated in

Figure 1.1 comes to enclosing the optic axis.

The necessary co-ordinates of an object are usually obtained from
the known mean place of the object at a given epoch by applying correct-
ions for proper motion, parallax, precession, nutation and aberration
which results in the apparent place in the declination/right ascension
co-ordinate system. This is transformed to a topocentric declination/
hourangle frame and a correction for atmospheric refraction applied.
Unlike the five astronomical corrections, refraction depends on wavelength,
on environmental variables such as atmospheric pressure and temperature,
and cannot be exactly predicted. A correction algorithm which is more
suited to the on-line computation of such co-ordinates than are the class-
ical methods is discussed in Appendix A, and even when approximafions are
used, the resultant topocentric positions are one or two orders of magni-

tude more exact than the pointing capabilities of existing telescopes.

To distinguish between the position of the telescope in its own frame,
and the variously defined and derived astronomical co-ordinate systems, the
term 'attitude' will be used for the former. After the telescope is set,
it is usually required to 'track' (follow) the object; +this may be done
open-loop with manual adjustments to the tracking rate (guiding), or by a

closed-loop system for example autoguiders or startrackers@. Tracking

@ Such exactitude is unfortunately necessary here since much of the
relevant literature particularly in the space technology field
features rather more loose usage of this terminology; see, for
example Smith (1967) in which there is confusion of 'tracking'
with 'pointing' and an error in the formula -for resultant on-sky
error.
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methods and accuracies will be considered only in so far as they are re-
lated to the pointing accuracy of the instrument in question,and the
author is concerned only with the case where there is a considerable com-
plexity of structure, bearings, gears and mechanism between the closed
control loop in Figure 1.1 and the optic axis. Nor are we concerned as
to whether a2 human operator or a computer mechanism closes that loop.
Automatic systems which close the loop around the optic axis itself can,
of course, attain appreciably higher accuracies than blind pointing,de-
pending on the mass of the element controlled@; see for example a survey

article on star trackers by Seifert (1969).

It is difficult to assess the effect telescope pointing errors have
had on astronomical research. Until recently in optical astronomy they
were accepted with resignation. Although astronomical data and observat-
ions are relatively unaffected by pointing errors@@, such errors cause 2
serious loss of observing efficiency. Astronomers become quite adept at
visual recognition of star fields even when reversed by the telescope
optics, and although such visual identification may never be obviated by
improved pointing, the time required can be substantially reduced, since
the star fields used can be commensurately smaller for increased confidence
in the blind pointing accuracy of the instrument. With the increasing use
of image intemnsification, video techniques and other fast electronic means
of data acquisition, the time taken to set the instrument and locate the

object is becoming a larger proportion of the total observation time.

Radio (and Infra-red) telescopes cannot directly form an image of the
field and thus position determination is contingent on the pointing accur-
acy of the instrument. Certainly a more concerted effort to reduce point-
ing errors has been made by radio astronomers, for example, Struve et al
(1960), Minnett et al (1967) and Meeks et al (1968)@@@. With the growing
emphasis on correlating optical and radio sources and the increasing
density of sources as instrument sensitivities improve, pointing accurac-

ies will assume yet greater importance. The accuracy of interferometric

@ Often an autoguider or startracker servos a secondary optic surface
or focal station rather than the whole instrument, allowing a much

higher servo performance.

@ Since, for example, position determination relies on the measurement
of standard stars using instruments like transit telescopes and
photographic zenith tubes (which are small and designed specifically
for such work), and on offset measurements from such standards on
photographic plates.

@@ It is interesting to note that some of the better radio instrument
pointing accuracies quoted are better than those of many optical
telescopes.
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position determination of radio sources is given by Fricke (1972) as 1 to
1.5 arcsecond in right ascension and 2 cosecb® arcsecond in declination
(6), and this sets a useful goal for the pointing accuracy of steerable

instruments.

As well as degrading the efficiency of large conventionally operated
telescopes, pointing inaccuracies constitute one of the major obstruct-
ions to the automation of astronomical telescopes. Maran (1967), Baker
(1969) and Clarke (1970) cite automation as one means of increasing the
efficiency of astronomical research, but it is only in the case of space-
borne telescopes operating with closed-loop control (startrackers ctc.)
that any degree of success has been achieved. Although there is currently
little interest in completely automated ground-based telescopes, more and
more telescope operations are becoming computer controlled, and a suffic-
ient reduction of pointing error would permit telescope setting under

program control.

Suitable pointing accuracy goals for proposed optical telescopes
abound in the literature; a frequently occurring figure is 15 arcsecond
cited by Hoag (1965), the Anglo-Australian Telescope Project, Kitt Peak
National Observatory, and others. To facilitate precise offsetting from
an object already set on, e.g. when observing an object invisible to the
astronomer, a differential pointing accuracy of *0.1 arcsecond is suggest-
ed by Hoag (1965) and a similar figure is often given for the drive system
tracking accuracy. A limit to the required pointing accuracy is set by
the image diameter determined by the seeing and the optical aberrations
of the instrument; Bowen (1967) gives 0.5 arcsecond for a typical image
diameter caused by the optics,and 1 to 1.5 arcsecond for average good
seeing. So although offset positioning could use almost any attainable
accuracy, a practical figure for initial pointing accuracy of about an
arcsecond is suggested here; +the reduction of telescope errors to this

level would be of substantial assistance to astronomical observation.

The past decade has seen an intense world-wide effort to construct
versatile large optical telescopes, and review papers exist which. show
the dominant design trends, for example Baker (1969), and Gascoigne (1970).
A summary (unfortunately incomplete) of some of the larger optical tele-
scope projects at presentunder way was obtained from the ESO/CERN pro-
ceedings (1971), Solf (1971) and Matara (1969) and is given in Table 1.1.
The figures for pointing accuracy are quite probably inconsistent (some
are R.M.S., others peak etc.) but show that even with careful design,

pointing errors are expected to amount to some tens of arcseconds. A

similar summary gleaned from Findlay (1971) gives the pointing accuracy
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of several millimeter-wave radio telescopes of various apertures and
mounting types, and it can be seen from Figure 1.2 that the pointing
accuracy of these structures is often only a factor of two worse than

their optical counterparts.

(1.2) POINTING ERROR CAUSES

(1.2.1) Mountings

A telescope mounted in an earth-bound frame must be rotated about two
different axes to observe any point on the available celestial hemisphere;
one axis is fixed in the observatory frame (primary axis), and the attitude
of the other (secondary) axis varies as the instrument rotates about this
primary axis. Some space and airborne telescope pointing systems are of
necessity more complicated (e.g. three-axis gimbals), see for example
Fosth (1969) or Wischnia (1969L and these are not treated here. The prim-
ary and secondary axes are invariably orthogonal for reasons of independ-
ence and convenience, and it is the orientation of the primary axis, together
with the position of the necessary bearings and loads, which catagorize
astronomical telescope mounts. The following discussion assumes an optical
telescope, but radio dishes have much in common. A more detailed and -
illustrated description of mounting types is given in a survey article by
Bahner (1967).

An alt-azimuth mounting has its primary axis vertical, and thus is
perfectly symmetrical with respect to gravitational loading; +the second-
ary (altitﬁde or elevation) axis keeps a constant attitude with respect to
the vertical during rotation about the primary (azimuth) axis,and so the
mount is expected to have the least gravitationally induced pointing error
ahd the lowest mass for a given aperture (Mertz 1971). Owing to the re-
stricted range, a simplified drive system, e.g. a hydraulic ram, is possible
on the elevation axis. To track a celestial object, both axes and the
focal station instrument mounts must be driven at varying rates, and because
of rate limitations there is a dead-zone around the zenith, an area which
is important to astronomy. Vaselevskis (1965) and Kuhne (1971) have con-
sidered the necessary practically attainable drive rates for the axes and
Kuhne (1971) a complete plate holder rotation servo; they conclude that
the advantages of such mounts are quite realizable for astronomical pur-
poses. The largest optical telescope to be designed, the Soviet 6 metre
instrument is alt-azimuth mounted and has occasioned a number of Russian
studies, such as Mikhelson (1970). The control of such a mountihg re-
quires a computer, but for large instruments this constitutes a very small

fraction of the total instrument cost; few radio instruments over
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27 metre aperture are other than alt-azimuth mounted (Findlay 1971).

The equatorial or polar mounting has its primary axis directed close
to the celestial pole, and thus a uniform drive rate about the primary axis
alone is sufficient for tracking purposes, there is no serious dead-zone
and, to first order, no field rotation except at the coudé focal station.
Its simplicity and convenience has so far outweighed the fact that its
gravitational asymmetry causes serious pointing errors and bearing problems.
Many versions of the polar mount exist, the main ones being the English
crossed-axis mounting, the fork, the German or asymmetric mount, the yoke
(a fork with extended tynes joined and supported on an upper bearing) and
the horseshoe modified yoke in which fork tymes are joined by a large
horseshoe structure,near the declination bearings, which acts as a support
bearing and rigidifies the tynes. Since there is access to the pole,
good structural rigidity, and a large radius upon which to drive the polar
axis, the last mentioned is becoming more commonly used particularly for

large instruments.

The English mounting (Sisson 1965) requires a large counterweight on
the end of the declination axis opposite the tube, and flexure of that axis
can cause severe decollimation of the four-mirror coudé focus. It is be-
coming a less frequently used mounting for large instruments, the McDonald
observatory 82-inch and 108-inch telescopes being two of the largest-
English mounted instruments. Most polar mounts, with the exception of the
fork, can be tilted slightly to remove the effects of flexure of the polar
axis and to some extent refraction, e.g. Arend (1951) and Bowen (1967).
Flexure of the declination axis of a polar mount causes pointing (and
tracking) errors. With a fork mounting however, it also causes field
rotation which can be eliminated only at the cost of an increase in the
declination pointing error; Vaselevskis (1962) shows that it is possible
to design fork tymes which minimize both field rotation and pointing error
in hourangle at the cost of the declination pointing error. Vaselevskis
considers the rotation to be the worst effect but Kuhne (1957), by seeking
to minimize the average pointing error over the sky, derives a latitude
criterion for a choice between a fork and crossed-axis mounting. Unfort-
unately the criterion is somewhat arbitrary since it is critically depend-
ent on the nature of the function averaged and the function used is not

necessarily the most appropriate.

Various modifications to the fork mounting exist; the fork tymes
may be bent for ergonomic reasons such as ease of access to instruments

(e.g. 98—inch Maura Kea, Hawaii), or as in the case of the Isaac Newton

98-inch the tymes may be rigidly mounted on a large oil pad borne disk,
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wvhich serves as the polar axis (Sisson 1965). Completely asymmetric de-—

signs exist, e.g. Meinel (1971) (see also Meinel in Kuiper 1960), and can
afford great convenience of operation; they are common up to 60 inch
aperture but become excessively massive if used for large instruments.
Other orientations of the primary axis are possible, for example the X-Y
mounting which has it horizontal and (usually) directed north-south; it
is used extensively for such applications as near-earth satellite track-
ing and has been suggested in the astronomicallliterature (where it is
called the alt-alt). As Gascoigne (1970) notes, it has no advantages over
other mounts for normal astronomical usage, except that a three-mirror

coudé focal station is feasible.

The bearings associated with telescope mountings are the source of
considerable trouble due to the effects of stiction or torque noise at
the extremely low speeds involved. Conventional roller and ball bearings
tend to slide and stick, and there is an increasing usage of oil pad type
bhydrostatic bearings, for example Pearson (1972). Estimates of hydrostatic
bearing frictions are given by Barr (1969). The declination bearings in
polar mounts give particular trouble for, with variation of hourangle,
they must provide varying degrees of axial and radial thrust. TFlexure
bearings offer low stiction but are of no use when motion through large
angles, or heavy loads are involved. Such bearings with breakaway torques
of 0.001 1b.ft. and rotation angles of 4 degrees have been used in space

vehicle applications. (Product Engineering November 1971)

(1.2.2) Telescope Structures

Strictly speaking, 'structure’ includes the telescope mounting, but
here we consider the telescope tube and other components which can be
divorced from section (1.2.1). Gravitationally induced deformations in
the telescope structure are possibly the largest single cause of pointing '
errors and one of the most difficult to measure and predict. One of the
most important achievements to date which reduce this source of error is
the Serrurier truss design of tube. Illustrated in Figure 1.3, it deforms
as a parallelogram, permitting the optics to remain parallel and correctly
spaced even though appreciably displaced from the centré section. For
example (Rule 1965), the Hale 200-inch deflects approximately 1 cm for a
translation between the end rings of only + mm. The design is still
effective for unequal tube half lengths since one can use unequal tube
diameters, (Rule 1971), and the remaining pointing errors are usually due
to the primary mirror cell and the secondary cage exerting a moment upon

their respective end rings,as shown by Abdel-Gawad (1969) and Pope (1971).
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The primary mirror movement and rotation is caused by mirror cell
flexure (particularly when the four-fold symmetric truss tube is mated
with a 120° spaced 3 point mirror support), and the secondary rotation is
due to lack of rigidity of the secondary support drum. The two references
last cited show that the three movements, that is rotations of the two
mirrors and their relative translation, produce pointing errors and comatic
aberration due to decollimation,and that in the case(s) cbnsidered.OSO-
inch K.P.N.0O. and A.A.T. telescopes) the pointing error is the more string-
ent criterion of design adequacy. If we were to assume a rigid tube mount-
ed on torsionally elastic axes, telescope flexure would show a sine depend-

ence on zenith angle.

Rule (1965) and Bertin (1971) draw attention to the desirability of
keeping the structure mechanical resonance as high,and the mechanical Q
as low as possible; most telescope structures have relatively undamped
resonances in the region of 0.5 Hz,which is unfortunately similar to the
periods involved in wind gusts and microseisms and imply an excessively
long time for the structural motion to damp. For radio instruments the
structure is associated not only with pointing but with the focussing and
optical behaviour. Both active and passive forms of surface control are
employed, for example Minnett et al (1967), Weidlinger (1967) and Findlay
(1971), but one of the most promising techniques is the use of homologous
deformations. It is possibleye.g. von Hoener (1967a), to design parabo-
loids which, with change of attitude, deform into other paraboloids of
different focal length and axial direction. Pointing errors of typically
45 arcsecond can be thereby introduced,e.g. von Hoener (1967b); and thus

effective methods of pointing error correction are highly desirable.

(1.2.3) Optics Support Systems

Pointing errors are also introduced by movements of the optical com-
ponents themselves in their supports. Various support systems are treated
at length in the literature, for example various authors in IAU Symposium
No. 27, and in Crawford et al (1966). The actual deformations causing
optical aberrations are also widely treated; +the classical work here is
by Couder and the articles by Schwesinger (1969) and Malvick (1972) give
more recent suitable references. All support systems aim at applying
uniform loading to the mirror for various attitudes,whilst allowing its
positional constraint by a small number of adjustable supports (usually
the kinematic requirement of three each axially and radially). Systems
using passive air or mercury bags, active pneumatic systems and mechanical

lever arrays are all used,but are not discussed here.
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(1.2.4) Gearing and Drive Systems

No pointing errors would be introduced by the telescope drive system
if the attitude encoding or readout was taken directly from the axes, and
if there were no components in common +to +the drive and readout systems,
but this is rarely the case in practice. Recently, tight, high-performance
servo drives have become possible which can be applied very close to the
axis, for example driving the final gearwheel. Trumbo (1965) describes a
type of drive which takes digital rate information from the final pinion
or wormshaft and uses it to control a torque motor. It is particularly
suited to computer control of the tracking rate, and can be used to slew
the instrument for setting purposes. Stepping motors can be used for very
small instruments, e.g. Clarke (1971). Bertin (1971) notes that the high-
est resonant frequency of the mounting is achieved by applying the drive
to large diameter components as close to the sections of high moments of
inertia as possible,and that factors of improvement of the order of 1.5
can be obtained, for example, by driving the horseshoe of a horseshoe
modified yoke mounting as opposed to driving the other end of fhe polar
axis. The large diameter also implies a large number of teeth on the drive
gear and lower tangential tooth loading which is an advantage, but the
deformation of the gear is increased,and suitable geometry must be foundl
to avoid the generation of pointing (and tracking) errors. Backlash in
the final drive gears can be removed by a tangential preload,but this
causes the drive system servo performance to be asymmetric,and for this
reason such a scheme was rejected in favour of dual opposiﬁely loaded

pinions by the A.A.T. as described in Minnett (1971).

The final drive gears can be wormwheels, spur or helicoidal gears.
Problems exist with worm gears in-as-much that they are not reversible,
and either protective inertia must be added to the worm (which degrades
the drive system response), or the worm must be mounted in a slide carriage
(which degfades rigidity and alignment); also they have low efficiency
e.g. 10 to 15% for a 1:720 ratio worm/wheel pair. Zero wear, which is
goverhed by a critical ratio of maximum shear stress in the tooth contact
zone to the shear yield point of the gear material, cannot be attained by
the usual hardened steel worm and a bronze or meehanité@ wormwheel; see
Bertin (1971). However worm gears can be made more accurately than
cylindrical gears because the wormwheel is generated by an envelope method

essentially the same as using the worm as a hob.

@ Type of cast iron.
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Bertin (1971) gives a figure of 5 micron for the tooth to tooth error,
and 25 micron for the accumulated pitch error on a 3.6 metre diameter
cylindrical gear; +these figures correspond. to angular figures of 0.5 and
2.5 arcsecond,and are approximately 2.5 times worse than those for a
similar wormwheel,particularly if a duplex worm@ is used. Baustian (1965)
gives somewhat differéntAfigures but agrees that worms are more accurate.
The tangential tooth to tooth composite error is the accumulation of pitch
and profile errors and may be up to 2 arcsecond for high quality cylindr-
ical gears (Bertin 1971). Combined with similar errors of the meshing
pinion,a tangential jump of about 3.5 arcsecond is possible for a contact

ratio (number of teeth in contact) of unity.

Marbin (1967) found experimentally that the tooth to tooth composite
error decreases quickly for increasing contact ratios,aﬁd for a given
ratio is reasonably independent of pitch and pressure angle; his graph is
reproduced in Figure 1.4. For a standard spur gear@@ with a given number
of teeth we can vary only the pressure angle to increase the contact ratio,
and the limit is in the region of 2.9,with a pressure angle of 12.5°. The
risk of tangential junps disappears if the contact ratio approaches 6 or
8,and this is possible with helicoidal gears since we can vary the helix
angle and the gear face width, e.g. tangential jumps can be reduced to
0.04 arcsecond on a 10 metre diameter helical gear of 175 mm width. Barr
(1969) concludes, for cases involving roller bearings, that the extra
accuracy of the worm is not realisaﬁle due to the manner in which the
drive load is applied to the bearings,and quotes a helical gear with a
contact ratio Qf 4.4, Groenveld (1969) gives the requirements of high
positional accuracy and smooth slow speed running as being, (i) an invol-
ute helicoidal thread form, (ii) low (10%) pressure angle and (iii) the

use of all-receeding tooth action.

A drive system employing a hardened steel friction foller is feasible,
and is used on the French Chilean 60-inch. A similar drive was originally
proposed for the 3.66-metre E.S.0. telescope at Cerro La Silla Chile, but
extreme cleanliness is necessary for their successful operation and a
helical gear system'was eventually used. Barr (1969) dismisses steel belt

type friction drives by showing that the circumferential stretch on an

@ The pressure angle and pltch varies along the length of a duplex
worm, increasing the contact ratio.

@ Wilh ecqual addendum and module.
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inch wide 150 inch long belt of 0.03 inch steel is of the order of 1/3
inch under slewing (fast motion) conditions,but his reasoning is related

to the performance of the drive servos,not pointing or tracking errors.

Pointing errors produced by gear imperfections (assuming there are
no tangential jumps etc.) are largely periodic with periods of a single
revolution and low multiples Qf it caused primarily by eccentricity and
pitch errors, and also errors at the tooth period and multiples of it
caused by tooth profile errors. Tooth period errors are more usually a
cause of tracking rather than pointing error. Kron (1960) gives one
possible explanation of periodic errors in worm drives,viz. a worm which
has been made with the correct hob but is of incorrect pitch diameter.
The simpler forms of periodic error in worm drives can be removed by
using a tilted thrust bearing on the worm shaft, or, as noted by Hardie
et al (1962), aneccentrically mounted spur gear pair driving the worm
shaft to produce a compensatory oscillation. Clearly both techniques are
more difficult to implement than a form of programmed or software correct-

ion of pointing (and tracking) errors.

(1.3). TELESCOPE ATTITUDE READOUT SYSTEMS

It is important to distinguish pointing errors caused by the system
for readout of the telescope axes from those which are due to the struct-
ure, mounting and opfics supports, since the former is more easily modif-
ied or updated. Simplé analogue systems, for example selsyns, often ex-
hibit quite large errors,e.g. tens of'ércseconds)particuquly when large
gear train ratios are required to produce the required angular resolution.
If gear errors are not dominant, considerable improvement can be obtained
by digitizing the selsyn transmitter outputs,e.g. as on the Parkes 210-
foot radio dish. The ideal requirement of an absolute transducer with a

resolution and accuracy of the order of an arcsecond is onerous,and has

not been achieved on instruments of large aperture. Commercial absolute
digital shaft encoders are available with a wide range of resolutions and

codes, and are usually either brush contact type of resolutions of up to

‘about 12 bits (5 arcminute), wvhich combine simplicity of operation with

economy, or optical types which are capable of higher reso}utions up - to -
21 bits (0.7 arcsecond) and have longer rotation lives, but fequire more
elaborate electronics; Both types employ either monostrophic codes, e.g.
Gray-code, or use redundant tracks and lead-lag sensor selection to remove
the inter-track ambiguity. It is often most convenient to feed the en-
coder output directly to a computer for reduction and formatting for dis-
play purposes, but many installations exist, or are proposed,which use

special purpose hardware to handle the encoder data, for example Vokac



1.12
(1970). Matara (1969) discusses some of the errors which can occur in

conventional systems.

Moiré fringe optical gratings can achieve very high resolutions and
accuracies. N.E.L. Scotland have a master grating of 43,200 lines on a
17.5 inch diameter, and firms such as Baldwin-Rotax U.S.A. have developed
similar masters; it is now fairly certain that the accuracy of these
large gratings is of the order of an arcsecond. Moiré gratings have been
used in incremental encoders, often with two read heads in phase-quadrat-
ure to give directional information. Russell (1966 and 1969) has devel-
oped a method of obtaining absolute readout from a series of concentric
gratings of different but integrally related angular pitches, each of which
can be electronically divided by integers as high as 60. The scheme de-
pends on analogue segmentation of the serrusoidal waveforms from reading
sensors in phase-quadrature, and has been applied to the elevation axis of
a kinetheodolite at Edinburgh Observatory by Whitwell (1972). The use of
multiple read heads can remove the effects of grating eccentricity on the
accuracy of the readout, but a limit to the tolerable eccentricity is set
by its effect on the amplitude of the serrusoidal signals from the aver-
aged heads. Linear Moiré gratings ruled on steel tapes can be obtained
in resolutions of a micron for a total range of 2 metres (Whitwell 1972),
and could be used for angular readout by winding them on a carefully

machined diameter.

The bearings in commercial shaft encoders can be precise with an
adequately low runout,e.g. a runout of 30 micro-inch for 4 inch diameter
angular contact ball bearings, and the constraint on the system accuracy
is often the manner in which the encoder is driven from the axis. Serious
wind-up errors occur in flexible disc. or bellows couplings used to couple
the encoder to the axis or to intermediate gearing. Bertin (1971) and
Barr (1969) discuss the use of a friction roller system to drive the
attitude encoders,and note that although more accurate than gear systems,
extreme cleanliness is required,and there is positional creep with both
predictable and random components. It is very doubtful that any coupled
or separately driven encoder can realise an accuracy commensurate with
the resolution required, and making the encoder integral with the mounting
bearing structure,alone offers substantial improvement. Provided dis-
continuous effects like backlash are removed, encoder system errors are
often quite smooth and repeatable, and thus in principle well suited for

software elimination.

Many other types of angle transducers exist, and a survey article by

Sydénham (1968) 1lists several; with two exceptions they have found little
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use in telescope attitude readout. Inductosyns are a magnetic device
comprising two stator windings in quadrature, and a rotor with many poles;
the sinusoidal output waveform is digitized using an analogue to digital
converter (A.D.C.). Klock et al (1969) describe a 12 inch diameter, 2048
pole version incorporated into the U.S. Naval Observatory transit circle,
which affords a resolﬁtion of 0.05 arcsecond,with a calibrated mean error
of 0.5 arcsecond,when read with a 15 bit A.D.C. Struve et al (1960) de-
scribe similar units made by Farrand Optical Co. and installed on the
N.R.A.O0. 140-foot radio telescope, wvhich is intended for source position

measurement with an accuracy of 10 arcsecond.

A very similar device called a Raksyn, employing a toothed rotor and
stator with capacitive sensing,is'ﬁSed on the 150-foot radio telescope at
Algonquin Park Ontario, and is described by Ayre (1967). Like the Parkes
210-foot instrument, this instrumentvémploys a master equatorial unit
(M.E.U.) which is pointed apprdpriately and the main structure, which is
altazimuth mounted, is slaved to it. Pointing accuracies of 30 arcsecond
are quoted but are not limited by the Raksyns, which are used both on the
M.E.U. (2 foot diameter) and on the telescope proper (9 foot diameter);

9 arcsecond is given as the accuracy of the M.E.U. Inductosyns and
Raksyns appear to be less troublesome than optical encoders,and can be
built to larger diameters,promising.increased accuracy; they are, however,

somewvhat rare.

(1.4) SOFTWARE CORRECTION OF POINTING ERRORS

A decade ago the notion of using a computer to correct telescope
errors would have been somewhat premature, but with the steadily increas-
ing application of computers to telescopes for other reasons like data
handling, and the decreased relative cost of small computer installations,
it is now-seen as an obvious step.‘ The adoption of computer-control by
astronomy has been slow by comparison to other fields; articles such as
Clarke (1967) and Endeavour (1970) record the process. The computerizat-
ion of various telescope functions along with increased use of small tele-
scopes and photodetectors of higher quantum efficiency, is quoted by
Maran (1967) and Disney (1973) as one of the possible cures for astronom-
ical research bottlenecks. Complete automation of optical telescopes has
been investigated, for example the 98-inch Mauna Kea telescope Hawaii, and
a 24-inch instrument at M.I.T. aescribed by McCord et al (1972). Remotely
operated telescopes have been constructed; +the twin 16-inch Edinburgh
instrument is described by Reddish (1966), and a less successful 50-inch
by Maran (1967),'but the best examples have been the various orbiting

space telescopes.



1.14

The incentive for computer correction of errors is firstly necessity,
for no other technique is to date sufficiently successful. The second and
possibly prime attraction of such a scheme is its possible application on
existing, older telescopes,whose design and construction predates the vari-
ous design improvements so far discussed. Its usefulness on more recent
'state—-of-the-art' instruments is not impaired, since such improvements
result in a higher degree of repeatability as well as smaller errors;
hence the possibility of attaining the accuracy goals cited before. The
Anglo-Australian Telescope Project hopes to reduce the A.A.T. 150-inch
pointing errors from 10 arcsecond to 3 arcsecond by suitable software
correction (design figures Pope 1971), while Solf (1971) intends programm-
ing out flexure, decollimation and circle errors as well as the uvsual
refraction to achieve 10 arcsecond on the Max Planck 2.2—metré. The vari-
ous methods proposed are only vaguely described and there are no general
treatments of the problem in the literature; Lausten and Malm (1971)
propose a table look-up procedure for the gear errors on the E.S.0. 3.6-
metre instrument, while A.A.T. intend to obtain suitable values for para-
meters in error model functions (private communication). Smith (1967),
considering radio telescopes, dismisses the problem for reasons of diffic-
ulty! Simpler cases can be solved quite neatly, for example the standard
approach of Fourier analysis of meridian circle errors (single axis in

declination) as in Dejaiffe (1970).

Two of the more elaborate treatments which appear in the literature
involve parameter estimation studies of the Australian 210-foot radio
telescope at Parkes and the M.I.T. Haystack antenna. Minnett et al (1967)
use a six parameter model to represent the vertex co-ordinates, the direct-
ion of the optic axis and the focal length of the Parkes paraboloid as it
distorts with motion in zenith angle, and fit 150 survey measurements of
the paraboloid by a least-squares process to find a law for optimum
focussing. Meeks et al (1968) used 172 settings on radio sources of
known position corrected for refraction, and least-squares fitted for
seven parameters describing azimuth axis tilt, azimuth offset, collimation
error, elevation axis skew and gravitational flexure. The flexure term
was simply the sum of a linear function of zenith angle, and a constant
which can be taken to be the elevation offset, this giving better results
than the expected sine function of zenith angle. The sumsquared error in
each co-ordinate was separately minimised, giving two. independent estim-
ates of each parameter which were then averaged; applying the fitted
model as pointing corrections, they obtained an improvement of a factor of
2 in the peak to peak error of the weighted azimuth co-ordinate A.cos(h)

and‘a factor of 3 in elevation h.




1.15
This thesis contains a more general investigation of computer correct-

ion of telescope pointing errors, and although the final assessment of the
various ideas discussed herein involves the use of pointing data from a
specific telescope (see Chapter 4), guidelines are established which are
of general utility. For the most part a polar mounted optical telescope
is discussed, but nowhere is this assumption restrictive. Because of the
size of typical pointing errors relative to the range of movement of the
telescope, the best method of measuring pointing errors is by setting on
suitable celestial objects, and comparing the expected topocentric co-ord-
inates@ declination 80 and hourangle H0 with the corresponding values §
and H obtained from the telescope readout system. The pointing errors in

the two co-ordinates are here defined in the sense
A6 = 8 -6

and DAH = B, -H,

and are taken to be functions of § and H, the telescope attitude.

LI ) 1.1

Conceptually the simplest approach would be to isolate the various
causes, e.g. gearwheel eccentricity, tube flexure and so on, and physically
measure each of them separately. Despite the attractiveness of this
method, it is very limited in practice; measuring a parameter requires
dissembly of, or special modifications to the telescope, updating the
measurement with change of telescope configuration is onerous, and diffi-
culty of measurement increases the closer one tries to measure to the
optic axis of the system (see Figure 1.1). Thus the basic question is
that supposing we have sampled the errors over the area of the sky it is
desired to use, how best to use this data to improve the pointing accuracy
at any given point within this area. ‘A limit to the improvement possible
in any given case is set by the extent to which the errors are repeatable,
i.e. for a given telescope configurétion.the extent to which they are
single-valued functions of telescope attitudé@@, and to which backlash and

mechanical hysteresis are absent.

The approach taken clearly depends on how much is known about the
cause of the errors. If no assumptions can be made as to the causal
nature of the errors, we have the problem of two error surfaces AS and

Z&H,in the variables § and H,which must be interpolated or surface fitted

@ corrected for refraction and any effect not caused by the instrument
itself.

@ and perhaps other simple environmental variables such as temperature.
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to effect the required improvement in pointing accuracy. This is consid-
ered in Chapter 3. Should we have insight into the error causes, then a
mathematical model of the erratic telescope can be postulated,and the
data fitted by finding the best values of the model-defining parameters
according to some suifable criterion. Such models are rarely linear in
the parameters and the problem of non-linear parameter estimation of

telescope models is discussed in Chapter 2.

Fundamental to both surface and model fitting is the choice of a

suitable criterion of fit. If we have n observations over the area of
interest, and Sc and Hc are the co-ordinates computed from § and H on
the basis of our surface or model function, we need to minimize a suitable

nord@ of the 2n-dimensional error vector which has components of the form
(60 - Sc) or (HO - Hc) hd LY 1.2

The two most common norms used in optimization methods are the least-
square or L2 norm and the minimax or L, norﬁg@. The latter enables the
maximum error to be minimized,and, although this would be highly desirable
for practical reasomns, L, is a function peculiar to the data used and is
not even a differentiable function of the parémeters or of the error
vector components,and thus i§ considerably more difficult to minimize.
Although other more complicatea,norms exist, the leastsquares norm alone is
both easily computed,and appropriate to our problem. In Chapter 2,it is
shown that (with the choice of a suitable weighting function) the L2 norm
can represent a physically important angle on the sky. If the components
of the error vector are normally distributed about a zero mean, then an
estimate of the model parameters or surface éoefficients obtained by

minimizing the L, norm is identical with the statistical maximum-likeli-

2

hood estimate, and thus the use of the L, norm is also dictated by regress-

2
ion theory. The computation of such estimates of the model parameters or

surface fit coefficients is the key to software pointing error correction.

On the subject of model fitting, Box and Hunter (1965), and others
note that it is necessary to distinguish between 'response surface
optimization' in which we attempt to optimize a variable of interest, (in

our case the root mean square error on the sky) and are not particularly

@ generalised definition of a vector's 'length'; +the Euclidean norm
corresponds to the physical length in the 3-dimensional case.

@ known also as the Euclidean and Chebyshev norms respectively.
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interested in the means by which it is done, and 'mechanism determination!
in which we wish to ascertain the causes of the behaviour of that wvariable.
'Mechanism determination' requires better statistical design of the experi-
ment, and more careful statistical testing of the results than the former
does. The manner in which pointing error data can be acquired is quite
restrictive; it is quite impossible to obtain data points at arbitrary
positions on the sky, or obtain them on a uniformly spaced grid, and so
designing an experiment by specifying the co-ordinates at which data is
taken,e.g. Box and Coutie (1956),is out of the question. It is possible
to obtain data on lines of constant 60, and whilst it would slightly
simplify surface fitting procedures (see Chapter 3), it is prohibitively
difficult and time consuming to be used in practice., The practical con~
straints of data gathering certainly favour the 'response surface optim-
ization' approach but in Chapter 4, it is shown that, with suitable care,
model fitting can locate some of the causes of pointing errors,though by
no means all. - However, it is, along with surface fitting, emminently
satisfactory as a means of their reduction. In the final chapter
(Chapter 5) the practicalities of automated pointing error reduction and

the limitations imposed by hysteresial errors are discussed.

o
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CHAPTER TWO
PARAMETER ESTIMATION IN TELESCOPE POINTING ERROR MODELS

(2.1) PRELIMINARY

It is generally supposed that a knowledge of the pointing error
causes is an advantage in any scheme intended to reduce pointing errors,
since a mathematical model can be proposed for the errors in terms of
physical parameters of the instrument, for example gear eccentricities,

misalignments, structural parameters etc. We represent the model by
y = f(xb), el 2.1

vhere y is the experimentally observed dependent variable, b = (b.) ,
j=1,...k 1is the vector of k (unknown) parameters, and x = (xq) , q=1,...
is the vector of m independent variables. Suppose we have Yi o i=1,...n
which are n observations of y,and_:ii =X . g=1,...m, i=1,...n the
corresponding observations of the independent variables, then our problem
is to find B, an estimate of parameter vector b,such that the sum of

squares
n
2
¢ = .Z(yi_fi) eee 2.2
i=1
is a minimum, where

fi = f(ﬁl' R) ’ : cee 2.3

and we are using the leastsquafes criterion discussed in Chapter 1. It
should be noted that 'sumsquare’ ¢ in equation 2.2 is a function of b

alone (for a given set of data Yir Xy i=1,...n) and can be written

¢ = @ . ces 2.4

Thus the problem is essentially one of function optimization, but many
algorithms have been designed specifically to minimize sums of squares,
and it is the literature on leastsquares parameter estimation, much of it
written by authors in the chemical engineering field, which is perhaps

more relevant.

In our pointing error work the (two) components Qf vector'gi’are the
ith observations of the telescope attitude § and H taken from the axis
readout system, y; is either of the topocentric co-ordinates 80 or H0 of
the particular celestial object, and fi is the corresponding co-ordinate
50 or Hc computed from our model function. Since ¢ is scalar and one

requires a unique 'best' estimate of the parameter vector one cannot

simultaneously minimize the residuals



> (a8 = Y (s, -8)°,
data data

and Z (AH)2 = Z (HO - H )2 . ees 245
data data ¢

Meeks et al (1968) minimize them separately and average the two b vectors

obtained, but a far better scheme is that now described.

Where it is desired to weight certain of the n data points obtained
from the experiment, equation 2.2 can be written
n

¢ = 5 (v. -2)%w?, el 2.6

£ i i i
i=1

where v, is the value of the weighting function for the ith point. Here

we extend this equation to include s such terms and define ¢ by

o= > > [M-22 82, e 27

1

If we use s=2 and make the following identifications:

11 T 6 telescope attitude reading for ith b
' observation;
x,. = H

21

M 5 th

i~ 0 topocentric position of object for i

(2) observation;

= H
i 0 L
ees 2.8

£ = &
f;) computed from model function;

i Hc .
(v = 1 for all i

L weighting function;

2 _ 5
w, = cos J

then @ in equation 2.7 comprises the first order terms of (A R)? the
square of the resultant error on the celestial sphere,which is given (to

second order) by
(AR = (A8)% + (AM)? cos®s + (AS)Z(AR)?/ 2 . ver 2.9

Thus by minimizing ¢ as defined in equation 2.7 we approximate very
closely the minimization of a practically tangible variable, namely the

Root Mean Square (R.M.S.) pointing error.

Fortunately our modified definition of ¢ is compatible with exist-
ing formulations of leastsquares problems@. Many of the more successful

nonlinear parameter estimation algorithms are based on the traditional

@ In fact all we have done is to employ n.s data points with s
different expressions for the weighting and model functions.
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Gaussian approach of expanding the model function in a Taylor series about
the current estimate of the parameter vector 20, retaining only terms to
first order. This expansion is substituted in ¢ in equation 2.7 and the
derivative of ¢ with respect to a general parameter bj set to zero; this

results in a system of matrix equations (called the 'normal equations!')

At = g se e 2'10

to be solved for vector 1 which is a correction vector, and allows us to

iteratively improve our estimate of the parameter vector by
b = b, +1t. cee 2411

The kxk matrix A = (Ajr)’ and the k-vector g = (gj) are given by

s n JA] 4}
m
A, =) [w% ]2 Jofy  ofy cer 2,12
jr £ i
1=1 i=t1 ob. ob
J b
s n 1
3 w2 Lo (n] df,
gnd gj = 12_.1 i§_1 [wi] .Eyi—fi . —i vee 2413

b,
J
respectively and differ from those usually given only in the extra

summation over the s parts of our sumsquare ¢ .

(2.2) ALGORITHMS FOR NONLINEAR PARAMETER ESTIMATION

A discussion of some of the algorithms which have been used in the
literature for estimating the parameters of nonlinear models follows. A
broad outline of this field is given, but, except for the algorithms
actually implemented and tested later in this chapter, it is in no way
detailed or complete. Most methods of any significance are discussed in
a review article by Spang (1962), texts by Wilde (1964) and by Draper and
Smith (1966)@, and/or a review monograph by Kowalik and Osborne (1968).

Minimizing a function of one variable (or parameter), or minimizing
a multivariate function along a line is comparatively straightforward.
Direct search algorithms, which involve simple comparisons of a sequence
of trial solutions in such a manner that the trials become closer together
in either a golden or Fibonacci sequence, are very stable but slow, and
more efficient behaviour is exhibited by algorithms which employ quadratic
interpolation to find the line minimum. In an algorithm by Powell (in
Powell 1964) a quadratic interpolation is fitted to three evaluations of
the function,and the analytically calculated minimum of this interpolating

quadratic is used to replace one of the original points. An alternative

@ See for example the bibliography on nonlinear methods in Draper and
Smith (1966).
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approach by Swann et al (1964)@ uses the calculated quadratic minimum to
improve a group of points bracketing the function minimum. All of the
above algorithms are treated by Kowalik and Osborne (1968), and flowcharts
of the Powell and 'golden section' direct search algorithms are given
later. Direct search methods tend to have very slow convergence propert—
ies when used for higher dimensions particularly when approaching the
minimum., Despite this, methods such as the Simplex method@% in which a
geometric pattern of points is progressively translated and scaled so as
to locate the minimum,and others which involve sequential searches in
orthogonal directions, the most notable of which is due to Rosenbrock

(1960), have found many applicationms.

(2.2.1) Descent Methods

The slow convergence of direct search methods is due to their use of
function values alone,and to their simple utilization of these values.
By contrast, descent methods employ the gradient vector of the function to
be minimized in such a way that the progress of the algorithm is always
directed 'downhill', In general, the new estimate of the parameter vector

is formed from the current estimate 20 by

-1
h = _% + xD .g. 9 eoe 2014

where g = (gj) is the negative gradient of ¢ and is given by
gj = - b¢/abj 9 coe 2015

o is the iterative step size and D is a positive definite weighting
matrix. The most common such algorithm is the method of 'steepestdescent!
in which D is simply the unit matrix and the algorithm proceeds directly
down the gradient orthogonal to contours of constant ¢ . Other weight-

ing matrices are in use, for example Newton's method which uses

- 22 ¢ ce. 2.16

D. -
T db, Ob
j r
Such a scheme entails  rather onerous computing requirements and in this

chapter we restrict ourselves to methods which require the computation of

(at‘most) only the first derivatives.

It is usual in nonlinear problems for the contours of constant @ to

@ Called the Davies-Swann-Campey algorithm in the literature.
@ In a k-dimensional problem a simplex is a set of k+1 points.

@@ Vector g in equations 2.15 and 2.13 are identical apart from a
multiplicative factor of 2.



FIG 2.1

FLOWCHART DETAILS FOR ROUTINE GRADNT.
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LEGEND TO FIGURE 2.1 GRADNT FLOWCHART

The small numbers against flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listing in
Appendix D; other symbols are as follows:

xqi = data points | h
1l
y. = data values
i
fq) = computed values of the model function
N where
3D i=1,...n
_Ei - = computed values of the derivative of S J=1yeeek
db. the model function
J 1=1,.2
qg=1, 2
gj = the gradient vector of equation 2.15
: bj = current estimate of the parameters
b;'j = temporary estimate of the parameters
g! = correction vector given by equation
J 2.18
g" =  temporary value for normalized
J correction vector J
in = sequential iteration number
o = step size, see equation 2.14
e = residual sum of squares (current)
950 = residual sum of squares from previous iteration
e = angle between successive correction vectors
T = criterion for O (here set to 800)
d1, d2 = constants for calculating new value for o

see equation 2.19 (here d;=0.5 4a =1.0)

2

convergence criteria, C = 10—15, € = 1072,

o
o
|l
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be grossly elongated rather than near-circular, and frequently the gradient
vector g points almost at right angles to the actual direction of the
minimum. This seriously retards the progress of descent algorithms and
the situation can often be improved by suitably scaling the parameters, or
by a transformation of the parameter space. A transformation used with

success by Marquardt (1959) is to replace parameter bj by

b'. = arctan b. ) ceo 2.17
J J

whereon the transformed gradient vector components g3 are given by

— 2
gl = (1+bj ).E)ng/bbj . ... 2.18

Some strategy must be employed in descent algorithms to determine a
suitable value for the step size o . A commonly used one is that if the
successive estimates lie approximately on a straight line then ot is too
small and should be increased for the next iteration, and if the estimates
'zig-zag' acutely & is too large. In an implementation of this by
Marquardt (1959) the angle © between successive correction vectors is
calculated; if © is greater than some criterion angle % , o is divided
by 4 and the new estimate of the parameter vector in equation 2.14
recalculated with this value of . If © is less than  the routine

advances to the next iteration and calculates a new value for & from

3
u%ew = oc(d1 + d2 cos”®) , vee 2.19
where choice of d1 and d2 such that 0<d1<1, and (1—d1)< d2<1 results

in an increased value of « if 6 is near zero,and a decreased value if ©
becomes large. A similar scheme is used by Brown et al (1956). A
steepest descent algorithm using the parameter transformation and the
scheme for determining « given above was implemented by the author,and
the detailed strategy of the routine (named GRADNT) is given ‘in the flow-

chart in Figure 2.1.

As discussed later in the presentation of numerical results, the strat-
egy used above to regulate step size is still too coarse to ensure stable
convergenceyand a class of algorithms known as 'optimum gradient' algor-
ithms attempt to line minimize the function along the chosen correction
direction. Obviously the routine becomes inefficient if too great an
effort is spent in line minimization before a new iteration and new
correction direction are introduced, and various compromise strategies are
found in the literature. Here, to test the basic strategy of using the
steepest descent direction, a version of the steepest descent algorithm
employing fairly complete line minimization within an iteration was im-

plemented. Called GRAD2, it was used with both the golden-section and



FLOWCHART DETAILS FOR ROUTINE GRAD2.
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FLOWCHART FOR GOLDEN -SECTION ROUTINE GMIN.
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LEGEND TO FIGURE 2.3 GMIN FLOWCHART

The small numbers against flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listing in
“Appendix D; other symbols are as follows:

¢ = ¢ (b) current residual sum of squares

b = (bj) current parameter vector

g = (gj) direction of required line minimization

S = step size within which the line minimum of ¢ is expected

to lie

€ = line minimization convergence criterion, € = S/105
r = the golden ratio ( = 1.61803)

r' = 1 -1

Al dynamic endpoints of an interval bracketing the minimum (A< B)
B .
B! = original value of B

A1
A2

¢
b2

= trial steps along g, see below (/\1</\2) '

= evaluations of ¢ at the points b+ >‘1-g-
b +

AxE

o = final solution of step size along g which is within € of '
line minimum of 525 along g

i = 1iteration number.
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-~ FLOWCHART FOR POWELL ROUTINE LMIN.
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LEGEND TO FIGURE 2.4 LMIN FLOWCHART

The small numbers against flowchart blocks correspond to the

labels of FORTRAN statements in the computer code listing in

Appendix D; other symbols are as follows:

|o*

P

Ao A Ay

A

(bj) current parameter vector

(gj) direction of required line minimization

= ¢(l)_) current residual sumsquare

typical working step size

maximum permissable step along g

line minimization convergence criterion, & = S/1O5
b+ Ag
evaluations of @ at the points b+ )\2_g
b+ Ag

trial steps along g (see above)

turning point of a quadratic interpolating ;151 ’ ¢2, ¢3
computed from

A, = % 02558, + 0228, + W2\,

m

Ay =28y + Oy =M@, + (N -3,) 4,

second derivative of quadratic interpolant computed from
D, =-2. M-8 + =Xy + (A-X)g,
A=) (A=2) (A=X)

sumsquare corresponding to >\m

specified members of the set (>\1 , /\2, >\3)

temporary value of step size

¢i’ ¢j’ ¢k’ ¢' = corresponding sumsquare values

i

n

iteration number.
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Powell line minimization algorithms and is flowcharted in Figure 2.2.
The flow details of the golden-section (program name GMIN) and Powell
(named IMIN) routines are included for completeness and are seen in Figures
2.3 and 2.4 respectively. The routine LMIN is used also in Powell's (1965)
algorithm for minimization of multivariate sums of squares,which is alluded

to later.

Neither of the two steepest descent routines GRADNT or GRADZ2 proved
to be successful in numerical tests described later, and Kowalik and
Osborne (1968) note that,even for k greater than 2,such algorithms often
eventually approach the solution in a two-dimensional subspace,and can
become trapped in a 'cage' whilst working along the level floor of a steep-
sided valley. Various methods, for example those due to Davidon (1959),
Swann et al (1964) and Powell (1964), have been devised to avoid this
problem and employ conjugate directions, that is consecutive searches are
conducted in directions in parameter space which are linearly independent;

however implementations of them have not been investigated here.

(2.2.2) The Levenberg and Marquardt Algorithms

A number of the more successful algorithms to be found in the liter-
ature are based on the Gaussian approach mentioned earlier, and solve the
matrix equation of equation 2.10. When the model function is linear in
the parameters, equation 2.10 negd only be solved once to yield the
(unique) leastsquares parameter estimate. Matrix A is positive definite@
but often ill—conditioned@@ and certain factorizations of A like Choleski
decomposition and the method of Golub (1965) have been found very useful
in such cases. However, for nonlinear models the most important consider-
ation is the strategy within an iteration,after equation 2.10 has been
solved :- how best to deal with a solution for the correction vector t

wvhich is only an approximation.

Simply solving equation 2.10 and correcting the current parameter
vector by t,as in equation 2.11, each iteration proves unstable for most
problems, and so Levenberg (1944), with the idea of minimizing both ¢
and the length of the correction vector 1 simultaﬁeously;solves a modi-

fied form of equation 2,10 viz.,

A+ XI)t = g eee 2.20

@ All the eigenvalues of A are positive.

@ Small perturbations in the elements of A prodﬁce extremely large
errors in the numerically calculated inverse: matrix AT,



FIG 2.5

FLOWCHART FOR LEVENBERG ROUTINE DLSQ.
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LEGEND TO FIGURE 2.5 DLSQ FLOWCHART

The small numbers against flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listing in
Appendix D; other symbols are as follows:

i = sequential iteration number

i = iteration number after which damping is removed
(break point iteration)

xqi = the n data points N where
i=1,...n
(1)
5 = +the n data values (1 =1, 2.
j=1,...k
b = (bj) the current estimate of the parameter vector| q = 1, 2
A = (Ajr) the kxk matrix in equation 2.12
g = (g.) the k-vector in equation 2.13
J A
<¢ = +the current residual sum of squares (see equation 2.7)
(¢° = +the value of ¢ saved from previous iteration
T = 10_15 constant preventing division by zero
£ = 10_5 relative tolerance for convergence criterion
A = damping factor added to diagonal elements of A

(see equation 2.21)

[+
Il

(tj) correction vector found from solution of equation 2.20

I = kxk unit matrix.



Typical situation encountered by Gaussian type algorithms.
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In this equation,A and g are as given in equations 2.12 and 2.13 respect-

ively, I is the unit matrix and Xis a 'damping factor' calculated from

>\ E g2
- 2j[=1gj /75‘ eee 2,21

This optimized choice of damping factor A has the effect of inhibiting
the divergence of successive parameter estimates, which would be caused by
nonlinearity or poor scaling in the model, but unfortunately markedly
decreases the rate of convergence, and so the damping is switched off ( )
is set to zero) after a certain number of iterations (called here the
breakpoint iteration) in the implementation used here. The Levenberg alg-

orithm was programmed here as routine DLSQ and is flowcharted in Figure 2.5.

A typical situation encountered by Gaussian-type algorithms is that
depicted in Figure 2.6; the steepest descent vector g may often lie al-
most perpendicular to the Taylor direction. The algorithm by Marquardt
(1963) uses a correction vector t which is an interpolation between the
Taylor direction and g and in their common plane. Marquardt generates

* * * *
scaled matrix A = (Ajr)and vector g = (gj) by

*
A = A, //A_A_ , vee 2.22°
jr jr JJ rr
*
a/nd . = . ‘/A.. : ee® o 2.23
gJ gJ/ JJ
respectively and, like Levenberg, solves the equation
* * * :
(.A.+ AI) i = _g oo e 2.24

The correction vector t is obtained from

*
t. = t. ‘/A.. . eeoe 2.25
J J/ JJ

Marquardt shows that, as A increases, the angle 7" in Figure 2.6
decreases, and t rotates so as to approach the steepest descent direction
g. The basic strategy employed for the determination of A\ is to increase
,X within an iteration until a reduction in ¢ is obtained, but between
iterations A is decreased to ensure fast convergence when approaching the
minimum. The Marquardt algorithm in its original form ( and in the
implementation here) involves re-inversion of the matrix (A* + AI)
whenever A is changed; Jones (1970) shows that this may be obviated
by using a matrix multiplication process involving the eigenvalues and
eigenvectors of A*. - One of the advantages of adding A to the diagonal
elements of A* is that the resulting matrix is always better conditioned

*
than A itself, and cannot be singular for any value of A vwhich is larger

*
@ This produces ones on the leading diagonal of A which is effectively
the matrix of correlation coefficients between the parameters..
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LEGEND TO FIGURE 2.7 MARODT FLOWCHART

The small numbers against flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listing in
Appendix D; other symbols are as follows:

in = sequential iteration number
x . = data points
)

;% = data values vhere

* i=1,...n
b = current estimate of parameter vector j=1,...k

' >1_1,2

b'! = temporary parameter vector

- qg=1,2

* . . r=1,...k
A These quantities result from the scaling of

* matrix A to give ones on the leading diagomal.

g* They are related to A, g and 1 by equations

A 2.22 to 2.25 ’ J

A = quantity added to diagonal in equation 2.24

A' = temporary value of A\

% = 10, constant for reducing A by division

o = step size
.8 = flag indicating history of A within an iteration

T = angle between the vector t and direction of steepest

descent
To = criterion angle (here set at 77/4)
=15 . NP
T = 10 constant preventing division by zero
€ = 10_5 convergence criterion

(:>,(:> = points at which CMPRES, EXPAND routines are optionally
included (see Chapter 4).



FIG 238

The search pattern of Jones' SPIRAL routine.
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LEGEND TO FIGURE 2.9 SPIRAL FLOWCHART

The small numbers against flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listing in
Appendix D; other symbols are as follows:

xqi = data points
f? = data values
4)] .
fi = computed function values
A = kxk matrix of equation 2.12
F4 = k~vector of equation 2.13, and steepest descent vector:
b = current vector of parameter estimates
b = +temporary parameter vector
S = k-vector giving point on spiral
s'! = point on spiral found by interpolating three other points
which are downwardly concave in @
] = Taylor point found from solving equation 2.10
1" = previous Taylor point saved
! = Taylor point found from interpolating along Taylor direction
/AL = scalar parameter generated by a recurrence relation to prov-
ide consecutive points along the spiral
/AL1 = dinitial value of/p(
Moy = final value of s
in = 1iteration number
is = number of spiral being searched
lP = sequential number of point on spiral
78 = angle between Taylor direction t and steepest descent g
¢ = current sum of squares
¢o "= previous sum of squares

value of ¢ for previous Taylor point

T = 10-15 constant preventing division by zero for some bj:O

S,
I

-5 . .
€ = 10 convergence criterion
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than the numerical errors. Kowalik and Osborne (1968) are mildly critical
of the algorithm noting that it is awkward to experiment with A\ within
an iteration,and that it is no disadvantage in Gaussian algorithms for it
to lie well away from g,since algorithms using the steepest descent direct-
ion rarely perform well. Despite this, the version of the Marquardt algor-
ithm used here, called MARQDT and shown in Figure 2.7, behaves extremely
well on the model used and in fact spends most of its time pursuing a path

nearly perpendicular to g.

(2.2.3) Jones' SPIRAL Algorithm

Another Gaussian type algorithm investigated here is the routine
'SPIRAL' originated by Jones (1970). Like the Marquardt algorithm it
concerns itself with the area between, and in the plane of the steepest
descent vector g and the Taylor direction t,as shown in Figure 2.8.
Searches for a reduced sum of squares ¢ are made along spirals connect-
ing the base point O with the calculated Taylor point T in the isosceles
triangle ODT. The points on the spiral are chosen so that they get closer
together as they approach the steepest descent direction. The strategy
of the SPIRAL algorithm, which is flowcharted in Figure 2.9 is as follows:

(i) The current Taylor point T is checked for a reduced sum of squares
q
¢, and if found the next iteration is entered (the base point

shifted to the Taylor point) otherwise,

(ii) points on the spiral curve TO starting from T are checked and if

no reduced ¢ is found,

(iii) vector t is halved producing point T' and if this gives no reduct-

ion in ¢ the spiral OT' is searched as above;

(iv) if four spirals have been searched without finding a reduced ¢

the steepest descent direction is searched.

Jones also checks for downward concavity of ¢ for points on the

"spiral,and if this is encountered an interpolation is performed; he also

compares the value of ¢ at the original and halved Taylor points for
possible interpolation along the Taylor direction. Whereas.in MARQDT
consecutive search points within an iteration are generated by matrix

inversion, the search points s in SPIRAL are generated by vector addition.
s = Dg+ Tt , cee 2,26

where s is the search point on the spiral and D and T are scalar functions
of a parameter‘/L , the index of the spiral point, which is generated by

the recurrence relation

Moy = 2/ (140 ... 2,27
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As soon as a satisfactory point s is found,the current parameter estimate

30 is updated by

;b- = ;.b_o""_s. L) 2.28

(2.2.4) Algorithms which do not Require Derivatives

All the algorithms so far described require the analytic calculation
of the model derivatives with respect to the parameters, which for com-
plicated models can be extremely onerous. A few methods exist which
require only function values. Fletcher in a review article (Fletcher 1965)
compares three such algorithms by Swann et al (1964), Smith (1962) and
Powell (1965). Possibly the best for our purpédse would be the Powell
algorithm which has found wide application. Powell initially uses the
co-ordinate directions (in parameter space) as k linearly independent
search directions, and, as in the Gaussian methods, solves the normal
equations for the correction vector d but using numerically estimated
derivatives, His 1964 line minimizetion algorithm (which is discussed
earlier by the name IMIN and shown in Figure 2.4) is used to minimize ¢
along d and the direction d replaces one of the existing set of search
directions. The necessary function evaluations along 4 are used to esti-
mate derivatives in such a way that subsequent iterations do not require

an excessive number of further evaluations.

Unfortunately, an implementation of this algorithm was not developed
in time for the numerical comparisons later in the chapter, and here we
simply note the comparison of it with the Marquardt and SPIRAL algorithms
in Jones (1970); in the majority of the standard test problems tried, it
proved satisfactory but inferior to the two last mentioned methods, There
is no reason to suspect that the model function used here would produce
a comparison differing greatly to Jones', particularly since his comparison
of SPIRAL and Marquardt does not disagree greatly with our own results.
To assess the necessity of analytically calculated derivatives,a version
of the Marquardt algorithm using numerically estimated derivatives was
implemented,and is hereafter referred to as MARQT2. As in Jones (1970),

a simple finite difference formule was used for the derivative estimat-

ions,with the step size e'_j in each component bj of b being given by

e.

;= 5x107 bl vee 2,29

; 5 x 107 vee 2,30
if equation 2,29 produced ej'<10'1o.

il

or e
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(2.3) THE TELESCOPE POINTING ERROR MODEL

(2.3.1) Model Function

The model devised to test the methods of parameter estimation pro-
grammed is that of a perfectly rigid, equatorially mounted telescope with
the instrument pole misaligned from the celestial pole, the two axes skew
(not orthogonal) and fiduciary errors (zero offsets) in both axis trans-
37 b4 and b5 defined
below. It is sufficiently simple to permit ease of experimentation with

ducers; it is described by five parameters b1, b2, b

the appropriate computer programs yet useful in as much that it can be
incorporated into more complicated models for actual pointing error in-
vestigations. It is representative of the type of functions to be

expected in pointing error work.

Thé effect of polar misalignment and hourangle fiduciary error is
.shown in Figures 2.10a and 2.10b. Thus far the set of axes Ox'y'z' are
still orthogonal,and the transformation between the correct equatorial
system Oxyz and the misaligned system Ox'y'z' is given by the Eulerian
angle transform using the first three of the parameters b1, b2 and b3.

" With regard to quantities which are physically measureable on the tele-
scope, b1 is the polar misalignment, b2 is the correct hourangle zero

‘point with respect to the instrument zero point,and Hp is the hourangle
of the true pole with respect to the instrument axes Ox'y'z' and is re-

lated to b3 by

= -rr - ceee Y
HP /2 b3 2.31

The remaining two parameters, b,, the skewness or departure from ortho-

’
’ gonality of the axes, and b5, th: declination offset are explained by
Figures 2.11a and 2.11b. The skew declination axis is assumed to lie in
the plane of the ideal (orthogonal) axis and the instrument pole z',
with no loss of generality, since this can always be arranged by suitable

choice of b2, the hourangle offset.

To compute the declination and hourangle components of the model
function 6c and HC respectively, the axis readout co-ordinates § and H

are first corrected for declination offset and skewness by

8!
and H!

arcsin sin(5+.b5) cosb4] ,
cee 2632

i

H + arctan [tan( 5+b5) sinb4] .

Polar misalignment and hourangle offset are then corrected by the

Eulerian angle transformation equations :
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= ', - . ! -— i - i !
x cos & ‘-_-cos(b2 b3) cos(b3+H ) cosb1. s1n(b2 b3) 451n(b3+H )]
+ sin §°'. sinb1.sin(b2+b3) y ee. 2.33a
- - 1 : _ 1 _ :
y =-cos 9 .[_51n(b2 b3).cos(b3+H ) + cosb1‘ cos(b2 b3).51n(b3+H')]
+ sin S'.sinb1 .cos(b2+b3) , ee. 2.33b
zZ = cos 5'.sinb1. sin(b3+H') + sin ‘5'.cosb1 . .e. 2.33c

Finally, the model function is given by the rectangular to polar trans-

formation

1

f( . & = arcsinf) ,

o) © el 2,34
and £2 = H = arctan(-y/x) ,

vhere - 77/2 \<6c \<7T/2 and OQHc {21 .

(2.3.2) The Model Derivatives

The routines GRADNT, GRAD2, DLSQ, MARQDT and SPIRAL all require the
derivatives of the model function with respect to the parameters. Jones
(1970) and others regard the analytic calculation of derivatives as being
well worthwhile,although they consider model functions somewhat less
complicafed,than that used here. Techniques for simplifying and approx-
imating telescope pointing error models by simply summing the component

causes are discussed in Chapter 4,but here the exact model derivatives

(1)
——1:1 = Q_sc,_a_sc,a;‘_c,_a_gc,a_é.c,éilc,ﬁic,ﬁlc,é_lic,a_ﬂc eee 2.35
Bbj db, db, dby db, Jb; db; db, Jby b, b,

are calculated analytically.

Equations 2.36 to 2.40 inclusive and equation 2.42 below (in which
&', H' and x, y, z are defined in equations 2.32 and 2.33 respectively)

give these derivatives:

M : . ey s 2\-%
of /bb1 = [cos&'.51n(b3+H ).cosb1 - sin§'. sinb, (1-27) ve. 2,36
bf“?bbz = 0 | cee 2.37
£ _ R ' 2,-%
d /ab3 = cosd .51nb1.cos(b3+H ). (1-2%) e.. 2.38
1 . . i 2,-%
df /bb4 = [_cos S'.cosb1 - 51n8'.51nb1.51n(b3+H')].(1—z ) .BS'/Bb4
1
+ cos’S'.sinb1 .cos(b3+H‘~).(1—z2)—2.aH‘/a‘b4 ees 2.39

> . : . 2,1 '
f /bb5 [cos $.cosb, — sin§'.sinb .51n(b3+H')J.(1—z ) .35'/Bb5

1 1
1 R
+ cos§' .sinb1 .cos(b3+H').(1-—z2)-2.BH'/bb5 ee. 2.40

In equations 2.39 and 2.40 the derivatives of &' and H' are given by



36'/bb4
aa*/bb5

bH'/bb4

and bH'/Zﬂo5

The derivatives beVbbj are given by equations of the form

sinb

4

. . .2 2 -3
- 51n(6+b5).51nb413 - sin (5+b5).cos b4] 2
.2 2 7-1

cos(6+b5).cosb4ij - sin (8+b5).cos b4]

2 .2 -1
tan(8+b5) .cosb4ﬁ + tan (8+b5). sin b4]

2 2 . 2 -1
. sec (6+b5).[1 + tan (8+b5).51n bj

af‘z’/abj - (x/b, - xby/moj)/(x2 +y9)

given by

dx/db ]
dy/db ]
Bx/b_bz
dy/db,
Bx/ab3
By/ab3'

Bx/bb4
By/ab4
ax/bb5

by/abs

i

cos '

sin§'.

cos &'.

sin &'

cos B!

sin §'

cos §'

sin§'.

cos '

] 1 -
-[éos(b3+H ).51n(b2 bB).+ cosb

51nb1

cosb1‘51n(b2—b3)

.sin(bz—bB) sin(b3+H')

sinb

_ : 1
1.cos(b2 b3).51n(b3+H )

-cosb1.cos(b2-b3)

1

.slnb1.cos(b2—b3)

51nb1‘s1n(b2—b3)

-b ). si '
[:pos(b2 b3) 51n(b3+H ) + cosb1

wvhere j = 1,2,3,4,5 and the derivatives bx/bbj and By/&)bj are

‘cos(bz—bB)

. _ . "o ).
.[cosb1.51n(b2 b3).51n(b3+H ) cos(b2 b3)

2.12

2.41a

.. 2.41Db

2.41¢c

2.414

e e

2.42

in turn

2.43a

2.43b

sin(b,+' )]
ees 2.43¢

cos(b3+H'ﬂ
2.43d

sin(b,-b,) . cos (b, +H" )]

eee 2.43e

. . _ . n o , _
cos$ .[51n(b2 b3).51n(b3+H ) cosb1.cos(b2 b3)pos(b3+H')]

—‘By/bb2

A.bs'/bb4 + B.aH'/ab4

c.bﬁ'/bb4 + 1).3}1'/3134

A.BS'/Bbs + B.ZaH'/bb5

C.BS'/Bb5 + D.BH'/Bb‘S

2.43f

«es 2.43g

2.43h

2.431

e s e

cen 2.43j

The quantities A, B, C and D in equations 2.43g to 2.43j are given by

A

sin&'.[cosb

1

. . -
+ cosd .31nb1.51n(b2 b3)

- - 1 ]
cosS'.[cos(b2 b3).s1n(b3+H ) + cosb

1

.sin(b

2‘b3

: _ ; 1y _ - 1
.51n(b2 b3).51n(b3+H ) cos(b2 b3),cos(b3+H )]

2.44a

e e

).cos(b3+H')]

2.44b
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1.cos(b2—b3).sin(b3+ﬁ')]

1 1 —
+ cos$ .51nb1.cos(b2 b3) ee. 2.44c

_ s Q1 ; _ t
C = sin$ .[sln(bz b3).cos(b3+H ) + cosb

and D

cosS'~[éin(bz—b3).sin(b3+ﬁ') + cosb .cos(b2—b3).cos(b3+H')]

e s 0 2.44d

1

wvhere again the derivatives of &' and H' are defined in equations 2.41a

to 2.41d.

(2.4) THE PERFORMANCE AND COMPARISON OF THE ALGORITHMS

The six routines GRADNT, GRAD2, DLSQ, MARQDT, SPIRAL and MARQT2
described above were programmed in FORTRAN as subroutines for an I.B.M.
360/50 and later a UNIVAC 1108 computer; +the code listings for these
routines and also the necessary supporting subroutines are to be found in
Appendix D. The parameter estimation program takes the form of a main
section which merely reads a card containing the sequence in which the
various subroutines above are to be executed. Two additional subroutines
are required: DATGEN which, given n the number of data points and b a
k-vector of telescope mounting parameters, generates pointing error data
Xy5 (the independent variable) and J? (the 'experimentally measured’
variable) where 1 =1, 2 and i = 1,...n; and also DAPERT which takes the
experimental variables éi,above and perturbs them by adding to each a
normally distributed pseudo—randod@ number with zero mean and a specified
standard deviation. These last two subroutines enable one to synthesize A
pointing error data such as would be taken from a telescope with appropri-
ate parameter vector b, and to superimpose on this a pseudo-random vari-

ation to permit assessment of an algorithm under real conditions,and also

to test whether or not an algorithm produces stable solutiomns.

In the following computing runs several sets of model parameters were
used and these are tabulated in Table 2.1. Labelled from A to F the models
represent progressively more erratic telescope mountings. Model D (for
example) represents a telescope mounting with a polar misdlignment (b1)
of 30.9 arcsecond oriented at an hourangle (7/2 - b3) of 245 degrees, a
polar axis zero error (b2) of -103 arcsecond, 41.2 arcsecond skewness of
the axes (b4L and a declination zero error (b5) of 103 arcsecond. Such a

mounting produces a R.M.S. pointing error of approximately 2 arcminute.

All of the algorithms require an initial estimate of the parameters

@ 'random' but for the fact that repeated computer runs would produce
an identical set of such numbers; +this is necessary for purposes
of comparison. ‘



TABLE 2.1
Test Model A B C D E F
b1 .00004 | .0001 .00013 .00015| .0003 .01
Parameter b2 -.00006 . 0002 .0002 -.0005 .0008 | -.01
radian b4 -.00003 | -,00015| -.0002 .0002 | -.0006 .01
b5 .00005 | -.0002 .00017 .0005 .0007 | -.01
Sum of squares @ .267° AT 3570 1074 IV andl BERTuL
R.M.S. on-sky error | 19 sec. | 50 sec.| 70 sec. 2 min.| 4 min. 1 .deg.
TABLE 2.2
Starting Point Number| SP1 SP2 SP3 SP4 SP5 SP6
-7 : =5
.b1 10 .002 .01 0 -10 -.00015
Parameter b, 1077 |.002 .01 0 2107 | .0005
value in b, 1077 |.002 .01 0 ~10™° | 2.0005
radian b, 1077 |.002 .01 0 ~107 | -.0002
by ] 107" |.002 .01 o ~107 | .0005
- - =2 -8 -4
Sum of squares ¢ ST 12 .31 3 .78 0 LT7 .11
R.M.S. on-sky error .03 sec.|11 min.| 50 min. 0 3 sec. 2 min.
N.B. superscripts are decimal exponents e.g. .26_6 = .26 x 10-6
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which is iteratively improved to obtain the eventual solution. The six
initial estimates or starting points used in the computing runs are
tabulated in Table 2.2 and referred to hereafter by SP1 etc. The residual
sumsquare ¢ in Tables 2.1 and 2.2 has been calculated from equation 2.7
with x.. substituted for é? (since %? =X for a perfect mounting) and

1i
the R.M.S. on-sky error calculated from

R.M.S- = \/¢/11 . oo 2045

In all runs 30 data points were used and so the constants appearing in

equations 2.7 to 2.13 above are n=30, m=2, k=5 and s=2.

Although problems were experienced in getting all the algorithms to
run reliably, most of these were with certain constants or with minor
points of strategy. The exceptions are the two steepest descent routines
GRADNT and GRAD2 which,despite quite drastic modifications and redesigning,
proved quite unsatisfactory as practical methods. The expression for the
step size o in routine GRADNT given in Marquardt (1959) involves cos46
and is in error since as the successive steps turn from being collinear
to zig-zag, © varies from O through 77/2 to 77, and cos® from +1 through
0 to -1. Thus an expression involving an odd integral exponent of cos®
is necessary if o is to decrease as 6 increases, and expressions with

5
cosevand cos”©® were used here. -

The choice of initial step size, the parameter transformation used,
and the fundamental strategy of GRADNT were varied with little success.
In all runs examined the routine exhibits the same tendency, namely a slow
and steady reduction in ¢ along a straight path until a sudden sharp
descéent or a bend in the contours of ¢ is encountered,whereon the routine
'zig-zags' abruptly and in the attempt to find a further reduction in ¢
the step size is reduced ad nauseam until a floating point divide under-
flow occurs. Table 2.3 shows the progress of GRADNT starting at SP1 with
data generated from model D, At iteration number 8 there is a sudden bend
in the contours as shown by the decrease in c0s8; +the routine then keeps
dividing o by 4 but does not find a reduced ¢ before underflow occurs.
If we limit the number of times & is divided by 4, in this case to 12,
the column labelled 9 describes the result; +the routine has run up the
side of a valley and is proceeding in a straight line with such diminished
steps that it cannot find the valley floor in a convenient number of
iterations. No modification to the manner in which o¢ is computed that

was tried produced any substantial difference in the behaviour of GRADNT.

Like GRADNT, the routine GRAD2 runs into troubles early in the course
of the solution. Which of the golden section (GMIN) and Powell (LMIN)
3



TABLE 2.3

The behaviour of GRADNT

Iteration number 1 2 3 4 5 6 T 8 9@
step size o |.1072].507 |.757> 1172|1772 | 2572] 3772|2072 | 50712
cosH - 149996(.9999}.9995|.9981|.9982| .7784|.0656|.9945
¢ 9477 |.887° [.8072 6772 ].507° 3177|3472 | 7277|2170
R.M.S. 115. j112. |107. 97.5| 84.2| 66.3| 69.4] 10.1| 16.8

. . -3 -3
N.B. superscripts are decimal exponents e.g. .75 ~ = .75 x 10
@ see text.

TABLE 2.4

The performance of GMIN and IMIN in the routine GRAD2

GRAD2 iteration number 1 2 3 4
¢ (radian) .46—6 .74_7 .57—7 .56_7
R.M.S. (arcsecond) 25.5 10.2 9.0 8.9
Number of GMIN 23 45 67 89 //
function

. LMIN 7 13 17 21
evaluations

6 6

N.B.  superscripts are decimal exponents e.g. .46 = .46 x 10




= — — — @ in the direction of the correct result for Model D.

¢ in the direction of steepest descent.

FIG 212

Io“” P

| 0-12 — AN //
N\ /
\ /
\ solution
\ /
| = \ /
\ ,/
\

v !

\
(o ] i | 11} I

0] 5 10 j\( 20000 20005 20010

Distance in parameter space from point SP1,

radian x 10 .



1074

107"

T

107

1"

FIG 213

DLSQ on Model D starting at SP4, is = 50,

| | I

Number

20 30 40 50

of iterations.



2.17
line minimization routines is used,has very little effect on the progress
of GRAD2,which, although exhibiting a much faster initial rate of converg-
ence than GRADNT, stagnates at more or less the same value of ¢ , in this
case .56 x 10'—7 (equivalent to 8.9 arcsecond R.M.S.). There is however
a marked difference in efficiency between GMIN and LMIN; +the latter
requires much fewer function evaluations to perform the line minimization
and is much less critical of the step size and line minimization tolerance
€ wused. Table 2.4 shows the relative number of function evaluations
required by GMIN and IMIN for the first four iterations of GRAD2 on model
D and starting from SP1. It shows conclusively that the model function
is such that it can be adequately represented by the quadratic approximat-
ion used in the Powell algorithm,and that Powell should be the algorithm
used if line minimization is required. Nevertheless GRAD2 overall is no
more satisfying than GRADNT, and because it uses the optimum gradient
strategy it can be concluded that no algorithm employing the gradient or
steepest descent direction will be found satisfactory for the problem
treated here. It is not difficult to see why; +the gradient direction for
model D at starting point SP1 is oriented at an angle of 89.98 degrees to
the actual direction of the solution,and such routines get trapped in an
extremely narrow valley, whereas the solution can be reached by proceed-
ing along a gently sloping and nearly straight path. Figure 2.12, in
which the solid line gives the wvariation of ¢'along the steepest descent
direction,and the broken one that for the solution direction,is illustrat--

ive of this.

The other algorithms DLSQ, MARQODT, SPIRAL and MARQT2, the estimated
derivative version of MARQDT, perform sufficiently well for useful com-
parisons to be made. The convergence criterion in each is identical,

namely that convergence is reached when
ltjl/([bj] +T) & £ forall j =1,...k vee 2.46

where the t. are the bomponents of the particular correction vector,

£ = 10-5 is the convergence tolerance and T = 10"15 is to guard against

underflow in case some b. = O, (see flowchart in Figure 2.9 for alterna-
tive ways that SPIRAL can converge). However to enable such comparisons

to be made a suitable number must be decided for the iteration breakpoint
is at which to 'switch off' the damping (set A = 0) in the routine DLSQ,

for otherwise the rate of convergence is rapidly decreased. A test was.

run using DLSQ with is = 50 on data generated from model D and starting

from SP4, and the behaviour of ¢ with successive iterations is shown in

Figure 2.13. After an initial steep decrease in ¢ for about 8 iterations

the routine slows to a rate of convergence which is markedly inferior to
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that of the others (see Figure 2.14).

The routine was also run on the same data and starting point as above
with various values of iteration breakpoint, and the effect of these is
seen in Table 2.5. In all the runs the convergence was complete and the
final parameter estimates were correct to better than 8 significant fig-
ures. Neither the total number of iterations required,nor the number
required after the breakpoint,varies simply with the breakpoint iS and
this is attributed to the non-monotonic behaviour of DLSQ directly after
the breakpoint. For the breakpoints tried below 26, ¢ at some stage in-
creased rather than decreased, usually 2 or 3 iterations after the break-
point. To discourage this potentially unstable behaviour we require a
fairly large number for the breakpoint yet not so large that it prolongs
convergence; on the basis of Figure 2.13 and Table 2.5 a breakpoint of

10 was chosen for all subsequent work with DLSQ.

TABLE 2.5

BREAKPOINT is 3 5 8 11 14 19 26 50
iterations required 14 13 15 17 52 24 30 52
for convergence
iterations required
after breakpoint ‘ B 8 7 6 8 3 4 2
iterations at which|s ¢ g 11| 7,8 10,11 {13,14 | 16 | 21 |nome |nome

increased
final sumsquare ¢@ 2,527 11,7733 2,772 42734 1 77341 7734 2,074 2,670
. . | _27 -27

@ superscripts are decimal exponents e.g. 2.5 = 2.5 x 10 .

- Literature comparisons of parameter estimation algorithms applied to
specific problems often compare computation time, number of iteratiomns or
number of function evaluations required to produce a convergence. The
first is complicated by compﬁtational overheads and coding inefficiencies,
and the second by the vague meaning of which ioop in an iterative strategy
one considers to be 'the iteration'. Thé number of fﬁnction evaluations
would appear to be the best criterion for comparing algorithms of quite
different strategy and is used by Powell (1965), Jones (1970) and others.
All the three routines, DLSQ, MARQDT and SPIRAL calculate the derivatives
Béiybb. once per iteration, but vary as to the number of times the funct-
ion itgelf f? is computed. DLSQ calculates it once; MARQDT usually
calculates it once or twice (depending on whether X\ needs decreasing or

not), but if a reduced sum of squares ¢ is difficult to find,a function
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evaluation is required for every new trial value of x generated (see
_ m ) .
Figure 2.7). SPIRAL evaluates fi a completely variable number of times
depending on the number of points generated along a spiral and where on

the spiral a reduced sum of squares ¢ was encountered.

Routines DLSQ, MARQDT, SPIRAL and MARQT2 were run on data generated
from model D starting from each of the six starting points in Table 2.2,
and in every case completely converged to the correct parameter values.
Table 2.6 gives the number of iterations and function evaluations required
for convergence,and only in the case of starting point SP4 did any of the
routines experience trouble. MARQDT, SPIRAL and MARQT2 all experience
divide errors due to division by zero when scaling the parameters,but if
this is supressed,carry on and converge normally. MARQT2 after an initial
few satisfactory iterations converges prematurely on an incorrect answer.
Figure 2.14 shows the variation in ¢ with number of function evaluations

for each of the routines starting from SP1. Paths in ¢ are not shown
for the other starting points, but Figure 2.14 is certainly typical of the
behaviour of the algorithms. DLSQ was often observed to oscillate before
converging but the other two are restricted to a monotonic path by virtue
of their intermal check that ¢ is reduced after each iteration. A tend-
ency existed for all routines (though to a lesser extent with DLSQ pre-
sumably because of its initial slow rate of convergence) to find an answer
for parameter b3 which included an additive constant 2m7 where m is an
integer, or to find both b1 and b3 negative; this is, of course, still a
correct result.

To test the stability of the solutions, tests similar to those above
were run but with the data of model D perturbed by ah additional 14 arc-
second R.M.S. using the routine DAPERT which adds a normally distributed
pseudo-random number (of known standard deviation) to each ;it All four
routines converged to a final R.M.S. error of 13.5 arcsecond and parameter
estimates which were identical to a precision of 8 significant figures,in
all cases. Table 2.7 shows the number of iterations and function evalu-
ations required in each case; again for the case SP4 a divide error had.
to be suppressed before the figures for MARQDT and SPIRAL could be ob-
tained and MARQT2 converged prematurely. The orientation parameter b3
differed from the unperturbed estimate by 0.73 degrees and the other four
parameters by an average of 3.4 arcsecond. Figure 2.15 shows the perform-
ance of the four routines starting from SP1 as a function of the number of
function evaluations,and demonstrates the oscillatory behaviour of DLSQ
once the damping is removed in contrast to the very uniform behaviour of
the other three routines. The data of model D was also perturbed by

various other amounts and Table 2.8 gives the number of iterations and

Y
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function evaluations for the routines working on data with introduced
R.M.S. perturbations of 2.8, 7, 14, 28 and 56 arcseconds. The routines
wvere started at SP1 and for a given perturbation all converged to the

same final value of R.M.S. error and a consistent parameter estimate.

TABLE 2.6
Unperturbed data from model D
ROUTINE
Starting point number DLSQ MARQDT SPIRAL MARQT?2

SP1 fn. 17 5 5 36 (6)
iter. 17 5 5 6

SP2 fn. 18 14 17 59 (14)
iter. 18 9 8 9

SP3 fn. 21 15 16 70 (15)
iter. 21 11 7 11

SP4 fn. 17 10 34 premature
iter. 17 7 7 convergence

SP5 fn. 17 7 5 42 (7)
iter. 17 7 5 7

SP6 fn. 19 5 5 30 (5)
iter. 19 5 5 5

UPPER figure is number of function evaluations required for convergence.
LOWER figure is number of iterations required for convergence.
Figure in parenthesis for MARQTZ2 gives the number of function evaluations

if those used solely for estimating the derivatives are excluded.

Finally the four routines were tried on data generated from all six
of the sets of model parameters given in Table 2.1. Starting point SP4
because of its symmetry and uniqueness is the obvious choice for such a
comparison,but because of the numerical problems it causes all of the
routines except DLSQ,it must be avoided and SP1 was used as a suitable
alternative. Table 2.9 gives the performance of the routines on the vari-
ous models,and Table 2.10 shows similar runs but with the data from each
model perturbed by an additional 14 arcsecond. Model F (which admittedly
represents a more erratic mounting than would normally be encountered in
practice) caused considerable problems to the estimated derivative routine
MARQT2, which became 'stuck' after only 2 or 3 iterations and then con-
verged prematurely. Figure 2.16 shows the progress of DLSQ, MARQDT and
SPIRAL on the perturbed data of model F starting from SP1. This is one
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Data perturbed by additional R.M.S. of 14 arcsecond

ROUTINE
Starting point number DLSQ MARQDT SPIRAL MARQT?2

Sp1 fn. 21 9 18 54 (9)°
iter. 21 9 9 9

SP2 fn. 18 14 17 64 (14)
iter. 18 10 10

SP3 fn. 19 12 16 62 (12)
iter. 19 10 7 10

SP4 fn. 19 10 34 premature
iter. 19 7 7 convergence

SP5 fn. 20 24 36 87 (22)
iter. 20 14 9 13

SP6 fn. 18 5 5 30 (5)
iter. 18 5 5 5

TABLE 2.8

Data from model D various perturbations, starting point SP1

Introduced R.M.S. ROUTINE Final R.M.S.
error arcsecond DLSQ MARQDT SPIRAL MARQT?2 error arcsec
2.81  fn. 17 19 7 66 (16)° 2.74
iter. 17 11 7 10
17.04 fn. 17 16 7 54 (9) 6.86
iter. 17 10 9
14.07 fn. 21 18 54 (9) 13.71
~ iter. 21 9 9
28.14 fn. 16 8 34 48 (8) 27.42
iter. 16 T 8
56.28 fn. 15 19 56 (11) 54.85
iter. 15 11 9
@ Figure in parenthesis for MARQT2 gives the number of function

evaluations if those used solely for estimating the derivatives

are excluded.
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TABLE 2.9
Solution to various models starting from SP1
ROUTINE
MODEL DLSQ MARQDT SPIRAL MARQT2
@
A fn. 15 6 36 (6)
iter. 15 6 6
B fn. 17 42 (7)
iter. 17 7 7
c fn. 14 6 42 (7)
iter. 14 7
D fn. 17 5 5 36 (6)
iter. 17 5 5 6
E fn. 17 18 66 122 (32)
iter. 17 11 10 18
F fn. 16 28 premature
iter. 16 7 10 convergence
TABLE 2.10
Various models perturbed by additional 14 arcsec. R.M.S., SPt
ROUTINE
MODEL DLSQ MARQDT SPIRAL MARQT?2
A fn. 10 15 17 60 (15)°
iter. 10 9 9
B fn. 15 99 42 (7)
iter. 15 11 7
c fn. 12 5 18 30 (5)
iter. 12 5. 9 5
D fn. 21 18 54 (9)
iter. 21 9 9
E fn. 17 42 (7)
iter. 17 7
F fn. 16 5 19 premature
iter. 16 5 10 convergence

Figure in parenthesis for MARQT2 gives the number of function
evaluations if those used solely for estimating the derivatives

are excluded.
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of a number of cases in which SPIRAL requires an abnormally large number
of function evaluations, and the three routines show quite different

overall rates of convergence.

(2.5) CONCLUDING DISCUSSION

The computing runs discussed above show that it is quite feasible to
estimate the parameters in models of pointing errors typically exhibited
by telescopes. The steepest descent routines proved quite unsatisfactory
as practical methods and are incapable of coping with the topography of
the ¢ surface. It was initially thought that the solution could be
started with a descent method and one of the Gaussian type of algorithms
used when nearing the solution,but even the initial progress of GRADNT
and GRAD2 is unimpressive, and in any case the Gaussian routines experience
little trouble in attaining the correct result wherever they are started.
The only conclusion worthy of note which comes from the study of the two
descent routines is the usefulness and efficiency of IMIN as a line

minimization scheme.

The other four routines should prove quite satisfactory in practice.
On the unperturbed data generated from the various sets of model parameters
they all converge to a final sumsquare ¢ of between 10_25 and 10_3% and
for the perturbed data they converge to an identical parameter estimateamd.¢;
this is to be expected since the process of leastsquares minimization en-
sures a unique solution, which for the perturbed case, lies well away from
the region of cumulative machine error. The solutions are quite stable as
is indicated by the fact that the fractional variation between the para-
meter estimates for the perturbed and unperturbed cases is approximately
the same as that fraction of the total R.M.S. error in the data which is
made up by the perturbation. It should be noted that the fits generated
to the perturbed data are apparently better than would be expected from
the error introduced into the data by some 2 to 3%. This is because some
of the error in the resulting data has been fitted by the estimation pro-
cessyand if standard deviations had been tabulated (with due regard to
the appropriate degrees of freedom) instead of R.M.S. error, only véry

small differences would have been observed.

The Levenberg algorithm DLSQ suffers from a rate of convergence which
is markedly inferior to the other (Gaussian) routines. Marquardt (1963)
predicts this and likens the method to a steepest descent process; yet
this is not entirely true since it is capable of steady, reliable progress
towards the solution as is seen in Figure 2.13 where a residual error
level of approximately an arcsecond is attained within 40 iterations. It

is the only one of the algorithms which does not give trouble when certain
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awvkwvard values of the parameters (e.g. zero) are encountered and could
prove very useful in practice on problems which are less stable or more
prone to numerical troubles. The device adopted here of suddenly switch-
ing off the damping often causes severe oscillations (see Figure 2.15) and
is not recommended. Other schemes for progressively reducing X could be
devised but in view of the effectiveness of the Marquardt algorithm such

effort is probably not warranted.

In about 60 percent of the computer runs described above the routine
MARQODT proved the most efficient method; +this was particularly noticeable
vhen the starting point was distant from the eventual solution. When the
progress of the routines on the ¢ surface is such that the correction
vectors lie near the Taylor direction, MARQDT and SPIRAL proceed along
quite similar paths,and in about 20 percent of the runs SPIRAL is in fact
‘the superior routine. Occasionally, using SPIRAL, a large number of
function evaluations are required within an iteration to search along the
spiral paths for a reduced sumsquare ¢ , and in such cases the routine
compares poorly with MARQDT,and even DLSQ. In Jomes (1970), SPIRAL is
shown to be substantially superior to MARQDT but it is not uncommon for

comparisons of this nature to be both problem and data dependent.

MARQT2, the estimated derivative version of MARQDT, proved surpris-
ingly effective; in 70 percent of the tests it follows the path of MARQDT
very closely. On a few spurious occasions it is actually superior to
MARQDT, and since most of these are for the perturbed data cases (which
are the more typical of data to be encountered in practice) it is clear
that estimated derivatives may suffice for many problems in practice where
analytic differentiation of the model function is considered either excess-
ively onerous, or an impedance to experimentation with the model. MARQT2
was, however, somewhat more susceptible to numerical problems and premat-
ure convergence, particularly when zero values of the parameters were

encountered.

It is clear from the foregoing that the routine to be recommended
for parameter estimation of pointing error models is Marquardt's 1963
algorithm MARQDT, preferably with the modification suggested by Jones
(1970) included. The geometric nature of the process being modelled,and
the practical limitations on both the domain and range of the model
function ensure that such functions are well behaved even though large
numbers of parameters may be involved in practice. The greatest diffi-
culty in model estimation lies in formulating a model in which there are

no redundant parameters. This is essential if we wish to use the para-

meter estimates as a basis for conclusions concerning the physical causes
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of error@, and even when we do not, redundant parameters can cause un-
stable solutions and numerical trouble in the routines used. Chapter 4
demonstrates problems of this nature encountered in devising a model for

2 practical telescope.

@ see Chapter 1 for a brief discussion of 'mechanism determination
v.s. response surface optimization'.



CHAPTER THREE
ERROR SURFACE FITTING AND INTERPOLATION

(3.1) PRELIMINARY

The main causes of telescope pointing errors are fairly evident:
structural flexure, gear errors, encoder nonlinearities and mounting geo-
metry errors. Yet the difficulty of deriving the model function in
Chapter 2 for a given case, and the fact that there may exist numerous
unexpected causes whose effects dominate the expected onmes, suggest a con-
sideration of the surface fitting process. That is, we attempt to approx-
imate the error surfaces Z&i)and.ZSH (vhich are functions of the two
variables &, H) by some approximating functions ]éﬂ)and }Az)respectively.
We need to decide the form of these approximating functions,and the crit-—
erion for a satisfactory approximation. For the reasons cited in Chaptef
1,we use here the criterion of minimization of the leastsquares or L2
norm; in fact we seek the minimum of ¢ defined in equation 2.7 since

this minimizes the R.M.S. resultant error on the sky.

The approximating functions can be polynomials, or periodic functions
(e.g. Fourier series), or rational functions etc; in all cases a number
of coefficients or parameters must be determined according to the criterion
above. There is a formal similarity to parameter estimation in this regard,
but by making the approximating functions linear in the parameters (coeff-
icients) we permit considerable simplification of the process by which
these are determined, and by further restricting ourselves to pblynomials
we can avoid numerical instabilities in the computations. We explain

this by briefly alluding to the one dimension case, namely curve fitting.

(3.2) CURVE FITTING

Let XypeeeX) be n observations of the independent experimental vari-
able, and let Yyreoo¥, be the corresponding values of the dependent vari-
able. We wish to find the coefficients cj j =0,...k in the approxim-

ating function Y given by
k

where the Pj are polymomials in x@, such that the expression

Z [Y J = é [yi- i__o e l’j(xi):l2 wi2 cee 3.2

@ For the c;i to be unique, the Pj must be linearly independent i.e. Pj
must not be expressible as a linear combination of all the other P

fof g#j. In practice this may be arranged by having P. of degree
equal to j. J
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is minimized (where w, is an arbitrary weighting function). Setting the
derivatives of ¢5 with respect’ to the coefficients cj to zero, gives the

matrix equation

Ac =

lo

eee 3.3

vhere ¢ = (c.) is the (k+1)-vector of coefficients,and matrix A = (Ar')’
where for r = O,...k and j = 0,...k

n

= Y P (x,) P.(x.) v.° e 3.4
r] iy v i i
Zn 2

(3.3) ORTHOGONAL POLYNOMIALS

The matrix>A in equation 3.3 is often ill-conditioned for arbitrary
choice of the polynomials Pj (e.g. power series), and we utilize polynom-
ials which are orthogonal, that is
n . : _

2 .
Z:: Pr(xi) Pj(xi) w,© = 0 for all r#j. ... 3.6
i=1
In this case A becomes a diagonal matrix and the coefficients cj are given
by 2 2 T2 2 »

o; = [Z v 2w/ [ 2Rl v, P ] e 3.7

J e S A A iop 3 i’ i 4. _

It is clear from equation 3.6 that the polynomials used depend on the _
range. and distribution of the discrete data and on the‘weighting function
used; thus we must generate'orthogbnal‘polynomials specifically for the:

data taken in the expériment.

A method of generating suitable polynomials is the Gram-Schmidt
orthogonalization procedure as used by Cadwell and Williams (1961), and

others. PO is teken identically as unity, and subsequent Pj given by

P. = xJ +a linear COmbination'of P ,eeoP. o coe 3.8@

J j=1
The coefficients in the linear combination in equation 3.8 can be deter-
mined so that the resultant P. satisfy equation 3.6. For an approximat-
ing function of degree k,séme k(k+1)/2 such coefficients must be found,
and a somewhat more convenient and widely used process is that described
(though not originated) by Forsythe (1957). As above, Forsythe's method

sets PO = 1, but the recurrence relation for Pj involves only the previous

@ This is the most usual form; in general xJ could be replaced by the
J term of a sequence of basis fuﬁctions which span the space formed
from the product of k real lines R .
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two terms,

P. = x.P. + linear combination of P. and P.
J j-1 j-1 Jj-2

Thus only 2k-1 coefficients in equation 3.9 need be computed to obtain

LAY 309

the required orthogonal polynomials. Forsythe's method has had wide
application in discrete data curve fitting problems e.g. Clenshaw (1960),
Berztiss (1964), and Clenshaw and Hayes (1965),and is the method generalized
to multiple dimensions in Weisfeld (1959).

(3.4) SURFACE FITTING WITH RESTRICTED DATA DISTRIBUTIONS

Surface fitting, that is fitting a scalar function of two independent
variables y. = y(x1i,x2i), can be regarded as an extemsion of curve
fitting if certain restrictions are placed on the manner in which the
data is distributed. If the data lies on the intersections of a rectang-
ular grid (see Figure 3.1), then one can fit a series of orthogonal poly-
nomials in X, to the data points along each line X, = X5, and then fit
the coefficients obtained by a series of orthogonal polynomials in Xy
Hayes (in Hayes 1970) shows that this procedure is identical to a least-
squares surface fit using product polynomials of the form Pp(x1),Pq(x2).

If the data lies on lines parallel to the x, axis (say), but is

distributed randomly along those lines (see Figule 3.2), we need to abandon
our orthogonal polynomials in favour of polynomials which are the same

for each line, or modify the Forsythe method by actually expressing each

of the generated polynomials ;n terms of their Chebyshev expansion. The
latter technique (Clenshaw 1960) permits surface fitting the data distrib-
ution of Figure 3.2 by repeated application of curve fitting,and indeed
can be extended even further to cover the case where the boundaries of the
data domain are not straight but are simple analytic functions as in Figure
3.3. Fitting the data of Figures 3.2 and 3.3 in this manner does not
produce the true leastsquares surface fit as in the case of a complete

grid,and the fit is not necessarily unique, but the results are deemed to

be the same for most practical purposes (Clenshaw and Hayes 1965).

Unfortunately, the methods above are not applicable to our work with
pointing errors which involve randomly distributed data. It could be
argued that for the case of an equatorial mounting,a given celestial object
could be used at different times and therefore different houfangles, and
thus the data would lie on lines of constant declination. However this
renders the collection of pointing error data difficult and time consuming,
necessitates the interchanging of dependent and independent variables, and
is out of the question if we envisage some form of automatic software

package which will measure and process pointing errors whilst the telescope
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system is in normal astronomical wuse. So we are left with the problem
of doing a leastsquares surface fit using some form of polynomials which
are orthogonal over our randomly distributed two-dimensional data. Before
describing this process we should distinguish the case of surface inter-

polation.

(3.5) SURFACE INTERPOLATION

Should the degree k of the approximating function )0 and the number
of data points n be such that k+12,n, we speak of surface interpolation,
since, for example, if the number of data points is actually equal to the
number of coefficients (or parameters) to be found, the residuals in
equation 3.2 can all be forced to zero, and the surface made to pass
exactly through each data point. If recourse must be made to complicated
functions for ‘y@there appears little point in interpolating as distinct
from fitting,and in most of the literature on surface fitting,fairly
simple functions, designed primarily with data smoothing in mind, are
employed. Theilheimer and Starkweather (1961), and Birkhoff and de Boor
(1965) work with cubic splines on the rectangular grid of Figure 3.1,
wvhile Birkhoff and Garabedian (1960) use cubic splihes on data distribut-
ions ranging from rectangles to curvilinear triangles@. Ferguson (1964)
and Coons (1967) express the surface in parametric form and deal with any

data distribution which is topologically equivalent to a rectangular grid.

None of the above ideas suit our data distribution since, even for the
last two mentioned, it is theoretically impossible to get an automatic
routine to draw a 'twisted' grid through the data obtained. Thacher and
Milne (1960) treat random multivariate data distributions and give a
general determinant formula for the coefficients of the interpolating ]
functions, but in many cases the set of interpolating functions chosen leads
to ill-conditioning of the problem,and implicit in the scheme is repeated
transformations of the interpolating functions until a satisfactory set
is found. Since this process is far more difficult than calculation of
two~-dimensional orthogonal polynomials,and since it is difficult to arrange
that the number of data and order of fit are equal,we restrict our interest
to surface fitting using such polynomials; indeed, should one insist on
interpolation rather than fitting one need only arrange for (k+1) and n to

be equal in the routine to be described.

@ A cubic spline is a polynomial which runs exactly through a number
of points (knots) on the function being interpolated; its first and
second derivatives are continuous at the knots,and between adjacent
knots it is of degree three.
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(3.6) THE GENERATION OF TWO-DIMENSIONAL ORTHOGONAL POLYNOMIALS

Weisfeld (1959) generalizes the Forsythe orthogonalization procedure

Sy _Sa _S4
cxoMx
1 2°7°3

showing that orthogonal linear combinations of them can be constructed.

to several variables taking functions of the form x ... and

Using Weisfeld's generalized notation for the specific case of two dimens-
ions would be both unnecessary and unwieldy, and since the published usage
of the method,e.g. Bain (1961) or (slightly altered) Cadwell and Williams
(1961), does not include a complete description, the method of computing
two-dimensional orthogonal polynomials for a given data set and weighting

function is given here.

If we denote the n data points by X, = (x1.,x i =1,..en,ve

i 2i)’
require k+1 polynomials Pj(zi) of maximum degree k which are orthogonal

in the sense that

n
2 1431
:;1 Pj(lci) Pj,(lci) v, = 0 forall j#', ee. 3.10
wvhere J = O,...k; j' = 0,...k. We generate the P. in groups from a set

7 xz. These monomials have
an inherent two-dimensional ordering (by s and t), and if P, introduces
1

5 . . . S
of basis functions comprising the monomials x

1 5 R then a one-

dimensional ordering is induced in the Pj by defining

the term xs. xt for the first time,and Pj' the term x°

j<j! if s+t Ls'4t!
or if s+t =s'+t' and t<t' .

L ] 3.11

Thus the monomials are introduced into the Pj in the order

M oe—— =
[\ —_

\S}
[\

X1 X1X2 X2
X3——————->X —_— X X —X
1 1%2 172 2
etc.

As in the one-dimensional case PO is set to one identically and the

subsequent polymnomials computed as follows:



0
st
1 group P1 =
P2 =
2 group P3 =
P4=

P.=x,P - P - PB—M

5 = Xy By =g Py~ 05, 52 Fp = %51 By = %Py 3

etec.
‘o . . th . .
Specifically, polynomial Pj in the g group is generated by a term which

introduces x:. xz and a linear combination of all the polynomials pre-

ceding Pj in that group and in the previous two groups. Denoting by g(j).
the group in which the polynomial Pj is found, we have

P. = X P - %. P LN ] 3.13
J L g jr T

vhere the summation is over all r <j for which g(j) - g(r)€2. The group

number, polynomial number and indices of the introduced term are related by

g = S+t eee 3.14

and J g(g+1)/2 + ¢ ees 3.15

Table 3.1 shows the scheme for the first 21 polynomials and gives the

appropriate values of 1 and g for equation 3.13.

An algorithm for finding 1 and q given only the j value is shown in
Figure 3.4 and, this having been done, the str in equation 3.13 are
computed from

n

2 2
Y x..P .P_w. > x.. P (x.)P (x.) w.
o, = 4+ 4T Ao 4m HoemT s g g
Jr n )
2 2 2

,ZPr Yi Z Pr (51) Vi

i i=1
where the sums are over all the data points,and X4 is the value of the
co-ordinate x., at the ith point. Equations 3.13 and 3.16 are analogous

1
to the three term recurrence relation of Forsythe in the single variable

case. This two-dimensional orthogonal polynomial generating scheme is

used in the error surface fitting routine described below.
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TABLE 3.1

Two-dimensional orthogonal polynomial computation scheme

resultant polynomial | s t term introduced | 1 q group
s _t
P Xy X, g = s+t
PO 0 0 1 - - 0
P1 1 0] X, 1 0] 1
P2 0 1 X, 2 0
P3 2 0 X, 1 1
P4 1 1 X, X, 2 1 2
2
P5 0] 2 X, 2 2
3
P6 3 0 X, 1 3
P 2 1 x2 2 3
7 1 %2 3
2
P8 1 2 X, xz 2 4
P o 3 x2 2 5
9 2
4
P10 4 0] x1 1 6
3
P11 3 1 X)X, 2 6
2 2
P12 2 2 X, X, 2 7 4
3
P13 1 3 X, X5 2 8
P 0 4 x4 2 9
14 2
P 5 0 x5 1 10
15 1
P 4 1 x4 X 2 10
16 172
: 3 2
P17 3 2 Xy X, 2 11
2 3 >
P18 2 3 X X 2 12
4
P19 1 4 X, X, 2 13
5
P20 0 5 x5 2 14
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(3.7) THE ERROR SURFACE FITTING ROUTINE

For fitting telescope error surfaces Af) ’ A H ve make identificat-

ions similar to those labelled 2.8 in Chapter 2 as follows:

~
11 T 6 Telescope transducer readings for ith
observation.
X, = H
21
m - 5
Yi - 7% | Topocentric pgsition of celestial
(2) H object for i~ observation.
yi = o
(." }ooo 3017
(;) Weighting fﬁnctions, see below,.
Vi
(§}] e .
}Vi = fitting function for surface As.
12 s . A
}Vi = fitting function for surface AH.
J
Note that as in equation 3.1 the fitting functions are of the form
e f PPy 1=1, 2 3.18
yi = L cj j Ei ’ = 9 ’ ceoe .
3=0
)
and, if the weights for the two surfaces differ (#1 + éiﬁ,not only will
) )
different sets of coefficients JT, é? be obtained, but two distinct sets
of (k+1) polynomials ﬁg, ﬁ?’will be required. Fortunately this fits in

well with our adoption of the resultant on-sky error for ¢,our function
1
to be minimized; we simply take the weights wl =1 and Aé§)= cos(x1i)
in equation 3.19 below:
2 n k
A 1 D )
g = 2 2 ﬁ—ﬂcl.Pl.]z. [w‘ﬂz. cee 3.19
1=1 i=1 j=o0 I I
Setting the derivatives of ¢ with respect to the 2(k+1) coefficients
{1
c; to zero produces expressions for the coefficients which are identical
to those produced by minimizing the leastsquares fitting errors of the

two surfaces Z&S, ZﬁIIseparately? and are given by

n
L [(1\] 2
Z: y; P, W

. J .
(:(]:) = 1_1 eee 30 20
L
i=1 = 1
where 1 =1, 2 and Jj = 0,...k.
@ This is not true for the case of parameter estimation where the

unique solution does not simultaneously minimize the errors in
the two co-ordinates.
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The routine computes fits for the various orders sequentially since,
1
because the P; are orthogonal, the lower order coefficients are unaffected
by later inclusion of higher order ones in the fitting function, and the
.th . .
J order sumsquare ¢ is given by
n n
2 2 2) 2 2) 2,2
. = . - . . P. - - . . P. - e eeoe a2
? (45 Pty =5 L DT e L @) 22
i=1 i=1
)
Within a_given order of fit the polynomials ﬁ% are stored by the 2(j+1)
n—vectoré of their values at each data point. The storage requirements
could be reduced considerably by storing the Forsythe coefficients ol
(equation 3.16) or, as suggested in Cadwell and Williams (1961), by stor-

ing the partial sums

:.Li;(xmi);i
R ARCIRE

- mi
i=1

Unfortunately both of these techniques can seriously increase the comput-
ing overheads and result in loss of accuracy, and so they are not used here;
neither can the technique of Clenshaw (1960) be used since Chebyshev

expansions only exist for functions of a single variable.

Loss of accuracy also results if the independent variable x is badly
scaled,and the routine normalizes the components of x to the interval

(-1, 1) by the relation

x'. = a X . +b eoo 3.23
mi m ml m

where m = 1, 23 —1\<x1;1i<1, and a s bm are suitable constants. If we.

also transform the y vectors and weights by

(m)f {m)
vi = ey - xg)
. LN 2 3.24
! (m)
w. = w. / a
1 1 m

where a_ is the same constant as in equation 3.23, we can leave the inter-
pretation of ¢ (equation 3.19) unchanged,but now we are fitting the errors
135, A H rather than the co-ordinates &, H. Such a system offers numer-
ical advantages especially when we use the resultant fit for the pﬁrpose

of data interpolation.

The choice of transformation for the data X, y and weight w given
above is labelled 'method one' in the computer implementation which follows,
and if our final criterion of a good fit is to be the practical one of an

actual on-sky measurable angle, (as in equation 3.19), method one should be
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optimal. As a simple test of this, two other methods are considered. In
'method two' the same transformation is used for X and y but the weights
¢: and ¢§)are all set to unity. In 'method three' the components of x

are first normalized to the interval (0,7) and then the cosine taken so

that

1 R
X1, = cos(am x o+ bm) eee 3.25

where Oé(a,m x .+ bm)é~ 7T,and the y vector given by

(my' (m)

yi = yi - Xmi see 3.26

The reason for this strategy is that now y may be regarded as an even (or
symmetric) function on the domain (-7, T ), and thus expressible as a half

-Fourier series

xR o0 .
y = 2_ a.cos(jx) = 3 a! (cosx)? eee 3.27
j=0 9 j=0 I

where x, y denote either of the X or y components respectively@. The fit
is now similar to a Fourier analysis scheme in which various Fourier terms
have been grouped into orthogonal terms. As for method two, unity weights

are used.

A suitable method of determining at which order the fit is adequate
is needed,and although we can,at each order,examine the root-mean-square
(R.M.S.) on-sky error,we do not necessarily know the extent of the random
error in the data which constitutes the practical limit. The variance-

ratio F given by
: 2
F = . - . G. s e 028
(¢(J-1) S25(3)) /9 3
2 .
where 05 = g%‘/ 2(n-j-1) , eee 3.29

- gives a measure of the improvement obtained by adding the jth term,and is
used by Hayes, Payne and others (see for example Hayes 1970). The routine
calculates F after each order has been added and we discuss this in the

next section (3.8).

A method for checking for numerical error propagation and loss of -
accuracy is included in the routine. Clenshaw and Hayes (1965) show that

the éxpected fractional error in coefficient cj is given by:

@ Note that it is not possible to use the sine in such a way because
sin nx cannot be expressed as a power series in sinx and it would
also impose the constraint y(0) = y(m).
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LEGEND TO FIGURES 3.5 and 3.6

The small numbers against the flowchart blocks correspond to the
labels of FORTRAN statements in the computer code listings in
Appendix D; other symbols are as follows:

w

X: = independent data vector

1 dependent data vect

vi = dependent data vector i=1,...n
{ j = e e e
w} = weights J=05..k

* , m=1, 2

)

oé;r = Forsythe coefficients see equation 3.16 1=1, 2

Q- @0 ' r see below
P. = P.(x.) = Orthogonal Polynomials

3 3~(—1 g yo

(8} . . -

cj = Polynomial series coefficients.

r = summation index in equation 3.13,is always less than the order j.
n = number of data points.

k = maximum order of fit.

¢ ; 02 = sumsquare and variance respectively, obtained from the

transformed variables.

R.M.S. = R.M.S. error on-sky.

¢ ! = sumsquare obtained from on-sky variables.

E., E!, €. = parameters related to numerical accuracy tests,

J J J see text.

F = F-ratio, see text.

j = current order of fit.

g = group containing polynomial Pj.

R 3 s t
P. introduces monomial term x_.x. .
t J 1°72

1 special indices (peculiar to order j) required by equation 3.13.
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€. = c. - c. (E./E! - 1)/2 ... 3.30
theoretically tactually '

exact computed

R

where Ej is the reduction in ¢ when going from order j-1 +to order j

obtdined in theory, that is by taking the last two terms of equation 3.21,

and E., is the value of the reduction in ¢ actually obtained by evaluating
s . o (2) . .

the fitting functioms 'Vi ’ 7’1 and then computing ¢ from equation 3.19,.

The parameter 8j is also computed at each order of fit.

(3.8) THE COMPUTER ROUTINES AND NUMERICAL RESULTS

The error surface fitting routine was programmed in FORTRAN on a
Univac 1108 using double precision arithmetic (60 bit floating point man-
tissa). A data generating routine (called DATGEN in computer listings)
which synthesizes an erratic telescope mounting using the five parameter
model of Chapter 2 is included,and is similar ‘o the routine of the same
name in Chapter 2 except that the x data are distributed randomly rather
then in a grid. A flowchart of the actual fitting routine ESFIT is shown
in Figure 3.5 and the orthogonal polynomial generating routine ORGPOL
called by ESFIT is flowcharted in Figure 3.6. The only other major com-
ponent of the fitting package is a routine FITEST which takes the fit
obtained from ESFIT, as stored in the coefficients ép andCd%; and compares
it with additional data generated from a different pseudo—rgndom‘g distri-

bution.

Four different sets of model parameters were used in the testing of
ESFIT; +these are given in Table 3.2 and referred to as parameter sets

A, B, C and D.

TABLE 3.2
parameter set model parameters (radian) generated on-sky
R.M.S. error
b1 b2 b3 b4 bS arcsecond
A . 001 -.001 -1.001 . 001 .001 231.3
B .0001 ~.0005 -2.0005 .0002 .0002 104.2
C -.0002 -.0002 -1.0002 .0001 . 0001 T71.9
D .0001 -.0001 - 0001 .0001 0001 29.2

Data was generated at 100 points (n=100) using each of the parameter sets
above and fitted using the three methods of ESFIT with maximum order k
set to 32. Table 3.3 gives the on-sky R.M.S. error and the value of C72

(calculated from equation 3.29 with the transformed variables) at certain
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TABLE 3.3

order method 1 method 2 method 3

of fit
model k 0'2 R.M.S. (72 R.M.S. 02 R.M.S.
generated ) 7 =7
from 6 .51 20. .50 32, .94 37.
parameters | 278 s, 370 21, 5470 34,

A 15 4472 5.6 | .24~ 7.5 | .2777 o1,
R.M.8.=231 | 1372 2.9 | .44 3.9 | .1877 1o,
arcsecond -10 -10 _8

28 .25 1.2 | .67 1.5 | .75 13.
6 570 3.4 | L1678 5.7 | .a578 7.9
5 10 70710 a3 | Lag™? 3.7 | .2078 5.0
-10 -10 -8

A 15 .15 1.0 | .79 1.4 | .15 5.0
104 21 3871 51 | .1871° .69 | L9670 4.3
28 78712 22 | 327! .29 | .407? 3.0

6 1272 3.1 | .557° 3.8 | 1178 4.9

10 30710 g5 | 270 2.0 | .587° 4.0

C 11 -10 -9

15 .44 .56 | .22 73| .21 2.2

72" 21 98712 5.6 | 5471 34 | L1072 1.6
28 22712 a2 | L3 7] L5070 .95

6 28719 45 | L1270 1.9 | .167° 2.1

10 301 .48 .19‘10 68 | 44710 1.1

D 12 ~11 -10

15 .97 2.6 | 467 36 | .22 .73
29" 21 19712 1 ] .89 .5 | .12710 AT
28 613 05 | 712 o7 | w75~ .41
. . -8 _8

N.B. Superscripts denote decimal exponent e.g. .51 = .51 x 10
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orders of fit for each of the parameter sets and methods. In all twelve
fits CTZ decreases monotonically with the order of fit; +the quantity €& .
(equation 3.30) is about 1071 46 10717 initially, and no larger than ’
10_12 around order 32, thus we are well away from conditions under which
we would need to prematurely cease our fitting process because of numer-

ical loss of accuracy.

The on-sky R.M.S. error behaves similarly to CTF excepting in methods
two and three where there are occasional slight increases going from one
order to the mnext. This is, of course, to be expected. However the de-
crease in sz going from start to a given order, for methods two and three,
is not impressive when compared to method one, and in Figure 3.7 we show
the fits generated for parameters B. The R.M.S. error (broken lines) and
C72 (solid) are plotted for each order and demonstrate firstly, the differ-
ent performances of the methods, but also that, in each method, most of
the decrease in CTZ or R.M.S. occurs when certain specific terms e.g.

x? at order 15, are added. Figure 3.7 and Table 3.3 confirm that there is
little point in minimizing an objective function other than the expression
for ¢ which represents the on-sky error, and in all the following com-—

puter runs method one alone was used.

The plot of C72 against polynomial order for ESFIT (method one) on
data from parameters B is shown again in Figure 3.8, this time with the
value of F calculated from equation 3.28 annotated. The critical value
wvhich F must exceed for the jth order fit to be considered significant
depends on (i) the number of degrees of freedom of the numerator of
equation 3.28 which is 1; (ii) the number of degrees of freedom in the
denominator which is 2(n—j—1),)and (iii) the desired risk of falsely
accepting the fit. For values of 2(n-j-1) between 10 and 400 this F value
lies roughly between 5.0 and 3.9 respectively for a 5% risk, increasing to
between 21 and 10 for a 0.1% risk. In Figure 3.8 we observe occasional
runs of quite low F preceeding an order with a high F and which manifestly
leads to a substantial improvement of fit. Thus, even more so than in
curve fitting, it is virtually impossible to use the F ratio as a simple
test for the order at which to discontinue the fitting process, at least
for the case of exact data. The test is only slightly more useful in the
case of data which includes random perturbations, for example in the runs
shown in Figure 3.9 below. The two broken lines in Figure 3.8 are the on-
sky worst case error (upper plot), and the R.M.S. error (lower plot). Both
of these follow the step decreases in (72, the maximum error being always

of the order of 3 to 5 times the R.M.S. error.

To produce Figure 3.9, data was generated from parameters B and pert-
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urbed by an additional 11.7, 5.89 and 2.35 arcsecond R.M.S. error (on-sky).
The R.M.S.. error of fit for each order is shown for these three cases, and
the point at which the fit error is less than that introduced randomly
into the data marked with an arrow. The routine manages to fit some of
this random error since the number of data points (n=100), though adequate,
is not large. The F-ratio was found to decrease suddenly at orders 7, 8
and 8 respectively for the fits,and although these points represent pract-
ical cut-off limits for the first two, the use of the test on fit three
(random data R.M.S. = 2.35") would result in premature termination of the
f£it. The broken line in Figure 3.9 represents the worst case on-sky error
for the centre fit (random data R.M.S. = 5.89") and is approximately 1.6
times the R.M.S. error at the point where a satisfactory fit has been

achieved, whereafter it begins to oscillate.

Tables 3.4 and 3.5 are the results of using the routine FITEST to
test fits generated by ESFIT to data from parameters B for various values
of data point number n, and order k. In each case FITEST was applied
using six different test data sets; these are labelled 1 to 6 while the
original data from which the fit was generated is labelled O. 1In Table
3.4 fits of order 10 were generated for numbers of data points equal to
200, 140, 100, TO, 35 and 20. The upper of the two entries is the R.M.S.
on-sky error (in arcseconds) which results from evaluating the fit at
the points of the new data set, whilst the lower figures in parentheses are

the corresponding worst case on-sky errors. The last column contains the

largest of these worst case errors for the data sets 1 to 6, and the pen-
ultimate column contains the largest value of the ratio of R.M.S. error of

fit to the R.M.S. error of fit for the original data (data set 0).

There is no simple statistical test which one can apply to Table 3.4,
but it is clear that for the case of k=10 decreasing the number of data
points below about 100 rapidly increases the errors at points other than
the original data points. Apart from a few spurious good fits the worst
case error is approximately constant at 10 to 16 arcsecond for n2;100.
Note that the extremely low R.M.S. error for the original fit in the case
n=20 shows we are approaching the interpolatibn case where n=k+1 and the

residual error goes to zero.

In Table 3.5, which is interpreted similarly to Table 3.4, n has been
held constant at 100 and fits of orders k = 4, 6, 11, 15, 22, 28, 36 and
44 generated. Again it is clear that for n=100 there seems little point
fitting to an order greater than about 11. However extremely good fits
can be generated for orders of 20 and above and although the R.M.S. errors

of fit for the additional data are poor compared to the original fit, both
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data set number of

number R.M.S. largest
of data addi‘bionally generated data ratio worst
points ' (see case
n 0] 1 2 3 4 5 6 text) error
2.1 2.6 2.1 2.2 2.2 1.9 1.9 1.22
200
‘ (14) {(16) (12) (15) (15) (15) (12) (15.6)
2.1 2,8 2.3 2.8 2.6 .2.5 1.9 1.37
140
(13) |(16) (6.7) (16) (15) (16) (12) (16.1)
2.3 (3.9 2.9 3.5 3.1 3.8 4.8 1.71
100 :
(12) {(9.2) (5.8) (16) (15) (16) (14) (16.2)
2.1 |12 4.4 6.1 5.8 5.3 4.5 5.36
70 .
S (8,9)[(21) (11) (19) (23) (17) (14) (22.6)
2.0 16-3 3.9 11 500 9.8 13 7099
35
(4,9)[(25) (9.1) (18) (8.2) (25) (25) (25.2)
1.4 |17 12 9.9 9.2 9.4 13 12.4
20
(3.0)[(38) (22) (21) (23) (26) (29) - (37.7)

UPPER figures are R.M.S. errors.

LOWER figures are worst case errors.
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TABLE 3.5
order data set number of R.M.S, largest
of fit additionally generated data ratio worst
(see case
k 0 1 2 3 4 5 6 text) error
6.1 |6.6 5.9 8.4 8.2 7.8 8.1 1.36
* (29) | (22) (24) (32) (31) (32) (30) (32.0)
3.5 4.i 3.7 5.3 4.8 5.2 6.4 1.84
° (20) |(9.8) (13) (23) (22) (23) (21) (23.4)
1.7 |4.6 2.7 3.0 2.7 3.9 4.8 2.74
" (8.9)| (13) (6.6) (11) (10) (12) (11) (12.8)
1.0 | 4,7 2.8 2.4 2.1 3.6 5.6 4,50
" (4.7)[ (13) (6.4) (8.1) (6.5) (8.4) (6.6) (13.1)
;38 4,6 2.6 2.2 1.8 3.6 4.8 12.5
= (1.7)} (16)  (6.9) (5.1) (3.7) (6.5) (6.2) (16.2)
| 22 4.5 2,7 2.1 1.7 3.5 4.7 21.8
2 (.83)] (15) (8.2) (4.6) (2.8) (5.2) (6.0) (14.7)
.08 4.3 2.6 2.1 1.7 3.4 4T 56.4
* (.31) (14) (8.7) (4.9) (2.6) (5.2) (6.0) (14.3)
| .04 [4.2 2.6 2.1 1.8 3.5 4.7 107.
44
' (.16)| (13) (8.6) (5.5) (3.7) (6.2) (6.3) (13.4)

UPPER figures are R.M.S. errors.

LOWER figures are worst case errors.
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the R.M.S. errors and the worst case errors steadily improve with the order
of fit,and are a worthwhile improvement over the original R.M.S. errors in
the raw data (104.2 arcsecond). This suggests that, in fact, it may be
beneficial fitting to reasonably high orders (e.g. 20 to 30) even with
insufficient data, provided one can tolerate an error at a given inter-
polation point which is many times the R.M.S. error of fit. Statistical
techniques from regression theory permit calculation of confidence inter—
vals for the value the fit predicts at a point of interpolation,but this

has not been treated here.

(3.9) SURFACE FITTING: CONCLUDING DISCUSSION

The computations of the previous section show the fitting of error
surfaces by orthogonal polynomials in the normalized co-ordinates to be
a stable and well-behaved process. Various techniques which reduce round-
ing errors are referred to in Cadwell and Williams (1961), but even with-
out these, the fitting routine was at no stage prejudiced by numerical
errors. Clenshaw and Hayes (1965) experimenting with curve fitting up to
very high orders (e.g. 90) found that Ej (see equation 3.30) eventually
departs from Eé.and changes sign for high ordérs due to cumulative numer-
ical errors, but there is no trace of this occurring in the fits above,
primarily because of the arithmetic precision used,but also because even
Vwith order k set to 44 the highest power of X, OT X, introduced is only 8.

An important consideratioL involved in the fitting process is that
an adequate number of data points be used f&r the particular order fitted.
Hayes (1970) by considering the extrema of the kP degree Chebyshev poly-
nomial gives anbupper limit of TT/M for k where M is the largeét differ-
ence between the inverse cosines‘of adjacent data points. For evenly
spread data this limit is very appfoximately vV2n where n is the numbér
of data pointé. For the two-dimensional case there is no analogous argu-
‘ment,but simple mindedly we can.take it also tovbe of order v@ﬂ;@i This
is in agreement with the results shown in Tables 3.4 and 3.5 and suggests
- that only for impracticably large amounts of data would such surface fits
acquire statistical vaiidity; despite this, surface fitting undoubtedly

constitutes a practically useful technique for telescope improvement.

The preceeding results suggest that where the telescope behaviour

e Imagine the process as curve fitting with VO points in each dimens-
1

ion separately, in which case the limit above is vZ.n*, but for sur-

face fitting the order k is related to the index t of xt

5 (or x?)
approximately by kztzﬁ, hence k =v/2n .
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follows the assumed mathematical model very closely, surface fitting pro-
duces significantly poorer results than we would expect a model estimation
process to, and despite the simplicity of the particular model used here,
this statement: is most probably’ true in general. The next chapter (Chap-
ter 4) shows that such mathematical models can often produce disappointing
results when applied to practical data, and that in these cases the utility
of surface fitting is enhanced. The reason for this is that in surface
fittiﬁg,the orthogonal polynomials span the set of all polynomials of
degree\<k, and thus may completely represent all of the functions necess-
ary for the description of the telescope errors. Moreover there is mno
reason to consider the use of any other type of polynomials, since fitting
with them would achieve identical results but would be more prone to |
numerical error problems. Finally, the numerical results here also show
that the definition of ¢ given in equation 3.19 is an appropriate object-
ive function to minimize, and that the use of trigonometric functions of

$ and H as our independent variables may not offer any advantage; the

results for the case given here in fact show it to be inferior.

An extremely attractive technique which has found wide application
and considerable success in curve fitiing is that of piece-wise fitting.
Many functions which are fitted‘oﬁly poorly in their entirety by high
degree polynomials or other complicated fitting functions are quite adequ-
ately approximated by simple functions (e.g. cubic splines) if fitted
piece-wise, especially if the boundaries between pieces can be optimally
positioned. A suitable scheme for optimizing the configuratioﬁ of pieces
in two dimensions and ensuring that the boundary conditions are met un-
fortunately does not exist, and in the absence of such scheme the most
useful technique is probably to model estimate for those error causes
which are large, highly repeatable and well understood, and to usé‘orthdg—

onal polynomial surface fitting to further reduce residuals.
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CHAPTER FOUR
THE APPLICATION OF SOFTWARE CORRECTION TECHNIQUES
TO POINTING DATA FROM THE MT. STROMLO 74-INCH TELESCOPE

]

(4.1) PRELIMINARY

In the previous two chapters the stability and relative efficiency of
various algorithms were investigated using data synthetically generated
with a simple but representative model of telescope pointing errors. This
chapter is a practical assessment of the application of the surface fitt-
ing and one of the parameter estimation algorithms to pointing error data
obtained experimentally from the T4-inch equatorial reflector of Mount
Stromlo Observatory, Department of Astronomy, Australian National Univer-
sity. The relevant descriptive details of this instrument appear in
Appendix C, and it is sufficient here to note that it is not renowned for
accurate pointing, being afflicted with a number of systematic and hyster-
esial errors, which can cause discrepancies of up to 3 minute of arc at
large zenith and hourangles. As was noted in Chapter 1, our problem is
more one of response surface optimization rather than mechanism determin-
ation,@ yet in addition to a reduction in R.M.S. pointing error for the
.-74—inch,it is shown later that some conclusions regarding the nature and

causes of error are indeed possible.

(4.2) POINTING DATA ACQUISITION

An attempt to obtain pointing data in late 1969 using a single oper-
ator and the existing selsyn position readout system was quite unsatis-
factory. It resulted in an inadequate amount of data which contained
large hysteresial errors inherent in the selsyn system,which were due to
backlash in the selsyn transmitter gearing and stiction in the passive
receivers., The author spent some time designing a digital readout system
for the T4-inch using 15 bit optical shaft encoders geared 27:1 (47.25:1)
to the polar (declination) axis, together with 8 bit brush contact encoders
" geared 1:1 with each axis to remove the readout ambiguit&. The shaft en-
coder data reduction and display generation is performed by a Hewlett
Packard H.P. 2100A minicomputer,which in addition to this function has
become useful as a versatile on-line machine for astronomical data acquis-
ition and instrument control. An improved way of generating sidereal time

was devised (see Hovey 1973 or Appendix E) and the complete encoder and

@ In addition to Chapter 1, see for example Box and Hunter (1965) or
Box and Coutie (1956).
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4.2
timing system is described in Appendix d@. In addition, a program enabl-
ing the rapid logging on teleprinter and paper-tape of the instantaneous
position of the telescope axes and various diagnostic data from the encoder
system was implemented@@. Thus, provided the co-ordinates of the next
desired object are immediately available, data collection can proceed at a

rate limited only by the time taken to set the telescope.

‘A routine was devised by the author which generates an observing list
of bright stars distributed so that (i) the desired area of sky is evenly
covered and, (ii) the sequence in which the stars are observed is such
that the telescope need only be moved a minimum distance between observat-
ions. The total number of grid points used is set on the basis of an
estimated rate of data collection (mean time between observations) and the
grid épacing calculated from assumed co-ordinate limits for the telescope.
Condition (i) above is achieved by generating a grid with uniform declin-
ation increments, but with hourangle increments inversely proportional to‘
cos & (thus a rectangular grid in the variables & and H cos§ is gener-
ated); and (ii) by ordering the points in a rectangular 'zig-zag' manner.
The actual list of stars is obtained by searching a computer file of bright
star positions for an object whose apparent place corrected for refraction
is nearest the generated grid point at the time of observation. This time
is incremented by the estimated mean time for an observation whenever the
file is searched for a star for the next grid point. The use of the same
star for adjacent grid points is inhibited and the routine rejects points
which lie outside the & and H co-ordinate limits and below a zenith angle
limit.

A flowchart for this routine, which is called CATALOG.OBS and which
was coded in FORTRAN and run on a UNIVAC U1108,appears in Figure 4.1. It
uses the author's UNIVAC system file (called STARS) containing the 1970.0
mean co-ordinates and magnitude data for the 1078 bright stars listed in
the Astronomical Ephemeris, and employs algorithms for mean to apparent |
place computation and refraction correction which are described in Appendix

A. A mean observation time of 3 minutes was assumed and a 19 by 19 point
| grid generated for observing lists for a pointihg data run in early March
1973. The observations were made with the telescope for the most part

east of the polar axis and used a Cassegrain offset guider head centered

@ Acknowledgement is due to Wayne Ruting (detailed hardware design),
Ron Howe (software modifications and final implementation) and John
Hart (shaft encoder mechanics), all of Mt. Stromlo Observatory.

@ written and implemented by Ron Howe.
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4.3
on the rotational axis of the instrument mount. In addition to the ob- -
server, separate operators were used for the various tasks, setting in both
co-ordinates, dome control, computer operation etc., and approximately 160
data points were obtained between § = -80° to +200, hourangle limits -4
hours to +6 hours, and above a zenith angle of 65° @, The actual grid of
stars used is shown in Figure 4.2. The total time required for the observ-

ations was 6} hours so that a mean observation time of 2% minutes would

have been slightly more appropriate.

The pointing data was output from the H.P. 2100A on paper-tape and
transferred to a U1108 system file for editing and preliminary processing.
Some data had to be rejected because of obviouély incorrect setting or
premature logging of an observation, and an eventual data set of 148 points
taken with the telescope east of the polar axis was obtained. This data
set was processed by a routine which, using the algorithms for mean to
apparent place and refraction correction of Appendix A, generates the x
and y vectors (see equations 2.8, 3.17 and Chapters 2, 3 in general) which
constitute the basic input to the surface fitting and parameter estimation
routines. This preliminary processor called TA obtains the telescope
position directly from the shaft encoder words in the raw data, and since
the U1108 can be used with greater arithmetic precision and need not employ
certain simplifications designed into the H.P. 2100A software, a useful
assessment of the performance of the H.P. 2100A encoder and timing system
software is possible. This assessment is mentioned again in Appendix B,
and here we simply note that with the addition of some minor adjustments
after the pointing tests the H.P. 2100A handling of the encoder and timing

data is quite adequate.

Line~printer plots were generated of the pointing errors in declinat-
ion ( A®), hourangle (AH), the resultant error on the sky (AR) and the
co-ordinate errors resolved in zenith angle (AZ), against declination ( §),
hourangle (H) and zenith angle (Z), and reductions of these plots are shown
in Figures 4.3a to 4.31. In general they show considerable scatter in
the data, though much of this is due to the limitations of graphing a
function of more than one argument in such a manner, and to the vagaries
of the line-printer. No simple dependencies are evident but definite
trends, for example the increase in AS and AR with more northern declin—

ations (graphs 4.3a, 4.3c), the effect of hourangle on the zenith error

@ Note that the grid spacing is approximately 5 degrees and many grid
points are not used since they either use the same star as an adjacent
one, or exceed the zenith angle limit. The full observing list con-
tained about 200 stars.
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4,4
(graph 4.3h), and the sudden nonlinear increase in A H, AR below 30°
zenith angle (graphs 4.3j, 4.3k). Ve shall allude to these later when
discussing the spurious data points and the possible causes of error. The
considerable scatter in all the graphs with zenith angle abscissae (graphs
4.3i to 4.31) show conclusively that there is no simple dependence of
pointing error on zenith angle and that there would be little point in

transforming our independent variables into an azimuth/zenith angle system.

(4.3) SURFACE FITTING THE 74-INCH TELESCOPE POINTING DATA

The surface fitting routine ESFIT described in Chapter 3 was applied
to the 148 point data set with the maximum order of fit k set to 40. As
a stability test the data was perturbed by a further 7.7 arcsecond R.M.S.
(20 arcsecond peak to peak) error and then fitted. Figure 4.4 shows the
R.M.S. error of fit (solid line) and the worst case error (broken line)
for the original and perturbed data for sequential orders of fit. As in
Chapter 3 most of the decrease in R.M.S. error occurs at certain orders
e.g. 5, 9 and 14 where groups of polynomial terms become complete. The
coefficients range from 0.27 x 10—2 to 0.7 x 10_6 with some of the larger
values occuring for k) 25 when the solution attempts to fit the fast vari-
ations in the data. The R.M.S. error is 87.09 arcsecond in the original
data, and decreases monotonically with the order of fit@, but the worst
case error increases beyond order 14 and even oscillates. The coefficients
for the two runs, perturbed and original, differ by up to about 10% which
is consistent with the ratio of the perturbation introduced R.M.S. to the

original data set R.M.S. error. Numerical error accumulation as measured

by the variable € (see equation 3.30) was negligible.

It is necessary to test in some way the adequacy of the fit generated,
that is to assess whether the residual sumsquare ¢ or R.M.,S. error that
remains after fitting,is primarily due to pure error in the data or inade-
quacy of the assumed model (in this case orthogonal polynomials). If the

assumed model is adequate, the expressions

Q
Il

5 ¢ /2(n-k-1)
cee 4l

0
]
o
<
1]

2(n-k-1) ,

where n is the number of data points fitted to order k in both co-ordinates,
give estimates of the variance of the expefimental errors and its associ-

ated degree of freedom respectively. Ideally this should be compared to

@ This is inevitable since the R.M.S. error (or in fact @) is the
objective function being minimized by the routine.



4.5
an independently obtained estimate for the experimental error variance, but
the amount of work involved and the disruption to telescope scheduling
precludes the collection of substantial additional data. Instead the
original data set of 148 points (called here XY1) is subdivided into 2, 3
and 4 data subsets, each containing approximately 1/2, 1/3 and 1/4 of the
original 148 points respectively. Since the ordering of the original data
set was of no significance this has been done by simply sorting alternate
points. The data sets are listed in Table 4.1 with their number of points,

R.M.S. and worst case errors.

TABLE 4,1
number of R.M.S. error worst case
dataset .

data points arcsecond error arcsec,
XY1 148 87.09 207.17
XY2 T4 86.19 180.18
XY3 T4 87.97 207.17
XY4 49 84,63 149,21
XY5 49 85,21 180.18
XY6 49 87.23 153.61
X7 37 83.35 142.47
XY8 37 83.74 149,21
XY9 37 88,95 180.18
XY10 37 92.01 207.17

The nine data sets XY2, XY3...XY10 were fitted to maximum order 2,
5, 9 and 20 and the resultant fits tested against the data in XY1., Al-
though this procedure is a more valid test than a succession of tests of,
for example, XY4 against XY5 etc., none of the nine data subsets is entirely
disjoint@ with the complete set X¥1. Thus the variance and associated

degree of freedom with which 0'2 in equation 4.1 must be compared,are

2
given by
0'12 = (¢'-¢)/2(n' - n) |
ees 4.2
and 'VT = 2(n' - n)

where ¢ and n are as in equation 4.1, ¢' is the residual sum of squares

resulting from the test on a data set with n' (=148) points. This

@ disjoint in the sense of having no data points in common.
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expression allows for the points which dre common to the fitted and test
data sets which in our case comprise all of the points in the fitted set,
Note that in the case of complementary data sets XY2, XY3, testing the fit
to XY2 on XY3 is equivalent to testing the same on XY1., If all data sets
were quite disjoint, the more usual techniques of analysis of variance
would be appropriate, and if repeat observations at the same point were
practicable, a number of studies such as Anscombe and Tukey (1963) on the
treatment of residuals, which involve two-way classifications of the data,

could also be applied.

The results of these tests appear in Table 4.2 to Table 4.5, and the
ratio 032/'052 calculated from expressions 4.1, 4.2 is compared with

F1_“ﬂv1,\b) the upper o point of the Fisher distribution. If

2, 2
o7/ ) B9 | cee 4.3

we reject the model or fit as being inadequate to describe the data in
question, and we do so with significance level 100¢%, that is a 1000 %
probability that we have wrongly rejected it when in fact it was adequate.
This test is common in regression theory and is used in Box and Coutie
(1956), Beale (1960), and Draper and Smith (1966). The ratio o}2/ 052

is given in the tables for all of the tests,and the penultimate row con-
tains the percentage level o at which the fit being tested would be
rejected on the basis of relation 4.3 above} significances of 1% and 5%
are in common usage., Together with the other quantities indicated by '@!?,
o¢ is averaged over the group of tests on data sets of similar number of
points, but others like the R.M.S. and worst case errors are given for
each test to show the variation involved. The final row gives the ratio
of the degree of freedom of fit to the number of fitted parameters,and is

discussed later.

Two other indications of the performance of the fits included in
Tables 4.2 to 4.5 are R2 the multiple regression coefficient, and the mean
square ratio MSR. R2 is expressed as a percentage and measures the pro-
portion of the variation of the data about the mean which is explained by
the fit., It is given by the ratio of SSR,the sum of squares due to the fit
or regressionyto SSM,the sum of squares of the original data corrected for
mean, that is by

R® - SSR/SSM _ cee 4.4

where, for our case here, SSR and SSM are given by@:

@ In the case of surface fitting,f? is used to represent }%i\the evalu-
ation of the polynomial series at the point X,
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TABLE 4,2
surface Tit; k = 2.

DATA SET XY1 | X¥2 | X¥3 | X¥4 | X¥5 | X¥6 | X¥7 | X¥8 | X¥9 | X¥10 |
number of points n 148 74 49 37 ‘
RZ% (group average) | 795% T97% 81.7% 8Q3% @
MSR (group average) | 225. 113, 833 583 @

£

E RMS error (arcsec.) 218 1 2151 2191 208 | 177 | 2131 193|190 230 | 238
worst case (arcsec.) | 986 | 723 | 954 | 483 | 470| 703 | 495|483 | 734 | 894
RMS (group average) /// 21.7 19.9 21.3 e

-

e | BMS error / 218 1 218 1 222 | 219 221} 223 223} 219 | 221

2

H|worst case // 102, 973} 103 ] 990 1004 108 105] 976| 916

. -

| F-Tatio o/ 4 103 |.957 | 144 | 171 105 | 134 137|.795|.752

)

é degrees of Y, % 148 198 222
freedom Y 142 92 68

z Nt~

Ol average probability & A 51% 21% 49% 1@
ratio W/p 23.7 15.4 10.3
@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4.3

surface fit, k = 5

DATA SET XY1] XY2| X¥3| X¥Y4| XY5| X¥6{ XY7} Xx¥8§ XY9| Xxx10
number of points n 148 T4 49 37
Rz% (group average) [892% 896% 903% 90.1% e
MSR (group average) |[214. 107. 725 518 e

H|RMS error (aresec.) [158 | 149| 161| 147| 137} 153] 137| 149| 152| 164
worst case (arcsec.) |611 | 492| 550| 441 | 378| 492] 426{ 356| 450 481
RMS (group average) /// 15.5 14,6 15.5 e

/ -

e | RMS error 716.0 163| 172] 167] 162]| 188{175 |164 [162

)

Bl worst case /J 683 | 636| 756 681| 652| 851|720 {661 |576
P-ratio o¥0] // 120 |.957| 36| 150| 105| 183|127 {101 [817

8 e

g degrees of v, Z 148 198 222

g freedom R2Y / 136 86 62

8 average probabilityo¢ // 35% 16% 37% @
ratio /p 11.3 7.2 5.2

denotes quantity averages over group of data subsets of similar n.
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TABLE 4.4
surface fit, k = 9 :
DATA SET XY1 | XY2 | XY3 | XY4 | XY5 | X¥6 | XY7 | X¥8 | XY9 | XY10 |
number of points n 148 74 49 37
“.:{'/o (yronp nyarags) (1AM P/ 9k 9377 @
MSR (group average) | 172 882 598 425 @
e
I RMS error (arcsec.) | 1341128 127 | 115 | 116 124 117| 113 | 127 | 124
worst case (arcsec.) { 576 | 510 | 439 | 439 | 330| 476 421 308| 441 | 315
RMS (group average) /’// 12,8 11.8 12,0 @
~
| RS errox / 140 | 142 | 154 | 151 | 144 ] 169| 171| 146 143
Blworst case % 605 | 626 | 673 | 650| 609 811| 674 601 | 590
_ o
. P-ratio ¢/ 4 120 130 | 176 | 163} 120] 179| 199| 103| 105
‘é degrees of Y, % 148 198 222
g freedom Vi % 128 78 54
o ajerage probabili'bym % 102% 6-3"/3 22% @
ratio /p 6.4 3.9 2.7

@ denotes quantity averaged over group of data subsets

of similar n.

TABLE 4,5
surface £it, k = 20
DATA SET XY1} XY2| XY3| X¥4 | X¥5 XY6 XY7| X¥8| XY9| X¥10
number of points n 148 T4 49 37
Rz% (group average) [948%| 952% 962% 966% @
MSR (group average) |[102. 543 352 252 @
BlRMS exror (aresec.) | 112| 114 oa| 2| 83| 95| 10| 81| ar| 69
worst case (arcsec.) | 581 | 446 261 330 | 174| 342 376| 157| 279 145
RMS (group average) /// 10,4 9.0 8.7 @
- RMS error / 134| 134 156 208| 157 179] 172| 167| 132
@] worst case é 64p| 63| 694| 138] 659) 680| 74| 667| 732
F-retio o70} A 4| 203] 28] 53| w8| 11| 29| 156 365
| degrees of Y, / 148 198 222
g freedom e / 106 56 32
S| average probability“% 60% 01% 26% @
ratio /p 2.5 1.3 .75

@ denotes quantity averages over group of data subsets of similar n.
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n 2
) —y 12 @2
SSR = Z Z [fi - xli— (y—x)] . E\Ti] ’ eoc e 4.5
i=1 1=1
n 2
and SSM = Z Z: (1‘ - X - (y—X)] [u‘)] ) 406
im

1

1

and the difference mean (§:§) in the above equations by
_ n 11) (1\
(y—x) - Z Z / 21’1 Y os e 4. 7
i=1 1=1
The mean square ratio MSR is given by

o]
2

L -] 468

wvhere p = 2(k+1) is the total number of parameters or coefficients fitted,

and can be compared with the Fisher distribution. If

MSR >/ F_ o (-1,%,) cee 4.9

the fit explains R2 % of the variation in the data; a greater percentage
of explained data would be expected by chance only in 100(1-%)% of such
sets of data. Other criteria of adequacy of fit exist, for example, con-
fidence limits can be placed on the values of the fitted coefficients or

on the predicted function value at a desired point of interpolation.

Unless we are already convinced of the fit's adequacy and are model fitting
for parameters of physical interest, the former are of no great value to us.
Prediction confidence intervals would have far greater utility@, but to be
reliable, require an estimate of the variance Oéz based on substantial

additional data, and both measures are less valid and awkward to compute

for the case of non-linear model fitting.

. Inspection of Tables 4.2 to 4.5 shows that in general the data sets
are all fitted to approximately the same level of R.M.S. error and R2 for
a given order k, and only for k=20 does the Fisher test show substantial
inadequacy of fit, in part due to overfitting which has occurred because of
an excessively small ratio vé/p. Occasionally, spuriously good fits are
generated which are not consistent with the full data set XY1, for example
" the fit of order 9 to XY8 and most of the fits of order 20, For a given
number of data points the mean square ratio MSR decreases with increasing

order of fit, but in all cases is very large. Wetz (1964) found that for

@ Perhaps from the observer's viewpoint it may be even more useful to
know the limits of the pointing error rather than the R.M.S. value.
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the fit to be useful for predictive purposes MSR should exceed about four
times F1_°$p—1, Vz) instead of relation 4.9 above, and this is indeed the
case for all surface fits shown. Unlike the lack of fit test (relation
4.3) the probability & associated with MSR in relation 4.9 is extremely
low and is not given in the Tables. The residual errors of fit in declin-
ation A% , and in hourangle AH cos & were plotted against the two co-
ordinates & and H for the surface fits to the complete data set XY1. Tor
k=9 and 20 these four graphs show a good normal distribution without trends
or wedge-ness, but in the case k=5 very slight trends are evident, and in
k=2 significant quadratic trends are visible in all the plots other than
A% vs. §. All the cases, however, revealed a number of outlying data

points and these are discussed later.

(4.4) MODEL FITTING THE T4-INCH TELESCOPE POINTING DATA

(4.4.1) An Extended Model for the 74-inch

The simple five parameter model used in Chapter 2 omits a number of
suspected causes of the pointing errors of the Mt. Stromlo 74-inch. The
full 148 data point set XY¥1 was fitted by this model using the Marquardt
algorithm (program MARQDT in Chapter 2), and a system, described later in
this chapter, which allows selected parameters to be frozen at their start
values and not be involved in the iterative improvement. Table 4.6 shows
these results and gives the R.M.S. and worst case errors of fit attained,
and the parameter estimates with various combinations of parameters
frozen. The initial R.M.S. error of 87.1 arcsecond of the data set is at
best improved to approximately 33 arcsecond; far worse is the fact that
nearly all of this improvement comes from fitting parameters b3 and b5
which are simply the zero errors (or fiduciary offsets) of the hourangle
and declination encoders respectively! Thus an improved model is required
which will adequately represent: (i) polar misalignment (which includes
hourangle zero error), (ii) skewness of the axes, (iii) encoder zero and
additional periodic errors, (iv) torsional elasticity of the axes and (v)

flexure of the tube and secondary optic supports.

Errors A$ in declination and AH in hourangle due to polar misalign-

ment (i) are given by
AS

and Z&H

arcsin z - 5. ese 4.10

arctan(-y/x) - H . ees 4o11

vhere & and H are our independent co-ordinate variables, and x, y and z
are obtained from Euler expressions similar to equations 2,33. x, y and z

involve the three parameters b1 the polar misalignment, b, the hourangle

2
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zero error, and b, the orientation of the instrument pole as in Chapter 2.

Skewness of the dzclination axis from the polar axis (ii) is accounted for
by
AsS = arcsin(sinS.cosb4) -5 o ces 4,12
z§H = arctan(tans.sinb4) , cee 4413
vhere parameter b4 is the departure from mutual perpendicularity of the
axes.
TABLE 4.6
number of | errors of fit (arcsec.) e parameter estimates (arcsec.
parameters except b, degrees)
operative R.M.S. worst case b1 b2 b3 b4 b5
b 33.18 109.2 -8.4 94.3 -=13.6 5.0 34.4
2 33.92  114.2 89.1 35.7
1 83.83 207.0 32.2
1 49.2 121.3 89.1
1 f 79.5 203.1 35.7
4 33.3 11,3 -9.9 92.6 .025 36.0
e Blanks indicate parameter frozen at value of zero.

The encoder errors (iii) comprise the declination offset b5, the
eccentricity of the main encoder gear wheels (declination 1512 teeth,
.polaf 864 teeth), eccentricity of the encoder pinions (32 teeth), and the
first‘harmonic term of the compcsite tooth error. The latter includes
\\\\_////// the‘effect'of accumulated pitch errors and the tooth profile error and in
practice often appears as a varying but smooth trochoid or sinusoid.
Noting that the hourangle zero error has already appeared as bz,thc errors

are given by:

As = b5 Zero error
+ b6 cosd + b7 sin & main gear eccentricity
+ b8 cos(15128) + b9 sin(151286) composite tooth error
+b (1512 o) + b éln(1512 §) encoder pinion
eccentricity ees 414
cnd JAY: - b12 cosH + b13 sinH main gear eccentricity

+ by cos(864H) + bs sin(864H) composite tooth error
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4,12
+ b cos( H) + b ( ) encoder pinion
eccentricity eee 4,15
Details of the encoder system mechanics appear in Appendix C, and a dis-—
cussion of the level of error tolerated by the encoder processing electr-

onics is given in Appendix B,

To completely and accurately analyse the structural flexure of the
T4-inch telescope would be extremely difficult and as likely misleading;
fortunately a satisfactory approximation can be devised. Since the polar
axis is conétantly loaded, polar axis flexure appears as polar misalign-
ment abbve,and needs no further consideration. Assuming a general state
of imbalance'of the telescope, the torque about the polar axis depends on
both' declination and hourangle, but the effect is confined to hourangle
and expressible on the basis of a (constant) torsional stiffness parameter
for the‘polar axis, and a parameter which represents the telescope imbal-
ance. The declination axis situation is somewhat more complex since there
 exists (a) a transverse force producing bending of the axis in a vertical
plane, (b) a moment due to the imbalanced tube producing bending of the
axis in the common plane of the tube and axis, and (c¢) a similar moment
producing‘twisting of the declination axis, all three being dependent on
§ and H as well as the imbalances. We take the view here that due to the
extremely short and compact geometry of the declination axis effects (a)
‘and (b) will be of secoﬁdary importance; indeed some (and at moderate

latitudes most) of the declination axis flexure appears as if it were tors

ional movement in the polar axis.

Figure 4.5 shows a schematic diagram of the T4~-inch English crossed
axis mouﬁting with the telescope east of the polar axis, and the forceées on
the structure idealized to m, acting vertically through point R the centre
of mass of the tube system, and m, acting through Q the centre of mass of
" the counterweight and west end of the declination axis. For the effective
distances 1 = R P (which may be negative), lt =0P and 1c = 0 Q the

errors caused by lack of stiffness of the axes (iv) are given by

A6

K m, - l(coS¢.cosH.sin5 - sing.cosé) ees 4,16

~and Z&H

1l

KP. cos¢[(mc. lc - mt.lt‘).cosH + mt.l.cos 5.51n1i‘l cee 417

ﬁhere Kd and K.P are the declination and polar torsional stiffness constants

and # is the latitude (-35.32 degrees at Mt. Stromlo).

The remaining error cause considered is the non rigidity of the tube
and optic supports (v). Again certain simplifying assumptions are necess-—

ary, and we assume that the telescope cell and primary point in the theor-
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etical direction of the tube axis obtained by applying corrections (i) to
(iv); +this is justifiable because of the extremely stiff design of the
cell. Unfortunately both the complicated truss type tube, and the 'spider?
secondary support are statically indeterminate and excessively difficult
10 analyse, and we employ here a suitable empirical method for obtaining
the corrections. An alignment laser was mounted rigidly in the cell and
pointed so that the position of the reflected beam from the secondary can
be measured in the Cassegrain focal plane using the offset guider optics.
The position of the laser spot was noted for the succession of declinat-
ions'—90, -60, -30, 0, +30 degrees and back again for constant hourangle
settings of -6, -4, -2, 0, +2,'+4 and +6 hours, with the telescope east of
the polar axis, to enable the tube and secondary movement and the mechanical
hysteresis to be asSessed@° Although the laser optical configuration does
not behave exactly as a star on the principle axis of the primary mirror,

the empifical law obtained is very similar,

AFigﬁres 4.6 and 4.7 show the plots of A8 v.s. & and AH v.s. H

o réépectively and demonstrate well the hysteresial nature of the T4-inch

pointing errors. By manually loading various parts of the structure with
the tube horizontal, the bulk of the hysteresis was traced to movement in
the secondary mirror support drum and focussing system. There is no point
' ih]au%bmatic.fitting of such data but approximate equations may be fitted
by eyé to the graphs and are indicated by the solid thick curves. The

equations used are

As

= Md ¢os(a15 + a2) cos(aBH) + Cd ees 4,18
where the constants a, = 9/14, a, = 70 degrees, a3 = .85, a, = 14.2/15”}
ag = 4.8/15T, a, = 1.28 and a, = 10/15TT. The vertical scale units in

Figures 4.6 and 4.7 are millimetres measured in the (Cassegrain) focal
plane but the parameters Md’ Mi are fitted in the model estimation process
and not.copstrained to the values used to produce the thick lines in the

figu.!'eS.

Owing to the smallness of pointing error corrections and to the orth-
ogonality of the co-ordinate variables & and H it is reasonable to simply
superpose or add together the expressions for A6 anda AR given in equat-

ions 4,10 to 4.19 to form the model equation. This is common practice

aa!

@ Acknowledgement is due to Dr A,W, Rodgers and John Hart of Mt. Stromlo
Observatory for the results of this experiment.
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 for example the periodic terms like bg cos(1512.5) and b

and a,

4,14
when the error caused by so doing is substantially less than the expected
error of the fit,and has been done in the simple model used by Meeks, Ball
and Hull (1968) in their calibration of the M.I.T. 'Haystack! antenna.
Such a model is more prone to the accidental inclusion of redundant para-
meters than if the corrections were applied sequentially. For example the
inclusion of both b5 (equation 4.14) and C (equation 4.18) in our model
function for Z&S would result in poor condltlonlng of the problem and
retard convergence; thus neither Cd nor Cp appear in the model. Various
convergence and stability problems with an initial model of this type
were traced to the first term in equation 4.17 which, because cos¢ is

constant, is redundantly linked with the term b , cosH in equation 4.15.

12
It is necessary to distinguish cases like the above where complete

redundancy exists, from others where a given term, for example b6 cosd , is

redundantly linked with only part of another, in this case part of equat-

ion 4.16 which appears in the model as b, (cos @ cosH sinb - sin¢ cosb).

" Omission of one or other of the terms in b6 or b20 may be deleterious to

the model's ability to describe the data, and at worst results only in

the trading of values between the coefflclent b6 and b It is customary
in medel estimation to inspect the matrix A of equatlon 2.22, which be-
cause of the choice of scaling represents the matrix of coefficients of
correlation between the parameters. Figure 4.8 shows this matrix for a

fit by the model eventually arrived at (see Table 4.7) to the data set

XY1. The matrix does not vary greatly from iteration to iteration@ and
. the values shown occurred in the final iteration just before convergence.

. Parameter redundancy is indicated by large off-diagonal elements and

whilst some redundancy still exists in the model it is in no way damaging;
9 sin(1512.8) give -
rise to a near unity correlation coefficient but are both necessary if a

sinusoidal error of unknown amplitude and phase is to be fitted.

The choice of scale can also be important; initial values of ayr ag
7 in equation 4.19 which (although proportégnal to the values given)
were extremely small, caused the parameter space of the problem to be

éxcessively cramped in the corresponding dimension,resulting in slow con-

vergenk:e° It is not always possible to scale the model completely evenly

@ hecause the model is not too nonlinear.

@  the k-dimension space in which the parameter vector b = (b1,o..bk)
defines a point. »
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since essential 'orientation' parameters such as b, (as opposed to 'error

| magnitude'! parameters like b1, b2, b4 etc.) cannotBbe eliminated. However
a test of a version of the model employing terms of the form a.sin(AS +b)
in lieu of form a'cos(AS8) + b'sin(A §) in equations 4.14 and 4.15 con-
vinced the author that it is best to eliminate all the nonessential ones.
The above reasoning on design of the model led to the 21 parameter model
gi?en in full in Table 4.7 and whose derivations with respect to the para-

meters appear in Table 4.8.

To test the wvalidity of adding the AS and A H to produce an approp-
riate model, an ‘exact' version was produced by sequentially applying the
five corrections in the order: encoder errors, torsional movement of the
axes, skewness of the axes, polar misalignment and finally tube and second-
ary flexure. If we temporarily let f represent either fﬂ = 50 or f2)= Hc
(thg components of the model function% and fo the value from the telescope
readout, then f = f1(fo) gives (i) the encoder corrections and the corr-

ection (u) is given by

fu = :t‘u (fu_1) eoo 4.20

It would be onerous to attempt to derive full analytic expressions of the
derivatives for the exact model,but it is easy to compute them iteratively

by'considering'the total derivative of equation 4.20 with respect to para-

. meter b, :
J ,
dbj Bsu_1 d.bj bHu_1 db:i bbj

At each stage dfu/db:j is computed and replaces the stored value
dfu i/dbj’ the necessary 2k+4 partial derivatives being computed from

analytic expressions.

~The exact and approximate mo&els were fitted to synthetic data of
approximately 500 arcsecond R.M.S. error and their performance compared.
Only ih the first 2 to 4 iterations were differences of more than a few
percent noticed in the sumsquare ¢ or parameter values, and a nearly
identical path was taken to the solution,nearing which ¢ differéd by
approximately 1% and the parameter values by no more than 0.01%. When
fitted to telescope data set XY1, the results were similar, with the con-
-verged value of @# different by less than 0.02% and the parameters by at
most 0.5%. It is therefore safe to conclude that the difficulty in cale-
ulating the various extra analytiq expressions needed for the derivatives
of the exact model and the increased computing time overhead is not just-

ified by the quite negligible improvement in accuracy; in the remainder
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TABLE
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T4-inch model function derivatives

2. =1
(1-z°)"%, then:

Define E =
N
bf1/2>b1 = Ecos & sin(b2+H) cosb, - Esinb sinb,
bfm/bb2 =0, bfm/bb3 = Ecos fi.sinb1 .cos(b2+H)
Define Df_: =3x/(3bj and Dg = by/?)b'j , then:
)
25:!:‘(2/bbj = (yD;.{ - xDz.r)/(x2 + y2) for j =1, 2, 3; and:
D' is gi tion 2 pY b tion 2.43b
;1 is given by equation 2.43a, 1 Py equation .43b,
D; is given by equation 2,43c, Dg by equation 2.434,
D; is given by equation 2.43e, Dg by equation 2.43f.
1
Bfm/bb4 = -E - sin®b coszbJ-z.sinS :s:i.nb4
Bfm/bb = tanb cosb /E + ‘banzs sinzb ]
4 4 4
) ‘ ) )
bf“/bb5 =1 bfz/abj =0 for j =5, 6,...11,
bfm/bb6 = cos &, Bi’m/.bb,7 = sin 6, B:E"Z)/bb12 = cosH , 3)‘?(2)/bb13 = sinH ,
21"/dbg = cos(15128) , M‘z’/ab14 = cos(864H) ,
aim/bbg = sin(1512%) , bf‘z’/ab15 = sin(864H) ,
1 _ 1512 2) _ 864
of /bb10 = cos( 32 5) , of /bb16 = cos( 32H) ,
R . 1512 2 . (864
of /bb11 = sin( 52 s , of /bb17 = sin( 32H) ,
Bfm/bbj =0 for j =12, 13,...17.
) 12) "
Bfm/bb18 = afq/bb19 =0, 3f2/3b18 = cos¢cos$sinH
' (2 .
of /ab19 = a4H + as 31n(a.65)H - a75
5fm/bb20 = cos $cosH sind - sin;l‘cosS Bflz)/abzo B 3152)/2),021 = 0.
1) _ .
of /bb21 = cos(agf+a2).cos(a3H).
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of this chapter the approximate model alone is used.

(4.4.2) Parameter 'Freezing'

In the applications below of the model to telescope data the Marquardt
algorithm (MARQDT) has been used. It is efficient, stable and uncritical
of the initial parameter values and in no case observed did it prove
troublesome, except where the models used suffered extensively from poor
scaling or redundant parameters. To assess which parameters of the model
are important and which ones fail to contribute to the reduction of ¢ or
R.M.S. error,a scheme is necessary which allows selected parameters to be
'frozen' at their start values and only the remaining parameters to be
iteratively improved. Techniques somewhat akin to this are used in mult-
iple regression work, see for example Chapter 6 of Draper and Smifh (1966),
but rely heavily on automatic selection of the  parameters to be included
in the model? and suffer the disadvantage that parameters can only be
included or excluded and not fixed at a value which may be desirable for

physical reasdns, They are also less useful for non linear models.

The method used here is to include with the initial parameter k-vector
on input to the routine, another 'masking' k-vector which contains ones or
zeros depending on whether a parameter is operative, or frozen, respect-
ively. Immediately after matrix A* and vector gf are computed (see MARQDT
flowchart Figure 2.7) they are 'compressed' by eliminating the rows and
columns associated with the frozen parameters using a routine called
CMPRES shown in the flowchart in Figure 4.9. Subsequently, whenever an
updated parameter vector b is required, the correction vector t,which is
~added to the previous b,is 'expanded! using routine EXPAND (flowcharted
~in Figure 4.10); this restores the elements of t to their appropriate
positions, filling the elements corresponding to the frozen parameters
with zeros. Within the matrix equation solution section of the Marquardt
algorithm the method merely operafes with a reduced‘dimensionality and so

‘the geometrical basis for its strategy is preserved.

(4.4.3) Fitting the Extended Model to Telescope Data

The full data set XY1 was fitted by the model using as the initial
3 = 1.0 radian, using a number

parameters bj = 10_8 radian for all j#3,and b
of different masking vectors. The errors and sumsquare ¢ remaining after

the fit, together with the estimates of the parameters produced by the

various combinations of operative parameters are seen in Table 4.9.

@ whereas physical insight may be more appropriate here.
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Satisfactory convergence was obtained in each of the 19 cases, but for
some a R.M.S. error of fit is obtained which is considerably poorer than
that of the surface fits previously described. The estimated value for

a given parametéer varies considerably, even for fits with similar R.M.S.
error, and this is partly due to the parameter redundancies discussed
earlier. It does not detract from the usefulness of the fit for predict-
ion purposes and the exact values of the parameters are possibly of less
interest, except perhaps for the parameters governing certain gear errors

which are always very small; +this will be discussed later.

For the parameter combinations numbered PC 1, 2, 3, 6, 9, 10 and 13,
fits were generated to data sets XY2, XY3 to XY10 and tested against the
data set XY1 as was done for the surface fitting routine. The results are
shown in Tables 4.10 to 4.16 which have the same format as Tables 4.2 to

4.5. The test variance O 2 and its degree of freedom \)1 has been cal-

culated from equation 4.2,:rhils“b the variance of fit 0'22 and \)2 are
given by
0> = ¢/(2nk)
: eoe 4422
VZ = 2n - k!

where k! is the number of operative parameters., In general the R.M.S.
error of fit improves with increased numbers of parameters but the adequ-

acy of the model as measured by the probability o¢ deteriorates.

Line-printer plots of the residuals A% ana AH cos$ against & and

H were producedyand, as in surface fits, the plots of A v.s. 6§ and
AH cosd v.s. Hare quite satisfactory with only very slight traces of
trends or wedge-ness. The exception is the plot of A& v.s.  for PC3
shown in Figure 4.11 which features a prominent linear trend in 6. AS
goes through zero at approximately -35 degrees (which is the zenith if H=0),
and since the operative parameters of PC3 are just those of the simple
five parameter model used in Chapter 2, it is easily seen why the latter
was inadequate, and why the surface fitting routine with its inclusion of
linear terms in the co-ordinates rather than the predominantly trigono-
metrical terms of the model, fares better. With regard to the plots of

AHcosd v.s. & and of AS ves. Hyonly the fit with parameter combin-
ation PC1 (all parameters operative) is beyond reproach. A severe quadr-
atic type of trend is present in the AH cos§ v.s. § plot for all
the other parameter combinations,and a similar (but inverted) trend is
present in the plots of A% v.s. H for PC2, PC3 and PC9. These last
mentioned defects are typified by those shown in Figures 4.12 and 4.13
respectively. In the three Figures 4.11, 4.12 and 4.13, outlying data
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TABLE 4,10
parameter combination no. 1 (all parameters operative)
DATA SET XY1 | XY2 | XY3 | XY4 | XY5| XY6 | XY7 | X¥Y8 | XY9 | XY10
number of points n 148 74 49 37
Rz% (group average) pOi1% 912% 934% 933% @
MSR (group average) | 121. 6238 481 328 e
£ » -

= RMS error (arcsec.) 154 | 144 | 147 1135 | 117 | 132 129 115 129 157
worst case (arcsec.) {730 | 453 | 541 | 467 | 240 | 413 | 436 | 209 | 388 | 431
RMS (group average) /i;// 14,6 12,8 13.3 e

=

& RMS error ? 162 | 164 | 174 | 171 | 168 } 176 | 170 177 | 188

g worst case //909 589 | 992 | 6Q0 | 807 | 109.| 665 | 744 | 642

. e

_|F-ratio /% é 129 | 128 | 158 [ 212 50| 155 | 185 +54 | +13

o ' -

| degrees of 7 % 148 198 222

g freedom Vi ::::: 127 77 53

S|average probability o % 75% 11% 81% @
ratioc W/p 13,1 . 6.05 3.67 2,52
@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4,11

parameter combination no. 2 (8 parameters operative)

DATA SET . XY1] XY2| XY3| X¥4 | X¥5| X¥6 | X7} X8| Xxy9| Xxy10
number of points n 148 T4 49 37
RZ% (group average) PB2a0% 824% 836% 835% @
MSR (group average) | 188 964 678 498 e

1 :

S RMS error (arcsec.) |204 | 214|188 | 202 | 161 | 202 | 183 | 162 | 226 | 206
worst case (arcsec.) | 747 | 661 | 674 | 507 | 482 | 587 | 438 | 336 | 568 | 615
RMS (group average) :;E:: 20,1 18,8 19.4 @

L~

| RMS error 7 206 | 206 | 212 | 207 | 206 | 221 | 207 | 2Q8 | 209

k! '

B vorst case i::;E 830 | 674 | 844 | 786 | T56 § 958 | 752 | Tl | 615
F-ratio cf?OA - 814 1 133 | 106 | 180 1.967 | 144 | 165 | .708 |.926

M AL TA . £

é degrees of Y, ::::: 148 198 222

5 freedom M ;;;; 140 90 66

Slaverage probabilityd% 47% 32% 42% @
ratio /p 36 17.5 11,3 8.24
@

denotes quantity averages over

group of data subsets of similar n.
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TABLE 4,12
parameter combination no. 3 (5 parameters operative)
DATA SET XY1 | XY2 | XY3 | XY4 | XY5| X¥6 | XY7| X¥8 | X¥9 | X310
number of points n 148 T4 49 37
Rz% (group»average) 523% 526% 534% 532%
MSR (group average) | 797 398 267 198
el
HIRMS error (arcsec.) |332| 334|327 |316|3Q8 | 330 | 308 | 302 | 353 | 347
worst case (arcsec.) | 109.] 880 | 105 | 605 | 808 | 765 | 601 | 518 | 831 | 102.
RMS (group average) :jE:: 33,0 31.8 32,8
\ =
4 RMS error ? 333 | 333 | 335 | 334 | 333 | 337 | 334 | 334 | 335
Bl worst case // 113.| 105.] 115.] 109.] 110.] 116.] 109.] 110.{ 102.
. g
- F-ratio 0'[70;,1 ,4 956 | 104 | 112 | 121 {.976 | 117 | 122 {803 |-845
=] B >
g degrees of Y, % 148 198 222
& freedom Vi ::::: 143 93 69
Slaverage probability o % 50% 33% 52%
ratio /p 58. 28.6 18.6 13.8
‘@ denotes quantity averaged over group of data subsets of similar n.
TABLE 4,13
parameter combination no. 6 (9 parameters operative)
DATA SET XY1| XY2| X¥3| X¥Y4 | X¥5| Xx¥6| Xy7| Xx8| Xxy9| xx10
number of points n 148 74 49 37
Rz% (group average) [836% 840% 847% 849%
MSR (group average) | 183. 943 627 473
a \
| RMS error (arcsec.) | 195] 205 178} 188 | 163| 1951 182 | 159 | 215 | 187
worst case (arcsec.) | 627| 625| 514 | 465 | 481| 592 | 449 | 368 | 549 | 433
RMS (group average) :;E:: 19,1 18,2 18.6
‘ >
e | RMS error ? 197 197 | 202 | 202| 198 | 209| 201 | 199 | 199
218
B} worst case i::;; 708 6351 679 | 692| 676 | 844| 669 | 583 | 609
| F-ratio oj70, 2 8021 139 111 | 163 -945] 126] 158 .703 | 103
S ' e
@] degrees of Y, % 148 198 222
g freedom et /‘ 139 89 65
Slaverage probability“% 46% 31% 40%
ra.‘bio vJP 31 07 15.5 7.22

e

denotes quantity averages over group of data subsets of similar n.
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TABLE 4,14
parameter combination no., 9 (6 parameters operative)
DATA SET XY1 | XY2 | X¥Y3 | XY4 | XY5 | XY6 | XY7 | X¥8 | XY9 | XY10
number of points n 148 74 49 37
RZ% (group average) ([729% 731% 736% 739% @
MSR (group average) | 156.] 780 516 389 e
&),
HIRMS error (arcsec.) | 250 256| 242 247 | 225| 246 235 221 | 266 | 257
worst case (arcsec.) | 762 | 686 | T13 | 475 | 625| 621 | 452| 369 | 627 | 663
RMS (group average) :;5:: 24,9 23.7 24.4 e
- :
| RMS error 7/ 2521 251 ] 255 | 253 252] 260| 253| 253 | 253
2
Hlworst case // 826 | 713 | 808 | 812| 796} 900| T73| 759 | 663
_|F-ratio a7k Z 901 | 111 | 103 | 131] 101 120| 131|.802.880
o L~
Al degrees of Y % 148 198 222
g freedom Vi % 142 92 68
Slaverage probability o % 50% 33% 48%
ra.tio )’z/p 48.4 23.7 15.4 1103
@ denotes quantity averaged over group of data subsets of similar n.
TABLE 4,15
parameter combination no. 10 (12 parameters operating)
DATA SET XY1 | X¥Y2| X¥3 | X¥4| X¥5§ X¥6}§ XyY7| Xy8} Xxy9| Xyt1o
number of points n 148 74 49 37
Rz% (group average) |866% 870% 885% 884%
MSR (group average) 167, 880 644 454 @
S|RMS error (arcsec.) | 176| 190| 153| 173| 127} 173| 168[ 134| 185] 16
worst case (arcsec.) | 654] 669| 567| 435]| 253| 584| 442| 309| 571} 518
RMS (group average) C;E:: 1741 13.8 1642 @
N L~
| BMS error ///17.9 179 |189 [189 | 182 }201 | 186 | 185 |184
%)
@] worst case 4669 652 |745 |782 | 673 |858 | 723 | 709 |659
_|Foretio ool 2'724 159 |144 |248 [ 102 [133 | 185 |-846 | 112
o] L~
@| degrees of Y, % 148 198 222
g freedom 2t / 136 86 62
Sl average probabilityc // 46% 24% 30% @
ratio /p 23.7| 11.3 To17 5.17
@ denotes quantity averages over group

of data subsets of similar n.
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TABLE 4.16
parameter combination no. 13 (7 parameters operative)
DATA SET X¥1 | XY2 | X¥Y3 | XY4 | XY5 | X¥6 | XY7| X¥8 | XY9 | XY10

number of points n 148 T4 49 37

Rz% (group average) Pp44% 846% 854% 855%

MSR (group average) | 237. 121. 813 613
=
; RMS error (arcsec.) 199 | 210 | 184 ] 196 | 167 | 199 ]| 185 | 167 | 220} 192
| worst case (arcsec.) | 613|585 | 576 | 453 | 533 | 546 | 441 | 312 | 502 | 465

|RMS (group average) ::2:: 19.7 18.7 20.6

. :;/,

g | RMS error ///// 200 { 200 | 204 | 204 | 202 ] 212 | 203 | 203 | 203
al
B|worst case // 669 | 581 | 650 | 764 | 668 | 793 | T16 | 566 | 566

F-ratio ¢/o, Z 783 | 130 | 104 | 161 [.964 | 128 149 |.729 | 1.06
= , : .
% ‘ -
%] degrees of 7 / 148 198 222
g freedom Ya ::::: 141 91 67
Sle bability & / A A A
O] average probability 4//1: 50% 34% 37%

ratio V/p 1.2 20.2 13.0 9.58

e of data subsets of similar n.

denotes quantity averaged over group
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points have been circled and annotated with the observation number.

(4.4.4) The Appropriateness of Linear Statistics

Whilst inspection and comparison of sumsquares and variances is satis-
factory, the use of the Fisher test to produce a measure of the model's
adequacy is not theoretically valid for the case of a non-linear model;
although the model used is intrinsically very nearly linear,an assessment
of the appropriateness of applying linear statistics is pertinent. Beale
(1960) has developed such a measure of non-linearity based on the depart-
ure of the solution locug@ from a plane which is tangent to it at the
ﬁéint on the locus corresponding to B =(Bj),the leastsquares estimate of
b. Using m different vectors qu(qu) q=1,...m, in the neighbourhood of

B,Beale calculates a normalised measure of this departure N which in our

£ E L - B - Fo,api] 1207
N = — i cee 4,23

iy { 3 [‘”(b ) - e ] 2 [‘1’] }

g=1 (i=1

" case 1s given by

The model is then regarded as adequately linear for linear statistics to

be appiicable if N'<.O1/F1 °‘(k,'v) and disastrously non-linear if

" ND>1/F, (k,¥),vhere ¥ is the degree of freedom of the variance of fit.
‘ 1=t g Wi

v Beale's measure N in equation 4.23 was computed for a number of diff-
erent distributions and total numbers of sample points using the exact

. version of the model. bAs predicted by Beale, the value of N obtained is
largely independent of m the number of sample points and is more dependent
upon their actual configufation. However Beale also states that N should
not vary greatly with the distance of the points éikbq) from fikg), the
point on the locus corresponding to the leastsquares estimate B; +this was
~not confirmed by any of the tests carried out. In Figure 4.14,N is plotted
agaiﬁst the‘mean distance of the components of vectors hq from the corres-
ponding component of B for several different distributions of the sample
points. The case designated A was formed by generating the qu as a
~uniform distribution over an interval which is proportional to the magni-

tude of Bj’ case B is a uniform distribution over a specified interval

@ Here 'sample space! is the 2n-dimensional space containing the point
o m (2 {2 @2 . .th
(y1, Yprees¥ys Yyseee¥, ), where (y., y;) = (6 i Hy .) is the i
observation point. The 'solution loch' 1s a k—dlmen51ona1 surface in
this space generated by the points fi (x » b), regarding b as the

varlable,and is a hyper-plane if the model is exactly linear in the
parameters.
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which is the same for each component of the parameter vectof@, case C is a
normal distribution of the qu over a proportional interval, and case D
shows a normal distribution on the specified interval. 40 sample points
were used and the intervals concerned were varied to obtain the abscissa
of Figure 4.14, To show the typical variation of N with number of points
used,a fifth case labelled A' has been included and is identical to A
except that only 10 of the 40 points were used.

It is clear that N increases monotonically with decreasing size of
the distribution of the sample points and is relatively unaffected by =
or by the type of distribution, The suprisingly large difference between
the cases with proportional and specified intervals is not easy to explain;
numerical error propagation was originally considered but is now rejected
on the basis of further tests and the quite smooth variation of N. Lines
representing Beale's criteria are marked on Figure 4.14, and on the basis
of the cases A and C we would not hesitate to deem the model sufficiently
linear; however; the scheme's arbitrariness with regard to choice of the
sample points‘necessitates our agréement with Jones (1970) that the scheme
is not particularly useful. One further peculiarity is that whilst Beale
states that the scheme is valid if the sample points are not too distant
from fitﬁ); the results for the model here become less stable the smaller
this distéhce,Becomese A more extensive appraisal of Beale's non-linear-—
ity measure is given in Guitmaﬁ and Meeter (1965) where a two parameter
model which permits theoretical investigation is considered. Here we
conclude that the limited and confusing information obtained from the test

is not worth the computing effort involved.

(4.5) REJECTION OF OUTLIERS

In compiling the original 148 point data set XY1, certain observations
with which frouble was experienced or whose accuracy was suspect were not
used. An assessment of the fits so far described indicates that it might
be advantageous to reject a number of others. Although work has been done
on schemes which permit automatic rejection of spurious data points or
toutliers', their unfettered use on data is not a wise procedure, since
it is rarely clear whether a peculiar data point is spurious or actually
representative of an unnoticed trend. Grubbs (1950) gives rejection
criteria based on the distance of the largest observation from the mean,
and Anscombe (1960) discusses rejection rules involving the size of the

largest residual compared to the standard deviation of the errors.

@ except for b,, of course, which took the same interval in degrees as
did the others in arcseconds,
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Anscombe, by considering the 'insurance premium' (the increase in residual
variance due to unnecessary use of the rejection rule), and the 'protect-
ion offered! (the chance that a spurious data point will escape detection)
concludes that such rules are somewhat arbitrary when only a single sample
of date is available, and highly ineffective since, for practical 'premiums’,
spurious points can easily escape detection. Irwin (1925) discusses a
criterion based on the difference between the largest and next largest
observations, and several other schemes are proposed in the literature;
the commonly cited viewpoint is, however, that the only safe procedurcs
are graphical inspection of the data and residualsyand, of course, disting-
uishing outliers purely on the basis of different or inconsistent condit-
ions of observation and without regard to magnitude. Alternatives
to rejection of a suspected outlier include data set truncation,where an
equal percentage of high and low valued observations are rejected (irresp-
ective of individual magnitudes), and 'Winsoration' (after C. Winsor) where
the extreme observafions are decreased in magnitude until they are equal

to the next most extreme ones. Only rejection has been considered here.

The plots of errors v.s. co-ordinates shown in Figures 4.3a to 4.31
show occasional points lying well off the main stream or trend; these
points are numbers 2, 75, 123, 124, 148 and to a lesser extent 13 and 17.
Also, inspection of plots of the residuals resulting from surface fitting
the data set XY1 reveals that points number 2, 13, 75 and 148 are not
typical, and similarly, in the residual plots for the extended model fits
with &ariOuS parameter combinations we can single out points number 2, 13,
75, 148 and possibly 59, 74 and 100. Point 148 is also suspect since it
was taken at an extremely large zenith angle (routine CATALOG.OBS checks
the zenith angle of the generated grid point,not that of the associated
star), at which gross misbehaviour of the telescope is expected and where
. the accuracy of the refraction correction cannot be guaranteed. The two
consecutive points 123 and 124 appedr to indicate a period of unusually
poor observaﬁional accuracy and the points 2, 13, 75, 123, 124 and 148
are consistently the worst case residuals in most of the fits. It was
therefore decided to delete these 6 points to form a data set of 142 points.
As before, this modified data set is divided into data subsets: 2 of T1
points, 3 of 47 points and 4 of 35 points as detailed in Table 4.17.

‘Surface fits with k=2, 5, 9 and 20 were generated to the data subsets
and the result tesfed against‘the full set XY1; +these tests are tabulated
in Table 4.18 to 4.21. Although the removal of the spurious points im-
proves the R,M.S., error of the data set and subsets by only about 1%, the

effect upon the fitting process is quite marked. Comparison of these
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Tables with Tables 4.2 to 4.5 shows a 10 - 20% improvement in the R.M.S.

error of fit, slightly less variation between subsets and a considerable
improvement in worst case error. The adequacy of fit (indicated by o)

has improved.particularly for k=5 and 9, whilst the case k=20, although
improved in this regard, still suffers from overfitting@. A small improve-—
ment of 2 to 4% in the proportion of variation explained (R2) is evident,
and there is also an increase in MSR., The latter, however, is sufficiently
large in each case that the exact value is of no consequence. Residual

plots of the surface fits to the modified data set are discussed below.

TABLE 4.17
number of R.M.S. error worst case
data set .

points arcsecond error
XY1 142 86,2 180.2
XY2 71 86.3 180.2
XY3 - T1 86,0 " 153.6
XX4 47 84.4 153,6
XI5 47 84.9 149.2
XY6 47 89.2 180.2
X7 B 87.3 180.2
X318 35 87.3 153.6
XYoo 35 84,9 142.5
XY10 35 84.9 152,.9

Similar fits and tests on modified data were run using the model
estimation routine MARQDT with operative parameter combinations PC1, 2, 3,
6, 9, 10 and 13 as was done in Tables 4.10 to 4.16, and the results are
given in Tables 4.22.to 4,28, In general the nature and extent of improve-
ment is very similar to the surface fitting comparison except that the
improvement in the R.M.S. error of fit is even larger (20 to 30 percent)

and the adequacy of fit for the smaller data subsets is comnsiderably better.

@ Overfitting results from using an excessively large number of para-
meters or coefficients for the number of data points and is indicated
by very low ratios ¥,/p. In such cases the fitting functions are
said to be fitted to “the errors.



TABLE 4.18
surface fit, k = 2
DATA SET XY1 | X¥2 | X¥Y3 | XY4 | XY5 | XY6 | XY7| X¥8 | XY9 | XY10
number of points n 142 71 47 35
R2% (group average) p41% 841% 843% 844% @
MSR (group average) | 240. 144. 953 924 @
£t .
HIRMS error (arcsec.) | 182|180 | 183 | 167 | 178 | 196 183| 179 | 170 186
worst case (arcsec.) | 487 | 485 | 446 | 371 | 488 | 442 | 47.6| 454 | 386 | 380
RMS (group average) Z 18.1 18.0 17.9 e
e |RMS error / 182 ] 1841182 | 186 184} 18| 185 185 | 186
n
| worst case // 4801 501 { 504 | 519 491 | 479| 507 | 533 | 498
P-ratio 670 :;;::.987 -982 | 121 | 106 | .763 | .964 | 991 | 113 |.922
z , =
Bl degrees of b / 142 190 214
g freedom Vi :;::: 136 88 64
8laverage probabilityo % 54% 49% 52% @
ratio W/p 16,3 22,6 14,3 10.7
@ denotes quantity ﬁvera.ged over group of data subsets of similar n.
TABLE 4.19
surface fit, k = 5
DATA SET XY1| XY2| XY3| XyY4 | XY5| Xy6 | Xxyv} xx8| xy9| xx1o
number of points n 142 71 47 35
Rz% (group average) [921% 922% 924% 926% Q-
MSR (group average) | 289 140. 918 666 @
E RMS error (arcsec.) | 128|131 | 123} 115 | 125| 135] 126} 114 126 | 127
worst case (arcsec.) | 342 | 328 | 286 224 | 308 294 319 245| 299 | 236
RMS (group average) :;E:: 12.7 12.5 12.3 @
e
. RMS error / 1201 1311 132 | 140| 131 | 134 1341 146 | 135
& ,
ol worst case % 3241 362 371 | 364 | 371 375| 314| 378 | 401
/
F-ratio o]7¢, j:;:j-sss 115] 130 | 121 -802.974| 125| +20|.986
8 — ::://
Pl degrees of Y, / 142 190 214
§ freedom , YA % 130 82 58
Sl average probability“/ 51% 38% 37% @
Z
ratio M/p 22.7 10.8 6.7 4.8
@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4,20
surface fit, k = 9
DATA SET XY1 | XY2 | X¥3 | XY4 | XY5| X¥6 | XY7 | X¥8 | XY9 | XY10
number of points n 142 T1 47 35
RZ% (group average) [953% 955% 961% 962% @
MSR (group average) | 283 142. 912 680 e
e
H|RMS error (arcsec.) o8] 104| 83 85{ 89| 103] 96| 81 95| 8i
worst case (arcsec.) | 241 ] 256 249 183 203 | 188 208| 155| 193 | 178
RMS (group average) :;3:: 14.6 9.2 8.8 @
>
| BRMS error ::::; 101 | 105] 104 | 1181 105] 108 108} 119 118
0
Elworst case // 253 | 264 | 276 | 348 246| 313| 271 | 432 329
. e
P-ratio /¢, 4 76| 162 | 135 | 167 .826|.970| 143 124 176
g —
A| degrees of Y, / 142 190 214
é freedom i % 122 74 50
Slaverage. probabilityocé 46% 31% 21% @
ratio ¥/p 13.2] 6.1 3.6 2.5
@ denotes quantity averaged over group of data subsets of similar n.
TABLE 4,21
surface fit, k = 20
DATA SET XY1] XY2| X¥Y3| X¥Y4| X¥5) X¥Y6| X¥7} X¥Y8| XY9| XY10
number of points n 142 71 47 35
Rz% (group average) ]963% 971% 97.8% 982% @
MSR (group average) | 179 822 571 394 @
E RMS error (arcsec.) 81| 78| 71l 67| 67| 68| 59| 66| 61| 54
worst case (arcsec.) | 172| 158| 145] 165| 126 138] 96| 122| 127| 120
RMS (group average) :;E:: 7.8 6.7 6.0 @
" i
| RMS error 7 89| 91| 95 124f 152 117} 17| 199 197
)
Bl worst case é 219| 204| 265 | 558| 892 376 310| 997 140
F-ratio o¥o} 2 115| 126 ] 142| 260 391] 196 156| 557 701
5 e
@] degrees of Vv, / 142 190 214
g freedom M :;;;: 100 52 28
S} average probability(x-% 17% 23% 25% @
ratio ¥/p 5.9 2.4 1.2 0.7
@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4,22
parameter combination no. 1 (all parameters operative)
DATA SET X¥1 | XY2 | XY3 | X¥4 | XY5 | XY6 | XY7| X¥8 | XY¥9 | XY10
number of points n 142 71 47 35
Rz% (group average) [927% 933% 938% 943% @
MSR (group average) | 164.] 762 499 370 @
ERMS error (arcsec.) | 124] 122 126] 116 116| 125] 123| 114| 94} 133
worst case (arcsec.) | 381 ] 341 268 250 210| 229] 251| 283| 190| 224
RMS (group average) :;E:: 124 119 116 @
e|RMS error / 130| 128 | 127 | 1361 137} 136| 141| 149| 145
2]
Bl vorst case // 341 | 405 | 387 539| 529| 338| 376| 550| 440
. L
P-ratio 6,76: 4 %081.913] 101 | 123] .996} 904| 119| 209] -834
5 , —
2] degrees of p / 142 190 214
g freedom Vi / 121 73 49
Slaverage probability o % 51% 39% 42%
ratio W/p 12.5 5.8 3.5 2.3
@ denotes quantity averaged over group of data subsets of similar n.
TABLE 4,23
parameter combination no. 2 (8 parameters operative) _
DATA SET Y1} X¥2| X¥Y3| X¥4 | XY5| X¥6| Xxx7| Xxx8| Xxy9| xxt1o
number of points n 142 71 47 35
Rz% (group average) |854%|  855% 859% 855%
MSR (group average) | 230, 112, 75.1. 538 @
H|RMS error (aresec.) | 174| 170| 178] 169| 163| 181] 186| 165| 149 191
worst case (arcsec.) | 551 552| 418| 395| 340| 466| 530| 37.1| 387| 438
RMS (group average) /// 174 17.1 17.5
.| RMS error ] 1TA| 1TA| 175 18| 180 176 174 178| 176
n
H]|worst case é 552| 550| 566| 614| 5551 530] 565{ 575| 535
F-ratio o¥o? - 1.05 .879] 102] 149 907} .761| 103| 140] .706
"8' | 2 /A
@| degrees of v, / 142 190 214
| g freedom Y / 134 86 62
Sl average proba.bility(x% 58% 45% 60% @
Z
ratio W/p 34.5 16,8 10.8 7.8
@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4.24
. parameter combination no. 3 (5 parzmeters operative)
~ DATA SET x11 | xv2 | x¥3 | x¥4 | X¥5 | X6 | X7 | X¥8 | XY9 | X¥10
number of points n 142 71 47 35
RZ% (group average) |548% 548% 551% 543% @
MSR (group average) 845 416 274 194 @

&

HIRMS error (arcsec.) 306| 302 310} 294| 297| 323} 305| 298| 299{ 324
worst case (arcsec.) | 844} 837 687} 561 | 558] 782| 826| 540| 661| 698
RMS (group average) :;3:: 30.6 30.8 30.6 e

: :;/,

e | RMS error / 306| 306| 307| 308| 310] 307| 306| 3Q8| 306

w .

8| worst case // 837| 851| 857 881| 782| 824| 835| 844| 862

. L~
P-ratio ¢/o, - 101| 922| 107 105| -836] .941| 999 101/ -800

g :)//

3| degrees of ] 142 190 214

g freedom Vi % 137 89 65

Slaverage probability o é 58% 54% 63% @
ratio V/p 55.8 27.4 17.8 13.0
@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4,25

parameter combination no. 6 (9 parameters operative)

DATA SET XY1| XY2| XY3 | X¥4 | XY5| X¥6| XY7| X¥8| XY9| XY10
number of points n 142 71 47 35
Rz% (group average) |866% 866% 87.2% 8T7.0% @
MSR (group average) 222 108. 728 522 @

=1 3 ,

HIRMS error (arcsec.) | 167| 161 171 163 149 177| 170 156 144| 184
worst case (arcsec.) | 525| 515| 385| 383| 329 453| 487] 373| 423| 384
RMS (group average) :;E:: 16.6 16.3 16.3 @

. :;/,,

e | RMS error ////’ 1671 167) 168| 170 173{ 174 168] 174| 168

n

H| vorst case i::;; 515{ 533} 5531 551| 525] 524{ 538{ 538 528
F-ratio cﬁyci i:;:: 107} -845} 994 130| -850} -879| 106{ 140| -678

8 ‘ e ’

“| degrees of Y ::;;: 142 190 214

g freedom 1) / 133 85 61

Slaverage probabilityol é 60% 48% 55% @
ratio /p 30.6 14,8 9.5 6.8
e

denotes quantity averages over group of data subsets of similar n.
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TABLE 4,26
parameter combination no. 9 (6 parameters operative)
DATA SET XY1} XY2 | X¥3 | X¥4 | XY5| X¥6 | XY7| XY8| XY9 | XY10
number of points n 142 71 47 35
R2% (group average) [749% T749% T52% T4%% @
MSR (group average) | 166. 812 533 380 @
-
HIRMS error (arcsec.) | 228 226| 230 223 | 220| 236 235| 224 | 216| 244
worst case (arcsec.) | 632 632 452 | 448 | 430 594 621 | 419| 373 | 452
RMS (group average) ::E:: 22,8 22,6 22,8 @
=
| BMS error ::::; 228 | 228 | 230 | 234 234§ 230| 238} 231 | 229
2
Bl vorst case // 632 | 632 ] 661 | 641 | 594 | 621| 626| 644 | 639
. L
_|F-ratio /o 4 995|938 | 102 | 107| 876 | 860| 1.00| 109|796
o /
Bl degrees of /) :;C:; 142 190 214
g freedom Yy / 136 88 64
Slaverage probability % 58% 54% 63% @
ratio /p 46,3 22,7 14.7 10.7
@ denotes quantity averaged over group of data subsets of similar n.
TABLE 4.27
parameter conbination no. 10 (12 parameters operative)
DATA SET XY1| XY2| XY34§ Xy4| Xys5| X¥6} Xxy7| XxyY8| xy9| xxtio
number of points n 142 71 47 35
RZ% (group average) [892% 894% 907% 901% @
MSR (group average) | 204, 100. 736 516 @
S| RMS error (aresec.) | 150| 144| 152 147| 132| 137 152| 137| 113 | 165
worst case (arcsec.) | 419| 473 | 378 | 350 | 314 | 268 401 | 342| 243 | 395
RMS (group average) :;E:: 14.8 13.9 14,2 e
=
| RMS error 7 154 [ 154 1 512 | 159{ 171 | 155| 152 185 | 154
2
RBiworst case 1::;; 4731 473 | 518 | 613 | TT9| 473 ] 495 | 8838 | 443
F-ratio oj7/0} 2 110 -872].973 | 147| 160 ] 873| 108 270 |.657
8 . e
#| degrees of p% / 142 190 214
g freedom 5t / 130 82 58
Sl average probability“% 54% 30% 53% @
A
ratio /p 22.7| 10.8 6.8 4.8
@ denotes quantity averages over group of data subsets of similar n.



4,34
TABLE 4.28

parameter combination no. 13 (7 parameters operative)

DATA SET XY1 | X¥2 | X¥3 | XY4 | XY5 | XY¥6 j XY7| XY8| XY9 | XY10
number of points n 142 71 47 35
RZ% (group average) |[87A% 87.5% 878% 875% @
MSR (group average) | 277 136. 907 661 @

FIT
PN

16| 179) 171 160| 181} 185] 163 146| 194
worst case (arcsec.) | 567 553 422] 396 | 372| 492| 534| 382| 38&7| 420

RMS error (arcsec.)

RMS (group average) /// 17.3 17.1 17.2 e
L~
e, | RIS error ? 174 174} 175] 176] 179] 175| 175] 176| 174
Hlworst case // 553| 579| 603| 594| 517| 534 589| 568| 560
o e
_|F-ratio o7 -1 11| 838].994| 122| 900] 783| 109| 145| .673
(@] 7
3| degrees of Y / 142 190 214
gfreedom Vi % 135 87 63
Slaverage probability o % 56% 46% 57% @
ratio W/p 39.6]  19.3 ©12.5 9.0

@ denotes qua.ntity averaged over group of data subsets of similar n.
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The line-priﬁter plots of the residuals of fit v.s. the co-ordinates also
show the benefits of removing the spurious points. Those for the surface
fits are improved with regards the scatter of the residuals,and the sugg-
estion of a trend in AH cos d v.s. H for the fit of order 5, and the
trends in the plots of order 2 are rendered less significant. The model
fit residual plots are also improved but only slightly so; the quadratic
trends in AH cos$ v.s. 6§ and A& v.s. H, examples of which appear in

Figures 4.12 and 4.13, are still very significant.

(4.6) DISCUSSION OF TELESCOPE DATA FITS

Despite the degree of randomness imposed on the results by the hyst-
- eresial nature of the télescope errors, interesting comparisons are poss-—
iblé. In Figure 4.15 the R.M,S. error of the surface and model fits to
the complete data sets (both original and modified) is plotted against the
effective order of fit'ﬁ@. Quite distinct trends are visible and are
delineated in the figure. They are different for the surface as opposed
to the model fits in that surface fitting can produce superior fits for
small values of p, but at p=8 to p=10 the fits have similar R.M.S. error.
Rejection of outliers causes the trends for the modified data to be de-
pressed by an’(approximafely) constant number of arcseconds from those of
the original data set. In Figure 4,16 the significance percentage o0
averaged for the original and modified half data sets XY2 and XY3 is
plotted against p. The trends in Figure 4.16 are much leés definite than
in the preceding figure, but show that worthwhile improvements in the
significance level o can accrue from rejection of spurious data points,
and that (at least on the basis of &) we can expect slightly more adequ-
ate fits from the model rather than the surface fitting process.

Overfitting occurs when the ratio of ‘Vz,the degree of freedom of fit,
~ to p,the number of parameters or coefficients fitted,is too low. The lit-
erature is quite vague on the minimum necessary value for ia/p,but values
of about 5 or 10 are taken to be desirable. Clearly, this is not always
practicable when data aéquisition is onerous and time consuming, and when
quite complicated behaviour is being fitted. A plot of & averaged within
each group of modified data subsets v.s. the ratio 'V%/p for the surface
and the model fits is shown in Figure 4.17. There is a definite trend in

the adequacy of the surface fits, and to a lesser extent in that of the

@ The effective order of fit p is the total number of parameters
(p = k') or the total number of coefficients (p = 2k+2) fitted.
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model fits (owing to the dependence which model fitting has on exactly
which parameters are operativel It is not easy to discern the value of
'Qz/p for which either type of fit becomes overfitted. However, even for
the surface fits,Figure 4.17 indicates that reliable fitting results may
be possible down to ratios as low as 2 provided reasonable attempts have

been made to rid the data of spurious points.

Though complicated by the fact that our independent variable is two-
dimensional, visual inspection of residual plots is the most useful single
method of assessing the appropriateness of the model. For order k=5 and
abovey the surface fit residual plots show no sign of trends and it is
clear that surface fitting allows fits with less systematic variation in
the residuals. In general the model fits display a larger incidence of
trends and uneveness in the plotted residuals, the exception being the fit
with PC1 (all parameters operative) which compares well with the best of
the surface fits above. In the fits to PC2, 3, 6, 9, 10 and 13 a trend of
form -cos( &-¢) is evident to varied extent in the plots of AH cos§ ves.
® . The worst case of this particular trend is for the fit with PC10
and is seen in Figure 4.12. The simplest possible cause of such behaviour
would be the lack of a term in.'b—-¢ in the model function componént
szH ; a similar term (the term in bZO) already appears in the component'
fvzéé. It is unlikely to be caused by parameter redundancy in the model
since it appears in the case of the surface fit with k=2, but is undoubt-
edly affected by redundancy since the model fit with PC1 manages to remove
it by employing the slight redundancy which exists between the terms in b

_ 4
and b19.

As well as the trend noted above, the model fit for PC3 has a residual
trend involving a linear dependence of NS on &, but since the fit,
which uses only the five parameters of the simple model of Chapter 2, is
very poor,there is very little to be learnt there-from. Two other trends
noted: a coéH type trend in A% v.s. H in the fit with PC9 (see Figure
4.13), and very slight cos(6-—¢v) tendency in A$ v.s. § in the PC13
fit, do appear to be caused by parameter redundancy. The parameter com-

, and b

bination PCY9 excludes the terms in b6 and b which is redundantly

linked to them tends to act as a substitute? so intilducing an excess of

the term cos(aBH). The minor trend in the PC13 fit is not observed in any
other fit and is probably caused by the absence of b5 which causes b6 and
b7 to be adjusted. The interactions between parameters are best assessed

by an examination of the coefficient correlation matrix in Figure 4.8.

(4.7) CONCLUDING DISCUSSION

- The above study though specific, permits a number of important
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general conclusions on the use of purely computational correction methods

for reducing pointing errors. They are listed and discussed below.

(2)

(b)

(d)

(e)

The construction of a suitable model for a given case is always a

problem, but it is fortunately simplified by the fact that:

simple additive models constructed by summing the separately calcul-
ated causes of error are perfectly adequate. This is primarily due

to the smallness of the errors with respect to the co-ordinates and

the orthogonality of the co-ordinates, and allows the simple calcul-
ation of analytic derivatives which can be advantageous in model

fitting routines.

Such models are usually intrinsically reasonably linear for the reas-
ons just given, but in any case the use of a non-linearity measure
such as Beale's is not recommended. The criterion is too arbitrary,
the numerical results too dependent upon the exact siting of the
sample points, and the computing time requirements are more onerous
than any other program treated here (even those for the data fitting
itself).,

It is not easy to devise a model with sufficiently independent para-
meters. Although in general, models may be more complicated and
somewhat less linear than the one used, larger numbers of parameters
imply an increasing amount of redundancy in the parameter set which
is not always obvious from an inspection of the model function. A
term appearing solely in éﬂ cannot be redundant with one solely in f?

m 42
but within f1 or f2 unexpected interdependencies occur which are

detrimenta1>to accuracy and adequacy of fit.

Because of point (c) above, the fitting of models with large numbers
of parameters is not as useful as would be expected,as a means of
locating error causes or measuring physical parameters (unless tests
show redundancy to be very slight or nonexistent). Table 4.9 shows
the extent to which the fitted parameter value can vary owing to

redundancy, however:

because a model can contain terms which describe the telescope behav-
iour better than polynomials, the adequacy of fit and therefore the
usefulness of the fit for prediction purposes is often better for
model fitting than for surface fitting. The smallest possible number
of parameters should be used, but, should the model fail to account
for some trend in the telescope errors, a surface fit with equivalent
p will be found superior. This is simply because the terms (poly-

nomials) used in surface fitting span the set of all polynomial



(£)

(g)

(h)

(3)

4,38
functions in the domain of &, H which are of degree { k. Visual
inspection of residual v.s. co-ordinate plots is the most useful

means of assessing adequacy of the model in this regard.

For a given order p,surface fitting will always produce a fit of
lower R.M,S. error,but there can be a range of p (= 8 to 10 in our

case) where surface and model fitting are not significantly different.

As is evident in Figure 4.3 surface fits should be generated with
k=2,5,9, 15 etc., (see Chapter 3, Table 3.1) so that all terms
of degree k are employed; sudden decreases in R.M.S. error are often

observed whenever a polynomial group is completed.

Attempts to eliminate outliers or spurious data points are very
worthwhile, In Figure 4.16 the adequacy of fit is shown to be more
dependent on whether or not the spurious points are included than on
whether surface or model fitting is used. Elimination of spurious
points causes a decrease in the R.M.S. error which appears to be
roughly independent of the order of fit and which of surface or model

fitting is used.

The adequacy of a surface fit is particularly contingent on the re-
jection of outliers since the polynomials are particularly suited to
fitting a trend in the data which is unexpected,and which would not
have been incorpoiated into a model function were model fitting

employed.

Finally, if there are very few spurious data points, a degree of free-
dom to order ratio 'v2/p of as low as 2 can be used when the aim is
to satisfactorily correct telescope errors; for the determination of

error causes ratios of at least 6 are required.

The contribution of the mechanical hysteresis error to the nett
pointing error of the 74-inch telescope can Be estimated, albeit
rather roughly. It is true that at least a minute of arc hysteresial
movement was found in the secondary support by manually pulling on it,
but the level of hysteresis manifest in the pointing errors is (fort-
unately) far less, as is evidenced by the ability of the routines
described to generate adequate fits to less than 20 arcsecond R.M.S.
It is highly improbable that any more than a few arcsecond of this is
due to the new encoder and timing system (E.T.S., see Appendix C)
because of the basic design and the consistency indicated by various
checks on it, and since the pointing observations were the subject
of considerable care, it is concluded that most of the residual R.M.S.

error is in fact hysteresial. A figure of about § arcminute R.M.S.
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is quite plausible and is in approximate agreement with the figure
of 30 to 35 arcsecond peak to peak suggested by the laser data plots
Figures 4.6, 4.7.

Despite the spirit of pessimism vested in point (d) above cer-

tain other conclusions relevant to the 74-inch are appropriate:

(k) Given the current amount of hysteresial movement in the secondary,
composite gear tooth errors and the eccentricity of the encoder pin-
ions are negligible. The terms involving b8, b9, b10’ b11, b14, b15,

b16 and b17, because of their period are each quite independent, and

in all the model fits generated the estimates of those parameters

have very low values., It is unlikely that if the hysteresis were

eliminated any significant change would be observed in those values

and thus we can eliminate composite tooth errors and pinion errors
from any discussion of error causes. It is unfortumately not possible
to assess the eccentricity of the main instrument gears since the

parameters b6’ b7, b12 and b__ are each redundantly linked to several

13
others.,

By use of the parameter freezing technique described earlier it
is often quite possible to eliminate those other parameters which

are redundantly linked to the one of interest.

(1) Thus reasoning,it is possible using Table 4.9 to set an upper limit

on the T4-inch axis skewness of about 6 arcsecond.

(m) The final conclusion specific to the T4-inch is that, on the basis
of an inspection of the various error v.s. co-ordinate plots there is
no obvious transformati?n of co-ordinates (e.g. into azimuth/zenith
angle), or of errors (e.g. magnitude/position angle) which would

facilitate improvements in the T4-inch data fitting.

It is clear that a definitive assessment of the use of model estim-
ation in locating and measuring pointing error causes would require a
telescope with a much lower level of hysteresial error, and since this type
of error cannot be simply dealt with by the techniques discussed in the
foregoing chapters, it should perhaps be given priority in any program of
telescopé pointing improvement., In the case of the Mt. Stromlo 74-inch,
the author recommends that the secondary optics support and focussing
system be redesigned as this is the major cause of that telescope's hyst-

eresial pointing data,

The following and final chapter discusses the use of model and sur-
face fitting in a practical environment,and emphasizes the fact that

hysteresial error is indeed the most serious limit on their effectiveness.
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CHAPTER FIVE
THE FUTURE OF SOFTWARE POINTING ERROR- CORRECTION

(5.1) SOFTWARE CORRECTION IN PRACTICE

In the foregoing chapters, techniques for computing model and surface
fits to telescope pointing error data have been described and evaluated.
This has been done using a synthesized or previously collected data set
and a large off-line computer, and was not subject to the various con-
straints and problems that beset the task of using such techniques in
practice. The following discussion places these techniques in the context
of their practical usage, and delineates the difficulties which are likely

to be encountered.

It should firstly be noted that the process of calculating a suitable
fit to a set of pointing error data is significantly more demanding in
terms of computing time, storage requirements and numerical precision, than
evaluating that fit at a given point on the sky for the purpose of error
correction or reduction. Since it can always be arranged that the errors
in the co-ordinates are evaluated, rather than the corrected co-ordinate
values per se, a lower degree of numerical precision can be tolerated when
only fit evaluation is required. This may often permit a reduction by a
factor of 2 in the storage (from double precision to single precision),
and of 2 to 4 in execution time required for evaluation. Quite apart from
>this, the programs used in previous chapters indicate that, for both types
of fit, approximately 3 times the number of instructions and at least 10
times the data storage are required for fit calculation, compared to evalu-
ation. Comparisons of execution time are more variable and range from a
factor of 10 to 200. Thus, interpolation or evaluation of a fit is quite
suited to implementation on a small computer on-line to the telescope con-
cerned, but fit generation on such a machine may require a closer look at

the storage and time overheads.

Two distinct modes of software error correction can be envisaged. In
one, a continuously active prbgram in the telescope computer invites the
astronomer to log any definite identifications of an object during the
"course of normal astronomical observation; this accumulated data is fitted
by an automatic fitting routine in the compufen when other higher priority
tasks, such as telescope or instrument control and astronomical data acquis-
ition,are dormant. This is discussed below in section (5.3). Alternat-
_ively, the generation of an error correction fit can be another mainten-

ance-type task like instrument change-over or optics aluminizing, for

- which the telescope must be 'down'. In this case a grid of bright stars
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may be observed as in Chapter 4, and processed to yield a ‘static data set:

From the foregoing paragraph it is clearly simpler for this preliminary
.processing, and the generation of a fit to the data set, to be performed on
a large computer off-line. However, such a machine is not always available,
and, for reasons of over-all efficiency (as in any scheme that necessitates
the transfer of data between machines), may not be desirable. Because of
the increasing extent to which fast access, large capacity disk storage is
being utilized in small computer installations, it is the author's content-
ion that software correction schemes can be completely implemented on small

telescope computers.

(5.2) THE 'STATIC DATA SET' APPROACH

Whatever size machine is used, the desirable procedure for the static

data set approach can be specified as follows:

(i) Firstly, it is important that graphs of the pointing errors v.s.
co-ordinates be produced and examined for trends and hysteresial
effects. Other ordinates which should be graphed are the result-
ant error AR, the error resolved along the zenith circle A7 and
also along any other direction of physical significance for the
telescope concerned. Additional abscissae should include the

"zenith angle and any direction of special significance. Although
it has not been done in Figure 4.3, the points should be identif-
ied with their co-ordinates (other than that which is being graphed
as the abscissa) since surface trends in two dimensions are not
easily noticed in simple ordinate-abscissa plots. The use of con-
tour plots of an errorragainst two co-ordinates, e.g.  and H,
would be very useful; there is an increasing usage of such plots
in other fields which involve two-dimensional data, such as seismic
data processing and in geomorphological studies (see for example
Harbaugh and Merriam 1968, who describe their use in trend surface
analysis of geomorphological data). Obvious trends visible in
these graphs may alter or reinforce our ideas on the causes of error,
and may suggest a suitable transformation of the co-ordinate vari-
ables, which will amplify +the trends and permit more effective
fitting. The level of hysteresial error can be roughly assessed
by comparing the error at adjacent observations which are within
say 6 degrees of each other; error jumps in excess of about 10%
of the total error variation usually indicate hysteresis rather

than a fast-varying repeatable error cause.

(ii) It should be noted at this point that, if surface fitting alone
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was contemplated and the graphs show simple but distinct trends,
a model, no more complicated than necessary to describe the trends,
should be used and the residuals to this model fit,surface fitted.
In such cases this will always be more effective than a surface

fit alone.

(iii) Outlying or spurious data points should be removed from the data
set. Data points whose observational accuracy is suspect for any
reason should be removed, whatever form the graphs take. If there
are no simple trends visible in the graphs these are the only
points which should be considered as spurious; if obvious trends
exist, points which are inconsistent to it may also be removed,
but only if they are placed at least twice the standard deviation
from the centre of the trend. A(See, for example, data points
number 148 and 75 in Figure 4.3). During the fitting process,

points which are consistently the worst case errors in fits of

different order may also be advantageously discarded.

(iv) A surface fit in the co-ordinate variables & and H should be
generated. The R.M.S. on-sky error should be graphed against the
order of fit, to determine the appropriate order to use for evalu-
ation purposes, and it will often be best to use the various orders
of fit k = 2, 5, 9 etc. at which the groups of orthogonal poly-
nomials become complete. Lack of fit due to inadequacy of the
fitting function? can be tested for by dividing the data set in
half and testing the fit to that half on the other half, as in
Chapter 4. The F-ratio test should be employed as a criterion in
this cross checking, but there is little point in dividing the data
set into more than two (or at most three) parts, since overfitting
can occur with small data subsets. The use of the F—test on
consecutive orders of fit, to assess significance of fit with in-
creasing order is extremely misleading; see for example Figure 3.8.
A modification to this test which renders it somewhat more useful

is given in section (5.3.3).

(v) Surface fits of various orders should be generated using the vari-
ables cos § and cosH, where & and H have been scaled as in Chap-
ter 3, and also fits using the co-ordinate variables transformed

in any way which is suggested by the graphs of step (i) above, or

@ i.e. inappropriate choice of independent variables and order of
fit.



5‘4
the physical nature of the telescope. The various tests mentioned

in (iv) should be carried out.

(vi) If a suitable model for the error causes can be devised, it should
be fitted using the Marquardt algorithm and with estimated deriv-
atives. The effectiveness and accuracy of numerically estimated
derivatives depends on the numerical precision used, and where un-
stable behaviour of the model estimation program is observed in a
reduced precision enviromment, recourse should be had to analytic-
ally calculated derivatives. The tests of step (iv) above should
be used, and model parameters of less importance may be frozen at
desired values, to attempt to distinguish the role played by the

various error causes.

(vii) The model equations and the correlation coefficient matrix A
(see Figure 4.8 and equation 2.22) should be inspected for inst-
ances of parameter redundancy. Such redundancy may not prejudice
the fits utility for error evaluation purposes, but must temper
any conclusions about the physical nature of the error causes

obtained in step (vi).

(viii) TFinally, the fit which is accepted for evaluation purposes should
of course be the one with the lowest R.M.S., error, consistent with
a satisfactory result for the lack of fit test on the divided

data subsets.

(5.3) AN AUTOMATIC ERROR CORRECTION PACKAGE

The static data set mode of software pointing error correction de-
scribed above requires a substantial level of human involvement, judge-
ment and decision making, not to mention about a night of observing time,
which is a scarce commodity given the current pressures on the observat-
ional scheduling of larger telescopes. Daylight observation of bright
~stars is quite possible@, but, because of heating of the telescope struct-
ure and optics, and thé restriction that the observations cannot be too
near the sun, is not particularly'practicable. Hence we return to our
notion of an automatic package which is not seen by the telescope user, and
“which prbcesses sequentially obtained pointing data, and corrects the tele-
vscope pointing on the basis of the besf currently available fit. Surface
-fitfing, because of the way in which independent fitting terms are added

in a simple hierarchical manner, is better suited to automation,

© In the author's experience, the daytime limiting magnitude in the case
of the Mt. Stromlo 74-inch 1s approximately magnitude 4.
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and is more tolerant of reduced precision than a model fitting process
(largely because the latter involves matrix inversion). Even so, double
precision arithmetic would be required on 16 bit word machines, and possibly
even triple precision for astronomical co-ordinate corrections where
required@. Matrix inversion would almost certainly require triple precis-

ion.

(5.3.1) Storage Requirements

Provided suitable program segmentation or overlaying is employed, and
disk memory available, the storage requirements of software correction
are certainly practicable, even for quite small machines. Table 5;1 shows
estimates of the data storage necessary when generating surface and model
fits, and when evaluating them at a point on the sky at which error corr-
ection is desired. The storage is given as a number of variables, and
should be multiplied by the number of words occupied by a real variable in
the implementation to be used. The estimates have been obtained from the
routines mentioned in earlier chapters by neglecting unnecessary storage,
and assuming, in the case of each dimensioned variable, the most compact
form of storage. Approximate instruction code requirements are given in
Table 5.2 in numbers of words. In estimating these, large amounts of
'housekeeping' and experimental code that appears in the listings in
Appendix D had to be judiciously neglected,and so the estimates should be
taken as a guide rather than exact figures for a particular implementation.
The instruction code estimates are also exclusive of the various arithmet-
ical and trigonometrical functions, which are required by all of the pro-

gram segments.

There is little difference between the two types of fit in the case
of fit evaluation,but somewhat more storage is required to generate a
surface as opposed to a model fit, prlmarlly because, during the fitting
process, the orthogonal polynomials P (x ) are stored by their values at
each data point. This is not strlctly necessary, see for example equations
3.22,and the reference to Cadwell and Williams 1961 in section (3.7), but
more compact storage is gained only at the expense of decreased numerical
accuracy, which is nof tolerable in small word-length machines. Extensive
use can be made of integer formats (multiple length where necessary) for

storing pointing data,but fits must be stored by the Forsythe coefficients

@ A precision of 60 bits in the mantissa of a real variable was used in
the computations discussed in earlier chapters; the level of error
introduced into astronomical correction algorithms by the use of a
24 bit mantissa is briefly noted in Appendix A.
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numerical estimates assume n = 100,

TABLE 5.1

Data storage requirements for fit generation and evaluation purposes;

number of observations,

p = order of fit;

p = 20;

storage is in terms of number of variables, and must be

5.6

multiplied by 2 (3) if double (triple) precision arith-

metic is used.

SURFACE FITTING generation |evaluation{MODEL FITTING generation|evaluation
data points X, 2n 2 data points X 2n 2
data values Y 2n 2 data values X 2n
coefficients @0 function £ on 5
of fit : Cj P P values =i
parameters b P P
masking vector
: for parameter P
polynomial ﬁh n freezing
values =j P p
vector £ P
solution "
vector - p
Forsythe " matrix (stored
coefficientguﬁr p(p-2)/4 |p(p-2)/4 |as upper tri- |p(p+1)/2
angle) A
derivatives on +
'(estimated)af/abj P
@ﬁerivatives on
(analytic)af/bbj P
=]
o <t =
= $ =
3 B ® 4
TOTALS ~ > TOTALS & <
2 N ~ +
+ ~ 2 +
=l [ — ~ .
<t [aa] -~ joN =5
£ 9T
=] oe) =]
@5 v
nuneyical 2610 134 nunerical 1110 24%@
estimate estimate
@ analytic derivatives will only rarely be necessary in practice.
@@ this estimate is somewhat theoretical since incidental storage

requirements would be at least this much again.
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(1 - ., AD )
and the coefficients of fit Cj and require a real number representation.

c‘jr

TABLE 5.2

Approximate instruction code requirements for fit generation and evaluation

SURFACE FITITING [generation|evaluation | MODEL FITTING|generation|evaluation
polynomial model
group 210 210 function 630 630
initialization evaluation
orthogonal matrix
polynomial 570 equation 330
generation setting up
orthogonal matrix
polynomial 290 . . 440
. inversion
evaluation
surfgce fitting 740 mode% fitting 780
routine routine
TOTAL 1520 500 TOTAL 2180 630

(5.3.2) Automatic Selection of Best Fit

The fit to be used for error interpolation must be automatically

selected by our error correction package, and this is not possible if a

complicated model with a large number of parameters is employed.

surface fitting must be predominantly used in the package.

Thus

The package

could use to advantage an initial model fit which has only a few parameters,

each of them continually operative, and only those parameters which spec-

ify a definite physical error cause known to be active, for example vari-

ation of instrument mass, simple flexure terms and optical misalignments.

A preliminary pointing data run may be necessary to determine whether this

is worthwhile and which parameters should be involved, but such a run need

not be as extensive as for the static data set mode of operation.

Successively higher orders of surface fit should be calculated until

either a nominated level of R.M.S. pointing accuracy is attained, or until

a Fisher test on the ratio of the variances of fit calculated on the

successive orders of fit k = 2, 5, 9, 14 etc. (at which polynomial groups

~are completed) indicates insignificance of fit, which ever is the sooner.

The two mast important parameters which the system should display to the

user as an indication of the performance of the package in real time, are

the R.M.S. residual error of the fit being used as the interpolant, and

the multiple regression coefficient R2 (see equations 4.4 to 4.7). The

latter measures the fraction of variation in the data which'is accounted
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FLAG3
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.MSR
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LEGEND TO FIGURES 5.1, 5.2, 5.3, 5.4 and ASSOCIATED TEXT

maximum permissable number of data points (set by storage allocated).

maximum desirable number of data points.

minimum desirable number of data points.

maximum permissable order of surface fit.

current limiting order of fit (calculated by algorithm).

. number of (operative) model parameters to be used.

radius defining a neighbourhood for restricted domain fitting.

Root Mean Square tolerance on fit.

percentage tolerance on multiple regression coefficient Rz.

= 1
= 0

= 0

-if an initial model fit is desired;

if not.

if global fitting (all data points used in fit) desired;

if restricted domain fitting (a subset of data points in the
immediate neighbourhood is fitted) desired.

if, in restricted domain fitting, the number of points n in
the domain is to be determined by the neighbourhood radius En;

if the domain is to include the n, nearest points.

= Root Mean Square residual error of fit.

= multiple regression coefficient defined in equations 4.4 to 4.7.

= mean square ratio of equation 4.8.

= ratio of the variances of consecutive orders of fit at which
polynomial groups are completed.

= 4F

’ uﬁp—1,'vz), the tolerance on the mean square ratio (MSR) to

ensure the fit is useful for prediction purposes; see equation

4.9 and associated text.

= (in Figure 5.2) Decision: is point & ,H within €  of centre

of domain of current fit, and have no points been added since

that £it?
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for by the fit, and, along with MSR, the mean square ratio given in equat-
ion 4.8, may also be utilized in automatic procedures to determine the
minimum order of fit necessary. Even if MSR is not used as a criterion,
it should be calculated,and used as an indication of the probable effect-

iveness of the fit for prediction purposes.

(5.3.3)_ A Suggested Strategy for an Automatic Correction Package

‘Figures 5.1, 5.2, 5.3 and 5.4 show the details of a proposed auto-
matic correction package which embodies the ideas so far discussed. It is
assumed that ﬁhether or not an initial model should be used has been
ascertéined, and that if necessary, the model function has been incorpor-
ated into the system. On initialization, the parameters N,y Dy, Dy ks,
L En’lee and Er’ which are defined in the legend following Figure 5.4,
are set,and the flag FLAG1 set to 1 or O according to whether a model fit
is desired or not. Other options available include a choice of whether
global fitting (use of all data points for each fit) is to be used, or
whether fits should be generated to subsets of data points in the immedi-
ate locality of the point at which error evaluation is required.. The
latter, called 'restricted domain fitting'@here, is controlled by FLAG2.
When using restricted domain fitting a further flag FLAG3 indicates whether
the domain to be used is to be decided on the basis of a certain set
number of data points n,, or by an angular radius 8rﬁ which defines a -
'neighbourhood' or region inside which the data points of the restricted

domain must lie.

It is‘assumed'that some form of integer representation for the point-
~ing data is used (in the interests of fast sorting of points and other
thousekeeping' tasks), and that each data point is tagged with an index
number (necessary for array calculations), and also an integer code repre-—
senting the date and time of acquisition. Allowing a precision of about
a minute (of time) for the latter and about 1 arcsecond for the co-ordin-
ates &, H and the errors A5, AH, it can be seen that 5 to 6 words of
storage are required for each data point. This is unavoidable sincé, even
for global fitting where a single unique fit is stored, all the data must
be retained so that the fit can be improved with the accumulation of more
data. In the case of restricted domain fitting a number of fits for
&ifferent areas could be stored,but since 4k82+ 9kS + km + 5 quantities

need to be stored for each fit, and since such a procedure may result in

@ In a sense this is piece-wise fitting, but without the important
constraint that the fits to the various pieces match along their
common boundaries in some way. ‘
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the use of an inferior fit to evaluate the error at a general point, this
is not recommended. ZEach fit generated is tagged with the date and time

of its generation.

The data accumulation section of the algorithm is shown in Figure 5.1,

and accumulates pointing data until n_, the available storage allocation,is

’
exceeded@, wvhereon it substitutes the1point immediately acquired for the
earliest péint. When the telescope control system requires the pointing
error to be evaluated at a given point in the sky, the algorithm checks
whether the existing stored fit is current and appropriate (Figure 5.2);

in the case of global fitting, this is contingent on whether or ﬁot data
points have been added since the fit was generated, but for restricted
domain fitting, there is the additional test that the point of evaluation

is within the neighbourhood En'of the centre of the existing fit domain.
8n7 depending on FLAG3, is either set at initialization time, or is cal-
culated on the basis of the distribution of points in the existing fit
domain (see Figure 5.3). If the existing»fit cannot be used,a new fit is
generated and, if FLAG1 = 1 and there is adequate data, includes an
initial model fit, as well as a surface fit whose order is chosen using
techniques discussed in section (5.3.2) above. If the total number of

data points n e#ceeds n,, restricted domain fitting can be employed,and '
the data set to be fittéd is chosen as the nearest n, data points (FLAG3=0),
or as all points within radius Ezl(FLAG3=1)'

(5.4) THE PROBLEMS INVOLVED IN SOFTWARE ERROR CORRECTION

The‘use of on-line disk storage with small telescope computers makes
the implementation of an automatic error correction algorithm, such as
described in.section (5.3) above, quite practicable. When tracking an
objeot, or when setting on different objects in the same region of sky, the
frequency with which new fits must be generated will be quite low, partic-
ularly if global fitting is used; +thus much of the algorithm can be
rolled in from the disk in a number of segments as required, and the whole
process can be relegated to a fairly low priority. Similarly, if tele-
scope time can be set aside for occasional pointing error data runs, for
example -in poorer conditions or during twilight, software correction em-
ploying a static data set approach, of section (5.2), can certainly be
implemented in the form of a concatenation of disk-resident programs.
Howeveg there exist a number of problems which are commonito whichever of

the two approaches is used.

@ Alternatively an age limit could be imposed on the data points.
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(5.4.1)ﬁﬁChange of Telescope Configuration

Pointing data acquired using a particular telescope configuration,
that is,a‘parficular instrument, focal station, balance weight setting etc.,
will not in general be pertinent to the behaviour of the telescope differ-
ently configured. Since instrument changeover and other alterations occur
quite frequently@, there is the problem that error fits become obsolete
rapidly, and there is insufficient time spent in the one configuration to
" permit the accumulation of a satisfactory number of data points. The
only remedy applicable here, is to alter the telescope hardware or operat-
ing procedures so that change of configuration produces less variation in

pointing error.

The two most important configuration variables are the optical ad-

justments and changes to the state of balance of the telescope. Partié—
‘ularly for teleécopes for which optical changeovers involve the manual re-
placement of a mirror or other components, rather than mechanically switched
systems, for example flip mirrors, the position of the optic axis changes
with change of configuration and is not even constant for a given config-
| uration. A consistent scheme for collimating the telescope is required,
and the 1ncreas1ng use of small, low power (typically several mllllwatt)
-allgnment 1asers is a step in the correct direction. Focal stations
should incorporate a fiduciary or reference point in the focal plane, to
vhich the optic axis is consistently adjusted whatever optics are employéd.
Balance changes with different instrument weights can be similarly ob-
viated, by the (automatic?) adjustment of the balance weights for a spec-
~ific étatévdf balance of the telescope in a given attitude. Often a
(known) imbalance is to be preferred, since many telescopes exhibit more
consfant and repeatable pointing errors with suitable preloads and biass-

ing forces.”

Provided the pointing behaviour can be made consistent for a given
configﬁration,‘the change in behaviour for different configurations may
- be allowed for by additional parameters, e.g. optic misalignments, balance
weight and flip mirror positions etc., which are included in the model
. estimation process, and,either initialized differently for different’cdn—
figurations, or fitted using a limited amount of fresh pointing data, ob-

Itained after a changeover. Thus an existing global fit could be slightly

@ ‘0.0. almost weekly for optical telescopes, whose usage scheduling is
based on the lunar month for reasons of sky background brilli-
ance. Radio telescopes are far less affected by instrument
changes.



5.11
modified to accomodate changeovers. Alternatively, data taken for different
configurations can be distinguished, separately stored, and the appropriate
data set selected; +this is, of course, only practicable if a relatively
small number of different instruments, focal stations etc., are used. Often
different telescope attitudes may have to be considered different 'config-
urations' in this context; an example of this is the discontinuity in
excess of an arcminute in declination, observed when the Mt. Stromlo 74-
inch is used on the opposite side of the pier@. A further point which
should be noted is that the extent to which pointing errors are hyst-

eresial may also be configuration dependent.

(5.4.2) Alteration of Telescope System Hardware

Another factor which may jeopardize the usefulness of a set of point-
ing error data, is the unavoidable removal of, and maintenance on equipment
and components which, either influence the direction of the optic axis (e.g.
optic supports, focussing units), or comprise part of the attitude read-
out chain (e.g. encoders, encoder drive gears). Ideally the component re-
moved for repair or modification should be replaced exactly as found, and,
if this is at all possible, it should be attempted. Where a component does
not contribute substantially to the hysteresial errors, and is responsible
for certain independent parameters of an error model, the techniques of
'parameter freezing', described in Chapter 4, may be useful in refitting
just those parameters to a limited amount of new data. This will only be
possible if (i) the component contributes a noticeable fraction of the
total pointing error and in the manner described by the parameters con-
cerned, and (ii) those parameters are not badly redundant. Unfortunately
there is little which can be done if the component is not related to any
error cause incorporated into the model; the surface fitting section of
the correction algorithm requires a completely new set of pointing data,
to generate a fit comparable with the previous one, once any such error

contributing component is disturbed.

(5.4.3) Hysteresial Errors

Although the various problems mentioned above will assume greater or
lesser importance for different telescopes, the problem which is of uni-
versal concern, and which most endangers the viability of software error

correction, is the presence of hysteresis or nonrepeatable errors. There

@ This probably is due to the use of a diametrically split instrument
gear in the cube (see Appendix C). The gear was split in half to
allow it to fit through the cube access hatch during installation.
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is no way to estimate errors which are a discontinuous (and unknown) funct-
ion of the co-ordinate variables, unless the statistics of their distribut-
ion is known, in which case use could be made of confidence intervals which
specify an interval inside which the error has a known probability of lying.
In general nothing can be known of the hysteresial error statistics, and
it is doubtful whether pointing error confidence intervals are of much use
to the observer, if the hysteresis is large. A more rewarding scheme would
be to prescribe a process to obtain, or a route to, a given point on the
sky, in such a manner that the resulting pointing actually becomes repeat-

able.

The problem is trivial in the case of one-dimensional positioning.
The position v.s. time graph of Figure 5.5 portrays the nature of simple
'backlash! or 'dead-zone' type of hysteresis, for a one-dimensional case
involving a dead-zone of size D. To overcome such hysteresis it is suff-
icient merely to ensure the final positioning is done in the -x direction
only. A (trivial) algorithm for moving from position X, to position Xy is
given in Figure 5.6 for the sake of completeness. In practice, hysteresial
behaviour is more complicated than simple backlash, and in Figure 5.7 the
‘ hysteresial error v.s. position graphs for backlash (Figure 5.7 A) is con-
trasted with the behaviour of systems which involve elastic effects, such
~as structural'take—up'or gear teeth deflection (solid line Figure 5.7 B),>

or stiction (broken line same figure). A suitable upper bound on the hyst

eresial error D can conveniently be defined similarly to the waveform rise
time in electronics: the position change D required to produce 90%,or
some other specified amounﬁ? of the total observed hysteresis; this en-

- ables any oscillatory or asymptotic effects to be included, without using
an excessively large value for D. Whatever value for D is used, even if
it is a (known) function of position D(x), pointing can be made repeatable

by the same algorithm as before (see Figure 5.6).

In two dimensions the problem is far from simple unless the two mot-
ions are entirely independent; in this case the algorithm above could be
- applied separately in the two co-ordinates to produce repeatable pointing,
which can then be the subject of the model and surface fitting techniques
. so far preéented. If simple backlash is present in the two independent
co-ordinates, the area of cause/effect discontinuity is rectangular as

éhown by the broken line in Figure 5.8. For a more general case of simple

@ Another convenient choice here would be the total hysteresis observed
minus the required pointing error tolerance.
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backlash, the dead area may be as shown by the solid line in Figure 5.8, and
D = D(x1, x2,9) is now a function of both co-ordinates, and also of position
angle 8, and by definition is periodic in © with period 77. Complete know-

ledge of D = D(x1, X., ©) is unnecessary, since the largest diameter of the

2’
area in Figure 5.8, or the largest projections of it onto the co-ordinate
axes, can be used in practice, provided the hysteresial process is no more

complicated than a simple backlash effect.

One of the restrictions on the practical use of such notions as above
to counter hysteresis, is that the hysteresial process is rarely simple
backlash. The error versus co-ordinate curve is more often as shown in
Figure 5.7 B for both co-ordinates, and the two motions interact to the
extent that the hysteresis in one is affected by the positional history of
the other. D for practical telescopes may often be an extremely large
angle on the sky, and thus an impracticably long slew may be required about
an axis to remove a worthwhile fraction of the error. If we add to these
problems the fact that, the hysteresial behaviour of a mechanism which is
itself composed of a number of hysteresial components, cannot be treated
simply as if it exhibits a positional cause/effect delay, it is clear that
hysteresial errors impose a very tangible limit to the efficacy of soft-

ware correction techniques.

(5.5) CONCLUSION

(5.5.1) Summary of Conclusions from Previous Chapters

" The results of previous chapters make a clear case for the feasi-
bility of software pointing error correction,as well as highlighting its
attendant difficulties; here we summarize briefly the conclusions to be
made from these chapters. The utility of model estimation is assured when-
ever the experimenter has a firm conviction, or evidence, of the exact
causes of pointing error. It will no doubt be found most useful for tele-
scopes of recent design, where elaborate analysis of the pointing per-
formance has already been done. Even where many of the error causes have
Been physically measured independently, the model estimation roufines,
along with the scheme of ‘parame£er‘freezing' of Chapter 4, will be found
most useful for overall testing and improvement. The data perturbation
experiments of Chapter 2 show such processes to be quite stable, and al-
though some descent type algorithms are shown to behave extremely badly,
routines of the Gaussian type (Levenberg, Marquardt, SPIRAL) are all
satisfactory. The algorithm which is to be preferred for reasons of both
performance and its uncritical nature, is the Marquardt algorithm, and it

is suggested that, on new problems or models, it could be started from a
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point very close to the origin of the parameter space@, and with an initial
value of X calculated as per Levenberg (1944). The use of numerically
estimated derivatives shbuld suffice for most practical problems, and the
performance of model fits will not depend on the fitting routine used,as

much as on the properties of the postulated model.

In Chapter 3, two-dimensional orthogonal polynomial fitting of ‘the
pointing error surfaces is examined,and shown to be stable and possibly
less critical numerically than model estimation. Although statistical
assessments of the adequacy of fit indicate that very large numbers of data
points are desirable, satisfactory fits can be generated up to polynomial
order V2n, where n is the number of data points. The decision as to
whether to model or surface fit is often a critical one, since some models
may not be approximated well by polynomial fits. Surface fitting is by
far the method most adaptable to the requirements of an automatic soft;
ware correction package, due to the hierarchical generation of higher orders
of fit, and the applicability of conventional statistical techniques for

selection of a satisfactory fit.

Chapter 4 delineates the difficulties imposed by practical pointing
data, and the vagaries of telescope error causes. The constraints on the
manner in which data can be collected are far more serious than for other
similar problems?@ and virtually rule out the use of model estimation for
'mechanism determination': +the selection and physical measurement of An
error cause., In theory, mechanism determination is also precluded by the
inappropriateness of conventional statistical tests for assessing non-
linear models, fortunately however, because of the magnitude of the errors
compared to the co-ordinate variables, most telescope models will not be
too non-linear. Although simple additive models are shown to be quite
adequate, model construction is difficult, because of the ease with which
redundant parameters are incorporated, and monitoring the elements of the
correlation coefficient matrix A* is helpful here. Because of redundancy,
model fits with very large numbers of parameters may be less effective
than expected. Visual inspection of the plots of residual error against
co-ordinates, is the most useful single indication of model adequacy, out-
lying data points, and the prevéiling level of hysteresial error ;  pro-

vision for this must be incorporated into any model fitting roﬁtine

@ e.g. bj ¥ 107 or 10'-7 for j = 1,...k.

@ Consider for example, the simple two-dimensional data grids of ship
hull fitting,and geomorphological data.
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intended for practical application. Despite reservations as to statistical
validity, both surface and model fits will usually be found useful for
error correction purposes, even when 'V/p,the ratio of the degree of free-

dom of fit to the number of fitted quantities, is as low as 2.

(5.5.2) Suggestions for Further Work

The section (5.4.3) above, as well as defining the limitations of
our software correction scheme, also provides a direction for future en-
deavour. It is evident that, in any projected program of telescope hard-
ware improvement, highest priority must be given to eliminating the causes
of hysteresial error; even if these causes are not the largest contribut-
ors to the total error, they are the ones least capable of being improved
by software methods alone. With special regard to the Mt. Stromlo 74-inch,
this priority should be allocated initially to improvement or redesign of
the secondary mirror support. On the basis of the results of Chapter 4, the
application of software error correction to that instrument would result
in a R.M.S. pointing accuracy of about 20 arcsecond, and, with suitable
improvement in the secondary support hysteresis, a figure in the region of
10 arcsecond R.M.S. may indeed be feasible. Other improvements to the T74-
inch éhould include a rationalized and calibrated balancing system, and an
extension of the current usage of alignment lasers to maintain an absol-
ute relationship between the optic axis and the encoder readout, which
would survive configuration changeovers. The author would also like to
see the practical implementation of the type of automatic correction
algorithm discussed above in section (5.3). There is little doubt that,
if incorporated into existing telescope computer systems, the benefits of
increased pointing accuracy would be well worth the storage and processor
time overheads required. It is suggested that the basic ideas embodied in
the algorithm discussed in (5.3.3) be extended,and evaluated on a suitable

general purpose, large telescope.

In a more theoretical vein, the phenomenon of hysteresis in mechanical
systems is worthy of attention in its own right. The behaviour of a hyst-
eresial mechanism may be best understood from a purely statistical view-
point, and although this does not easily fit in with the approach
to repeatable errors adopted here, it may result in analyses or formulat-
ions of the problem,which give as their tangible result,a confidence
interval or other type of probabalistic specification for the error of such
mechanisms. Most advanced texts on control system theory touch on the
analysis of systems employing components with dead-zones or backlash in

their(discontinuous) transfer functions, but the piime interest is in the

(worst case) stability of such systems, and not in the statistics
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of their behaviour. State-space techniques are far more applicable here
than the more classical approaches to control theory, and within this frame-
work, there is clearly room for a statistical, unified treatment of dis-

continuous mechanical processes such as hysteresis.

For many telescopes, the pointing behaviour will be found to be
largely repeatable, even if erratic, and the greater part of this thesis
will apply directly. Yet a number of possible improvements can be suggest-
ed. In the static data set case in section (5.2), the operator can assess
visually graphs of the errors and residuals of fit v.s. co-ordinates, and
can evaluate many different (and often inconsistent) factors to arrive at
a decision; in such cases automatic outlier rejection is ill advised.
Contrarily, with a completely automatic package, there is a definite need
for data rejection procedures to guard against extreme cases. Comparing
the currently existing fit,with a fit which includes in addition the data
point in question, is one possible strategy. Points which would decrease
significantly the adequacy of fit@ could be rejected advantageously, and
statistics of their behaviour logged for possible later investigation.
Because of the increasing extent to which computer control and analysis
systems have become self contained, and lack interaction with the human
operator, it is no longer tenable to shun completely the notion of automat-
ic data screening, and research in this area could be beneficial to many

such systems.

Model fitting, because of the conscious selection and formulation of
the mathematical model by the experimenter, is not a process conducive to
‘automation. On the other hand, in a surface fit employing orthogonal poly-
nomials in a given variable, the order of fit alone can be altered to
facilitate the search for a satisfactory fit. The case for orthogonal
polynomials has already been made in section (3.3), and so a method of
altering or transforming the co-ordinate variables used (and therefore the
basis functions which constitute our orthogonal polynomial functions), is
required. Automatic transformation of variables has been used by Thacher
and Milne (1960) in surface interpolation studies, but only in a limited
fashion. A variable transformation scheme operating within a standard
surface fitting algorithm is actually two nested optimization loops, and
poses special problems of selection and uniqueness of the solution. Never-

theless, it constitutes an avenue for improvement which would be applicable

@ as measured by tests involving subdivisions of the data set as in
Chapter 4.



to a gamut of data approximation techniques.

The final line of endeavour suggested here, is the construction of a
two-dimensional analog of a class of methods in one-dimension that employ
piecewise fitting, and which automatically optimize the positions of the
boundaries between pieces. One such routine involves piecewise fitting
with cubic splines@, and dynamically varies the position of the knots to
achieve an optimum fit. It has proven extremely effective in a number of
curve fitting applications in which conventional methods behave poorly.
Mention should also be made of an automatic curve fitting package developed
by Payne,in Hayes (1970). A piecewise surface fitting routine with optimal

piece boundary positioning, is a difficult, but worthwhile objective.

In general the more accurate and precise a mechanism is required to
be the more complex the design necessary to achieve that precision, and as
complexity increases so too does the difficulty of tracing the exact cause
of a slight defect in the mechanism's accuracy through its multifarious
parts and functions. There is clearly a level in the scale of accuracy,
wvhere the application of software error correction becomes advantageous.
In the case of astronomical telescope pointing errors, that level has been
reaéhed, and the author believes that software correction of pointing
errors can be effective, and, in contrast to Smith (1967), is difficult, but

not 'too difficult’.

@ see footnote page 3. 4.



A.1

APPENDIX A,

Algorithms for the Computation of Astronomical Corrections

The topocentric position of a celestial object required for tele-
scope pointing purposes is obtained from its catalogued or otherwise
known mean place at a given epoch by applying the following corrections:
(i) PROPER MOTION which is the intrinsic motion of the object with

respect to the celestial co-ordinate system and rarely exceeds 1
or 2 arcsecond per year,

(ii) ANNUAL PARALLAX due to the earth's orbital motion which is
periodic and even for the closest object does not exceed an
amplitude of 0.7 arcsecond,

(iii) Lunisolar and planetary PRECESSION of the plane of the earth's
orbit which is a secular drift of approximately 50 arcsecond
per year,

(iv) NUTATION which is periodic of several arcsecond amplitude and
has the same cause as (iii) above, and finally

(v) STELLAR ABERRATION, a periodic shift of 20 arcsecond dependent

| on the instantaneous direction of the earth's motion with respect
to that of the light ray from the object.
This astronomical position is then transformed into topocentric
co-ordinates by accounting for the earth's rotation and then

(vi)  ATMOSPHERIC REFRACTION, which is a function of the zenith angle

' of the object and the environmental variables atmospheric pressure

and temperature, is corrected.

. Conventionally the reduction of the catalogued mean place Qxb,éb) to
the apparent true place@ at date Gxg,gg) proceeds by calculating the mean
place at the nearest beginning of a Besselian year Qy2,52) as an inter-
mediate step, and expresses the apparent true place at date as an expans-
ion in terms of that mean piace; see Table A.1. The reduction is applied
to a fixed star in such a manner that only two types of function occur:
functions of co-ordinates QM2,62); and functions of the date in the form
of the standard Day Numbers A, B, C, D, E (Besselian) or f, g, G, h, H, i
(Independent), and the second order Day Numbers J and J', all of which

are tabulated in references and ephemerides. Certain refinements incorp-

@ Note that an astronomical position may be TRUE or MEAN according to

: which equinox and equator is used as the reference frame, and
APPARENT or ASTROMETRIC according to whether the aberration correct-
ion has been included or not. Although such terms as 'apparent true!
are necessary here to distinguish the various cases, they are not
in general astronomical usage.
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orated in the method permit accurate reductions of mean to apparent place
by a minimum amount of computatioh, and if necessary by manual methods;

~ see for example Woolard and Clemence (1966), Porter and Sadler (1953) and
the Explanatory Supplement to the Astronomical Ephemeris (1961).

Telescope pointing and various other astronomical tasks need an

algorithm enabling a digital computer to perform the reduction without

the onerous requirement that the machine have access to the tabulated

Day Numbers. The machine could calculate the Day Numbers as required,

but it can be shown that this is wasteful of time and less accurate than
a method of direct calculation which is now described. This direct
algorithm is very similar to that of Harris and Large (1967) to the extent
that,although independently discovered, it post-dates the above and can-
‘not be published. A comparison of the direct and conventional methods is
clearly shown in Table A.1. In the direct algorithm the mean place at
date is found directly, by applying proper motion and precession correct-
ions. Aberration at date is then applied with the necessary parameters
‘referred to the mean equinox and equator of date, and finally nutation at
date ié applied using the 13 most significant terms of the nutation series
(all terms with coefficients greater than 0.01 arcsecond). The eventual
‘fesult is the apparent true place at date and the only input data
“necessary are the mean co—ordinates and proper motions at epoch, and the

Julian Dates of epoch and of date.

A DIRECT MACHINE ALGORITHM FOR MEAN TO APPARENT PLACE REDUCTION

Starting with the Julian Dates of epoch t1 and of date t3, the mean

co-ordinates at epoch @MO,QJ) and the yearly proper motions M s/ﬁig

calculate
T = (t3-t1)/365.24220 ees AT

and so obtain the co-ordinates (w1,51) by

ot = o%)-f/auft |

. L J A.Z
_ ‘g.nd 51 = 60 +/a_s.f
Transform (aﬁ,E%) to rectangular co-ordinates (x1,y1,z1) by
X, = cosoﬁcosg_I
= inoe
¥y sin 1coss1 eoe A3
z, = s::.ntS1 .
Calculate time intervals TO and T in tropical centuries by
T. = (t,-2415020.313)/36524.220
0] 1
LN ) AD4
T =

(t5-t,)/36524,220
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LEGEND FOR TABLE A.1 (and text).

SYMBOLS

07 = 7right ascension

S = declination

X,¥,Z = -equatorial rectangular co-ordinates.

SUBSCRIPTS indicate the equinox and equator to which the
co-ordinate is referred.

0,1 for equinox and equator of initial epoch t1

2 for equinox and equator of intermediate epoch t

(nearest beginning of Besselian year)

3 for equinox and equator of t.,, the date of observation.

3’

PRIMES

Astrometric co-ordinates are not primed,
apparent mean co-ordinates have single primes,

apparent true co-ordinates have double primes.
UNITS

All angles are in radian measure,

all times t1, tz, t, etc. are in Julian Date form,

3

sidereal times O, eg,egm etc. are in radian.

epoch t1 = epoch of catalogue,
t2 = beginning of Besselian year closest to date
(abbreviated BYR),

t3 = date of observation.
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and thence the precessional parameters (50, z and © by

-2 -6 -6 > -8 3
?50 = (111713192 + 6,768 T,)T + 1.464 T° + 8.7 T,
-6
z = 9, +3.835 72, oo A5°
-3 -6 - 2 -7 3
and 6 = (9.7189726 - 4,146 T )T - 2.065 T° - 2.04 T,
Calculate the precessional rotation matrix elements:
S;; = cos 9,.cos6.cosz - sin$ .sinz, D
$,, = -sin ¢, cos6 .cosz - cos §,.sinz,
S13 = -—sin® cosz,
S,y = cos 4, .cosO .sinz + sin §,cosz,
822 = -sin%,.cos® sinz + cos 4,.cosz, ) eeo Al
823 = =sin®.sinz,
831 = cos % .sing,
S84y = -sin %,.sin®,
d = .
and 333 cosO J

Calculate the mean (rectangular) co-ordinates at date (x3,y3,z3) by

S S S X

11 12 513 1
(x30¥3:23) = Sa1 S22 Szl - |V eee AT
531 S32 S5 24

Unlike precession (or nutation), stellar aberration does not merely
involve a simple rotation of the co-ordinate frame. We set the aberration

constant k to

k= 9.93674°  (20.496 arcsecond), eeo A8
and (::alcula‘be time interval T in Julian centuries by

T = (t3-2455020.o)/36525.0 . | ees A9

Calculate the geometric mean longitude of the sun L, the mean longitude
of the solar perigee 77, the solar mean anomaly M, the mean obliquity of

the ecliptic 80 and the eccentricity of the solar orbit e by

-é
L = 4.881627938 + 628.3319510 T + 5.2796  T°,
-2 -6 2 -8 13
T = 4.908229463 + 3.000526416 T + 7.9025 T  + 5,82 T,
]
@‘ Note superscripts appended to figures are decimal exponents,

-6 -
€8~ 6.768° - 6.768 x 10°° .



i A.6
-6 -8 ]
A 6.256583784 + 628.3019457 T — 2.6180 T° - 5.82 T2, §... A.10

-1 -4 -8 2 -9 3
4.093197474 - 2.2711097 T - 2.86 T + 8.8 T

-2 -5 -7 2
1.675104 - 4,180 T - 1.26 T .

y
il

o
Il

’

[$]
ot
a8
™
!

Calculate the geometric elliptic longitude of the sun © using the

‘equation of centre' approximated by
. 2 .
(@ - L) = (29—93/4)-31nM + (5/4)e”. sin2M + (13/12)e3. sin3M ... A.11
Calculate the aberration Day Numbers C and D by

C

il

-k(cos@.cos&O + ecosTﬁcost) ,

..o ALT2
and D

~k(sin® + esinT) .

'The terms in e in equations A.12 (the elliptic or 'E-terms') are approx-
imately constant for fixed objects such as stars, and are included in

the mean place of the object in the catalogue; for the majority of
applications they should thus be ommitted from the expression for C and
‘D. Moving objects such as planets require the E-terms to be included,and
Scott (1964) discusses their inclusion for very precise stellar reduct-
ions. Aberration caused by the diurnal rotation of the earth amounts to
obout 0.3 arcsecond in amplitude but is not considered here. The rect-
angular mean co-ordinates at date (xé, yé, zé) are obtained as in Woolard

and Clemence (1966) and Scott and Hughes (1964), from the equations

xé = X5 - D, .
yé = y3+C ’ oo ALI3
zé = 274 + C taneo .

To obtain the nutation correction use T defined in equation A.9 to

calculate the nutation arguments

-7 3)

1 = 5.168000340 + 8328.691103 T + 1.60425 T T° + 2.517 1)
¢ -3
1' = 6.256583574 + 628.3019457 T — 2.618 ° T2 — 5.8 T°,
-5 -
F = 0.1963650568 + 8433.466291 T - 5.6045 T° - 5.8 1°,\ ... A.14
- -8
D = 6.121523940 + TT71.377193 T - 2.5065 " T° + 3.3 T°,
-5 2 -8 3
and & = 4.523601514 - 33.75714624 T + 3.6264 T + 3.9 T .

P

. Calculate the nutation in longitude Zsyband in obliquity'ZXE from the
standard series (only terms with coefficients greater than 0.01 arcsecond

are included here)

-5 -8 -6
gx)b:: —(8.35465  +8.421 T) sin + 1.0123  sin2
- 6.17127° sin(2P-2D+2%) + 6.1135 ' sinfl)
_ 2,477 sin(1142P-2D428 ) + 1.04 sin(2F-2D+28 —11)
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-2 .
+ 6.01 sin(2F-2D+&). eeo AL15

_5 ,3 .
Ae = (4.4651 +4.4 " T) cos& - 4.3837 cos2 &

-6 -7
+ 2.677 cos(2F-2D+28 ) + 1.047 cos(1'+2F-2D+2& ) ... A.16

The short period nutation terms (terms with periods of less than 35 days)

are given by the further series

- -7
AY - AY _9.876 sin(2F+28) + 3.272 sinl
1.6587 sin(2F+&) - 1.265-7 sin(1+2F+2 & )

- -8
~ 7.22% sin(1-2D) + 5.53  sin(2F+28 1) e AT

in longitude, and

-7 _
AE - NE + 4.286 cos(2F+28) + 8.87 © cos(2F+8)
+ 5.48-8 cos(2F+28 +1) ... A.18

in obliquity. Using A.10, A.16 and A.18 calculate the true obliquity &

from
€ =€, +4¢, ee ALT9
and the nutation rotation matrix elements:
S‘]1 = cos A}Z , ~
S12 :—sinA)é-cosEO,
813 = - sinAV.sinEO ,
821 = sin A)ﬁ.cos £,
.S22 = cosAy.cosEO.cosf + sinfo.sinf, y ... A.20
823 = cosA}é.sin Eo-cosf - cosfo-sinE,
831 \: sin A}é,sinf ,
| 332 = cos Ay.cos £ o sinf - siné€ o ¢0s e,
and 833 = cos AY.sin€ o sinlﬁ + cos € o ©0s E. ]

The (rectangular) apparent true co-—ordinates of date (x;, y5s zg) are

given by the matrix equation

1
51 S12 543 X3
” " \ —_ 1
(X3, y3’ 23) = 821 822 823 . y3 ... A.21

1
53 Ss2 33 23

Finally transform (x" ", z") to equatorial polar co-ordinates (x!,5")

? bl
Y 37 Y320 %3 3103

by using the equations

. 2 21
51n(oc§) = yg/(xv?; +y397, \‘



1
and cos(%g) = xg/(xgz + ng :, } ee. AL220

where ch lies in the interval O to 277, and

2 2.1
tan(sg) = zg/(xg +y§ 2, ce. AL22b

vhere 8;; lies in the interval -TI/2 to +7/2.

TOPOCENTRIC CALCULATIONS RELEVANT TO TELESCOPE POINTING

Except for parallax which, if required, is most easily included with
the aberration calculation (see Explanatory Supplement to the Astronomical
Ephemeris 1961), equations A.1 to A.22 give all the necessary astronomical
corrections; the transformation to topocentric co-ordinates requires the
calculation of the local mean sidereal time © as follows.

Truncate the Julian Date t3 to an integral value and add 0.5 to obtain
tgm a Julian Date corresponding to a Greenwich midnight, and calculate

time interval T in Julian centuries by

T = (tgm - 2415020.0)/36525.0 eee AL23
Using
06/0t = 6.30038749 (radian/day) eee A24

as the sidereal rate, calculate the Greenwich sidereal time at t o and at

't3 by
-6
egm = 1.739935893 + 628.3319510 T + 6.7558 2 ees AL25
and eg = egm + (t3 - tgm).be/bt , ees AL26

respectively. Finally, from the local east longitude Xe calculate 6, the

local mean sidereal time by

6 =68 + A . ee. AL27
g e

Should apparent sidereal time be required it is given by

= A
eapparent e + )?cose , ... A28

" where 6 is obtained from A.27, and 13}40058 is the 'equation of the
'equinoxes' and can be obtained from A.15, A.17 and A.19. Since observat-
ories are equipped with sources of mean sidereal time (see for example

- Appendix C), it would be most appropriate to use as telescope pointing co-
ordinates the apparent true declination but the apparent mean righ£
ascension,in conjunction with the mean sidereal time. A proposal of this
kind was put forward by Atkinson and Sadler (1951) but unfortunately was
never adopted, and so here the topocentric co-ordinates declination 5,

and hour angle H are obtained by:



A.9
8 = 833

and H

eee AL29

"

AN
eapparent 3

il

The refraction correction used is quite standard and is taken from
W%oolard and Clemence (1966). Given the barometric pressure B in milli-
nmetres of mercury and the temperature t in degrees Celsius the refraction
indexA/Ob is calculated from

-4

Sy = 1 + 1.0534 .B/(273+t) , ... A.30

and atmospheric height parameter HO is taken as -
-3
HO = 1.2541 . . ees AT

If ¢ is the local geodetic latitude, the zenith distance Z of an object

"is obtained from the equation
cosZ = cos¢.cos b.cosH + sing sin 6, eee A32
and the refraction coefficient R calculated by
_ 1) (12 _ Ve 2ty - 3
R = (u-1)(1-H) tanZ - (4, 1)[HO g 1)] tan’Z. ... A.33

Resolved into topocentric declination and hour angle the refraction

correction becomes
5 & + R(sin ¢.cos 6 ~cos p.sin S.cosH)/ sinZ,

and H

il

cee A34

Il

H - R cos@sinH/(cos 6sinZ).
& and H so calculated are our telescope pointing angles.
CONCLUSION

The direct mean to apparent place reduction algorithm presented
_above has an accuracy of better than 0.1 arcsecond (even close to the
celestial poles); an absolute worst case error of 0.077 arcsecond can
~ result from the omission of the nutation terms of amplitude less than 0.01
arcsecond. A FORTRAN IV implementation of the algorithm with 56 bit
.precision on an I.B.M. 360/50 computer was tested against a number of
FK4 stars in A.P.F.S. The worst difference noted #as 0.06 arcsecond, but
it should be noted that reduction of the machine precision to 24 bits
>‘produced differences as large as 0.4 arcsecond due to numerical error
propagation. Harris and Large (1967) quote a similar accuracy for their
method but they include all terms in the nutation series and the accuracy
in their case appears to be limited by a less precise form of the aberrat-
ion correction than the one given here. A polar co-ordinate version of
the direct algorithm was also tested and although about 20% slower the

‘discrepancies between it and the rectangular one given were quite small



A.10
-4
(typically 2x10 arcsecond). A breakdown of the timing for the I.B.M.
implementation of the rectangular version is given in Table A.2; the
Univac U 1108 version used in the body of the thesis and listed in

Appendix D is considerably faster.

TABLE A.2
Polar to Rectangular Co-ordinate Transformation: 4.2 ms
Precession Correction: 7.6 ms
Aberration Correction: 11.2 ms
Nutation Correction: 16.8 ms
Rectangular to Polar Co-ordinate Transformation: 2.8 ms
TOTAL 42.6 ms




APPENDIX B
Anti-ambiguity Requirements of Linked Shaft Encoders

Despite widely varying pointing accuracies, the precision with which
telescopes are pointed is usually an arcsecond in declination and a deci-
second of time (equal to 1.5 arcsecond about the axis) in houranglo@.
Taking the more critical case of declination, a resolution of one part in
1,296,000 is required and, although single turn shaft encoders with resol-
utions of 220 (1 part in 1,048,576), and 221 (1 part in 2,097,152) are ‘
commercially available, they are rarely employed in practice. Even in-
cremental encoders of such high resolution are extremely expensive@@, and
it is not possible to drive them in a manner which realizes an accuracy
commensurate with the resolution, since wind-up errors in flexible-disc
or bellows couplings are typically tens of arcsecond. It is unlikely thét
a readout precision (and accuracy) of an arcsecond can be obtained directly
from the axis without designing the axis encoder as an integral part of the
bearing and structure; hence it is accepted practice to employ encoders of
lesser resolution (e.g. 215), geared to the axis with gears of as high a

quality available.

No problem exists with an incremental system, but if (in the interests
of consistent accuracy and avoidance of sudden loss of position with power
failures, noise etc.) an absolute encoder is used, a means of counting
complete turns, or removing the ambiguity from the readout is necessary.
For a completely absolute system this is most easily done with a second en-
coder, which may be an inexpensive, coarse brush type, geared 1:1 with the
axis. However, the available encoder resolutions and gear ratios are rarely
such that the output is exactly the number of turns of the fine encoder,
.nor even related to its resolution, and the angular jitter between the two
encoders further complicates the computation of the revolution number.
Analogous problems would occur within a shaft encoder when bits change out
of sequence, but are avoided by employing monostrophic codes@@@, or by
- using duplicated tracks in phase quadrature and various means of lead/lag

brush or read-head selection. These techniques could in principle

@ 10 arcsecond and 1 second of time réspectively are common for very
small instruments, but future instruments will doubtlessly require
a precision even greater than the above.

@ for example U.S.$19,000 f?g a 220 incremental encoder compared to
U.S.$2,000 each for the 2~ absolute units used in the Mt. Stromlo
Observatory 7T4-inch encoder system (see Appendix C).

@@ codes in which only one bit of the word changes in going from i to i+1.
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B.2
be applied to physically separate shaft encoders, but, since special en-
coders would be required, are rarely used. Here we consider the anti-
ambiguity requirements of two gear-linked absolute encoders, and the nature

and extent of errors in such systems.

f
geared together with a speed ratio Tf:Tc. The coarse encoder is assumed to

Consider coarse and fine encoders of resolution Rc and R, respectively,
be 1:1 with the axis concerned, and, although Tc and Tf can be thdught of
as the number of teeth on the mating gears attached to the coarse and fine
encoder shafts respectively, Tc and Tf are assumed to be relqtively prime,
and, of course, Tc/Tf>1. Let the theoretically exact reading of the fine
encoder be the real quantity Nf, then if n is the number of complete fine
encoder revolutions from a specified fine encoder zero, a general positiqn

® of the axis, measured in fine bits from that zero, is given by
= + ) ees °
5] n Rf Nf B.1

If we consider the coarse encoder to be comprised of a perfectly linear
‘unit giving exact reading Nc’ and differing from that in practice by the

- total error e, where e, includes all the gear, code disk and drive eccen-—
tricity errors, and if Zc is the (exact) reading of this ideal encoder at

the above fine encoder zero, then 8 is also given by

= - Z - LN N ] L ]
e (Nc c) TC Rf / RC Tf B.2

The numbers physically read from the encoders are integer estimates

of Nc+ec and Nf, denoted here by ﬁ; and.ﬁ} respectively, and differ from

Nc+ec and Nf by the truncation errors 60, Sf,defined by

N
6c - Nc ~ e + €ec ?

A~ L N ] B.B
- and 6f = Nf - Nf ’

Likewise, if we set the axis to the fine zero referred to above and read
the coarse encoder, we obtain integer 2; which is related to Zc by

z, = fc + 6 , ees B.4
where the truncation error 6z is constant (once we have defined the zero
quint), and may be taken to include the value of e, at the zero point.
The various quantities are defined in Figure B.1, and, from the equations

above, it can be seen that the integer n is given exactly by

(Nc - ZC) Tc Nf
n = -————m——— - —
Rc Tf Rf
Pa) 2 8, —~
(Nc T T T e * c 6z) Tc (Nf + 6f) =
= - T e e Bo)
R T R

c T T
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The computer or arithmetic hardware interfaced to the pair of encoders
must contain a routine fér calculating [, an estimate of n; +thence the
estimate 8 of the position of the axis'(in fine bits) is calculated by

~ ~ ~

6 = nR, + N, . ..+ B.6
6 is the required axis position subject only to the usual digitization error
of ¥1 fine bit, and, of course, the accuracy of the fine encoder, and may
be scaled to convenient units and a convenient axis zero point as desired@.

Here we are concerned with the possible error in calculating n given by

An = n—ﬁ ’ eee Bo7

and with assessing just how much latitude is allowed by various methods of

calculating 1.
Method A.

The simplest method of calculating 0, is to perform an integer divis-

ion of the (integer) quantity (ﬁc— Ec)'Tc by Rc T., that is, by calculating

f’
A A
(Nc— Z ).TC

C
Rc Tf

= INT L N} B08
vhere the function INT denotes truncation to an integer. Since the re-
mainder of this division must be integral and lie in the interval
[O, Rch-J] , we obtain the inequality
A L A
- . - . - T - e e .
oL -Z)r -R.I.ALR T, -1, B.9
which, by equations B,3 and B.5, gives

OKR, T,ln+ (e -6 +6).T +N.R.T./R, KR .T~1 ... B.10

It should be noted that the difference between the quantities NC and ﬁc

is a linear function of Nf. That is,

5c —e, = Sa +N,.R_.T, / R. T » : ees B.11

wvhere, for a particular configuration of encoders and zero setting, e)

C

is a constant, and the argument is clarified by reference to Figure B.1.

Using equation B.,11, the inequality in equation B.10 becomes

O\<RC TfAn-*_(SZ_Sa/)TCéRC Tf—1 3 oo e B.12

If we desire no error in the calculated antiambiguity number o, we can set

@ It is often simpler to perform this scaling on the raw quantities
Nf, Nc etc. before computing the antiambiguity number 7.



ZXn.: 0, and obtain the approximate inequality

0 ész - Sa <X , ee. B.13

where X = RC.Tf / Tc is the number of coarse bits in a complete revolut-
ion of the fine encoder. Finally, using equation B.11, and with due re-
gard to the intervals in which the various quantities lie, we have (approx-

imately)

X <e {X-4 ... B.14

as the bound on the total permissable error e, of the coarse encoder, and

' a permissable range for e, of 2X-4 coarse bits.

In the case of the Mt. Stromlo T4-inch encoder installation (see
Appendix C), the declination axis is the more critical with reéard to this
error, and since the relevant quantities are Rc = 256, Tf = 4 (32), and
TC = 189 (1512)@, X in equations B.15, B.16 has the value 5.42, and the
coarse encoder error has a permissable range of 6.8 coarse bits. The
argument has assumed that the function INT in equation B.8 involves trunc-
ation, and that nothing at all is known about the quantity 62 other than
that it lies in the range -1 to +1, If, in equation B.8, a numerical pro-
- cedure which rounds rather than truncates is used, the error e, has an

identical range but is now distributed symmetrically, that is
2-X <ec<X—2 . eee B.15

If Sz is known and the coarse zero point Zc adjusted accordingly, the
range can, in certain cases, be extended by as much as 2 coarse bits, but

this is rarely practicable.
Method B.
An alternative, (and more involved) means of calculating the anti-

‘ambiguity number 1,is to perform the integer division of (Nc—zc)Tch -
A

‘NchTf by RéTfRf to obtain
. (Nc-zc) TR, - NchTf :
n = INT . eee Bo16
RTR
cff

Similarly to Method A, the constraints on the integer remainder of this

division imply that

OLRIRAn + (e -6 +6) TR + ORI LRI R, -1 ... BT

@ Figures in parenthesis are the actual numbers of teeth on the
respective gears.
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Setting An =0 and by neglecting Sf the error in the fine encoder (which
is very small compared to the coarse errors), we obtain the approximate

relation
O\<ec_ SC+ 52<X0 oo e B.18

Finally, the bounds on the error e, are given by

2 <e X1, eee B.19

-

and the permissable range of error is X-3. For the case of the declinat-
ion axis cited above, this implies a range for e, of 2.4 coarse bits.
‘Again the range is symmetrical about zero if rounding rather than trunc-

ation is used in equation B.16.

Thus the simpler of the two methods is, in fact, the more tolerant of
angular jitter errors between the gear linked encoders., The reason for
this is that, in Method A, the ommission of a term in ﬁ},in equation B.8,
actually simulates the effect of the truncation process involved in the
relation between quantities ﬁ; and Nc. The method originally incorporated
into the Mt. Stromlo Encoder and Timing System (E.T.S.) software@ was, in
‘'a sense, intermediate between the two, since it employed Method A but in-
spected the two most significant bits of ﬁf, and, if ﬁf<(Rf/4, it increm-
ented N. The U1108 telescope pointing data processor TA,MAIN used
' the 'brute-force' technigue of calculating 0 as per Method A, trying the
ihtegers from n-2 to n+2, and accepting the one which gave the minimum
residual Rn’ where

R = |mR, + ﬁ} - (ﬁc- ZC) T R, /R T, | . 2ee B.20
The va}ue of the residual Rn was recorded by TA,MAIN, permitting an inter-
esting assessment of the 74-inch E.T.S. reliability. The maximum angular
'jitter! between the coarse and fine encoders noted for the 148 observat-
ions made in March 1973, amounted to ¥1.34 coarse bits in hourangle, and
41,08 in declination. Since one bit must be allowed for the coarse en-
codér quantization error, it is clear that the design of the T4-inch E.T.S.

has been reasonably conservative.

@ - by Ron Howe; Mt. Stromlo Observatory.



APPENDIX C.
T4-inch Telescope Timing and Attitude Readout System

The Mt. Stromlo Observatory 74-inch Grubb Parsons telescope is a
general purpose English crossed-axis mounted instrument and was installed
in 1951. Its focal stations comprise a four-mirror Coudé of focal ratio
£/31, a Cassegrain of /18 and a (now rarely used) f/5 Newtonian. Radial
roller bearings on both piers and a ball thrust bearing on the north pier
support the polar axis which is driven by a large spur gear for slewing
purposes and a clutch-connected wormwheel of 720 teeth for tracking and
fine motion. The declination axis is supported by a pair of axially
preloaded taper roller bearings in the cube section where the axes inter-
sect, and has a fast motion drive similar to the polar axis. Fine motion
in declination is by means of an 'A-frame' which can be clamped to a
drive ring on the cube, and its apex driven with respect to the tube by a
screw driven by a DC servo motor. A velocity servo is fed into one input
of a differential driving the main polar worm,and a DC servo motor into
the other. The two DC servo motors mentioned were initially used for
menual guiding adjustments but are now part of an automatic guiding servo
wvhich can accept input signals from a Coudé autoguider head as well as

manual guide commands.

The original attitude readout system for the T4-inch comprises three
~selsyn transmitters geared up with different ratios onto large instrument
spur gears on each axis. In declination the transmitters feed passive
selsyn receivers on the telescope control panel,and, to accomodate the
two cases of using the telescope east or west of the polar axis, the
declination receiver dials are equipped with rotatable masks which effect
a change in the labelling of the finer two of the three dials. The polar
‘axis readout is similar except that the transmitter signals feed the
receivers via following transformers which perform the analogue subtract-
ion of sidereal time. Sidereal time is displayed on a similar group of
three dials. The readout error in this system can exceed an arcminute or
so and is caused firstly by the use of passive receivers (which are in-
herently prone to stiction), and also by excessive backlash in the trans-
mitter gearing; the two coarser transmitters are geared down again from
the pinion drivihg the fine one,and so all three dials of each group are
affected. The rccently installed digital readout system about to be de-
seribed is now uscd for all routine setting and positioning of the tele-
scope, the old sclsyn system proving useful as a back-up in case of

trouble and for maintenance purposes.
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Cc.2
To improve the observing efficiency of the 74-inch and to permit
realistic pointing error tests the author proposed a system of digital
readout employing coarse/fine digital shaft encoder pairs on each axis,
and a Hewlett Packard 2100A minicomputer which could also be used as the
telescope date acquisition and instrument control machine. The author
wvcs responsible for the overall system design and for the encoder data
handling software, but Wayne Ruting (detailed electronic design), John
Hart (shaft encoder mechanics) and Ron Howe (software modifications and
system adjustments) of Mt. Stromlo Observatory were responsible for the

construction and implementation of it.

The heart of the T4-inch encoder and timing system (E.T.S.) compriscs
two 15 bit Baldwin opticel encoders geared to the instrument spur gears
on each axis by precision antibacklash pinions and double disc flexible
cduplings; see Figure C.1. The flexible couplings used have a torsional
rigidity of 10 arcsecond per inch-ounce of applied torque and, with
typical encoder starting torque of roughly an inch-ounce, undoubtedly
comprise the weak link és far as accuracy is concerned. The ambiguity
involved in the geared up fine encoders is removed by coarse 8 bit brush
encoders driven at axis speed from the existing coarse selsyn shafts.
Anti-ambiguity requirements of such paired encoder systems are discussed
in Appendix B; This configuration of encoders gives a bit resolution of
0.837 arcsecond in declination and 1.47 arcsecond (equivalent to 0.098
“second of time) in hourangle. Due to the slow rate of rotation of shaft
encoders used on telescope axes, the bearing and brush limited lifetime
for the system is in excess of 30 years, but the practical mean time
between failures (M.T.B.F.) will probably be dictated by that of the
boptical encoder lamps which are rated at 20,000 hours (27 months), if not

the encoder servicing electronics.

A block diagram of the encoder and timing system (E.T.S.) is shown in
Figure C.2. The E.T.S. computer interface accepts data from the encoders
ahd the sidereal and solar time code generators, multiplexing it into the
H.P. 2100A via a standard H.P. 12566A T.T.L. dual input/output interface
card; it also accepts the computer-generated display data from the card
and serially transmits it to the 'Nixie-tube' type co-ordinate display.
Upon command from the interface, the 23 encoder data bits together with a
fail flag are captured and serialized for transmission to the interface by
a module (shown also in Figure C.1) which also converts the Gray code from
the fine encoders to Natural Binary. The timing data comes from two
Eldorado 1710 time code generators which produce time to a decisecond in
"B.C.D. and also the standard serial I.R.I.G.-A code for serial trans-

mission to other telescope systems. The sidereal time code generator is
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fed from a standard 5MHz frequency source, which is a Hewlett Packard
105B oscillator, via a phase-locked solar to sidereal frequency converter
of the author's design (described in Appendix E). The second time code
generator is normally fed directly from the standard oscillator giving
solar time but is useful as a back-up should the sidereal one give trouble.
The 78 bits (B.C.D.) of co-ordinate display data are transmitted serially
once a second to the display which is buffered to prevent flicker, and
equipped with suitable dimming circuitry for use in the darkened dome.
Degrees, arcminutes and arcseconds are displayed in declination, and
hours, minutes, seconds and deciseconds of time are displayed in right
ascension and sidereal time; +the polar co-ordinate displayed is select-

éble:- right ascension or hourangle. -

The E.T.S. software was written in H.P. relocatable assembler and
comprises three separate programs which perform (a) data capture,
(b) data reduction computations and (c) display generation. The data
capture routine is actuated every decisecond upon receipt of an interrupt
from the sidereal time code generator and captures the 8 words of encoder
and timing data loading it into an 8-word data block in core. Although
itldoes not use Direct Memory Access (because of the initialization over-
heads), it employs a number of ruses which enable the capture to require
only about 25 ws. The data capture routine is a mere 14 words in length
and‘is permanently core resident. The reduction program, which is
scheduled only when the raw 8-word data is to be used, is much larger
(about 700 words), and performs the following tasks:
(i) it checks system fail flags for encoder lamp open circuit, power
| failure and other contingencies;
'.(ii) it converts days, hours, minutes, seconds and deciseconds of time
from B.C.D., to separate integer variables and stores them;
(iii) it separates declination and hourangle fine and coarse encoder
words into four separately stored integers;
(iv) it computes sidereal time in scaled double length integer format
(D.L.I.);
(v) it computes declination © in D.L.I. format;@
(fi) it computes hour angle H in D.L.I. format;@
(vii) it computes zenith angle and then refraction,and corrects & and

H for refraction.

@ See also Appendix B for a discussion of encoder anti-ambiguity
programming.

@@  Use here is made of a high speed, relaxed accuracy trigonometric
function generator similar to that given in Aus and Korn (1969).
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(viii) If the right ascension display is selected it computes right
ascension ol.

(ix) It optionally computes azimuth angle e.g. for dome control.

The original version of the reduction program employed the standard
Hevwlett Packard floating point arithmetic subroutines and took about
12 ms to execute, but the final implementation of iﬁ@ uses double length
integer arithmetic throughout and is much faster with an execution time of
approximately 2 ms. It can, if required, be FORTRAN called from another
program, an instrument control routine for example, and is called by the
co-ordinate display generator which converts the various co-ordinates to
B.C.D. format ready for serial transmission to the display hardware.
The display generator is usually scheduled with a low priority interrupt
every second. The E.T.S. software is in current use as a foreground
program in the H.P. real time executive R.T.E. system used on the 74-inch

computer.

Q@ written by Ron Howe.



APPENDIX D

Computer Program Source Code Listings

This appendix contains the FORTRAN source listings for nearly all of
the experimental programs used in the thesis. They are programmed for a
Univac 1108, but in the majority of cases require only trivial modificat-
‘ions to run on an I.B.M. 360 series machine. The programs first listed
" are the main programs for observation list generation (CATALOG.OBS), para-
meter estimation (PEST.MAIN), surface fitting (SURFIT.MAIN), and tele-
scope pointing data processing (TA.MAIN), respecti%ely, and require an
extensive set of subroutines which are then listed alphabetically. They
are the programs used to obtain the results in the body of the thesis,
and, like any developmental programs which undergo modifications and im-
provements as the need occasions, do not necessarily represent definitive,
or even efficient implementations of the procedures or computations. Where
a flowchart for an algorithm has been given, the numbers against blocks
correspond to label numbers in the listings. Subroutines which are not
listed here are RANDU and GAUSS, the Univac uniform and normal pseudo-
random distribution generators respectively, READ, a free-field data input
routine written by the author and, of course, the usual FORTRAN library
of trigonometric and arithmetic functions. Virtually all of the computat-
ions use double precision real arithmetic, i.e. a mantissa of 60 bits

length, to avoid the propagation of numerical errors.



n

anAnnnnn

An

Ann
“

nanns

NAAANA
4 3

AnAn

L%

wn
oo

. ua

o oo

A A A AN BAnen Bon
a

~NAAn enAn

—-nnn

CATAL06.0BS

%%, GRO6 CREATES OBSERVING LISTS, W0Dey?

§IT REALSSLASN, Do)

SION Rn(3),R1(3),RASI1078),0ER(1078) ,HGRID(28:28),
12§-I§Ial5'll|l..25)

oPTINNEY

1ray (13170
-

SECOND n’bOIN -

CONSTANTS

918924535097%30

-z

T ALL STARS.17a2 INCLUDE FIRECWECK
. 5 RT3 04 B0t R e
NTIM

(] O'YIONS oum"n
AW NNB )

AY JKitgNNA s NND g NNC
g:i;n& LT47S FOR Dav®, 19, START WOUR',I3,
sosevesarrctcstessasaerssrcneter
ETERSe
£48:00° 1438007360040
4 $0+00417+800/2400000
120 ]
BARS
YI:F
TJtle
ale N
e eveveetererentattsnnctannte
T8TE
NP Te
MPTe
12
TSTA AelaS,Te
TSTA
T42aT474TSTART /29400 TZONESDAY
HSTA +00
{213
oL1
HLIN2®20,
ZUiMmes,

t'SD'l(DLIN!'DL!NI)INPTl l

EPSHe [ (HLIN|424,00"MLIM2)/NPTIeP/)2:D0

tea0esesssrectsnsetnotesesnsene

IFINNA,LT,)) 60 TO 100
IFINNALGT.Y) GO YO 200

escese . .
FORN GR1D

Hey)eEPSD
l-sU-IN-Ibcl?!!lbtb!lnﬁllﬁlu.uli
)

SET 0BSERVATION NOs o IST PT ON 6RID
opsal

1883

N

READ SYAR CATALOG.

ltlsql|ll&’ll.D(K(J)o!l!lJl.l!l.lolﬂ.ll.l!.du-Jl SIANAGAMAGINVAR
FINNA,NEs#) ¢O TO

DECoDER ()

RASRAS[J) -

ut;;}(léln) ISTAR,DEC RALISIEN 10 QIMe IS N ¢JNeS ANAGIBNAGINVAR
N LU

GO TO %00

SELCT NEW PT oN GRID

IELIPTaGELIPTEINY GO YO 4000
AR 443

-N

N/2.00
u

-
iA
;‘N-LV-I.U"I 60 v0 S20
.
(M EQeMPT) GO TO $90

X =~O=BEE P
1 "ONZ>TZN

Mot

60 Yo §70

VEN,

l'(":ll-ll 60 Yo sS40

60 YO
llcufnznv L]

G0 YO 400
TJ28TU2-1STEP/1440¢00
60 10 500
FHECK PT OK FOR TELESCOPE,
DECSDGRID(IN M)
MAZHRID (N #)
CHECK OF
bE(.LV-ullult'lﬂ ORDEC+GTDLINZOPIO) GO TO SBO
HA
li"."Ll"l.-£/|1.°°l.u°DNIQL'ONLIHI"IIIZODBI
ANGLE

‘7:5‘:['". DE AyPHI Y
$955128°78 400

AsGT.ZLIMePIO
REMENT YIME BY TSTEP + FIND LOCAL STe

taznvgr-vsvzflliﬂo
CALL STIME(TU2,ELONG ST NEAN)

60 Yo S00

Nrozo

1F
CHI
1f
cH
CA
1F
N

FIND NFAREST STAR To pT. ON GRID,
OMINe} .00

1ee20(RA=RAS(J))ee20DCOS(DEC) 002
60 Yo 710

NEAIESY SYII 1S MINg NEXT IS MINEXT.
CONTEN

u!nunnnnv srAc CHECK »
KSTAR(N M)mM

STaRiNe1M)
IF(KLoEQMINJoURCK2,EQeMINJoOROKIIEQeMINJoORIKNSEQeNINY)

TFINNAGEQ TIWRITE(3,3000 MINJeN M DECIHAIRALZADNIN
FORMAT(/20%s¢ MINVONsMoDoHIR,ZoDTFu?o180213,8D1248)

APPLY aSTRON. CORRECTIONS

CALL PYRXIRAS(MING) ,OFKININJI) ,RT)
"!(FS(II YJI TJ2,R0)
ARERR(RO, é ‘

NUTA '('lvTJIvRD K!nﬂl')
CALL RTPXIRA,DEC, R

CORRECT FO R -zrnlcvrou.
HAasSTorA

G0TOS?0

1280
21

nAn- N
3
"3
3

=3
-
23

N AsnAanan senn
a

A -
-a

LLYY

Aannnnnnnn

non

A
o
3

w
o

o o
a

NAN =Ann eenn wne =aAn Nn
e

wan

an

~AN eNAN @AR NAAAA &N BN

an

o
3
3

D,2

CALL REFRAK(HALDLCIRAR,TENP L HAD 1OECO+PHI)
Secepeco
IA.E'-“ID
AL Fuifron
AUL ZUNGLE(NALBECIZA,PHId
PRINT
so.'l.x!
AL C¥Gmna aruoeey i, IHaTSEC,LSIONLLD LK LS)
€ALt goonadiRa B xu kR isee . LITINLEBLLNILE]
jrlsns.e0.1360° 10 229
RRITECSTEIDTHING KA RHASEC,LE1ENILDILN LS, THL TN, TSEC, 1088, N N,
CONT INUE
FORMATI/Y STAR $,19,0 APPARENT PLo RA®®12[3,F801, T
12080 win Tt nout BT AEE TN ST R R e B SR I
.
TP INNA TEL3,1230)MINJ,RA,D HALZA
B B A HA N M PR W A S
INCRENENT OBSERVATION NOeo
108seionset
0 10 200
E:l;el;n;nnt;.ai;.o.n.oo;ct.---O.l.l'lovao.olto-'ibotn.nou
;gé:.‘:;:?'? A0L%h0INTS ON €RIO FINISHED (THANE CHRIST) 108Sev,14)

00000000000000000000000000000000003000000000000000%0000000000000000

Rl
D .
:= g ISTIGN 0 IM IS UN, NS, ANAG ,BHAG  uVAR
e (1
l: # o l, JHeJM S aNAG,0 VAR
w
Foan ST T Wain
€ONT
00 A Ti10m
cALL oR1)
caLL JlgTI2 R0)
EALL 2.8cc A1)
cALL J20ROLKSHORT)
CALL RYPX(RAA,OECAIRO}
CONVERT COORODS,
AL OORDS (RAALDECAKHKMsSEC,LSIGNILDLN
:}!c aal:|§VAf”sz::n:uN.sce:Lsx R H TS
SrRat I TSHAR A0S o uwmerRAK AP BLCE ATY P90, 0 RAme 2130
DECe* s iR1.12,2]320 (197040 WPee,213,Fset Bxsin] 120218 Fas
conTINUE
stor
FND

PEST.MAIN

(] OV ESCOPE OATA 'IOC(SSING VERS!
’ luAYloN PRO. *UN v
ARD ™ SEQVEN CE NOSO

lV (1]

L
AM
& an llcuv:n. PARNS ﬂchJ-7

Y 'g
R !S

4
£8%Erb

THAT #ROG, AS OPT]
SECAND CARD CONTAINS DIMENSION CONSTANTS

NoMIK NS

TANY '”T’CON'RUL NOeS EG 201 3e00se’)
aorv ox

FORMAT(*
WRITEL3,200000PTiON

CONTROLS® *,10F9:4/12X,10F%:.4}

AD(NV.R.DI' NER
ﬁ-g-nl.nvln-nt-q) GO YO 90

SORT OUT FROG NOe AND OPYIONS.se

UY l-l (srnr
uPIO {14 8
FIBS-H?YI ulxn-urno.ou.ooooal
JPROGRO
Do 300 KKW®1.
G-IONOS-JPIBGOG'DOQOOI"IO.BO
=DIM(2)
rlos-vlas
NOPT(kx)ey
T
. L] .
TR
SELECT PROGRAM
60 TO (10203:%,5:897:8:9,10,110132),NPROG
&YE‘!‘CBI NPR
‘ .....:np NONLINe PARMEST, PROG NOo®¢14/)
CONTINUE
SYor
lkLtGll CARD
WRITELS 998)NVAR
;gs:A!l SUNERILLEGAL CARD FORMAT®,[6,*VARTABLES READ®)
CALL BaTePNINCHI K NSINOPT  paR
N A
So¥s Sare MK NS, . MeXsY)
PROG 2 = LEVENBERS DAMPED LEAST SQUARES ANALYSIS,
7§:kks=kse*u.n.x.ns-uorv XYy PA In.rn.or.w.A-Ar:ur.s.gv:u-.v.s:AL!
60 YO 1000
PROG 3 = WARQUARDT ALGORITHN.
T(:kg(?nlllv( IR NS NOPT I X Y PARM N, DF oW A ATENP 1GoGTENP,T,SCALE S
’
60 10 1008
if:kgK?rxnnLvu.n.x.Ns.norv.l.v.r.un.ru.nr.l.A.Avcnv.l.cv:nl.v.sanc.
60 19 1000
CALL DAPERT(N N NSsXsY #,NOPT
s bo 1058 sMONSIXsY oW, 1
gsggosfag:V(u.N.K.Ns.uOPY.l.V-’Alﬁ.rN-or-I.i.‘Y:nan.s:ALt.NAsxl
PROGC SEVEN®TELESCOPE DATA IN V out
CALL ROATIN(N M K NS NOP .l RouTINE
G0 Yo 1000
8=PROG NOTFST.
clL nn;sgv NoMoK NS NOPT X Y FN W, PARM, MASK)
PROG ¢ = MEALF NONLIN TESY
§GL¥0'€355'"'"'K'~5 No!'.x.v.Paln.ru.nrct.i.stALt’
PROG 10 =MARQUARDY wITH EST] OERIVATIVES,
‘s:kgx7gno')tN.n.x.ﬂs.nUP!-l 3 fN.nr-'.A.Av:n'nin&vznv.v.sCALt-
€0 T0 ‘1000



[ ®
fl (AE: z:A;l?N:=§Ic”'.NnP'.lov.'lln-RN-ﬂ'- 2QTENP T, SCALE, MASK)
¢ 60 To 1000 §
S2  LCALL PONELLIN, MoK NS oNOPT K, ¥ PARK,FNOF o # AATENP 16 1ETENP T, ¢
TSCALE WASKT - 3
60 Yo 1000
¢ eno ion
101
l-"lll l I l"l“\il t\‘ "
1 o ] 102
Lle Math, chwoR SURFACE FITTING ROUTINE. NOD & |
¢ Senr N 83(3 ones PHYSICS AcNsU y *
¢ cnroN u-r.f NEivTine PRoaRAN .
¢ rIRSY cafo IS CONTROL CARD wiTH $ . 3
4 1146837 GIVES PROGRAM !l!cu'tbn PARNS 648,37 10
¢ s AT R N PROG. A3 OPTE
5 SECON® CARD CONTAINS OIMENSION cous?ln's NoKe :0‘
g PROGH® NEEOS XY DATA IN P,LE 13 AS PER YA, ROUTINE .
14 .
4
neLicLY Aol 002)
Parsheten Seekeds e
DIMENS 10N TION(28)  NOPTLN) ,0IN(Y)
DINENS 1ON z».V|uu*in.¢t«:gin.rcun.xx.:) 108
S imEnsion O HH T 120
’
SlnENaioN IR AU g
g ® lg CONT ARD. e gnn
so1n" ¥ AN CANY r-'l sontnou NOSe E6e 201201 100 E7Ce0} ™
CALL READ 9rTienue
jLingan.E o 10 9
1$T0PeNVA
S L1 Ag [FL]4 ONSTANTS e
yose fobniiT’ AN AT} WeNOu O PTS. & K WAK O
T SIATEENH «0 1o vee
HHIHHY
K0eke) . f
¢ SORT OUT PROG WO+ AND OPTIONSsee ¢
¢ {EITY) |!vo!
4 lo~cxn-non0509-oeecol
00 KKK®
’=o -(n.o.-;‘uﬂloo-oOoOOl"IG-BB 302
062PROG
30n  NOPTIRERIS4PROG §
13
BINIKsNPROG 4 NOP T
OYEY SURFACE 1T L Noke ¢
0 HAH TR B a2 1 HAN
[4
¢ P 14 W I PRSI TR P
¢
H
10nn

V:ELECAL CARD FORMAT® 16, VARTABLES READ®)

—nnn eenn wAe
4
>

300
[4
oATGEN
Clst DA: sn(ﬂ.l.‘nnlﬂl' aXeXAXeYe21000000690259700009278,00} <
i8 300
PROGRAN TW RR SumpAcE FITTING ROUTINE
§ et :5 H £0 NORT K5 A LI LT
1Cs8ed ‘5 g.JI.JL'J'AvJ (] ¢
PROGRAN vul C.o '|' Tg3T ROUY
s CASL it ’ (13 "olcllq |77|'. sALPHACo
$4J'.Jlogl.ltaJlan (1
E ROC o4 vcttlgeﬁl LMY Iuru' ROUTING.
. Lt TOATININ K KO NOPT X oY) P
69 0 1000
s CONTINUE
¢ ¢onvluu¢
7 CONTINUE
[] CONY INUE
: CONTINUE
[4
TOP
tND <

TA.MAIN o

ZLYuA TELESCOPE DATA PROCESSING ROUTINE WODS27,

$19340PT1ON ONE 00 WINUN PRINTING =1 SONEs ©2 ALL®) OEBUG PRINTING sta
HHIT10RT10N T8O o8 REAOS 1N AT D4ove 1oNoRiNG AEFRACTION <
O Reks A ki ELoT Liser oA R, Sen
$11350PTION THREE®! INCLUDES A CHMECK ON ENCODER SYSTEne g
$51550PTION POUR af PLOTS TELESCOPE CRRORS, @2 PRINTSPLOTS, 03 PRINTS O1 ¢
$11150PTION FIVE NOTeO SID TINE TAKEW FRON ETS RATWER THAN Uil0s. ‘°°

$38330PTION SIX Uﬂ'-ﬂ STAR COORDS TAKEN FRON LTS RATHER THAN V1108,

agav AR CATALOE [N FILE 1Y
reay 82 SATSORINE AT Bhva awe w02
1opL ALe#(A=H,002) ¢
s oAPS 07180020
Om
Ni N NN CNND TIME(NN) oTACNN) ,SAVE(NN)
SinE =$:n7§&7:{7u3: B5oinm st MM TR TR T P
oIve T(37.80037 041
2in HR T M
H u‘ EBeeD kI THAD X (1aNNY I (DEC,Y) . (HA Y (1ONND)
NTE !
BEr SNIIOBLURP LJJ NI
¢ ries 46358979300
1Pe2
T
Pri0
ase
HRe
st
™i
Hh
¢ 13 %03
HH
b 14
05Ceia9,00078x
HSCe3378.000TSX
¢
¢ ‘5"°'°lno-v-o INCLUDES SWORT PERIOD NUT TERNS,NEANSD ¢Ives WEaN 5'~o|
.oaau-.sa.na.vutnol.:sco-vltc T
50724400
HAHH ¢
HH
=~|-5)~.8a--lo-lv.ooon~|n-|1.so-s!:
¢
g READ QPTIONS
10 3" "|°§~Vrn’gv;|aus.~o. OF 08SERVATIONS & DAY Or' -
(61171371300
l :g:::20,3:27’.1¢.u0.u¢-ur sNORS  NDAY c
20
L] NE ¢ NF ¢ NI
w  robniils §EL¢22352‘6.31“2a 1YERR8AT Y rorntsiorTHSer ats,
¢ 1° DATZar, f4) “n
TJ10197900, 742 STARTS AT TJe0/1/730
¢ LT B T R H §
Tosiea1482.800

D.3

INITIALIZE TJ FOR DAY (REMEMBER DAYLIGHT SAVING END %/3/73,)
ngD”DIV
JeTJeTIONEZeDAY

1FiNBsgO+2) 6O TO 1100
READ tN RAW TELESCOPE DATAS

ONY INyE

§3 E PR v ouservaTions or o ATaees!
Form 5?3}1'30...:, .u.n oATa xnruv . ‘.th: P

' . o

LT
B T T e LT
&l.' Te)ROAS

FIWABELIERILaTaT) G0 To 103
I" *{ |?n1 N
fotu nug/ OBSVN. SEQUENCE ERROR AY LINE NO» 1607/}
NSTARC | )uKkn

1F AN *‘l-” WRITECY, lﬂ‘, ‘ KA ;
L B H AR A PR R A1 T 1 | PR P RV P S SR
00 110 4
READ(L,)
ForMAT L HETTTE
00 110 L

ETreat

37!1' H 13,1060 (KEILPL1),LPo1 20

.
IFiNd s CE E13,106) (KE(LPL 1), LPo1 24}
ONTINVUE

PROCESSRAY DATA GET SOLAR TIME AND CHECK ENCODER PERFORMANCE 17 NE

ourihue
okmatil] REDUCTIONG ENCODER CHECK®140t1et))
ATA WP 9903,140,100218,2249/
I
134
]
111
STH
1Y
M2
00 . AL T T YT TY Y )
Iy
3;1 OIIBlﬂa’.l!(C.Jll
e
x0A .
';?l § 3 aa ] STAR(Y) oKDA N
ok ! ‘ ! LA FHE I BT SO AT - ST
1" - o
1134 L
-H ek
13 {7010
i o7 KK
! 17k
i 7,8.KK)
Le8,0) 10sals
K 3
$=180(1,3 31
MO KAY
g 1 7{ K)e0s100
ssateoia, #15139388% 00
ity 1o
JHSaiBO(0s6.KE (Y
it SRt a3 00D M NS oSS s g s UMy 8y 1D 14,18
Rt 5'213 .!1 P 1 A E TH T S S ST PO e
T 0LCae,16,218)
REouce €13 oeeivee coofos.
IFiNCongo0)aRiTECS 304}
Lrorui¥ (i grseconputcd coonos UPPERSRAR HALST|DEC/LORERSCORR®
TIECTED HASRALOEC +BRACKETSORADIANG®
KKSKE(9,J] ek€ (10,0001 ¥SX
E'!’V. KoTP/HSC
wEck"TiRe GF¥ion jrougeo save £TssT in savetsre
IeiNEeneo savely -:v!sv
KESKELy 1 L) oKE (1204710173
ccHAakke P /us
KKSKEE13, ) eKF {14,000 T78X
RRaRE o 0] RE (20, 0101781
EhaekeLTBTNscE 20 0t
191GeFLN (2041 ,KE )r
KEerLiziis, SiTsreRElIS I
170151608010
ECDECOKKOTP/D
DEHAHRTH SITIRRESIT4y)
|r||¥|¢.$i.|$. HH] *J
€OCCaRKoTP/03
cALL CooroS(tE NI S84 LETON LD LN LS
€At Sonnasti T R R g't Rl
ifiicingearw TERAs RSNt s EREET SRR nm 58, EoEe L1 aNLLD,
’|=§a7=1§"¢'. HNS® 0214, 601080%,°(%:D1400,%) ONgn ¢,
Ll 2s8hase € lu.«n.s cn.tn Las)
bk SoomgRRCRE ECotE e fodining
irticang bin MeAM,S3,ECOLC LSTEN,
S3anattIee (o .'»,uus- '.!ll.ra.|).' (90016480°) pHga v,
TIRL. 13,2100
continug

CONPUTE COORDS WAD+DECD PRON RA® ENCODER WOROS.
CONTINUE

NPD NCD NEM, NCN
Ke cocdanst Encoorr wompS Dgces,

A§;llul'¥ FACYORS.

r':.bo-~7
+20

*20
Le=24141

SENOZA

or!vonvl)
N

Y.Bﬁlul 60 Y0 %03
DeAN?/(6De2,00007)
TsuMIN) 4O TO 408

P2~ WS
»
3

E n-nu)/ltu-l.bo-lfl
%
4
. ;i:'%""l'g"”"l?'i" CHIRIEMRITETS antanate wous wa 0y
i M FPH I
(NAMDOTSFONFDSNFD)STP/(60RTSF)
N u-vsvon'uourntov- (GHeTSF)
r12(0£C0(S)
FY(MADIJ}
i N
RDS (NAD(J)10ECOLI) ) STON,LD,LN,LS)
. * ':5!‘:?‘:§:Eg6=: 5 ‘Lilgnlvaﬁkld "ol TNCODER WOR!,
! HSST TSI AT 14 ML T HIMT TV
$g1s0 To 430
L]




.18
sin
20
<

as0

nAnAn

$o0
sp2 -

501

si0
s2n
4

A A A AR

73n

720

annn

1FINCLEQ.BIGO TO 420

COMPUYE UI108=ETS DIFFS
ODD=(DECOJI=EDEC) /ASEC

DHMe (KADJ=ENA) /ASEC
TJ2eTIaTINEL Y /TP

LOOK QUT FOR_MIDNIGHTS
lr(TI"(lJ)-LT-lng"J!'TJE'I'Bﬂ
CALL SYINEITJI2 ELONG,ST,EQUIN,MEAN)
OSTe{ST=ETSST)/TSEC

17 tDABSIDDDI+LELODDOMAX) 60 YO 81
OODMARSDABS (050 )

lDﬂlx.i

I1F(OABSIDHMI 4 LELOHHNAX) §0 TO 832
DHHMAXeDABS (DuH}

IHHAXS

IF (DABSIDST)oLE«OSTHAX) 60 TO 413
OSTHAXwOABS(DST)

ISHAXS

CONTINUE

IF(DABS{MMINB) LE.HJITMX) §O YO 4l
HJIITHXWDABS(HMIND)

TRIITey

IF(DABS(DNING}LLE.DJITHX) GO TO 81§
DJITHX=DABS(OMINA)

10J1ITwy

Egu;:“gtllOIOBG DuM,DST

+ D

.;2{;ai;' UI10A=ETS SIFFERENTIALS DECINACARCSEC) ,STISECTHIaY,
1 .

CONT INUE

CONTNUE

. .

(QNVINUE
LIF(NCONELOIWRTTECI,602)0DDMAR, 1ONAX (DNNNAX , INNAX DS THAX,
v]snhlathTll-IDJIT-NJIYNI*I Iy
-FORMAT("] -Agllhﬂ Uyind=ETS DIFFS N Dl"“l ST &NAX Dol *,
|'=N$gbg'gs:f /0BSNO lu BKTSY,/8(F10e2,° ATOBSNO(*,la:s%)?))
w ¥

Fobnatttt iracos PLACE OF STARS USED 1N ORDER OF LOCN.Y,
17 1IN FILE ooSTARS,

00 S20.1»1,1078
RtAD(lllll'll.o!(.'tnl’.luul'-I!;JM.JI.S.inli-.ﬂul-nvlu
00 520 Jui,N08

TP (NETARTJIANES 13TARIGO TO 820

0EC LI} aDER

NOTE MALJ) CONTAINS RA

HALJ)mRA

IENASGEL21aRTTEL 154002

e EE R

1 . te rSe l

EokTinget et

PRITE(I.8a2)

FORMAT (31 FINAL APPARENT PLACES IN ORDER OF OBSERVATIONG®)

DB 5)9 JII NORS
oy rom 08SVNe FRON UT THEW CORRECT WEAN PLACE.
szquonn!lJ)
CORRECT FOR GDING THRU MIDONIGHT
1P OTIRE (ay LT ar0n0) Tozato2e]an0

CALL Brmxcaaty) orc it ALl
Aty mrecrS (AT, 11 700 1800
CALL ;'ll.o.'Jlo cC
CALL AYEIR],TJ !i'On‘snﬂl'l
RI{RAINEKRO)
(T42,ELONG ST, EQUIN NEAN,
IRESREIEO TS NatORL ATEAES 1n saveru) or ALL puaces.
0) STaSAVE(JI*EQUIN
T

+0EK

MA(J)® l‘.*
caLl swifrema
CALL SwirTaipex)
fith etedifiite oo s
t

.?;* A-GS.E)OE!*((:élh TSR ST RS R Ren Lo,

KW g L L1
TESARATIT3RSM L TITY sram varu, 0 ynmermax OEC MAR® 12018210431,
LIRL 12 2EEXe120 016013, 50ts® STOI TA1IerSel
IFiNBeEQ.1) GO TO S4D

REFRACTION CORRECTION

caLl ::rln:cuag.ntk.unl.vznr.nuo.o::o.ruln
<o
u.? f o
St suPraioecun
CALL SMTFTiuA(J))
L)
itk BBAARAIAL peco momn ot RuREL s
R R HE O M H T -o[C(J*.NAlJ WLSIGNSLD LN,
ILS KM KN S MM, MM, 58
TFokmatt 0B 5,13,0 STAR 0,14, INAy DEC MARt 2010010, 3K,
T AP I LN 4 I o RN |
continde
wRITE x DATA IN FILE 13 ()
wiTEL)
sRiret RN TIR IN IR¢ ]
w 1y
TFink, et 1 iaR1TEOadz0l ko kv
FORMAT(® QRS +,18y¢ Xova'',3020010)
EETIE, o) wone
w
FORMAT le 13 WRITTEN WITH *,15,° DATA POINTS#)
CALCULATE PHY & MAX ERMORs
PHY=0,00
£RRMAX=0,D0
00 730 J."NOQ,
00 (J) enkc Jl-ug?ﬂ(Jl
- M
2eopioY i lonto de2e0c0s 0ECD (I 1002
DRES(J)eDSORT (A)/2SEC
PHYSPHYOA
I'lhl!!(‘lnll.!.lﬂll’ Go Vo 730
ERRNAXeDRES ()
INORSTey
£a%e ;2%;;. vingas)sasEc
= L
wRIY 3 ) ”’ RMAX, JWORST
_FORMAT(Y puy to R 083aE5 0200100 SRS ERRNAX (ASECIe *12r 1103,
T {AT ons NOs xs|-rvl
1ring.08%0Y%0 #3° 1800
RESOLVE ERRORS ALONG ZENITH LINE oPRINT ERRORS IN ARC SEC.
CONT INUE
00 810 Jul,NO8S
cALL IANGL&(nA(J).BSCIJ).{AV.PN )
CACL TANGLE(MADTJ] (BECDUIY 2ZAXSPHID
AT ZAK/P1O
ozl ZAY=ZAX)/ASEC
001 B1J)FASEC
DHIJ) =0H (31 7ASEC
D(JIeDECDIII /P10
HAGSHAD (J)
cAL 1FT2(HAG)
H{JTaHAG/HR
o 1EIND QT oI WRITE(3,82010,00¢ 02 sDH(JT4ORESII)1DZ1I) 0L NI,
_FORMAT(® ORS #,13,°00% *,F8.2,° DHe *,F842," DRES® *iFge2,* .
iare 'iA-cer) DaMrze So3F12e00 Lt tF8e2.t 2o
1F¢ T+3) Go Yo 1000
o 500
PLOT. & ERRORS (ARCSEL) AGAINST 3 COORDS (RaD)
co&vlnu(
LOT N
ALt ﬁLoYiM
CACU PLOTIN
CALL PLOT(N
SALL PLaTIN
CALL PLOTIN
CALL PLOT(N
CACL PLOTIN
CALL PLOT(N
CALL PLOT(N
CTALL PLOY (N
CALL PLOTIN
WRIYE(3, 18100
;3‘~A§«)v 827 15 The enp Foukse
or

LASER DATA INPUT

CONTINUE
NOAWSw7g
'.IVEIS‘IIIOD NOBS

FORRAT( T€R 'rl;

LASER DATA PIONTS.*)
ECIL(-!-DUI!JABD

His

LLNLEY

n Ann o

nnAANANRAANAN A

D.4

0o 1180
b0 1150
00 1150
nesg
CALL RE MR, TER)
00 1180 145
1o Je(KKel)o§o{KKKul)070S
X(ls112=90,00430,000(J=1)
YUK DoRI)
AN Yuebs002.000lKK=1]) -
I7{NAeG sANDSKeEQ,1) .l?t("ll’b'l“ll'l,l.llgi,lVll."l'l!-’)
FORMAY ToLASER *,1a,'XsY READIN® ' ,4F9.3)
CONTINUI
$8°u.~u 0
[Fivix, «D=10) GO TO 1140
XiKyite yxo
AiKe2)e
YiKslle -sca € eXiKylt
YK, 21w SCALEeX (K, 2]
Jl#o
NSTAR (K
G0 Yo ¢
NSTAR (K
CONT [Ny
NOBS ‘
00 1180 xmy,7
JONSTAR(K}
XtJpldoX(K,1)
X0y 28X (Ke2)
YiJeideviN,1}
VIJ’ lmv(K,2)
CON ,U
00 1190 l‘.NOIl
IFENASBT e dIMRITELSo1200)K4XIR 1D oRIKI2) VIR 1D Y (K2)
FORMAT{' SORTEO PTe NOs *4[4,% X,Ye *,4020,10?)
CONT [NUE
NOW WAYE STANDARD K,Y VECTORS
&0 to 700
END
Efl Ro0e!
ABERR(RG, Ty ch RA)
(RRAVIUV :0! (4 ;ON-
EI*.I(A 202}
STELLAR AIr!RA'loN .
N OMITS ELLIPTIC TERMS,
G13),RALY)
265358979303
.
2600eP10/360040
020,00 652800§
647800+36000%76 '150'00-39 T
0R33 «7191750007+0,452780-307¢7+0¢33333De50ToTor
9 S4eTey
? 01391250007
1]
5 laﬂ'SO?
[
5Py ]
EPSeEPSePIO

CALCe TRUE LONGe OF SUN FROM EQ'Ne OF CENTREsss
CORR=122000€-ce23/4.D0)eDSIN(NI o1 225000 E2€ 403
enaINE3.00em1 /12400

INC
un-suuoc

L34 ..'u..l‘.....00‘..0...0..‘..l‘.ol‘.l‘..t.l’-l.....0.‘..0
c:.zo.u.nnlﬁo To 1

eDDeE®ede

*
ECCoSP)

SDYANIEPS?

3

SedT e dGe Q4L JRA,URB)
J COMPUTES Se756Q,

SRR TE 2 68 0t Seoeener

P JOEKD) UL IKDY 1 JRATKD) o yRB (KD}

DIMENSION JS{X0),JT(KD?} uG(KD)
JS{KDIeD
JTIKOD

JRA(KD) @ey
JRBIKD)met

00 100 Jmi,Kx
J'!N?IJ

Ym,

g- 9"0 T!ST l' INTEGRAL .

aeBee Yl
A‘—I.lllc'lol'

4} G0 vO0 30

R e ML=t D= A2mO
S0 Ir oarwwg 043

lJl.l'I! A
CALCe YNDEX LIN!'S--
JBeJ

1F(J.GT.8) €0 TO 70
JAnO
GO Yo 0

JCw,

1F1JCEQa0) JCuKD
KGeJGig)ed@tic)
1FtKGeLE.2) GO TO 80
JAmJaeq

RA(I) ey
."J.-i.
ONV‘NU
R TURN

BEALE

-0 SEALE NONLINEARITY TEST(NEW VERSION) MOp
SUSIOEYIN! REALE(NIMIK NS NOPT X, V..O-'H.DV.'D-UN.SCILII

NOPT(13) €T O FNABLS PRINY

NPT(21GIVES KETHODLD UNIFORN DISTRISUTION OVER INT
PROPORTIONAL TO PARN, =1 oven'SRelTFTea" T ERVAL
2 " noRMAL uxsvnl.uixnn ¥ITH S.DEV FROPORTIGNAL ETC

Y PECIFIED,
NOPT(3,41 GIVES NOe« OF POINTS TO BE USED.
%?:§§§i§n'57h'=§‘;?i°i§f PN NS JOF (N
. . 14OFINLK NS) P ()
piMENSTON mMiX),ScACE (x1.801P12),FD1F (3) BDINC

REAL STRANDSRANS (307, YRAND 100 sRANDY 2! *B0IN oY enorTia)

Bizasieisezstassery

?IDI;IIIID 00

secerin/3e00en0



D.5

3

< - - -
o - z
» - ° °
- S » c
i i 3
ax v
=3 Ix 2 o i H
"> P - - H ? -
we T o x . . -
44 -0 x - ' s
" ox - - = =
P S0 s " <
et H % -
A vz £ = . - v
i 22 - z @ ~ o «
- - a - -
ox - o > on A= -
s - R 8 % — o & -
- 3
H % %3 = : oEus °r = .
xzz 2 z ue ox w -
2z BRSO i 38 5 : -
= ~ 4 N
g [ s WS (e DIl :
- - - - - .
wzo 3 T - = < ¥ 2 £ =
n.mv 1 Ac! Mu 2 " « 9 - e . - -
14 v g - - ® -~
®.3 Ko TR s B i fa Ly, c i x S
nex2 > - % = ¥ & 6o W b T o w
g {25 Py et o < Suz D s .
o= » - Xy «x O - x wzo o (.wuv M P H L]
i ° : o e 2 h ¥ - ~ N X L a 4 x
W% 3 ° o e -3 8 k- on 22 z w3 . 4
< - 2 g b S T YR o -3 ° . PR PR %
I I - R 3 2% Yoo 2 gz, S BT - 2 $ 2 R E R o
Tanew 1. » oo o w oxe = - o = ~ 08 Yne S o © © ° o o FEI I EE S N 4 T
ooy 2 5 T - 4o ix% T % "3le Yo gar o v E- I ¥ o009 R e W 1z miSaza - <
2 2% R - = <~ e - e o P - -
S oxx w T« " © o ° = v = & = —~AzZO —o o) A% o o o o ° 8 e 5Z o, e sizTee o
€-> & .. T - e - z Zs e 2 o ol T oS" ze S - w08 & 8§ § & 2 s seo 2 s s NS s &
frnwe <~ - - — 22 - - 2 3 v pe .
E weo Sx -~ © - > - Se . @~~ © x XX & 8- O - o Qe zue & e—_— 3 o o s 288 o = b <i- ~® - -
. e -~ =~ - - - o - *X TI® XN
330 - S %\t T 2% 53  ame T3 A S a S U5 D et 3w g9s 30k A we 3 0 O @ € - gos @ Lad s = oiss Lt e
ot 220t W o 32 Fi Il vl 22 % 288 7 T8s0 2 Lo 252 5.2 %2 S5 258 -~ - o S 5% . St 20T MMzl Z 0
vz 2 33 xz xisz ez = P Ew oaow S z = - = o 2~ we R € W ®0C WNe ©O I e+ ©O = 25 T Tee © OF o tay -—taC-4e0 - oxpx
3o o o 2 I I P 2 goSgET st S8z it ogop 2 _TItod el -
[on TS S - B - S : 3% .-5 £335 %o I g SEYome WS S8 ¥ Eh o oYal D ENT G 3rmw 38 ¥iTaeR2Y 2N
£Z won 2 a9 wed, ~t =x - " e S5 2, B eTl Lo" S 2t e - N - - Me W W W KUEW K Wee W W - & iz o Ze LS
IR W& 524 WeZie 32 s e we- e 759,22 -¢ °r - sou. K cr POE eX ke S WS AP F Y TUSS0LE80: -7 -3 Fx0 160 ~tecovas & e
veef DD % ETE A= Spoedon 1 R R M TN il -, &5 .3 M I fizfiiveii i SIoTEC i i3 515 122 JiGesi 8:TC
- 2 >0 = on Ht—aa s z - AWIOW XX —e - -
2835, SE pogn Fogre ¥u gfte <pe vt QO it S8gI8E S,9T88T 2 EENSI2 5T Y5 R S S0 35 o SESvEEsiuvokor 858258025035 X0 5250 1T JiSIZoar Ispee
. - - - - - o8 - ZaBx<e-~OR—-RE~0 T P e L N 1 = -
ne2ue EE02002 Doive Coscwss b sw w2 () 233% Setdes _ES iCi S LR O of0il Ze () I3E Som 1 SIEIIICRiciiiis SliaBANTNACAIUISSLE N DSED 127 SIRIIIZ uifSe
WAU>Z  =0ITOmU =O0mJY VNIO~IVY B—< T &KW we UxmJDD Ok<OI~a & U=U~IO OR «~XT0 &w WA UFO L VEXEXOSAXSXXSXU JO0=J0J0J0dnddndduE W wnar % ZI~OOKAZ =EZLO
o
£ o o o .o 08 o & tg g3 g8 8 o covee vuu 2w 2 ° o
v vuvuv - - v » VUe UN—~L— v vuw v - - - v —weUUNuUTY vuUNnULA ve VvV wwuvuvvuy v L2 d
. . . -
- . . <
v . . . : .
- . s . -
- -
. . . .
5 : : : . z S :
. . : s ne v
- b1 . : - . M . "= -
z a . . : = . . 2 =
. - ~ x e
= H M : . H s - z 3 o
. " . . . - . . - = - a
- . . . b . . = . - 133 -
—~ - . . . - - M < ~ = .a w 3
- ] . - . - . . - b - hing - -
P - . . . = . : . = z £ s -2
z .. - . . - . =
x : : . - - = s0- 2
S e z : : < . M : - ~ e z-3 ) < 1
L 2z . . H H H . . ~ PO as s z -
2 e o~ ~ - - . . - . - - - e Z no 3 w
s -~ X . - . . - o= - - - o zw oxn < z o
b4 N =8 - . . . =% . . = & -s 2 ~ee < R
. e~ - - - . e <0 - . - nZ— - °
4 - an - - . . « =z - . -~ = P son - >
H S 3. - e . . £33 - - - w ) z . - 3 &
- o - - ze - e ox - - o - - Xe = e 2 ~ - =
= - -0 [ad o% - . 2 - . - - - - [-] " - w -
- - o= - - o o . =an . . . - z ° w < .
- - == = o -o - - = . . - = < - =3e - w o e
- = ae S >we 3] - . - . . S = - Ay s Y w e
a . ex " X . Y . we . - . s - = - > n—n e 2 (3
- m— ° ars o - .« - . > . "~ g ° bt ] - x . o~
o e aeN v - > - v *« EZ . o . - uX - >~ = Al " ° P
- e “O hun e xT - M « T . z . T e b o - - v . ~
o w - =Oe 3 Y ©. - . - . - - o z " MY -~ = - M
- - e oo NN 1) e we e »IX = - . - % Newe u - G © y 2
v o Genuvh e oz e - . . = - - = SNEoe O As = ., %
" e-00v~ ee FEX Ay 3 = e o" e 1 > H - cEx. = B_owe = A
= TSI 22 .. . - < - s - e -l
» - oF some  an — s < we o oAy - om o z w o 3 z2ZH~ 0 *c «s ® I 9
) - - d OO Ox =N "o o W 0 19 "~ * - - r oo - © s 2 sc o ® - QB - oes 5
2 s &3 N e e ..o - ® Je ~ ¢ == - " ne - e Qe = o -—a &> =x P agr
. ~ex I oM N e Ine IZe = wn ze av w au " = Swes & e s e = e . -
- —.x wE AN = ot I—e ~Oe n »e o ON ~» ] z e en - © P L3 e 9 O~ T o " > > .
- - ex 3 M- an— ce T o wex € O o - - ~wwn - < Ose v - - c o x Ne—D - ~I > - Aew> €
- an’e wew Zurzwe k. o0 = Iro « wa we e M -~ z o < Y —vxex & - oX a& o vxs” £
- zea e e o 1Y Tee = s O > wa © 3L eer  ~n - o 0O - = ° Zx a0~ W o> I~ O o> =
. <0z . = it we O XOU * X0 es e e300« we 2> - zz - - - S w CTRherw > r< I\ €0 ~ Soec &
€  exzw o xm cxe =N - z Ca< w =0 ew —~za3x & T x =« - S z ° 2 Zx—r-eT < c ¥- = f7etcrm
z erax oz« 2E I8O .- T - *Ol W - a3 » ~ ®=O0< = ©O - X xw v - E) T < N O~we- XO8 —M - w M3

* ~piEE e oa@ emm Zomme D~ - —xe cx swasw - ~ eTE~e ube & —xee z > z H H snnsez W e - Oa z PEE T
N — w-w RO ZTOTZF = -~ F0€D> » oh b =¥ -eww Ty e HEwN s eme == tubd - em ~ SIe. 0t oIaf €3 ns > PP
byt oww- "o Commee =>> SN2 - o «sn -0 e W =&>d>ea =90 « Zon « -0 - T ow QLrsie - S8 33 o N ewnec
——-noe o - ce Tw > E—w Feme - W 4380 <8R80 T 9 Ordw= 8-= - eV 2@ - - S T34 & O9%e« «0 = o Cluxon
-0 92~Z o8 .~ O EO—O=t thiuw X o\O Nl ~O M-Im0 W . we "ZSN SooWw © x92>0w - vys S % negsNs ¥ & ocowok .- . w -t
saon<-x ov  o-s Ce-wemD »>>23 8P~ © T el e ew nA- 3 O= 5% szassc zedwn v ‘a@3 - - -~ g zEOLN < vuwasy | OoweSos - H P
ccro~x zie —rw L&-Cur sOZIFZ Avr-3 O =080~ —=8O0w- Zoomn X~ Eoxke O=BIN 2 scVex <« 09 O~NOOvErIE 2 veito 3 secyr BeeZVA ~k= Z F2 Sowx -
229z © -0 e-O L« A<C—A&—0 Duwe— O WIW—WO FWALWO =000 ~w ©O= &4 —&~=0 < o7 ~= & Ne SevmmUl - I YSIEe 2 Iesves VYOIV —IY wen & =k woSarrx
H e 250 25y JITA2IINEN e T IIgeg- Igead-  pESTaIv r S82II i2r & INIi%: § 7% TnumnIILn: 2 eatiT Y SRVITIEDN Y ITUIEII Nio 2 =2 2elerg?

- 3 by it ft-gued Te o— et reae zoo = Te —zou- - - - e ——— pat e 22s seve 0z
Ta w-exw or< tr« 2LOXLOXQIXOD =KOe I3 LBWKOVO WXOULO OfSOOE Cu ZX<=<ud OKXOO © mo«xo - 00 DOOOOORGOO Y BEMIQ ¥ ZZZooxOO T 00-00O0C &0~ W Swx B nEs2is
TZIVUrU ITVe IVa VSkUSLacRAUZ nELY o —~INONY ZNANING URKVOBT U= Dau=e O00BUS z -ouawv @ 00 CECOOB~LOU Bub&V=LU nx - LAVELA U B0 BUSE xuB & kW 2nrsa0sl

o ¢ 3 c
r ~m < ° e c o © " © [3 c o c wo © » © « ¢ -c c © - ~ H
o o - ~ - w - =3 o © - - - x NN O O ~ o = oe o - ©o ) o
[V vuuuL e e - - VU UUUU VU B UUe W U - VUN VU - ~ vuvwun PAVIVIVIVIVI S MV S VI VIV VIV 3V * v envUL wous r wuu - o 2 vwl o



NAAN—

Awe

AAnRAAAANANNA A

AnA ANAN

A nAn=
o
3

NAA
o
3

ANN NAA

~
°
ol

300
3o
4

802

nn

AL nle(-n,nr Ry
PARM( Iy e
(ONYINUE

sr:s:AzE XaVECTOR IN INTERVAL BECI.«DEC2, HAJ.oHAZ,

wA2w
SELECY GRIO SOY(N) SQUARE
ANaN

LNSDSART AN

AN el

DOECe{NEC2=-0ECH ) /AN
OHA®m(uA2euAl ) 7AN

n?.?o 1eisLn

a
00 30 Jmi.LN

AJ
1iefornenaLn
l‘ll.*blulfl lJchEg
llzl. JeMAleAlODNK
1rinRLEaatt ARITE3,601) AL AJLXUITIINeXITTL2)
FORUAT{® 401 DATGEN *,9D15+8}
COMT TNUE
COMPLETE DATA POINTS
LSTOPOMaLN
TFILSTOP.LT ) 6O YO 100
DO %0 yel.LSTOP
Adny
LLwJeLnoe2
X{LL +1)1=(DEC2=DECI1/2+00
XILL 2)1@{HA2=HAL)/2,00=AJ0DHA/10.D
|r(urn.:c.|1u-xtrts.u30) AJ.X(LL-I!-I(LL-Il
FORMAT 30 DATGEN *.30)
convxuu:
({4
cA FUNCTION
S: NoMoK NSIXPARMLY )
PH
TUHAHE
AR Iolll.ll) ~:00:031A|c|..,
PH tritai) 11)0620ARG
CON
L ruvr/n|-:‘no-001P10
PRINT
e gpfann
-FOR POINTINGERROR DATA ¢ DATa VALUES GENs 8Y DATGEN®/' PARM
TS 8))
R 1) PHYE,RMS
rg UNSQUARE RES ERROR = *,D150e8,* AMS ARCSEC®',F10.4)
[ N
¥ QIWRITE s1)0X0Ea2) 0¥ 1) av g2
(1] aYettyl «8)
RE
EN

DATGEN ~ (SURFIT

vstu(n.x.lo,notv.l.xl YaRAJRB,RC)

PROGR

TELrstnF[ POINTING ERROR DATA SIMULATOR {RANDOM VERSION)
.-'-t.DFYlDNS..-.
én

IN ARCSECS
EVIIBU‘IBN 1S PLOTTEN
R

TES POLYNOM[AL TESY
s TING DATA.

AHPL[Y DE. &
;--.-..n'.-.
P RXING2) Y IN22)

RRZNIVIBr OO e

PERT ONLY

1 NOPT(2)%2
l'(ND'Y(ll.tQ-}I G0 Yo 300

GEMERATE X VECTOR IN RANGE DEC1e4DECZ o MAlooMAZ
ECleenlooP (0

(NOPY(2).6E.1)1G0 TO 200
LL mooEL TN
L~ rgvn n.uo'v.l.vl

0 27

NTINUE

[}
A
o
ALL POLYNOMIaL TEST GENERATOR,
0
ALL PLTESTIN NOPToXsXXoY}

G0 YO 295

X(EeydaXt

1 142)oKXALTYaxXBID)
WRANDS= ¢, 4D

?3’°~rcn PERT AMPLITUDE IN ARCSEC (ANY FMT)o®

]
LL READI(NVAR,PERT NERR)
1{
‘

En-.(n.t.on.»vln.u!-l L]

N

PERTLTelen=101GO T

PERT®PERTeP]/(180«D0e 3600000}
=RC

6o 10
o

«SDD) CAPERT

S, o

M§ OF DATA®®,D15+8:01548)

IDl)nl yPARCSECe(P=P)PH] INTRQm',

WRITFOI AN

LLLEE)

s0

«0

n ann

LY

An

1sa

oo
e
~e

AAAnN N

ne

D.6

FORMATI® NO DATA PERTURBATIONT)
CONTINUE

PLOT OF X DATA
®) 80 70 B8O

XXsNs2s1 NS, %0")

CARD INPUT,NO.

DAPERT

DAPERY DATA FERTURBATION lou'lN£
3gg;ou¥yn: DAPERT (NJM NS, XsY N NOP

TAKES DATA Y(N,NS) PERTURSS 1T WiTu STANDARO DEVIATION NoPT
REALeA v(n.NSl.l(u.n).-(N-NSI.':a',VSNIrv.’uv.sro.ius.A!c
REAL vvnua.r: u

DIMENSTON NOP

SEE'J-l'lS'?‘&JiBa/lllu-n°'3l00-00l

OF VARIABLES REAps=®,lé)

MAED BONNNG Tee O

wope 4,

ARC

NPRaO

l!AYlon nouvln:..v‘u.uil PERTURSED W1TH?
Snl.'lﬁo.n ADIASEC FOLLOWS')

TR:0eQsYRAND)

1,J1002

3g) Yt YLYSHIETY

A EN T H A

NaleDO)}

NS

OF PERTS GEN RY DAPERT®=', DI5:8,° STDEV.ANSe

E-PARH HODEL DE!IVA'IVC!‘CON'I'IILE WiTH NEW) mMODe2.

K NS PARY,DF
;sro-g NS Ne R RAOR PR R AN T ives 287 HODEL PARAMETERS

D,SXEW FGYL. TELESCOPE 'IVN lERO OFFSEY

WARNAOR
A=

L ~=00TC N0

l‘l'f‘i‘llil DECIJ) 4 HALY ) s DEK  HAK
2% DER Se8)
selrll.no-iaoz)
(CDeSPHeCTeSTeSD)
Snos; s
SORT(}e0
TS
D
ty
{9

e 0™

°
1l
EC
CcOS(NEC

rAtoS:lncole!ttJionc:)a-z

MANAIV~QOD AN
MMOO»>Q P

GDI(C"CD-SY'SPNDKOl'GDOOCO'SYOEPNQVDD
GGl%)mg

GE-((V.cu-svosn-sDn )aGED*CDOSTOCPHOFED
GGLSIeGESFA

pDX=C

OYeC

FFL)

DX

oY

FF

ox

oY

FF

X6 CD=SDS {CPOCPHRCTOSPOSPN)
XF SPHeCTOSPeCPH)

Ya PHeCYS® c’ san)o:uosv-cp
\ +CTelpe

DX

oYy

FF

DX

DYy

FF

bo

oF

of

co

14 627

wR WKKal)eKKEI K] gym],K)
wR WKKe21 o KK® K)o g®l,K)
FO +5D15.8)

RE

EN

4 NODEL DEIIVAYIV(S MODeE?
e AR ER e Y VAT ves LA
DERIVATIVE NT op Paran s
TE LEscoF( WITH ZERO OFFSEYSe LA eTeR
ERRGRS o STRUCTURAL rLElUl:.

OeZl)
FAN,KoNSH,BEK},GGt30) FFI30)

®IDERVe]
:|snrus:s-orvlcn

25.00¢19:D0/40+D0¢17+500/3600+D0)*PI0




A

An

An

180

170.

An )

nn

AnNAAA A

nn

An

SHENSIN(WA)

1e COS(CPOCPHa( TSP eSPH)4SDeSTeSP
Yae CNe(SPeCPusCToCPOoSPH)*SDeSTeCP
2% cDsSTeSPHeCTOSH

FACR| D0/ (Xes2ev002)

FAK®1400/0SQRT( 1 eN0e2e02)
YeFAKe(CDoSPHOCToSTOSD)
1e9,0

1#FAKeCDOSToCoN
PNO('QSU\
(4 +50

t
He SR ('o('os?n'o!nog'.c?
CPue vvgr-s’u)-so-s .sP

-——3

)
Bl%1)ee2)

PDR
X€812419
Os
XK®5 1)

+NO
sCH
SH

“CPHA
=SPHA

MADD NANANNMOROANAANONT MO S

T
(9
F
T
G
13
6
6
G
®
6
o
[
[
F
3
r
F
F
¥
F
F
13
F
13
r
]
[
F

AN -

DERV

fLTwD
SUBKOUTINE DERVEN,M, KNS, KX,B,0¢

CALCe TELFSCOPE POINTING ‘R.D' FN ODERIYATIVES WRY MODEL PARAMFTERS
MISALIGNFD,SKFW EQTL, TELESCOPE #1TH 2ERC OFFSETSe

PERIODIC FNCONFR GEAR ERHORS ¢ STRUCTURAL FLEXURE.

(74

EXTENDED 7Qll£lA(T)VDDEL hEIlVl}!VES

INCH EXACT)

MOpe2F

0=}
FEN,KoNS) BIK) ,DP{I0) ouP {30}

nhmxxta,21

FENCONER ERRORS
CD=NCOS(DEC)

Shs=

onfk

NFEJL 17,21 e5PuR
hl(-nrr.ul«|onIﬁI-(o$hl1)OSDONIII‘C'UAOI('IOS'DA

CeMEINIeCPAKeRIL]}

nnn

821
c

nan

LR 3]

832

Ann

[11.]

AR AR AAARANANAANAANANAAAANANANNANAAANNNNNNANNNANNANANAA

D.7

HABHASR{1210CHeB(] J)-suoatlnlacruA.s( asPH
19R (161 eCPHRAB(17)0SR 18resPma
TWO TORSIONAL MoV*'T OF AXES
CDeDCOSIDEC)

NIDEC)

S(MA)Y

NiMA)

NIDEC)

IN(DEC=PHL)

COS{PHI)

0+B(20) eCHODCOS(DECOPHI)

202 eSHesOP

18)eSueSneCPHY

81221 eSHeCPuH]
.,k

or 00
ne D0
HP He
i De
op W
00
oF 1100DOF (U 1420 eDHeDP(])
OF 1Y eMDsOF(J,1 HHeHP ([}
Ot sCHegD

*50p
CHeBI1R)eCOOSHIOCPM]
FWNFSS OF aXES

“se2
N®eZeChoe2)

O9J0XIVIVOX IO
MANOIVTVOOTO

eSPulsspesTesSP
(Duotrir'-SPN)bSO-sv-c!
*SPMeCTeSD

lx--,ov. 23
DSORT! O=20e2)

XK®{CDeSPHelT=5Tes5D)
KeCnNeSTeCPH

sSPHeSTSDOSPCT
tspnssTesnscrecT

PuosvotV-C!.s’Nloﬁn-SV'(
.cp“.¢7-spog-~)-su-sv-;
L

"% YOO

( eSPecPH)
-SPOSPnocfl(Fo(Pu)

OO0IDOIOIUD ZIOJIIVOIVO 00O

FIVE FLEXURF OF TuBE AND OPT]
oD-l-DO-AI-n(Il);h!oSlA!‘NA)‘OS
Adlen(2

SUPPORTS

u
Al‘b!(ol!'
A3

(4

N
iN
(3]
-2

{
t
)
7

90OIOLIQOIIC

DM E B oo

DGELG

PURPOSE
T0 SOLVE A GENERAL SYSTEM OF SIMULTANEOUS LINEAR EQUATINNS,

USAGE
CALL DGELGIRIASMIN,EPS,TER)

DESCRIPTION OF PARAMETERS
- D 8Y N RIGHT HAND SJOF MATRIX
gvuRn R CONTAINS THE SnLquons

n BY M COEFFICIENT MATRIX

ATIONS IN THE SYSTEW.

HT HAND SIDE VECTORS.

INPUT CONSTANT uulcn 1S USED AS
E FOR TEST ON LOSS

ARAMETER CODED AS FoOLLoOWS

% BECAUSE OF M LESS Twan i
ENT AT ANY ELIMINATION svc?

POSSIBLE LOSS OF SIGNIFl=
AT :Ll"luAYlen sv:r Kol
R L
LERA PS YINES
ATEST ELEMENT DfEn5Vl|l'As

.
3
-4
-a»

Mowz Orr3% N oc

- <og m
<~40—COX

ATRICES ® AND A ARE ASSUMED TO BE STORED coLunnnvs:

RESP, ..u SUCCESSIYE STORAGE LOCATIONS, ON RF

u MATRIX ;s STORED (OLUNN'IS: To0.

cuu'c alv: RESULTS UMBER n' QQUAvlous M 1S

PIVOTY !LFNENYS aT ALL ELI INATION STFPS
n WARNING [ER IF GIVEN =

$NltchN<E- lu (AS: OF A wfLL
JOLERANCE €PS, [FRex MAY BE

THAT x.rnlx A UAS THE RANK Ko NO WARNING 1S

.l

A Amam

xun FUNCTION SUBPROGRAMS. REQUIRED

uzvuob

UTION IS bnur lV MEANS OF GAUSS~ELIMINATION WwiTH
CON LF

N
TE PIVOTIN
00000000000 a0serect et s et eeeseaten e rranelasettosestseatoasnat

SURROHTINE DGFLGIRIAIMIN,EPS,TER)



2
3
<
<
<
<
¢
<
-
5
3
7
3
4
¢
[
¢
4
¢
<
Yo
3]
¢
V2
3
¢
3
c
c
i
3
ie
17
¢
C
3
< .
Y
e
0
21
’2
<
<
¢
23
c
c
[
3
[
c
<
c
c
¢
<
<
<
3
3
4
c
n
2
10
c
L4
€ .
i
4
100
4
c
7
*
)
3
c
3
101
e
[4
4
<

D.8

1ERe0 s 9.0
PiveGeno H FEa e m ek NS Yo PN MLOP oA LG, SCALED
; FrrbHi e ey
(4 VALUE FOR ALANDA
¢
e Jieey
M ALANDA®2, SUM/PHIO
. 60 To
- I R
4 TAYLOR convtlctnv AREA
40 ALAMDA®=O.
£
4 1% TARNS uasx:o CONDENSE A®,q¢ T T
4 ABSENT 4,0,
i:o CONT [NUE
< SOLYE EQN FOR CORRECTION VECTOR
: 00,7 Jei.x
' Tenpy 6}
e e
A -j J
age 'y IP(1aEQa ) Avéir-x.ainnvz-'«l.ano .LAIOA
TeK 1S ROWeINOEX, Jek COLUMNINDEX OF PIVOT ELEWENT 70 SEINPRCY el s 80_10 ) R
I
PIvOT mOW REQUCTION AND ROW INTERCWANGE IN RIGHT HAND SiDE R e3¢ mohnst ’533‘3{535[i&f$!lS!"""""""""-"
83-:.#OK LL} 1 WRITE( 311 GSUN,A
AdL__ FORN, 1
;?::{:".llL, 637 s y,a 202 . e
Rikie ! ¢ 0 sKaleleEolSotER)
]
1S EL lnlulvvun TERNINATED ] e
IF(KM)9,00,1n ' t
1 w
COLUMN INTERCHANGE N MATRIX A 1823 MAT
CENDWLSToMak 31 —folHAL Q2015 SO
1ridtizaazaio e
&0 CONTIWYE
00 11 LeLST,LEND < 1F 'A‘ 3 MASKED RCONSTRUCY ORIGINAL PARN VECTOR
TOwA{L]) I3 ABSENT
LisLely €
AfLTeAqLL) ¢
AlLLI®YTS rd FORW N PARM VECTYOR
;gllgnlg:§=.:gtulwa PIVOT ROA REQUCTION IN MATRIX A (1] 22l=?4)- iun(Jl‘V(J)
.LST, <
LisLet
s e 3 ; HAGNITUDE OF CoRre vECTOR
AfLLI®AC
AtL)eTe ESYDDA!!IT(JI)IInAIS(’AIN(J""l“)
SAVE COLUMN INTERCHANGE INFORMAT(ON 5 Sla6r.ePs) ITCaTel
ALLSTYay ¢ r(l'!sv.zo.o; 60 Yo 130
ELENENT REDUCTION AND NEXT PIVOT SgaRCH . ITERSITERe; ) .
PIVe0«DO [4
LSTa(STel €0 To 100
30’ ST.LEND £
-
SNt HA 0
1STe[Tem oMLK oS oK oPARN,TNLKOUNT 1)
Jedet SNS.YLFN N PHIN, RORST , INORST)
0015 LeiST uun o YRR 7PES W, aus, koUNT L, kOUN
ata
SN Sy errvieatis 120 TTER NBa¥o1dot $UNAL ANIJRNSE®,01548,F10.%,% KOUNTI 20"
TBeOASS(A(L)) NVERGED PARM VECTOR FOLLOWS.
;ﬁ:'g;!lv)ls.ls.ln e T
-
1aL TiPARNII))
Cgu;:n 1eK i
[ KGN, N ~——DPARMEPARMS ), — e
Drals boeehe 1 /SEC
BlLLiamcciiorsvientvy , TSI PARME ) ,DPARN SPARN
LSTaLSTen
ERR 5 Tl tmination Loor 13 RN NO. 41440150840 RAD *sF12e5:% DEG *sFl2a%assECH)
3
sack 3unsvyvuy|on AND BACK INTERCHMANGE 3
1;4#-1;::.11 ETh tas " —_ —
18 Tum
STendl 1) ITER
5o 21 tez.m 27 Her " 8evats,e puy INCREASINGess s ABEND,*)
TR e sr 4 i ’
LmlSTan 250 ) ITER,IER
L;“Ll‘-500 . 251 « iTgRee, 18,0 MATX EQN SOLN ROUTINg DGELG FAIL,IERe®
00 2 NM —_— e —
T H ittt
Liey ———
00 20 Ke1ST, M, n
LielLdy
TReTB=A(K)eRILL)
KaJol
ROJI=R(K) E; l
i ESFIT
R
3 ELTeG  ESFIT mOD
.SUBROUT [NE :srtr(.-r.xn.uorv.l.xl.v.vv.-.v.nurun 3
SEnon reTURY ¢ 'gRageandipgrtednaeine
.-
Lo § A LTIV EERENA Bir B0eLs 08, Toansronus o ax.:
ND A A
€ ¢ RETURNS COEFF. ALPMA AND INOEA CONSTSL,Q06 AND ¥ALUE OF » AT pack
<
g NOPT(1190 DISABLES PRINTING t SOME ETC,»9 PRINTS AT END.
< NOPT(2181,2,3 SELECTS METHODs [USUALLY =1}
<
<
¢
nOG = v NAER ORI TN MO Ty0N
ghu.auv?n; 3 M .i.l‘ Sobhe i v.r.n.?}l'ﬁ‘
TToSCALE  HASK)
PROGRAN 2
LEVENRERG DAMPED LEASY SQUARES PaRm ESTINATION,
IMPLICIT REALeB(A=H,0=21 <
DIMENSION X{N M) YINyNS) FNIN,NS i
gINENS [oN PARNIK) JA(K KD oGURYy L4 cr:nr|x).nnsxtx)
DIMENSION "N Ns).?t!‘
OIMENSION DATA(S] ,NOPT ('I.stAL!(l)
O O T R0 s aa vator o coRed: Rdax.ere uoDs s
e INTTY LUE o £S5, oETCe 13
NOPTIZ) GE 1 ENABLES BRINT L L ARITERRR sumrace FITTING ROUTINE OPTNS®,8412,7 Nykw?,2

ITERSWeiD
P1®3,181569245350979)
P10eP1/180.00

SevessececceeDATA INPI
4
ENYER®*,74,* PARNS AND MaSx$ LIKE A £00D BASTARD®) ¢
.
121
sssss 38388 $33533435s8 s 120

1
NINGM K (NSsRoPARMFNKOUNT
R RS R IR LI M T D)
Tebutusnrsded €
.'li!llu" ITERSW, ITER ALAMDA JPHIN RNS :no
1K
'A "‘ ) gMA
_Fo nEv?'l' I T anALv!l 1TERSues 18, F8EGIN 17ER Naet )
ise n;z.s. ol s sh Bis.0sri0nss
innd (STRASKSY hmeanest)
rnnn;!:t;;nnl.l.xtl
INST PREVIOUS Pul
€+PH10) 60 Ta 20
gtn

GENERATFE MATRIR Ae AND
CALL orlv(u.u.l.»!.l.rtnn.or.lﬂuu11|

J
C0es00se0e0ctoctsccesotnetosgessecee

6 o 200,300.400),J0PY
RETURN
e00e0incesnatsensctosstsevtene
TR EAT PHI AS RMS ERROR ON SKY,
CONTINUE

r:un lnAl.-nlu..

LT LYY T Y YT TY PYY PYTPey

Q facas Ine-

ECTORS TO ¢
00/ (XMAXA=Y

00=SCALEA®X
+00=SCALER®Y

FiY E!!gls YYeSCALEs{v=x) e

(ONY
ND

=~ 4]
B E ot
oo a0 M e m
»
x
z

0Q00N FArde BNF-~

FaND Y SimiLARLY,

TINSNS A44Z - =




D.9

b0 220 ta1an Coee®eEXIT
4 ;""’"‘!"32:‘:{:‘{2"}1 éunn CONT INUE
X ImCONSTRe i Ty
-3 P aSCALERSIY (T, mXITs}]) g STORE N,NU2,PH1,SIGSQ IN Wi ,1) FoR TESTS
vy 219SCALEROIYIT,2)X(192)) nuz-z-m-n-n
» Y21.00 1,10
7!’ ':é;-n -nu(;.l!lnn!lll.|l.llll.x).vv(l.n.vv(“;, ::g:“.=37
n o N
2 iR v, 11 aRITE(Y,122) SCALEA/SCALES,CONSTA,CONSTE ¢ wi4,1)eS1G5Q
[ 5.4 <
G0 690 14 FINAL PRINTING denesses chene sreveas
¢ ceevescesssre ¢
< FIYTOdiac eEaToo I I NS Rxe 05t BRITEE3,1010) 2 RHS PHISI1GS0,MU2
o0r CONT 101n _FORMAT(//% FINAL RES ' AFTER *,13,' ORDER,RMS gRRa’rF 0,4,
4 :1:0 TV PHINY D136, srﬁsﬂ.wuz-’-onu 15)
c
amy c GET Y AVERAGF
nA RESAVG=0,.,D0
zay E° 1200 1=1,N
44 120~ E$Avﬁ-ltsnvcovll.&l-x(l,l) e (Y(1,2)=X(1,2)}9DCOSEXIT, 1))
Il: RESAVGwRESAVG/(24000eN)
c
14 WRITE$I,1230IRESAVE
tr 123~ FORMAT(/' “e®es RESID AVGE® "sD13es)
314 €O
[4 sC 4
sC 3 gs{_ su-snu-: OUE REGRESS,AND CORR FOR MEAN
s
co ss--o-eo
<o SSM=0,00
¢ w8(1)®).00
oo DO 1210 1=
XX wat2)enc0S
xx 00 1210 L=
xx SSE=SSEely
XX SSReSSRe (Y
YY( SSHESSuelY
yye 121~ CONTINUE
t
::;:; =100 - H caLc ;oLv REGRESS COEFF=RSQ,MEAN SQR RATIO=SGRAT
Fine T wRiTEL 2 xx x vt Y NUUY Ke
. é““ 1'16 o) TTECI0tZI Mo XX o) oXRET20 YV (L0t )oYV (142) .sa_“.”lm'“
l'l:' «GTe1IMRITELD,122) SCALEA+SCALEBICONSTALCONSTS 3::n-:3=4umsnwuun
ne . Ts
c-n'-l'n RO 0DeD0O(1+00=F1SHIFRATNUVL NU2Z})
4
<
npyT R ROR ON SK 1TPE3,12 Hsz ss- ssnasamay NUUL NUZPROB,RSQ
Son  Shvabigg'M'TIAt us Enton ey 1220 ro--n(}/-zg $a,ssHm23D1%eksr NEA T340 AP
00 & N T PROA, IqulEf.cocrf-' 'lo.! !‘0
] .;:ngcosun.nnuz g
. .
ste M v IFINPRNE®) GO TO 110C
s 00 1030 JJw0,J
s2n f AL PHY(RAD) LRMS ERR. ON SKY(SEC)= ¢,2015.8) -llg °
[
" W e
< N SFORNALD PMI & S16sQ 102~ €O ? COEFF{*¢13," 2 12*.015:8)
[ 1F 4
2 JA ¥
e3n Y IS TLIARL IR FLIRY LS ] J8 1
2 K;lH gg 13
} S0
™ I3 o
: a 1 OF PH1,SI1GSQ FOR XFORMED VARIABLESe *,2015.8) Loun ‘l.. H AGJCadDr2)
¢ 106~ FO! A 1]
SCONSTRUCY ORTHOGONAL POLNS SEQUENTIALLY 103 0
Je0 110m  CONTE
coNTINYE ETURN
LCALL ORGPOLIN, UK KDsNOPT o IW XX WoP ALPHAL IS IT UG0J00uLs END
: 1JRA LIRS N

(.-.'-:A\.(ULA'E COEFFS cly) E A
0o J4ed
uu.tn.ol .’u-w

A-o.nu 4 ELT»0 XPAND “ODS de
820.00 SUBROUTINE EXPAND (K MASK,TMSUN)
00 710 teg,N ¢ REOUIRES MSUMESUM OF MASKING FNo(FROM CHPRES).IF MSUMCK EXPANDS
AmAcatt M)eo2sP (1, ) NteYY ] N} [ VECTOR T FROM MSUM DIMe TO & Ofme FILLING IN WITH DeDO*S
7in  BaReinii Miep (1 00infree2 ¢
720 CludeMraass IMPLICIT REALOB(A=N,0=2)
¢ DIMENSION WASK(K),T(K)
c save :o:vmus PHl AS PMID S1GSQ ASSIESA0. 4(:
e deontresa . 1F(NSUMLERLK) 60 TO 10C0
: K™K =]

. FRAT ¥ 00 20 _J=i.K
c-;.-.co:vuvr NEW PHD PHY S16SQ 10 PHITNEORETIC ETCs 1FUMASK (] oNELO) GO TO 20

[4
4
< 1F(JsEQeK) 6O TO a0
0O S0 I1®KM, 4]
o Gt
730 =0 T1Jr=0,.00
E’( ITLELL 20 CONTINUE
1o o [4
10N~ RETURN
S'ﬂ o'"'ilhl"lll."i"tl END
.
4
0

‘c uszu ON PREVIOUS PHI AND 5 : ST Ctule
¢ IN PHTaofIOCTHEORT) & EV (C TEo) FCT N
£4080en0
00 760 f=i,N
DO 740 Wei,2 . (s PARH)

760 E.m-um(u.ug.mw!nJJ-NHIIl-'lno-r

(4 SePaARM MODEL FUNCTTON(COMPATIBLE WITH NEWINODeS
o nraitny ¢ N T o o
N 114
¢ E 53;5?;57;53'?'0' clun sges < 5 SKER EOTU NTG WITH ZERO GFFSET
¢ REAL @B (A<M, 0uZ)
¢ N XXIN M) JFNINGNS) 4 PARMIK
S ¢ TenroRARy DIMENSIONED VAR ABLES e ys
A N clienlt Hat160)
9 ucnscxoun-n.cosuuun
DARSIN(XDUM)I®HASTN{XDUM)
3
CTNel
"R RM(L)
Tt
¢ - .
¢ FORN SERTES. . 5
Y4s0,00 c (5)
<
4
765
:u «2015,8)
¢
g0 TO(Y01,902,903),J0P7 <
qor e TINVE -y
s02 YARYA/SCALEA®T(L,Y - l{ t
YReY8/SCALERSX 2
n; H §; NiD
1
c G0 To 910 ALJ1enaTAN (D
*HAK
.0y MIMIZIETIN SPN-O!‘I"A’NVONAKD
YBuYBex(1,2) XeD Oslbtllll(P'CPHo(Y.SPQSFNl‘BS N(DEK)IeSTeSP
10 CONTINUE Yu-DCOS(OEK}e(SPecPUsCToCPeSPH) o0 IR SHT
¢ R !-?Eg:(ncr)-!ns;n:('ms;nénsn‘ _ue
B r . Ll “ L]
H store YU IE FINAL ORDER REACKED cin OANATISEe Ll oTKITE i 54i0q, PER MK PSP
1FtJe 780 HAK®DATAN{=Y/X)
il prxcetediiiel
-
780 CONT] FN(J12)eHAK
LF(NPR,LTo1) 60 TO 130
nPsa0 WRITELIC611) XXLJal) sXREUe2) o FNIJ1 ) oFNLY,2)
;”” ) NpS =2 O;I rg::lzl‘ 611 FCTYN *,%p15.8)
¢ 1F (N 307680 14MaYA,YE 130 gnuhuc
ERRu(YA= ENOD
ERREER 0COSIXITo1)))e02
TFLERR,GT wAXERR

“FCTN (74 men)

Cooao PRIN
[4 ELTwr FXTENDEN 74¢ MODE ruucnau MODIFICAYION NO. EY
o" Teouy EORRbUTINE FLENTh KNS RSB PNy rdtny ToDITICA :
nos  oobm < CALCs TELESCOPE POINTING ERROR nnm:L FUNCTION FOR
(FoRN < MISALLGNED SKEW EQTL -ﬂs WLI4 2€RQ OrFSETS,
Yot ¢ PERTBOTC ENCORER GERR ERROR TRUCTURAL FLEXURE«
atn  FORN SRiEdanestxronnED)  THEORVALUE STGS0 tezn17a) §
18a01 i INPLICTT REALeB(A=H,O
. ro‘: on '}S"“S'“ N PHI WFeRATIB®,2015.0D130860 DIMENSION XX (M .-).nun.usn.a(n.onin.onu)
we i
a3 _rokn 1EEY98380E%Y expecTenFrACTIONAL ERROReY, LECTNsIFCTNSL
1020 " hid Pl 4159245358979300
H el 7180400 N , ,
4 IS FINAL ORDER K REACHED YETes o g ;?00\!-00/ 0+D0*17+500/340n00)P10O
%0 l:sf:“'” 60 to 1000 PH 3
n J
GO TO a80 ¢ PSs 21813



D.10

FITEST

< z . -
- ° . .
< . a . o« .
c .z .- .
. = ‘e .
z P~ <0 .
r P ° .
« c x PEN <z - - .
x « < oz . e . = o~ ~ .
- £ wn T a5 .- . . .
- c a PR JER=T S - . - .
-« ~ 9 . ez . - - - - .
- ~ ~ - . .= . o= . > . >~ M
- T e e+~ o ] v w . » o . > © =
U ws =5 zo = ¢ ow . . o -~ . T 22
AL s A = x - . on - P N . . - . s w > w s
x <« A k- & - o« “ X - .z - . > - > 2 %
I u O << + < « . - - P-4 z . 2 z 2 -] - o .
o x — o -~ & - - we ' . @0 - . « o x - - U .
a9 S W w o~ . s Te - - 2 o . < v - < 9 N
- MV W 92z - - -~ . oo - . - - 4 -+ > « > < o
& Zw 2 = a o 2 ~ - w o . - - - > - > - .
. . ~5 T o e P . P - 96 - . T - x - w - w e
< xow e yox o= . oz~ - . 2 [ - n~ - - z - z
® x © wnx > A~ PN [ . - >~ e o . n zo “n ~ © ~ O e
- w -3 -l WX . wz " - « 5 - -0 . . o - o - w e
> - = ~o> J5 Tz T G s o " AN e > v > - S Pl S
> % O w Ny e D . - = ® & w ~NO . e e - o - @ .
- 6 o > s <=~ . e < - < x . . o o = w = W o
> @ wa zZO -0 .« 3« o a © .- Se . . 2z 2 "] x 2 e
- > w2 <cvx @e . o0 - ® . ow 2 ~—— . . - - . - . « .
% L N D20 ra- <= - x e x - - ow - ~mA . - - -~ v -~ v e
X 4w e .0 3= I ° <« o ¥ “ P . . - @ - w .
@ > —e aan X e rz o o e - H S<7 . . ———— - < - Y
N O = 82 «~~= 00 3 ce- - 2 - . enn iy . PR -« . = <
wN: U0 0 sen wa . = > . - " > o - eeea - ™ < " ST o e
- v «n  zoo 2~ z e *> o« (R EE™ -« o . ' ———— ~— x 3 o = a4 ez
. « 6 = wxwx ©C © . - » . x~ -~ - e~ e » « © —~— x « 0
X3 B ekx Mww =0 « .« ra x x - . —-—=w . M i -~ - u o ) - - U e
Z W -OD« wUY B~ b4 P L] we o o sunr s o . . = £ =< @w =0
s+ » O @ ~ead Zo P ue N = = . < A 99> . <«<BE >~ =222 2 > < > fatel = ‘eo
©0 ¥ ZIXI WA~~~ WO ~ < Y56 -~ & RN ar-  —-x . MZxZ GE@CD  ——wx = -~ = “zZxz ® zz S . R
Zx~ W =FNO Snn= IO °© o o+ w aw LR v o~ Aoe— wzFxm eIl NN <= W = N~ N sl
@ - ZWLU O+eC me O a - -~ v tu &z . s o 3 «w ;2 e ITIT remva  G8=m = & v, ITIT rea e = ~ exc
Ox¥ + 0Za  eZOX DO~ 3 a Py <o 4% we z o< 1z e aNw e Mxxx ZILIL DN 5 - z xuxx Z2ZZ «@~mm~ s o eoe
R P 2oV © A a - O+ o wZ 2& W 2+ e - ~ e . e Wuoee A . - ———— P e R ]
TZ e « NV W Ix o >0 O z - e eIKO ew @ - e s anT o - tree had— - ~——— XzZ DA . - n
Ce m LWLE <sC = K - cwrd- 0> cc +%eo - 32 <34 Ceaec Tt~- W ~ v «4C LT ONMemm ww e o w
X W IR —ak smme O - “ wn- Wz o« ¥ aem e —w HEXT Emxwa VUSRS e W - MEZXZ FAIET Gume—e = W
"5 & Deal Ore~TEe @ > - Te— X+ > o> e xw wo - : STEr L TXZ2 ve-- = e o . —%~  €@MX  VR——xx o~ -
Fie I 0G0 e—aO-«1 w O = T c xva e oee ) . 1IXT viia<x +eee & o~ 0 o IITL nxmee oemmel & o
VES F Z W h3IwkE e m = O a weC wouwc e ez C .z = MEmm ErxUL «ged T & o= 2 MMNN FeAAL «gwM~~ F &
we3 WMZO w00 ~SC~~NO02 W - - “« a@ox z « e Zo— - Zeooes Comiir Zermww 2 ex - Zeeee OLLTWW Zhhwwven x
usox ‘WS> WO OLONGON s~m ~ >o x Ss e wezE T = ehekk ENNIL AV s~ sl Tm o~ SRk ENMod cApewes o~ s
O < ONGA GZ2I7I0=N+O~mhud > w Ze-n e -oe yoed  =ENENE_C GOCOE —iiew00- —  ed z
ww @ . WP OO~~~ z O W —~QOZO WT - T * eMeBoeee LECOCO NECULCC S o . .
220 ~-D0 27ZZF-WI G s-—raZ0OCO N E~BWA O~ O H Mg~ WS s e s OGP W DS -
-9 O VRIS FOOCC UX==OrFr-aOaNts » s A Lo e b WO - W =T =3 = NNT AN- - NN~ —~UDC OeZT 1]
D E mmmae mmeeeZ PNOBACZmmma e P ME N e DT o 5 PRR Cmmma S sl ¢ Ne= .
T e & “NAT VNNNWOCO~—~TDO0Z 8 ~NMT L e WA -RIOO . = LT C—=N—N~—T =8 .0 «
IO+ & we=ww MTZZT2Zm S ILMIZOA~vww Z WAZT WLANWW IO EDm~ e WwWli-~ Neassosndra OeD 4
BED ¢ Frrr JWeWWE M8 8 S —T e T WEAZFIOT IS CRZR NN A XML S IINN s = e L2208 z
~C e ¢ 000G AITITDANCROUCL-axa<a + RS e 8 BIE b D M=d— cewwvCaxawlds ———————C ek e <
230 0000 Imrmerg W= =Wl ~WwOOOO0D XO RLAWTOLEDIOO » —~13iI0kULLUVLUCE ONX>>rwvuULh*00=UmITIiO0kukaLUUUAO -
wno 2227 =000OUXXGLWNZ X—2X2ZZ & O eELe U—ELERXUZO . b MEENO e FONLLY OXX>> AT —=D0h WRNKMOmme—m— NANULD OXXMX> B e -
V- =
¢ « ¢ 3 3
v < < c c cC
oo o o AN O O - ~ o - . ~ o o
LRIV RVIVIVIV] (9 vuv wuL u=N - vV Uee uunue N NAUUT UU-U - b haid v L vuau Ll v - wunuve
~~ .
& w
. 35s 3
ko3
~ - % I = Fy
- o = 0z w w o<
> a x - - n 2 o2 . m - <
- " & el ~ -k - g
*x ¢ wn - - - »n e o = T M
- - e o o EY o - . a w ~o
x - - v 13 - | ¥ Zwx o -~ < 2 35
. - o . - z zZ~Dnx ‘o w = I~
" - - - - - OXwwd < e [=3 C e=
- * - - e - —_ - o - ~ . m
x <« o T v - T vcy o oz a T 2«
. o e a ~x pt vkhw > IV . s
~ v« - <o . Z—oox ¢ = - 1
s o - vz z - ) 5TgeE - ~ I - a
[ -~ e & = - “ZTwn x c a = [xv v
¢z = 20 - 7 & "N - - v = z ne =
= e vr © e ) . Sex 3 c . w - .- -
U we - o~ v " = Loox - - x =z w - .
ne o € = c = o -arin - c 1 < I prd ve ©
0 & - * - ni ~—~ Oxa~—ea " v -~ av < .0
on -~ -z a - o -0 IxwsO z * - - Vo o own o
ne -~o - w o Te - . - « - -~ < o 3 n ne z
4~ O« -~ e wo < rnovae  ~r ~ ¢ wo w T = «
~X -~ o = 2 oL - UZZTEL  ~e - I - cv = ° -1
e w-— ~-e nene o~ owxe «ay 'z © w caira = e o Ta -~
avt =0 o~ ~CeX puhg ez N <ur & Ok o x +0e1 > Z- - an ©
ne mn - €o~a X - - - - .2 - Ld - < ca~ec C — W we d
en ~» W v ax — ~Ieew  Ie ° o vnmn T n~ © - I <
au cC ce-» ~a e s -.coc 3 ~ 3 ce—e = = v
wnea OT  U~oa  we raz rzaw < ° w e ea n w o0 -
orin 6z e-z~ ow -- S ] ® <« o-3~ 2 Ie w T a- .- o
rue Fe) -_——= weC omu Zwew Pyt w o I ~—t— 2 [v3 ) zZ «= o
[y €  evI- &u ot crawe  ex - = u e @v3i- T U = © 3x Lver - W
1xv i wo At d -0 WuUOx O 4 = - <= ° « sauT - ~e & - e 1Iv = -«
6 e - - LXX X3 .s - Suwvv - ¢+ @ Lol - © X ~484 v -~ O~ W - P>~ Xa e N~ O
x €xX 27 e@~g ~n =2 T ez W TN - - — [ & wE-a & U-NA = auz *n x
o e — ~onI oo - - WO - - . o IT 0w z ~ ~CNI O WeawN @ " [y -
w 3 T g S e -z w z v ] rrea w zZ @a-a »~ OXoD-— - ) 2
. Ge @< SucLU oo Zhw =Wz o - - —-—~ = U~y ==+ x . -
- 68X ¢c€ gegs ac ) Petare - ~ zezim v Gexe wne~
» e 88 a~2- s avrzz > ~o . - =o~c © w~e~ OOw +
> Anr 22 252% 2 S C .10 z @ wono s oox< cuoe w
o = NN A-n- rE 2r2r> §aue— - . cooc s a-x-~ conz w e -
9] e oo cewe oo Ita%e coone o - 330 . I u-E—- C SELE & = >
. oz ox oIz OX wxOOWZ D AW " e z 6 Wa<x ¥ OTwe 1 o . 4o -
~ oo oc CXX-X ce pt-Havrp whure ' wuno o w o4xs ~ LuBT ~ b UFUNUBNKI~ X0 W chUxW
< “ -C <
- I Zn -
v v €. v uwu Uy [V VIVERVIV Zove 32 [V R VIVIVIVIV Y] v vy v v wvuu v vou oL e CoLue wu e



INPUT
ssse SYARTe

<
-
«
-3

.

D.11

END OF INYERVAL aORIG.

*D0) GO0 YO 900

===0PYIONS

S esTiMaTION.

RMIFNLDF oM GoGTEMP T, SCALE,
CARDS,

imlus

1
GTH STEP.oAsBw 1:2014,4)
L4

T ALSORITHM FOR PARM,
1=PORELL)20GOLDEN SECTION,
G0 To 4010

ETOL OF ORI&INaL
1G=X3)eGTegTOLS S

oF F1,F2
SXAPARNIFN L KOUNT |}

SN PHIO, RORST . [WORST)

IN
o
KoNSsX oM FNsKL}

GRADZ

ELY

PARM VECTOR RETURNED)
OPY{ONe

SENTER PARMS eMASKS®)

G0 To %20

PHIORNS
OPTINISED STEEPST OESCNT ROUTINELINITIAL PHIJANS IS

PRAST(J)
| ENABLES PRINTS®

LN

o

WITH LESSER
GE
PTI1).€EQ.,0) GO TO &

PROGaGRADZ?

Mamxl

T

IF NOPT(1)=0 READS PARM MASK FROw

NOPY L 2)

x
z
~
o
«
a
©
w
z
-
>
©
-
3
>
v

MECK X2
?'ltl'ntﬂ
BINTRAINT
PRINT
WRITEL)Y,S0)

fona
1<

pROS
e H4:13 NI

esetesastere tsancransns
NV

tsceesvacsesaraaee

WA S T edG U0 IL I JRAURE)
RHS(ARCSEC)I=?4D1508s

s
TH PT.m*,2D0i8,.8}
(1,30 )08€C

RIABLES®? D158, S1650%°,015.8)

.
.

PHISIGSO

AN K oKD N XX PoalP
PHI'OF XFORMED VA

NS AY NATA PTS.

1)aYA)ee24(iv{[,2)eYB)eDC SN {Ial)))002

€ SUMS 1N YY
930)

ERRMAXNOSORT(FRRMAX) ®SEC
S1GSQ=PHI/t2en0@IN=K=1)]
RUSaDSORT(PHY/NYeSEC

ASSESMFNT OF FIT

INITIAL PARMS(NASKS) AREse

“waa<e

S
233330
tq<cans
[VITvIvIviv]

RE

3
.
.
.
.
-
.
.

MEG,BEE

'
L3
sGTENP  SCALE L ALPUA,

SCALE PARNS
NoPARN) T GTEMP SCALE s ALPHA,

KOUNT

-
.
z
-
-
a
r
.
>
z
Y
.

"22015.81
Tesse
KOUNTL)

VECTOR T aAND

gegogegogotostogegsgosgegegagotgiagogesss
ARM,OF ,KOUNT2)

710ABSIPARM(J))eTAU)
1

Ge
Fy2=',15,2020410})
sTe®
)
.

1oe2etY il L)=FR{T,LI2eDFT,J,L)
LakY?
.

)
SENINLEYZ aoRSTs TWORLT)

MoKaNS X GTEMP PN

MUJISALPHAST(J}

"
z
»
2

SeYeFNIWy

oS

K

L STEP MAY=~
EP/I
terel00.00

R CONVFRGENCE

0900000000000 00000000R030000,00000000000% 000000,
4
Y

SCALE,DESCENT

GRANIENT [N
0«00

STEPu|,De5

NSTEPuS
MINIMIZE PHY ALONG LINE Y

PLOT PuyY FOR LINES
TF(MIN.LT43) 60 TO 320
TiJIeaTij)/DSARTIGD)

GMAGEDSQRT(GMAGS)

Cosevecons
CONTINUE

4
1o

MOD 11
81T BNEW,SCALEAI PHALEYOL

OF VARIABLES READ waS *414)
A
N

01/2.D0
SANEW
WF2,mZ01NT)

NS Y FNeWiF2,W

taryesSCALELIK)
NS X BNEWFN,K1)
JETOL) 4O TN 1000

x
=
w
z
o
*
-
x
I
@
z
z
-
w
=z
z
z
-
"
z
x
*

~
"
L)
T
[
-
2z
°
v
o
w
x

z
P

(RINT=AgNT)

NVAR
€AD ROUTINE FAILUREINO.

JIen2etly)yesc
s oK NS,

1o {RINT=AINT)
x

ENLM K NSy X o0
NoNS Y oFNswoF
WNS,

TeQIWRITE(I,INVET
ElyleXlevig))

ik
t
N
t

T=TAlle
J
-
T
1

BROUTINE GMININ,M,K NS,

ISTEP STEPM, 1T ,NPR K1)

-g-ﬂﬂ

nfuy

G0 0 120
NTex2
oxl

TaGH N LINE MINIM{ZATION
gh aGMIN GOLDEN SECTLO L}'v."'a lr .

IFLF2¢GToF1) GO TO 400
X2=BINT=GOLOC(BINT=AINT)
XIWAINTOGOLD®(BINT=AINT)

TEST FOR LINE MIN CONVERGENCE

TAUS({DSORT(S+ND)I =140
LANe2

6O0LD=1,n0=TaU
ANEW{JIm(R(glex20T
CALL FCTNIN M K,
CALL PMI(N

ETOLwACCURACY
GO To 800

D0 510 J=1,K

IFiNPR
FORMATLY GOLOER SECTR.LIN

AINTex)
xiwx2

t7e}
13013

X

F

Flwf2

L]

i

s19



LN OnNTIN

! fr(rlsgs-ra.Olco Y0 1000 " IFCITEST.FO.0) GO To 10GO

; 1o 33§¥E‘3 1110 TTER PHY RMS CTHETA ALPH

< rAINTY n : 1TER,PUY RuS, WALPHA NAL

111N FORMAT(Y END LTER NDel, 16, PHI, RAS®,015,8,F

L1 CONTINGE |;.$$§:NEVA‘A%'NAI‘t}Dlgtt:' FYOEE T SRR FH-H LA TN
. 3.1120) .PARM

I A o

2rn PARMUJ)aRARN( ) eSCALEL YD 113n ronn.rz?-'tt-?.;nf!fig °

o cz P:r:ll! :on NFXY 1TER,
n
TERLITSKOUNTI L KOUNTZLALEHA oMY RNS GI0n 1TEReITERS
1780 0215,¢ KOUNT1120%,214," ALPHAVPLY ,RNSE ¢

SAVE OLM UNTT VECTOR T IN Go AND CalCe NEX ALPHA & PARMS,

oK
EMP(J)eSCALE(Y)

®evecsesvecone

sseSsSegettotonatset

sesee YT
|rcn.unv.:YN:?A.ALpn‘.xouutl.luuurz.NAL
S04 $DNVCRGED'IYEE NOet, 1t : . NAL ;Nllvgulﬂ-ll' cr
N
etegesesestooyetstogestononanyer SXQUNTI ZoNALS 12015080306, PA NS FOLLOWast)
15.81
sALPHA s PHY RNS
- 71Tm5214, % KOUNT1o2m9,214,
' ¢ 4 FOLLOWs o]

NVAR
¢ FAD ROUTINE FAIL®y18,% VARIABLES #gRE REaD.')
P-SCILE(JI
104" {PARM(J) 408,58
103~ Tol4enIGeB8, Y RAD *,F1246:° DEG *.F1206,° SEC')
4
‘o NVAR
401 .
c ELTeB 180 seM0D 1}
4oty EAD ROUYINE FATL'3154* VARIABLES WERE Rgap,t) INTEcER FVN(Y;G;.laoly.K.g)
[4 TAKES x RITS ¢ROM WoRp J YAI';NG AT THE t=TH FROM RIGMT
< fCOUNTING Osle2es) AND CONVERTS BCO TO DECIMALS
INTEGER FLN
Ha3p
MMEMaka]
JJ'TLDI"N.I-Jl
lik.(‘ 174
PR RaON DIFICATION Mo, 00 5 (e0,tL
Ao nE R A ONT (N ML KNS NOPT Xy v PARN L FRDF 1 Ha s GTENP LT S0aLE REsRastoaly
.
‘:23?1.u Y IGD-llhox(u;DooL
H MODIFIEN STFEPEST NESCENT ALGORITHM FOR PARM, S ESTIMAT{ON, 5 Sg¥5£:u:
¢ nob, 1 END
4
¢ e . ===0PT1ONS
¢ 1r Novr(n.-n nLAos plnn.xtsx FROM K CARDS,
E NOPY(Z) GF | FNARLES SRINTEN
¢ ceemncameonna R,
IMPLICIT ®EaLeR(A=H 0a2) LY Y NE MINIMIZATION 10
iutnaion Q‘L'lf';?°.;§?:ru(~.us» WONGNS ) OF N K NS) < Shambotinr eminchn S T e ANy en BT aNew L sCALE saLPHALETOLS
EE P M IS H AT P W N R T . R HAIA T
4
NITIALIZE 4
¢ FTeil18 88248000 4 z: LeACCURACY
P10=P1/180.00 ¢ ETCoves
$ECaci0r34000m0 OIMENSTION XUNGM) o RENGNS) FNININS) g YININS) ,B(K} TI{K} BNFalx)
|Vs”-l p=2 OTMENS Y SCALE(K)
Dia0ashe DIMENSTON ctsn.rvt\».r!st(:l.<on-(:).|(sr
paz9.ee INPLICIT nOUBIE PRECISTONCA=
GAMHA®ADIDOSP /180400 c Lrel
fuiesls
Nies TER,STEPN
XouNTIan w  rohiil EL R TE L, sree maxar 301800
ERSCANRDCOS (GARMAY o iives
NPR&NOPT(2) Dt2)wsy
NAL=O 00’80 x
S 0000600 000000090000,0000000000800000000000000000000000, NATA [INPUT SO ::E:(:é :n;z;::;:;uz. ’"f“’
4K NS
¢ IFIROPTLLIY.EQ.D) GO To 6 B CALL Pun SeYoFN vizlowk 1wz
N TS e ¢ GET THy T
7 rn-nAr(: eMFY RUGGERLUGS ENTER ¢,13,° PFARMS,") 10n g?g :g
BO 10 etk
READ(NVAR,DATA,NEFR) 1F L 1
GRS RANERRYEST ) 6o To w010 Jo0 oo
PARM( )m DATA(]) n o .
mASK(J)s DATA(2)
10 CONTINUE .
§ 000000000000 a0ss00erensesiecetestoentesenasetecceretosrees STARTS ¢ ca
4 CALC CURRENT PHI ELLI S
CALL f(Yﬁ(n.n.x.us;x.unnn.ru.!uuu'nI 8¢
A ATLN MG NS XKW
EALL Prrl(RaRSavafuewyPHIO, YORST , [NORST) Ans
RMSanSART(PHIN/K) /SEC it
c ' caS
¢ PuiO, ace
&0 . q{[(!PQY DESCENTY ROUTINE,INITIAL PHIJRMS 1S..1, E;’_‘
7% IMITIA PARMS(MASKS) AREse'} DH(N-Q lcson(’u(l!'ch"l!inlsr)/(!C'O(A'-A!ﬂl
oF
RM(J) ) N oz- n:uo(A-.AQPI/(A;-sc-(al
PARMIJ) JMASK(J c
¢9,. LRSI R 4 T PR 507 IFA02407.0.00160 10 600
LAMe
60 1O 750
¢ SEesestesstersisiencsessy Re € AXluun OR REQUIRED STEP 1S T00 LARGE
SgRexRgtegocurgegeSetegogotoates [4 TURNING PNT 1S A MAX1M 1 .
Son E:;‘; e : ¢ WHICH OF D(1) D3} D12) IS FURTHEST FROM DM
4 ESCALI PARMS ;ga kan;‘o o
.
an G'EﬂglJl-G*[“’lJ’QSCAL €14} 760 TEST(J)%OARSINMINSD (U1}
:zn CALL DERVINCM,X3sHS XsGTENP,DF (KOUNTZ) CALL SORT(TEST,COMP,1,3)
¢ (lL( GlAulEN' IN GTENP INDEX®1(3) »
20 § s'LP IN WDLANe OF DECREASING PHY AND DISCARD OLO POINT FURTHEST
61:-r|4|-o-co ¢ L3
pein L) fo ESTEPes
v ‘;E:&?JE"isgzii:E::"L]"z."‘l""'"(l'LI).D'(,' ' Bon R IORTR L T ov0rEsTERRasTERH
6 Jre=2,
4 § zgsung ESTEP NOES NOT DUPLICATE aNy EXISTINGPOINT
I'e 0s DO 830 Jsi
Jor  CONTINUE lg*?lsslcs;EP DEJIIGLTAETOL®14D=2) GO TO BSO
R 830 NUE
g CALCs SCALE, CORRECYION VECTOR T AND SCALE PARNS gotzé 2‘0 .
L ssn STEPRESTEPSSTER
ReDSOATILeNO/A} P (BN INSLT 0 R0)ESTEPRESTEP=2.00aSTER
DO 310 Jmi.K 0 To aos
sf‘kélalll;svrnrlJi s so e
T 40 DO 818 Jysi,x
DA!:IJ]-PARHIJ)ISCAtilJ) 80 ‘:‘E‘#’?”}i’;‘s"g"'di:. R
n ONTINUE CALL FCTNIN,M K NSoX,y Ny
R T304 -1 CALL PUI{R, NS Y FNLNIPHININZ, 1NZ)
4 DIINOEX)®ESTEP
€ FYUINDEX ) wPHIN
4 . ¢
40n  ALPMATALRHA/4.00 WRITE$3,820) 17, LANIFY D,DMINSINDEX
A n ORMATIE LM IN/TT VL ANmd 214, 0PNY 00 ,6D1508./% ONINIREPLACEDS®
c :qk‘r: vcnpokv OESCALED PARM VECTOR IN GTEMPo,o, 82 T:Dli-ﬁ.!i% INZITWL . *0°",6D1S.0, ’ v o=*,
80 ‘uIJI~ALFKg'T:J}L':sAL!IJ) . 60 70 850
Ll
Lk BRSNS Tors Ty <
[4 CHECK THAT STeP DMIN S NOT TOO LARGE
< 600 trlnAlSIoulul.cv.s'(Pulsu To 700
4
N 14 CHECK TF BMIN WITHIN ETOL OF D{1) D(2) OR DIM)
gD" LAMSE
00 410 Jwi,3
[4 ERRSDARS(OMINaDIY))
< lglsllnLY-rYDL) G0 Y0 620
610  CONTINUE
E CALs- ANGLF BFTWEEN SUCCESSIVE CORRe VECTORS %60 10 %00
7on  CONTINUGE
° 1FLITER.EQ 1) GOTO 900 420 ALPHASDLJ)
CTHETASD.D0 PHYSFY(J}
00 710 Jmi.x G0 Yo 450
FIn  CTHETASCTHETAeT(JI®GII} ¢
4
F ANGLE TWETA GT GAMMA REDUCE ALPHA H
ﬁon :r::vu§1..nv.:osaAN) 60 T0 900 son ”35 2?5“4:? " rornr
C .
9 NEW 3B{JIepHINGY (J)
¢ SC#E.!i!»&%:ﬁfno ‘? gAEL':évu(».nux NSy X s ANEWFH K1)
00 850 Jmi X -~ CALL PHICNINS Y oFNswaPHINGWZ WD)
.
oen ﬁ;s:::f:."‘"‘J‘.‘L'N. T 2 FIND LARGEST OF FY(1) FY(2) FY(3) AND REPLACE WITu PHIN UNLESS
vor gn llulJ-I x 4 THO OF D)) DI2) DI} BRACKET pMIN.
A1 PARMCJ)BPARNL J)eALPHAST(J) ¢ CALL SORT(FYATESTAL. 30
- .
¢ INDEX®T())
¢ vg%;'ron crnveRsence ¢ CALE, JORIL0 TEST Y
1 =0 e
. IF ¢ GToTEST(L)eANDIDMINGLYSTEST(2)) INDEX®I(3)
egsglglﬂS‘lL’nlol(J)lIlDAISIFAlN(Jll‘Y‘U’ 1F(DMING v:vtsvéz)oAun:on(N:Lv.chV())I INDEX®[{})
IFITEST,GT.EPS) LTESTaL ,
e CONTINY



*°2n 60
? [4
DMIN,INDER fonn %: G0 10 170
o0 V1205 FYip=*,401245:° OMINJRERLACED®? AL LANDAZANY
60 co
¢ ¢ LA Two
-
Ssr 1Tefter Sona SFIPNYSLESRMINI GO TO 2100
60 Y0 350 <
c ¢ LA « TuREE
< LAkDAnsy
450 0O 640 Jmi,K STE
s8N0 BlJIeB(I1edLPHAST (I} an~ ALAFDA-ALAHDA-INU
< OLAMDAwAL A
CALL FCTNIN M KNSy xaRoFNXY) 00 321p J.l'ngun
¢ lub[x-Jo|4-|1-nsun
¢ GITHP(J)wG(
sen FYID®? 601508,/ a;[:;‘éﬂgi::::;lND(Il-DLAiDA
INDEX®Je (KKml)oM
TFLJoNEWKK) nv:l’(luotllcl(lﬂo!ll
¢ . 3217 _CONTINUE
¢ SOLVE AGN (A « LAMS®
(lLLDG[LElGVEw'.AY(NP nsunolcz?sLoh.ltlr
¢ IFLIERSNECO} GO TO 4D
4
MAR D < CALCs COSGAM® COSINE ANGLE GAMMA FROM Te , Go o
l RN
.
4 EL'-: uAlnuARDY ALGORI MM WITH PARANETER MASKINGe MOo® 23A. 0o 1118'3.1 nSUN
.Sul TINE MARGRT (N, M K NSINOPT o x Y PARNFNOF oW, AsATEMP G GYFNP,T. ANUH-ANUN‘G’(I'(J)‘G(J,
g b st SIS ent iy
A
¢ WARQUARDT ALGNRITHM FOR NON LINe PARNs ESTIMATIONS 2 ate ke ReyRZit 11402015,
c DENON'D[NOH.‘G'ENPIJloGlKKIOS(AL((KK)I!CAL[IJIl.l2
c on 3220 CONTINUE .
< T1ONS COSCANANUN/DSORTLOENOH)
c 1F NOPY(1)m0 READS PARM(JIGMASK(J) (w0 IF PARN FROZEN! FROM K CARD TFINPR,GE«1) WRITE(3,3222) ANUM,DENOM, COSGAN
< 3287 FORMAT(' WARGRT 3222 *4)0i5.8)
< NOPT(2) GE )| FNABLES PRINTe, E caLe rrow T
[ v "I
¢ NOPT(3)m0 F'Sl!ao-s CUTOFFE AFTER ITEND ITERATIONS, 50 3230 Jai, NS
¢ .l =3 NO CUTOFF,82 EPS®],0=5 NO CUTOFF. 3230 vl;)-cv:n!tthagntttai
4 3
4 mmeceee 3 EXPAND Y IF PaRNS MaASKED,
M,0a2) |r(~rl.o¢.3)l-17:13 1e3)Y
PPN NE) e N INS ) WO NS ) JOF (oK 1S TR RTINS
w
RN T N THES AN D ¢ ceee £
ATENP (K K) B (2) ¢ CALCs GTEMP TFNPORARY PARM VECTORS
tsw 3on DO 33!0 =18
< 3310 GTEMPlIrapaRN( eSTEPT(Y)
[3
CALL FCTNIN MK NSy MAld rN.xouuv;
€*3600e00) cALL !ullu.us.v.rn.u.rnv.t RST, IWORST)
SIGSG-anInuu
RMSeNSQORT{PKY
c lolsv-nsenV(vo!sVitasrc
: IFIPHYLLE.PHID) 60 YO 2300
b=
31.F0.1)EPSel 0] § 17 GAMMA GE. ANIIS KEEP MULTIPLYING UP LANDA
2 4 IF GAMMA L MMAO REDUCE STEP SIZE.
0COSIPT/Hen0) trlcescnn-tt-cosnuo) &0 T0 3200
1o RLLL s'[r.sv v
&0 Yo 3300
(23] [4
JE~1S [ !llPAlr rol NEXT TTERATION
4 210 -sl 1 o
¢ essee o DATA INFUT 2915 Pil"(Jl'GYE;FlJl
¢ €
IFINORT{1).EQ.0}) GO To & c PRINT
6 CONT INUE CHRITECI 12101 ETYERPHIDALAMDALLANDAKOUNT] ,KOUNT2 RS, JWORST,
WRITEEY, 100K 1WORST,S1GSO
1" FORMAT (3 ENTER ¢,15,% PARHS & MASKS ( 1 PAIR PER LINE)©) CNiFiNeR,GEL 1} ..,'l(, ,359, PARN
AT TH ATA,NERR) 1234 " rormaTiit cynnent f 11300120
FLLAR TEvn
|I?Nvtl.ug. NFRRCFQLIL G TO 4010 AT AT tTetsnz s
FARM(J)a A v
MWASK{J)w DA ¢ 60 Yo ifo
° conT thue ¢ esosovess 008800000000 g00000, 0
.g B T T TY P YT P YT Y PYY YT PY YT TTT PR T T TTTPYPPTINT TV SO J E:L;lnuz sesessses eoqe . . secse
c ¢ -
CALC CURRENT PHI AVE NyNUULPN 168 N W rom TESTS
¢ (ltL rch(N.n.K.N!;x.-Ann.Fu.xqu'l| g SAVE NyNUU.PHY.S1GSO 1 €
CALL ATIN M NG K on wt Yo
e NANS .%o FNshyPHID MORSYT , [WORST) l"l):uuu
1/Astc I
T1/a8€¢C '11. 1a8iiso
¢ €
¢
L -ntsv.l-olsv 00 1510 J®ieK
uunnf NONeLINe PARM,ESTIN ATION lDu?th.lNl'llL PHI  1S3n PARHIJINGTENP(J)
’ ;nRs-‘.zrlz.!.151"|N11 PARMS ARE ' pnlb-!n: J
[4
. (31 mAsKLS) < PRINY
s l6 (4
c _WRITESD, L
¢ TORST .S 16!
< sevetseeesssvsasessstenseconatsosers s REENTRY IF(LAMDA. x'g(:.lzzol svC
1cn 1217 FORMAY(// Lol n.ALA!.LA- u LAY LTS 243x:0152004314
ViNGm, K.Ns’l.vAlu.Bf.Kounvzl 1/ RMS ER €Cot F12e¥ 0 L] ERROAST (T 2k, F 13,0,
c SCALED RICES A , G 2 $16SalN sbo1d
20+n0 1227 FORMAT(® ZEe *,F2041%)
EQANIN M K NS ¥ FN W OF 44 ,G,SCALE) <
¢ € CREslyeis
1
g AJGySCALF 17 PARNS nnsltn & SOME ARE To BE FROZEN. 20 1260
RFS (K MASKsA 160 SCALE s HSUN) 1267 RESAVGeR s 11oREE 1 ety ,212R0142))0DCOSEXCTs1Y)
sez RESAVGanR NOeN)
’ HH H PRINT 4 ®
Ll NEe lr[MPI.G( ITE(3,VITA(NS) yuSa) ,uSQ)
WV 4
’ L] 4
e < [ ; SUMSQURE DUE REGRESS,AND CORR FOR MEAN
4 $SEe0eDO
s1oAND ¢HS on KInRITE(S, 195 11SUN
19 G0 AN I RN T AL VR0 TN remaTioNS s THE Y $3na0100
RE rwnztu It 1?!&1 VILUE‘- ? wa(l )™y,
[4 0o 1270
I wdi2)epc
[4 DQ 1270
190 lflALAunA.Lv-|.n-|)y 0 Y0 170 SSEwSSFe
LARD SSRaSSwe
BLAMDASALANDA/ANY S5MaSSMe
60 a0 ézvn CONTINUE
170 LANOA® < CALC MuLTY ltGlEss COEFFRSQ,MEAN SOR RATI0-SQRAT
BLARDAZALAMDA
SOLVE FONe (A ¢ LAMe 1 ) T = G FOR ¥
180 DO )81 Jul HSUM '™
GTEMP( )Gl Y aNUuI)
INDEX® o (J=l)omMSUN
ATEMP{INDEX)wA ( INDEX)¢DLAMOA gk'
N0 181 KKsi,MSUM Oae .Y} -
LRI HE 1 82100000 (1 eDO=FISHIFRAT NUUI,NU2))
IF{JoNEsKK} ATEMP(INDEX)®A{INDEX)
181  CONTINUE
cALL UGELG(GVFN'.AYEHI.HSUH.I.!PSLDN-l(ll
1F(IERLNELO) <O TO
¢

DO 182 um) MSu>
182 TIJI=GTENPY)/SCALELY)

4
C
[4 Ex IF MASKED L]
1iF wRive(d, 19307
193 FO :roug t:rl;g;‘ +5(01808)) :;t
A L) T .
I VRITECS 1040 T 1830 JIPARMIY) GTENP ()46 14)
19¢ FO FTIFR FXPANDS *,5(018,8)) 124n ; uA%.FlIN Vo13,6X,017510." Q¥ 0, F15,8,¢ DEGREES of
Ce
; CA ®wTEMPARARY PARM VECTOR
22~ 00 ¢
234 6T MegreTi ) g
4
A urs N <
¢ € R.KINS s FaGTENP L FN KOUNTT) ¢
14 CA
A MY, NORSY, [WORST) 40no R
§1 e ' 400y IX g@N SOLN. ROUTINE FAIL,TER{DGELG)®Y, 14}
bdad ASEC
LT 1/7aSgC g
¢ < aLap AL
[4 T FOR CONVERGEHCEs+ EXIT IF NOe OF ITERS EXCESSIVE, 4010 W "[’!- 011) NVAR
ITESTe SOIT FORNAYI///P READ ROUTINE FAIL'11S)%  VARIABLES WeRE Reape ")
I; x END ,
9,00 69 Yo 290
} %J)?I(hllSl'llhlJ))"AUl
1 FPS) 1TESTRl
1 €.TFST) GO TO 290
1
L)
FL RIS
0y 60 To 1500
: Fa. Cflnb?l?!l-i(-IV[ND'I“OOPN'-LEGFNIB"G To %on
<
(4
GO 10 11000,2Ar0),LANNA
4
4
RoTSTHAX JMAXTST, T
R AATE LA TV ena T 0ns Manant axeo at 1Tenstuia,e TesTar,
T020010,% 0% PARK 0, (4,70 CURRENT Te®4$(D20410



D.14

suU .ru wsDF el 6.5 ALE?Y MoO=1
5 f: ivatTves #hT PIRAS se1s U Eomoaelte = .:3;2..5.. ccton
n
S it seateiiieo.o T S gpeen oo
4
i»
o1 (NJNS),DF (NIK NS}
o (NINSD L OF ENuKs <
4
NP
1SCALERS
¢ ALE(11,€0,0¢70) 1SCALE®]
<
00
[
be
:' < H00s 1
RE JART KSHORT)
60 [ LGORTTHM,
3 Fraridiiein
< CALCs A BY SUMMING OVER DATA PTS AND FN Ti0 saTiat,
3 50 30 Lel.ns er o + SECTIONS. 58979300
00 30 fwl.N
30 ALY kK =AlJ, l(iOA(l.L)'-)-Dr(l.J.L)ODF(I.KK|L) . MEAN Eg“'"°‘ OF OATE.
1F1JeNEeRK) 6
4 (IL§- ;'av SUMMING nvrl OATA PTS AND FNe SECTIONS. nzonc)ov-u-zg7;ag:z.v-v~n.zzo-sovo-:
99 33 tabae 17 113330020T00240, 18890507003
32 GlU1RGII 4 ET, L1020ty I LI =FNIT,LIIODFEL,UsL) tiiridissatoo
20 CONTINUE
¢ CALC. SCALE 4) =SQRY OF A(J,J) $90.00
TR oy K1,600 scALE
[4 1 2 J) 1J),SCAL
o2 Lommaritoid"thiSeart?idoidiiden Siaftotescatetn
21 CONTINUE
¢
IFLISCALESNESD) GN TO 41
< SCALE 4 ANn 6
DO 40 Jm| K
[T S ¢ 0000000000000000000000000000000000000000000000000000
ALgsKKI@ALJ KK/ ESCALE(J)SSTALEIKKD) go .SIIYES 3 n-ul.or's INCLUDES ALL TERMS W1TH COEFFS > Ds0) ARCSECS
40 CONTINUE
F ® 14 INI'IALII! KSHORT GT 7ERO TO SXIP SHORT PERIOO TERMS.
ez ADANETIEOLLY NRITELIaZ2aLAL00d100Un 1K) 1GEI STALELIN IntKd OFNInei|7423279040173797)90SIN(ON) 0Ds2088¢DS IN(2.00a0N)=142729005]"
b RoTuRN (e vr Do aNSONT9s 1241405 IHILD 10,0497 205 ] N{LDeF+F=D=0sONON}+0.0:
END ¢ C)l"DSIQ('OF-D-D-LD&ON'ON)‘O.O]Z!ODS!N('OF-B-DCQ
IEtxsHoaT. o101 60
QrHI=oPu1=0. 203740 sx~1ro;-o~-o~loo 0675e p;\ult)-u.oauznpsl (FeFeON
E ;3;01‘('05|N(L0FoFaON00Nl-0-uI DSIN(L=NaD}*0e0l 140DSIN(FeFal*ON"
.
3 CONT {NUF
ocvs-uv.zgo.o.uocvlovs-ocos(on|-onovu~-ncoslu~‘ou)'o-sszztn(os(r.r
¢ T T M ATIE AT S M el aw € 15 et c €=DeDsONCON140,0214°NCAS(LDO*For=D=DeONsON
< 1ueL 7 IF(KSHORTJ6T4.0160 To
i 14 [AIPTTRE) Cg;:g;gg;szu.oaa«-ncos(r.roo~oo~’.o‘ula:-ocoslr~r»nN|ou.n||Jnnc05(r
28 22 z  CCoaTial
gé’;g EPSA®23.452294N0=0¢0130125000T=1:64D=4oT00245¢030=7eT 00}
2 ctryx DPH PHIePIN/36C0eH0
RETERY 288
END £PS
c cAL
s(1
sty
HE
S:I
'3 ELTeY MOD B Gy 4944000000000 00409%000,004000000004 315
SUSR ouv:sc ~0v[s?l" "-K.NS-NDPV.l-'v(N:I.’AﬂNcHA(K) S(3
4
¢ vesPROGRAN FIGHTa,oTESTS ACCURACY OF MODELS FIT ¢ s
¢
¢ NOBTI1) GT 0 FNAQLES PRINT.=? PLOTS RESIDUALS =8 BOTH. I
[4 NOPT ®9 SUPRRESSES COMPA 150'&..0»4‘_' SUM GENERATED. END
4
™ REALeBIA=M,0=7)
3] uorvxn».X(n M YN NSY, ru(u.ns!.ulu.NS).FARN|:l.HAsx(K)
o1 4}
4 ch PORARTLY DIMENSIONED VARIABLES
RE ), uA(160),PD(160), Bui1e8) bR T i0) rRaT 10 R SH
:! gisnorvanq
sE P10 4 ELTmE ORGPOL _MOD
43 '322'32:! 13 DﬁGPnLlN.J-K-xu.NOPY.lt XeW P ALPHA LIS »ITIJEed0 UL,
F . PR '
;n ? Frurhed s gigiN;IlLL; cg:ru':s 20 FORSYTHE POLYNOMIALS TO 20 RANDOMLY DISTRIE
ND
v ¢ TO GET 4-Tu ORDER ORGPOL MUST BE CALLED o1 TIMES WITH Je0ile24sd
" c REQUIRESewsSURROUTINE ANABEL,LA®0 IF M(1.] (x.z:.-.l--| 1F
NDA [4 RETURNSemINDEX CONSTANTS JL.JQsJG AND ALPMA,P FOR AL
¢ g NOTE CASE JaD STORED W!TW INDEX JexD
” WPH T FR
e TSt hon & BILESIT AR O] e eorscrkon sren 2 san,2
(K 61 xt AN, 2HaPIN, XD,
MEMIER DIMENSION ALPWA(KDIKD, 2} * PRINGZIL RN, 2D ENKR,2
PHIFITam(d 1) DIMENSION JS(KD) 3 JT(KD) yJRAIKN) 4 JRB(KD }
SIG2eM(44)) ¢
E [4 TART ON PiNy.Jul}
< :'.'Nn"lll
¢ REap’ 1N rlaenre0r o 1o 100
201 cony VE C:EL ANAB s
¢ ELIK KD+ JS,JTeJGeJAsJL1JRA,JRE)
READ(L4INORS 1Y
210 _:oinf ?:’LELZ?' s "'{‘°'l""ou
Tr FOR FOLLOWING FIT TESTSs') o Yo
NeNOBS H
DO 220 4m1.NOAS
nranl1-{1(3.1).x(Jizl.VIJ.I).v(J 2) éun CONTINUE
230 FORMAY({¢ XY FILE 1 ENTRY ® % ,14,5X,%020.10) <
CALL SHIFYT2(X1J4,2)? 200 )
CALL SHIFT2IY(J42))
TFINPR.GT IWRITE (I 230) 00X 1J, 1001020, Y1 1) Y 102D ° .
22 CONTINVE «N) 10eKD
I3 etevsevasrssntersantotnreat m
ot eI RMIFNGIFFFF 4
Catt LSt MaFNo T ! 240 MLURTYNL
CALL PHIINN HY JERRMAX g JMAX )
¢ oPTiomaLLY SusRESS couu.nxsni: * < +L ARE SPECIAL INDICES
20' ;3;: :: 1.u£.vv 60 Yo 70 Q.01 JRCKD
60" wETY !:;-vtv.lo " RCoMIoul] Miee2
53-1 El;"'; et e et P e o estat sttt et gndeeteests®asstistosssssesanstse I.Jk(.n)-nu
260 4
RuSa tPuY/N)OSEC SJRCMImA/R
NUye 250 €
SIGSQAePuY/NUU 4
FREMAXaNSORT (FRRMAL)4SEC 65aN <
T - PHY ER : .
94 .rnﬂlAr:? pAI AR N HH I TP §éo ‘§3"§YE‘|'?L'“ VALUES PUIadam)
VO MAXIMUM ON=SKY FRRem®, 08SHT, 18, =0,
c 2/ SI1GSO(NUI=* D)6, 30(:29 FLUNRTYST
¢ FIT ASSESMENT :rlfnigu.?) Jacake
=ACALPHA (U JRC,HIOP (11 URCIH
:UI.?.(N.MrL::IYIl"UI 320 CONTINUE
rRATI0aSIG1/S102 U9 filsdenie
c PROAE(]1,N0=FISHIFRATIONNUI,NU21)4100+00 99} FORMAT(®
a1 L9SOIPHY PHIFIT,S1GLsS1G2,FRATIONNUL,NUZ,PROS 37 EoRRAY
ser  row '/Tu'.’nlrlv.slcl-!- T440130547 FoND122,PROB® 1 FT N, 994 FORMAT
C '-l. see e0s0gvtetegrsssisssent :,5 FORMATY(
4 PLO
T1F E+8160 ToO 800 € o1
00 fie
s son 80
A s Pt
HA 0o
oo 13 o
o 1J,10)0SEC 511 AU LPHALL,JCHL
1 lJ;.NlIJIiD?;J;.gn(JI-ns( ) N TE(3.520)
"2 .
LRI 22F 10442 8K, *RESIDUALS DD DHecOSe?, 134 320 s reptsunzreny F
AL™ co
¢ ¢ +,00,7 DDEC! en
.
g '-gn.vg;-gos It
1300, *DOEC ¥
¢ AR +13 784 15: E03,610) JoMiJGLUDIJISIIUI 4TI d0 D b edLian)
H s1n 152 OFR POLSs IN XU 114%) COMPLETESGS,T4QabL,
o 13 o 700
: 0o
4 JJ
enn eun 4k SR atrua
. L J Phaty )
s2¢0 o ISERTIE So18.a70?




D.15

b= - z . - .
- ) . - -
o - . > .
- z - . a
- u . 'Y . z
~ £ - ] - -
N © . .
] ° - . . -
~ - - . . -
. - Q . . M «
. - 2 .~ . °
P - F3 w - -
z : S o - . R
= - - - M T e~ - -
- o W o< . - 2 < -
b » - . i . -
2 - e . v x -
» v . H - . - X -
- = o z s : . oz -
" < o o . . =~ -
o - z « Zu . . ax -
o @ . € s . v o= -
c 3 W z% e o S
. D - Sz o s e =a 3
~ > [y « Py z e . n< - -
. 20 - - ° e O @ s 2y - -
. -xun - - <r = s« - =0 M -
- T . [N -4 U - eU .z w -
o o 3 ‘' z < < . . == < -
b Oox H by we x - . wx w o -
: =7 z 2 e P = a - -
) wo - . = z s £ 0 . i o -
~ - > el Ce 0 . . M =
» - - « . . "
' Y “ " ™ow ol % o - 3
- ~ - - ~ x oex = n - - &
~ - ) z T & o . - - x
. Tu o - ~ oz L %2 : T e P
S &w - Z & ex = LI >z
< co 2 ° x 4 PN
> o P < * .« o n x os< " - PO
Z o wo > z ° ~ FON S -1 T = - =
T o~ ~z - « - - z o = E O X o o xo :
~ u <A~ w ~ - = N o - b < xo P
© e o ™ <o NG v " zz z 12 - - X oz ve o a W - a
o s - v O ee z ° o% = ot « s Iu= 2 ¢ - S
0% 2 b w .= - s - = S o A - « Sx M
80 ~ o ~ Sam~— z L n b z = . > o w = -
mno = o - [2-peroe ° b = s S w ove ~ © & rw nxz
. 0w = w Ppratre - - vew =z b a2 © o ° z «z -2 sl
- KA 3 - o aS & e~ > - x - - 32 o e« © A & Oem~ = XToeme
O oe - = ° ~N-azeoa o - < - = i . s T axer
- zonx - - " x ONNN a - > «-= . S T e LIRS . P
w ecxe ~ CRO=E~mn - ou .- > Iy : aos P - kzzn
- arrnenma oo e Jz - se o -3 29 o~ 2 - 2z
v x Ik moc~k “w TV o <~ w wn -~ T 7 5 M “~aD N - . - WZE e
x o T - o we z mm = 8 boo w 2 Doaliz
: : it laat w2 EDOT TS T QF -oies DuiE,,, SR8 dgget D g
o - LZITENZW =z n zZ w oz TS RsIwiii. o=z 8 - Cweenx = Ske—
-2 « reSa-za- —-— T e = ® *0 T O - pemm——— 3 - Tiuenily : =}
I o v o rarT e er — 57 x S--se—and oroivn o= o rIosoeens? ooVUES
&0 o z Dzwar<inz ©3 z un b - M d@~NE-—Z X toYan <6 = D Deem =
. ° s ¥O< 040 w o no -z oNf (QI0wE~Sw—0= & LoJxe <o - CrwEC L I ur - Guaa
o [ ES EX-DNON D Ve am<e " on Jw —— INZNQWEm>E~r D Sx <ol v I T O%avz - OO0
R ooTiiiay i OYD Lsusiiiii: () osii sE PR 030 BORCEERSINNE B () IsvEs 8 TEzE diihz 1 2323
—II~NOWTW wz JOWON W AW 551~ s a5 & xe ov— e buted n 1E z pokad b=t = PRIV
woan <00n ~ o W LhxooxOUEW Wh—a—z Win o =o 85z 23Zc-ngme—nU aw LateS = zl-ooen Sash-sTecubzziv UELQU~REU
v
o
e ° ° ° o e
c - ~ - —souu—
v - ~ U v oL v - o [VRRVTV VIR VIVIVRE -V ~u v uLuuLuLu vy [IVIVE I
LKA . = < -
v . . = = <
o o . 3 . -
- - . P “ - 2
. e . . n bt - a
< @ . . o " w z
Vo . ¢« ° z I =
c o . & «
“ o~ . < - - «
w o . 2 b < w
v e . z -
e : v w &
. ] . s a o 5 =
- - o . = . = ° z
- « .« - . . z - ow w
< w . . . = :
z. 2 1 - . . w» , - x ° -
wz 5 o . a a z :
w 4 4 3 - ~ o - =
- o - 22 S w . -
= Zw < © - . T == 2 s = <
- % - > . . H < z. 5 .
i ~ - v ° ¥ B 0 - = n n w
~Iw < w < v o w - oa °
2 nwoz - [3 < o H ow z o <o °
> €=0 ~ - < © a . oz = wz - -
- -3 . ey "o . =3 - > «v w
- s . e w “ - . ey S x z - "
- =70 - on z o o . o> ° " w
2 e S = - . = . <2 B~ . Du n «
e —win - -0 (3 e . b1 > ar o= w -
z nx - B > s o e = . 3 - e e z 3 <
z K -~ - - o ~ 0~ - . oz 'S D ~x w o
i orz » = »- & © @ o » . - 2 2% a 4 - “w
¢ s o s « z » ® - e o > o . . 44 ] e 2w F14 y - -
e W cow = ~ o ~z - = = = . : e v 2% o» z -
— ->w> z . . «o &~ & ® O . gt v e 7« e - - °
T < “Te6 - - - - P . 4 Pt b4 << Zz . 08 z - -
N W cax = - e N ~ T 7 O e . ou xu < =z -x L z Iy <
rog~ GeSe = = xIc SU M N & € 7 . vl b33 -8 e W 2. b -
e - re3 - o+ = ax L I | . R - ) 06z z © wo o o = .
3 N » o~ - AN @ © ~ O - -z o9s =X Z I, 2 8% -2 ~ - @
N2 z e~z = ~% xmx  AC A0 NeT . ~ N ra< v ws w55 foge < =
=18 CnZms < c T SOV e  NKR N~ Neo . ~NA NG ez~ I Wy B2 % o e o 5 c
c w ca—1z z - ~n ~UO~D ~& —&@ Nro . ve e Uk aLu B 23%8 or o= © z<« o0z W * -
) = »200= b o ~e emo Oop~Qo @eA ~ . e0 sO W 235 oL °Y " < o [ <
~ '3 .54 -z (] <o Bo2zTcm 0= O— e¥ e . o~ on camoo ek Sr Lt e 2 X8 o 8 o o
wo wo Te - @ e CBO =0 ANOAN MmiIn c . ~O NG CeloC il vz e = iz © - e
I3 wa Ty - S~ <% Oraah mobme ¢C14 - . vione «devw g az Zoow «- . @o
- prl - - -« e Tnne o AT AT Ta— . N e - —x3 GO o YI oz x n <-r @& ~ wo o o
@o Zwe—in - 57 WA @ SNO N TN o . ~o - s-0zuyu oz - ¢t R 453 w- c o &I~ v Zu
A < Zocar [ oty ° . us ve o cmzoce ST e 2 oy X T - oae« <
3 = e > W = - . - Sk em - e Coacee- 4 Z3 %Y o & %t w 222 -~ =z
co Tuz .z o 6  arF ¢ wemm mUNKRONES W Tmr==y ¥ - PSP a7 .
- “C -kt e © FIR CmmrEErr LoULSCWE - Cu—<se x L P SC0E Y -ed & -c
~ > aw> 7 Zx ke -0 sCCkuws esCOssCeec A~ = wume & " et L¥oms 1 8w & RE
. - - W SLWNNID OMe-OMEON & & wEL~~~ xu ¥l 2 o 2ZwT & wS e T o=
s 1 © “o fa eRN— s« NANNA RIS — 7z cwnzz wi 2222 7 0 w850 - @ e we
5 [ T e eCwnZ~e UIIUIIUIL > Q=08 Cmr o oz 2 - mmatm w Crw—Fr neAn-C
. o~ — CC=OJODNOE ¥ o SUTCmvZ EBSATRADE x e e s SEre =~ CrCu= BWZ—kx &I -
x cu z SHOLN e 8 RIEEFTO-Z 2E=UNO e mme s mmas X Z 2.4C5%2 — A - zo LoE—x - - 22z - ogiuearoOe
e - o @ JO-W—TOFO—~40«=Ornet 4 UVEOUN anmannonn S voxJumex o Txorw - = w800 TOMEIZEZVEIESI
35303 wr & > X X _wAALN-NE-RND S ZT D +008ECO sesesanes I3 ag AL~ -4 SEl%n & & Argae —zC—Gu -o—@
Seemx  >-n o rE>¥8800> o JI-BO»-arO sPROCHE ———ANANMA® JrC re oS —an-c Y1 34 tifuk LEOXC CLOEFODON
couEC %u30 wZF 35101 -00I0LOWOLORILOWT  ——ee CZTZIZOTI2Z2 JUE P ot-S--Susadirnt4 22 22 2 ¢ Iogee =20 R. Cieles
- T SO R N—OZ80 COBOU—E—E i W FUNUNOIN NENACEBPAN URW Lhecaraxw -
3 - <
o -~ [rvIvIIvIvIIVIY) v v - &~ -
v vu ~ ~ e v ou - ~u 9 v v v v v e v

INITEAL

INITIAL PHle®eDIS, B,

FNo®,NF A G,SCALE)

sWsPHIOIWORST, {WORST)
SPIRAL ALGORITWM

ES
ARE+. ")

HIO
N
WK WNS1XsPARM,DF ,KOUNT2)

1S ASSUMED+")

NOBS

B IE AT AR TR IR AR IS R A RE )

TINN CANFLICT NORS<N.

R Xa¥ NATA.

ACQ 0P

3



Ann
2

Annn

22-

Z=ONNAQDNNAD S 4D 440400 Am—nid @

ety
GoGMAG)
foscln-o!r

A

3 1280

o CYOR T. 4 GRADIENT G , AND SIN , COS GAMMa,

CALCe TavLO USE GTEMP AS TEMPORARY PARM VECTOR.

00 290 e,

QT(NP(J)-'AIN(JDOV( )

CALL FCTNIN,M .x.us-:.c'zu'.ru xouuvg

CALL PM1(NJNS,Y . FNyw nnv.!uus 1 IWORST)

TESY FO R EPSILON CONVERGENCE,

1TESTeg

D0 310 ywi,x

TESTeDABS(T(JI)/ D

IF(TESTLGTLEPS) 1T

CONTINUE

IFIITEST,£0.0) &0

TEST Pur OF TavLo

]C(PNY.%Y.PHIaI [

1S T ORTGINAL TAY

IFLISefQel) GO TO

[NTERPOLATE A1 ONG

IFIPKY,GEPUYT] G

TAYLOR DIRN. INTE

EVEN’O.ARV CODING,
A

352210018
H20E Lureree rEouIneD SPIRAL NOe*y13)

GENFRATE SPIRAL.
ARUSAMy)
Pe

SAVE OLD T a5 al
00 810 Jwi,x
ALJ{K:IIIJD

PHY

I[SEALF GRADIF"T VECTOR TO SAME. MAGNITUDE AS CURRENT TavLOm veCTOR
o™

2X)sOLD PMI AS PHYT.

)
3
A
A
G

»
0
&

MR-
"

}s00)-RONX 00z
wGA

I1F. INTE®P, ALONG SPIRAL REQUIRED,

0 T0 1}
'nlﬂu!-'ulnul’-(SAVHUI-SAVNUI)IlSanuJ SAVMUY)
PHIMUZ,GESTEST) GO
PHIMUZeGEePHIMULLORGPHINUZ.GELPHIMUI) GO TO 1100
FRPOLATE AIONG SPIRAL

FoRN ORARY Pl" VECTOR GTEMPaPARNSS
00 990
GTEMPL (Jronttos;Jl:ltta; (d)
CALL F K HS X, 6TEM QUNY

L e R ML IR T LS

FL SPIRAL POINTS ¢ Puy VALUES.

1re n YO %80

1P n 1o '70

Huy

"yl

say AVMUY

My

"yl

('3}

Teorarur

Pu'.Lv.-ulnl cu T0 2000

4

DRIC
100207209 P3)1/tQ1%Q240))

rn POINT
SH/11.07=DHUDIYSCOSGAN)
Tal

A!IIIONKI-I-DDI-ﬂDNll"Z
oMyeSIN

MMA
TaenCoSt
IN{THETA

D=DMU)

RET
1/t

60 Tn 2000

ALONG SPIRAL. MU,PHY® *,2015.8)

1F ALL POINTS ON SPIRAL ARE DONE.

CHECK
xr(Anu.GE-A-uz) GO rc ts00
L)

14 Nc CALCs NEW

1®

l“U'l-OOuA"H/(l.DO‘A"U’

€0 Y0 %00

CHECK IF ALL SPIRALS DONE.

Os4) GO YO la0D

3 :gv TAYLOR VFCTOR + RETURN.

Jel.x
1/72.00

RCH STEEPEST DESCENT DIRNe

Mig)e
.K.NgnluGT[NF.VN'IOUN'l)
S, v-ru.u.’uv.wuks'.lunls')

z ozo3
=

16} Gn YO 2000

o

(JII/ZUDARSIPARNIU) I+ TAUY
ITEST =}

60 To 1r00

e0s0ssesereravsscngecans

FuT CONVERGENCE.
PIRAL STEEPEST DESCENT CONVERGENCE')

wen

MVERGENCE,
SPIRAL++eEPSILON CONVERGENCES")
1ON FINALTZE + PRINT,

10) lY[lvvnv.lS.lP.Kﬂuqu

ITER NO ?l
AL PARM Vr(vuu rcLLous-

.
KOUNT2
dee,r

1521P=e 214, 0 KOUNTY,2w

(lo.O-StIIE! FOR DPH!,

AAnAAANNAN A

n

CALL SMIFV(GYF!P())I
D0 2130 X
OPIENQ:TE!'(J)I’[Q
SPARMBGTEMP(J)/
WRITEL3,2

l?nlJ.GTE"PlJl.D!A.N SPaARM
PARM NOe®,(%4,015+8,"

RAD *4F1245,* DEG *,Fllen

sevese

My PHY
214,215,

203n
4
<
H
40no
4ot
KTLE TRY AGAIN WITH LAMDA® *,015,8)
eMIK NSIY I FNIW NP A LG, SCALE)
oSCALE(U)
s4LAMDA
400y
Koty leF=1S.1€R)
15 340
FR
<
<
€ . READ FajgL
01a wRITEI3.4011) Nvam
401t  FORMAT(//7°% RrAD ROUTINE FAIL®+1Ss° VARIABLES AgRE Apaps®)
RETURN
4
E GAMMA FalL.
4020 WRITE!3,4021) GAMMA,COSGAM);SINGAM
4021 rg:::;(///' ANGLE GAMMA GT P1/2, ANGLESCOS,SIN® * ,3D15.8)
END
< ELTex TIME MON e3
R SU!'DUT]N( STIMEITJIoELONGeSToEQUIN,MEAN)
3 COMPUTES LOCAL SIDs TIME (MEAN [F MEAN®Q,APPARENT OTHERS
¢ N RAD: FGA ELONG & EAST LQNGs (RAD}, AT UT, TiaJutiin e
¢ ALSO GIVES EQUINSEQUATION OF EQUINOXES IN RADI
IMPLICTIT REALeB(AeH,0eZ}
P1=3.1415926535897930n
c P10=P1/189.00
Te1y
UelT
REFeTy+D.500
v-(vns 329150204001 /34525:00
160923925.8340008640184,542009Tu*0s0929000TUSTY
'GO-STGO!!I/!)ZUQ-DO
THETA=1+09273790924500404589D-10e Ty
T6551R0s 07 J~TREFI*DTHETASPI®2,00
TeSTGeELONG
IF(MEANIEG.O) GO YO 10
*aCOMPYTE EBUATVON 0F EQUINOXES
PARAMEY w EQUINO
141
5200837 w2e70740,220~
RHITRE HaH 0.220~5eTee3
co*4d . AD=20Tvege 8890~
c63eTaTe0e0l20Tot ‘oo 1700 108%0-507003
*0,048279TeT1 /3400
5620039.0340333307°°°

P00000800000040000000 080000000000 00000ste L34
INCLUDES ALL TERMS W]TH co:rrs > 0.0
DFHI'-IIY-Z)??‘U-DI’l?'V)'DSIN(UM’OO-IOICO
CNIFeFeD=D4ON+ON}¢00124190SINILD}=D,0497

C2140SINIFeF=n~ B-\D.ouooul-n-ullq-nsln (Fs

DPHIRDPKHI=0¢203700SIN{FIFIONSON)o0,06750DS NI
5)-0-015]lbinlL'r‘rooN'Onl-ﬂlDl“"DSIN
EPSOR23,4%5229¢00~
o'ul-ovu&br|013 00
EPSOsEPS
COUXNnnPN!‘nCDSIEFSol
STeSTéE

N=STeQ SDDIDI
ST=STeNeZ,0N00P]
RETURN

ENOD

TDATIN

ELYs) o TDATIN(TELSCOPE DATA l"'Uf ROUTINE) MOD & 5,
UllﬂUVlNE 'DAYIN(N K KDyNOPT, X, ¥}

[}
YDIV!N l[Aos NOs OF ORSVNS (NOBS) ¢
CHECKS NORS VS N & FILLS ARRAYS x,v,

NOPT(11®1,2,3 PRINY OPTIONS,®% PLOY DEC/HA,

NOPT(2)wD REPLACE NeNO OF PTS BY NOSS READ INe
Ll USE N A4S NOe OF PTS [F NCNOAS.

*0 ‘NILD‘F’V-D-D‘O +0N1+0.0
=D=De0

N}
Lieg N{FeFeON
+0.0 r‘r-LouN

D=D}

UDDIJBIZSDD'T =leb4D=40T00245:03p=70Ve0)

XY OATA FROM FILE 13 (SEE TA)

VARIABLES FOLLOA,.

”‘Jngili'lbs)leY’JDQ

NPRENOPY(])

READ FILE 13 FOR NOAS

READU13} NOBS

1F{NOPT{21,NELD) GO -TO 20

NaNDBS

108SeNGRS

WRITEFY, 1) NOBS
_f RMAT(' Q@INeNO, OF DATA PTS 1S RESET TD SULT Noa. OF OATASETY,
1 Teléd B

60 Y0 310

IF(N.GT.NORS) GO TO 40

1085aN

WRITEE3,12) NN

zgn:SV¢; NO. OF u.r. PTSet,16,% DATA SET OF¢,l4,+ ENTRIES 1NPUT?Y)

3
VR!Ytglxl
FORMAT{® 905 NPTION CONFLICT NOBS<Ne NOBS 1S ASSUMEDs®)

TORS=NOAS ¢

Yeoa1dsvede2)

FIND rul

RMS FTCa,

SIN GAM®®,

05!"(3.00-0“)-I.272.0DSI



DELTARIY(J 1 )oT(U, 1)) 002etYE0,20aX{ts2))0e2eDC05 (XK (Us1)1002
Pulapupe

?
SEC
QMS  OMAX , JHAX
21~ L * ORSe *,D20¢104* RM5 ERR(ARCSEC)m* FI0.2,
. S NOe® *4F10e244X415)
c
MAY ,YH,'DEC*,0)
¢ ecesssrctense
< LESCOPE POINTING ERROR FNo
c TURNS W(J,1)®1s0sW{J212})%COSINE DECIJ)
REEa1baXEr,2)emit 1) oW(142)
a2y .83 :
2
¢ ZALPHIY
¢ IVEN TOPOCENTRIC HeAw DECS
OS(HA)+DSINI(PHIIeDSINIDEC)

nELYA) 50 TO 200




E1

APPENDIX E; reprinted from Proc. I.R.E.E. Aust. March . 1973.

Summary: A method of converting a standard frequency
(referred to either the mean solar or atomic sccond) to the
equivalent frequency referred to the mean sidercal second is
described. A voltage-controlled oscillator on the sidereal
frequency is mixed with the standard and the .dlﬂ"crcncc
frequency phase-locked to a signal derived by division of the
standard. A long-term conversion accuracy of better than

50 ms per year is possible.

A Phase-Locked Solar to
Sidereal Frequency Converter

G. R. HOVEY*

The production of sidereal time for the use of astronomical
observatories and deep space tracking stations usually in-
volves the generation of frequencies referred to the mean
sidereal second from standard frequencies which are referred
to either the atomic second or the mean solar second. Exist-
ing methods for converting a *‘ solar ’ frequency to the same
nominal ‘ sidereal’ frequency usually employ integral
dividers or mix the standard with a separate free-running
oscillator and do not have a conversion accuracy comparable
to the long-term stability of the oscillator they convert.

Consider the difference frequency, f; , obtained by mixing
the standard (solar) oscillator of frequency f, with a voltage-
controlled crystal oscillator (VCXO0) which is on the required
sidereal frequency, f, .

£, o £y — £, )
Assuming the solar frequency, f,, 18 exact. the fractional
error of f, is given by :

Ay _|AGHE)] | AL | AG A 6
f, l f,+1, l !f1+fsl_-|f1i 1fsiAf1 B
Thus the fractional error of the required sidereal frequency
is less than that of the beat frequency, f, , by the factor f;/f;
With the adoption in January 1972! of the atomic second
as the mean rate used to generate solar time the .ratio of
sidereal frequency to atomic frequency is given by :

f,/f, == 1.002 737 939 3 : (3)
while the value for the pre-1972 solar rate is*
1.002 737 909 3

Thus the factor f;/f; is independent of the actual frequency
f, and is

/6, == (f, — £)/f, ~ 2.74 x 10-3 (4)

*Department of Engincering Physics, Th;-_‘l.\-\jstra;iinzrl.—Nutinnul
University, Canberra, A.C.T.

Manuscript received by The Institution September 20, 1972,
U.D.C. number 621.314.26.
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Clearly, if we phase-lock the beat frequency. fy.0 to a
reference frequency, f’;, obtained by division from the
standard f;, the eventual error in f, (due to the fact that
we can only divide f, integrally) is less than if we were to
obtain f, directly. Optimum conversion accuracy is obtained
by deriving f’; from as high a frequency, f, . as possible but.
employing a low frequency at which to mix the signals and
therefore a low difference frequency. This is the basis of
the system shown in fig. 1 in which f, is 5.0 MHz. The refer-
ence frequency, f’;, is generated with a fractional error of
5.26 x 10-7 (5.33 x 10-7)t and thus from equation 2 above,
the fractional error in f, is 1.44 ~ 10-° (1.47 x 10 ?)t.

vC xo Output.
5MHz. f2 2 g
| Mc/sideral |
Stondard. @ 5 ‘/:; o

fi fo-fi
error
. Digital Digital signal.
Divider. Divider.
+365238 -
(+365242) 1000

13-6896965 Hz. | 3
(13-6895465)

fs

1368970370 Hz.
(13-68955377)

Phase
Detector

Figure 1.— Phase-locked solar to sidereal frequency converter.
Frequencies shown for 5 MHz atomic frequency standard with values
Sor pre-1972 solar rate in parentheses.

For the frequencies shown (fig. 1) the system has a conver-
sion accuracy better than 1.5 parts in 10° or in terms of
cumulative error approximately 45 ms per year. This is
substantially better than the ageing rate of the standard,
which is in our case a HP 105B oscillator (ageing rate 5 parts
in 101° per day, approximately 5 seconds per year).

In the prototype tested the phase detector is a TTL logic
bistable and the input to the active filter is a 13.7 Hz square-
wave with a mark-space ratio dependent on the phase dif-
ference between f; and 3. As well as defining the loop
performance® this filter serves to integrate the squarewave.
With the loop locked the control voltage to the VCXO has a
13.7 Hz component of approximately 140 mV peak to peak
amplitude causing a frequency swing of 100 Hz (peak to
peak) in f,. This is not considered important since the
projected use demands only long-term accuracy.

The loop damping with the filter time constants used is
quite poor and an improvement in damping factor unfor-
tunately necessitates an increase in the amplitude of the 13.7
Hz component in the output. This can be avoided by using a
higher frequency for f, , for example,

f, .- 136.89 Hz,

in which case f, would be divided by 36524. - The compromise
is reduced long-term conversion accuracy, since now

Afy!
£

and this would represent a cumulative conversion error of
approximately 400 ms per year. )

1.35 x 10-¢
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