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Additional Comment (N.B. the relevant page is given in parentheses).
(1.2,1.3) The argument of the first 3 lines of page 1.3 is

somewhat specious; radio source position accuracy 
could, perhaps, set pointing accuracy goals for 
optical instruments but not for steerable radio 
instruments.

(1.14) In addition to the treatments of software pointing
correction by Meeks et al and Minnett et al, the 
author's attention has been brought to CLARK B.G.
'V.L.A. Telescope Pointing Analysis;' V.L.A. 
Computer Memorandum No. 104, N.R.A.O. June 28th 
1973. This memorandum describes a proposed syster 
of pointing corrections for interferometer antennr 
involving least-squares fitting of azimuth/elevati 
pointing data for the parameters of a linear mode.' 
describing axis tilt, zero offsets, collimation 
error, secondary structure sag (sine of zenith 
angle) and receiver feed location. As in the 
author's own work the R.M.S. pointing error is 
minimized and proposal (similar to some of those 
in Chapter 5) given for automatic updating of 
pointing dara.



(3.18)(3.18) . 'Composite fitting,' that is the use of an ini­
tial model fit followed by a surface fit, was not 
attempted with the pointing data from the Mt. 
Stromlo 74-inch since most of the improvement 
obtained'from the model fitting was (in this 
case) due to parameters (like encoder offsets)
which are also involved in a surface fit. 

(5.3 point iii) Rejection of data points which appear to be
spurious with respect to a trend must depend upon 
the total number of points and the statistical 
nature of their distribution. The advice to 
reject all those displaced by more than twice 
the standard deviation is wrong and not consis­
tent with the preceeding discussion of outlier 
rejection. It should also be mentioned that 
fitting with the L 1 norm may be more useful for 
locating outliers than least-squares fitting.

(5.5,5.15) Consideration could be given to improved methods 
of storing the results of a fit which would fac­
ilitate the evaluation of such fits when using 
small computers. Further work in this area 
should include a reappraisal of the storage- 
requirements/numerical accuracy compromise men­
tioned by Cadwell and Williams (1951).

(5.5 footnote) With regard to the number of bits precision 
required for various calculations, it should be 
noted that where angles (and simple trigonometric 
functions of them which are also periodic) alone 
are involved, the use of double length integer 
representation (32 bit two1s-complement) on 
small 16-bit machines provides adequate accuracy 
and also high speed.

(A.6) Slight inconsistencies exist in the accuracy to 
which the various correction formulas in Appen­
dix A are given. The elliptic E-terms are 
usually less significant than the correction (in 
aberration) for the barycentre of the solar 
system, and also the additional term in the ex­
pression for z^ in equation A. 13, neither of which 
are given.

•

The author is indebted to Dr. W.N. Brouw, Dr. A. A. Hoag and Dr. M.R. 
Osborne for discussion concerning the above points.

G.R. HOVEY.
May, 1974.
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ABSTRACT

This thesis is concerned with the pointing errors of astronomical 
telescopes, and examines means for their reduction which do not involve 
physical modifications to the instrument itself. The current trends in 
ihe engineering design of telescopes, which are relevant to pointing 
performance, are discussed in the introductory chapter, which contains a 
comprehensive review of the literature on the subject. The problem is, 
having sampled the pointing errors of an instrument at various points on 
the sky, to devise a numerical approximation to that pointing error data, 
which will enable the prediction of the error at a desired point of ob­
servation. Two distinct approaches are possible: model fitting when the 
causes of pointing error are known and quantifiable, and surface fitting 
which is more general. In Chapter 2, various algorithms for estimating 
the parameters in (nonlinear) models of the pointing error are investig­
ated using data generated synthetically from a simple, but representative, 
error model. ’Descent’ algorithms are shown to behave extremely poorly, 
whereas certain ’Gaussian-type’ algorithms prove quite successful, even 
when the necessary model function derivatives are obtained by numerical 
evaluation, rather than analytically. Chapter 3 describes the generation 
of orthogonal polynomials in two dimensions, and their application to 
producing surfaces of optimum fit to the pointing data. The constraints 
on the manner in which pointing data can be acquired are severe, and 
their effect on the surface fitting procedure, and statistical properties 
of the fit, is described. Chapter 4 discusses the application of model 
and surface fitting to real data from a typical telescope of moderate 
size, and shows that the ultimate limit to the pointing improvement is 
set by the non-repeatable or hysteresial errors. The problems involved 
in devising error models are discussed, and an algorithm which permits 
efficient and simple experimentation with a given model is presented.
The factors governing the choice of whether model or surface fitting 
should be employed, and estimates of how much data is required for satis­
factory fitting are given, and the limitations of using model estimation 
techniques for locating and measuring the physical causes of error are 
delineated. The concluding chapter, Chapter 5, considers the practical 
implementation of computer pointing error correction. Two cases are con­
sidered, the generation of error fits to a previously collected data set, 
and an automatic correction package, which is unseen by the observer, and 
which progressively improves telescope pointing with the accumulation of 
fresh pointing data. The problems of implementing such a package are 
discussed, and hysteresis singled out as the most general and serious of 
them. Suggestions are made for future work in the areas of mechanical 
hysteresis, improvements to telescope collimation and instrument change­
over procedures, and improved methods of approximating two-dimensional 
data. Appendices include an algorithm for mean to apparent place correct­
ion which is more suited to a real-time environment than the classical 
method, a discussion of ambiguity errors in gear driven digital shaft en­
coder pairs, and a description of a digital co-ordinate readout system 
designed by the author; the latter employs optical shaft encoders, a 
small computer, and a solar to sidereal frequency converter of the author’s 
design, and is currently in service.
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PREFACE

Telescope pointing errors, vhilst by no means a major concern of 
astronomy, are highly detrimental to observing efficiency, and much of the 
effort in recent telescope design has been directed towards their reduct­
ion. The bulk of this effort has involved improved structures, drives or 
optic supports, and, although it has yielded beneficial results, tele­
scopes still point erratically by tens of arcsecond. Here the philosophy 
of approach is to reduce pointing errors by computer correction, rather 
than by locating and remedying their causes. Its justification is three­
fold: (i) no single technique has so far proved universally effective;
(ii) it is usually prohibitively expensive and time consuming to modify 
telescope components physically; and finally, (iii) computer or ’soft­
ware’ error correction is an ideal remedial measure for existing (partic­
ularly older) telescopes.

The idea is not new, being cited extensively throughout such refer­
ences on telescope construction as the proceedings of the I.A.U. symposium 
number 27 (1965), and those of the E.S.O./C.E.R.N. conference (1971). 
However, very few of the references give details of the exact methods em­
ployed (or proposed) for error correction, nor the results of their 
application, if any. There is certainly a need for a comprehensive treat­
ment of the problem, and this thesis aims to fulfil that need; it 
considers the general mathematical problem, the problems of pointing data 
acquisition, and the implementation of software correction methods on 
typical telescope and computer hardware. It is written for astronomers 
and telescope engineering personnel, and thus is apt to contain more 
lengthy descriptions of algorithms, calculations and definitions of terms 
etc., than would be the case were it aimed at the numerical analyst or 
computing theorist. It seeks to unify the astronomical, engineering, and 
computing aspects of the subject.

Although a factual summary of the contents appears in the abstract 
preceeding this preface, a brief mention of certain points of originality 
in the thesis is appropriate here. Although the model estimation algor­
ithms used in Chapters 2 and 4 have been culled from the literature in 
the field, they have not, to the author’s knowledge, been applied to model 
functions of such complexity before, nor to telescope pointing models as 
such. Since the success or otherwise of such algorithms is highly problem 
dependent, it is fortunate that some of the better algorithms have been 
shown here to be eminently satisfactory on the problem. (Certainly they 
behave sufficiently well as not to warrant effort to devise better model 
estimation algorithms). In Chapter 3 appears the first complete present­
ation of the computation of two-dimensional orthogonal polynomials suited 
to practical application; only a few treatments of surface fitting with 
a general data distribution occur in the literature, and these are far 
less detailed and lack a discussion of the statistical aspects of surface 
fitting. There appears to be some confusion amongst many telescope design 
and maintenance personnel as to the role of orthogonal polynomials in 
fitting. The author has often been referred to some specified standard 
polynomial sequence ’because it may prove more effective than others’. It 
is important to note that, once the dependent co-ordinate variables have 
been chosen, fits generated with different types of polynomial produce 
identical results, given unlimited arithmetic precision; however, orthog­
onal polynomials are optimal because they aviod the most serious causes 
of numerical error, and (once the polynomials are generated) involve less 
computational effort.

The scheme in Chapter 4, for compression and expansion of matrix 
equations, which permits the selective inclusion of model parameters in
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model estimation fits, although simple, has not previously been reported.
It is more versatile than similar ideas in regression analysis, and more 
applicable to the type of data fitting problems encountered in the physical 
sciences. It is hoped that the authorTs original proposal for an automatic 
software correction package (in Chapter 5) proves a stimulus to workers 
involved in telescope design and operation. By and large, authors in the 
literature who consider the topic, can be divided into those who deem soft­
ware pointing error correction prohibitively difficult to bother with, and 
those who propose to implement such a scheme, but fail to allow for the 
numerical and statistical problems involved. Here we establish the feasi­
bility of software correction as well as delineating its problems and limit­
ations. Two further original pieces of work appear in appendices. The 
computational method of mean to apparent place reduction in Appendix A is 
more suited to use in data processing, or telescope control tasks than the 
classical methods, which involve extraction of data from ephemerides etc.
A very similar method has been published by Harris and Large (1967), but 
this was unknown to the author at the time Appendix A was written. Greater 
detail and explanation is given here, but the method does not differ sub­
stantially to that published. An improved method of converting a frequency 
based on the solar (or atomic) second to the equivalent sidereal frequency 
is given in Appendix D, and was published in Hovey (1973). The prototype 
converter based on this method is in service at Mt. Stromlo Observatory, 
A.N.U.

Finally, the author would like to thank personnel of Mt. Stromlo 
Observatory, Department of Engineering Physics, the A.N0U. Computer Centre 
and others for their suggestions and help in this interdisciplinary project.
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CHAPTER ONE 
INTRODUCTION

(1.1) TELESCOPE POINTING- AND POINTING ERRORS

One of the most demanding positional control problems is the pointing 
of large astronomical telescopes, be they optical or steerable radio 
instruments. The initial acquisition of a celestial object (setting) 
involves orienting the telescope so that the co-ordinates read from the 
telescope axes match the known co-ordinates of the object. In practice, 
the position of the instrument’s optical axis on the sky differs from the 
position given by the axis readout and the telescope is said to exhibit 
pointing errors. The magnitude and nature of these errors depends on the 
accuracy of the axis readout system and how directly it measures the 
position of the optic axis, i.e. how near the control loop illustrated in 
Figure 1.1 comes to enclosing the optic axis.

The necessary co-ordinates of an object are usually obtained from 
the known mean place of the object at a given epoch by applying correct­
ions for proper motion, parallax, precession, nutation and aberration 
which results in the apparent place in the declination/right ascension 
co-ordinate system. This is transformed to a topocentric declination/ 
hourangle frame and a correction for atmospheric refraction applied.
Unlike the five astronomical corrections, refraction depends on wavelength, 
on environmental variables such as atmospheric pressure and temperature, 
and cannot be exactly predicted. A correction algorithm which is more 
suited to the on-line computation of such co-ordinates than are the class­
ical methods is discussed in Appendix A, and even when approximations are 
used, the resultant topocentric positions are one or two orders of magni­
tude more exact than the pointing capabilities of existing telescopes.

To distinguish between the position of the telescope in its own frame,
and the variously defined and derived astronomical co-ordinate systems, the
term ’attitude’ will be used for the former. After the telescope is set,
it is usually required to ’track’ (follow) the object; this may be done
open-loop with manual adjustments to the tracking rate (guiding), or by a

@closed-loop system for example autoguiders or startrackers . Tracking

@ Such exactitude is unfortunately necessary here since much of the 
relevant literature particularly in the space technology field 
features rather more loose usage of this terminology; see, for 
example Smith (1967) in which there is confusion of ’tracking’ 
with 'pointing’ and an error in the formula for resultant on-sky
error.
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methods and accuracies will be considered only in so far as they are re­
lated to the pointing accuracy of the instrument in question, and the 
author is concerned only with the case where there is a considerable com­
plexity of structure, bearings, gears and mechanism between the closed 
control loop in Figure 1.1 and the optic axis. Nor are we concerned as 
to whether a human operator or a computer mechanism closes that loop. 
Automatic systems which close the loop around the optic axis itself can,
of course, attain appreciably higher accuracies than blind pointing,de-

fapending on the mass of the element controlled ; see for example a survey 
article on star trackers by Seifert (1969).

It is difficult to assess the effect telescope pointing errors have
had on astronomical research. Until recently in optical astronomy they
were accepted with resignation. Although astronomical data and observat-

@@ions are relatively unaffected by pointing errors , such errors cause a 
serious loss of observing efficiency. Astronomers become quite adept at 
visual recognition of star fields even when reversed by the telescope 
optics, and although such visual identification may never be obviated by 
improved pointing, the time required can be substantially reduced, since 
the star fields used can be commensurately smaller for increased confidence 
in the blind pointing accuracy of the instrument. With the increasing use 
of image intensification, video techniques and other fast electronic means 
of data acquisition, the time taken to set the instrument and locate the 
object is becoming a larger proportion of the total observation time.

Radio (and Infra-red) telescopes cannot directly form an image of the 
field and thus position determination is contingent on the pointing accur­
acy of the instrument. Certainly a more concerted effort to reduce point­
ing errors has been made by radio astronomers, for example, Struve et al 
(i960), Minnett et al (1967) and Meeks et al (1968) . With the growing
emphasis on correlating optical and radio sources and the increasing 
density of sources as instrument sensitivities improve, pointing accurac­
ies will assume yet greater importance. The accuracy of interferometric

i

@ Often an autoguider or startracker servos a secondary optic surface 
or focal station rather than the whole instrument, allowing a much 
higher servo performance.

@@ Since, for example, position determination relies on the measurement 
of standard stars using instruments like transit telescopes and 
photographic zenith tubes (which are small and designed specifically 
for such work), and on offset measurements from such standards on 
photographic plates.
It is interesting to note that some of the better radio instrument 
pointing accuracies quoted are better than those of many optical 
telescopes.
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position determination of radio sources is given by Fricke (1972) as 1 to 
1.5 arcsecond in right ascension and 2 cosec & arcsecond in declination 
( 8), and this sets a useful goal for the pointing accuracy of steerable 
instruments.

As veil as degrading the efficiency of large conventionally operated 
telescopes, pointing inaccuracies constitute one of the major obstruct­
ions to the automation of astronomical telescopes. Maran (1967), Baker 
(1969) and Clarke (1970) cite automation as one means of increasing the 
efficiency of astronomical research, but it is only in the case of space- 
borne telescopes operating with closed-loop control (startrackers otc.) 
that any degree of success has been achieved. Although there is currently 
little interest in completely automated ground-based telescopes, more and 
more telescope operations are becoming computer controlled, and a suffic­
ient reduction of pointing error would permit telescope setting under 
program control.

Suitable pointing accuracy goals for proposed optical telescopes 
abound in the literature; a frequently occurring figure is ±5 arcsecond 
cited by Hoag (1965), the Anglo-Australian Telescope Project, Kitt Peak 
National Observatory, and others. To facilitate precise offsetting from 
an object already set on, e.g. when observing an object invisible to the 
astronomer, a differential pointing accuracy of ±0.1 arcsecond is suggest­
ed by Hoag (1965) and a similar figure is often given for the drive system 
tracking accuracy. A limit to the required pointing accuracy is set by 
the image diameter determined by the seeing and the optical aberrations 
of the instrument; Boven (1967) gives 0.5 arcsecond for a typical image 
diameter caused by the optics, and 1 to 1.5 arcsecond for average good 
seeing. So although offset positioning could use almost any attainable 
accuracy, a practical figure for initial pointing accuracy of about an 
arcsecond is suggested here; the reduction of telescope errors to this 
level would be of substantial assistance to astronomical observation.

The past decade has seen an intense world-wide effort to construct 
versatile large optical telescopes, and review papers exist which show 
the dominant design trends, for example Baker (1969), and Gascoigne (1970). 
A summary (unfortunately incomplete) of some of the larger optical tele­
scope projects at present under way was obtained from the ESO/CERN pro­
ceedings (1971), Solf (1971) and Matara (1969) and is given in Table 1.1. 
The figures for pointing accuracy are quite probably inconsistent (some 
are R.M.S., others peak etc.) but show that even with careful design, 
pointing errors are expected to amount to some tens of arcseconds. A 
similar summary gleaned from Findlay (1971) gives the pointing accuracy
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of several millimeter-wave radio telescopes of various apertures and 
mounting types, and it can be seen from Figure 1.2 that the pointing 
accuracy of these structures is often only a factor of two worse than 
their optical counterparts.

(1.2) POINTING- ERROR CAUSES 

(1.2.1) Mountings

A telescope mounted in an earth-bound frame must be rotated about two 
different axes to observe any point on the available celestial hemisphere; 
one axis is fixed in the observatory frame (primary axis), and the attitude 
of the other (secondary) axis varies as the instrument rotates about this 
primary axis. Some space and airborne telescope pointing systems are of 
necessity more complicated (e.g. three-axis gimbals), see for example 
Fosth (1969) or Wischnia (1969), and these are not treated here. The prim­
ary and secondary axes are invariably orthogonal for reasons of independ­
ence and convenience, and it is the orientation of the primary axis, together 
with the position of the necessary bearings and loads, which catagorize 
astronomical telescope mounts. The following discussion assumes an optical 
telescope, but radio dishes have much in common. A more detailed and 
illustrated description of mounting types is given in a survey article by 
Bahner (1967).

An alt-azimuth mounting has its primary axis vertical, and thus is 
perfectly symmetrical with respect to gravitational loading; the second­
ary (altitude or elevation) axis keeps a constant attitude with respect to 
the vertical during rotation about the primary (azimuth) axis, and so the 
mount is expected to have the least gravitationally induced pointing error 
and the lowest mass for a given aperture (Mertz 1971). Owing to the re­
stricted range, a simplified drive system, e.g. a hydraulic ram, is possible 
on the elevation axis. To track a celestial object, both axes and the 
focal station instrument mounts must be driven at varying rates, and because 
of rate limitations there is a dead-zone around the zenith, an area which 
is important to astronomy. Vaselevskis (1965) and Kühne (1971) have con­
sidered the necessary practically attainable drive rates for the axes and 
Kühne (1971) a complete plate holder rotation servo; they conclude that 
the advantages of such mounts are quite realizable for astronomical pur­
poses. The largest optical telescope to be designed, the Soviet 6 metre 
instrument is alt-azimuth mounted and has occasioned a number of Russian 
studies, such as Mikhelson (1970). The control of such a mounting re­
quires a computer, but for large instruments this constitutes a very small 
fraction of the total instrument cost; few radio instruments over



27 metre aperture are other than alt-azimuth mounted (Findlay 1971).

The equatorial or polar mounting has its primary axis directed close 
to the celestial pole, and thus a uniform drive rate about the primary axis 
alone is sufficient for tracking purposes, there is no serious dead-zone 
and, to first order, no field rotation except at the coude focal station.
Its simplicity and convenience has so far outweighed the fact that its 
gravitational asymmetry causes serious pointing errors and bearing problems. 
Many versions of the polar mount exist, the main ones being the English 
crossed-axis mounting, the fork, the German or asymmetric mount, the yoke 
(a fork with extended tynes joined and supported on an upper bearing) and 
the horseshoe modified yoke in which fork tynes are joined by a large 
horseshoe structure, near the declination bearings, which acts as a support 
bearing and rigidities the tynes. Since there is access to the pole, 
good structural rigidity, and a large radius upon which to drive the polar 
axis, the last mentioned is becoming more commonly used particularly for 
large instruments.

The English mounting (Sisson 1965) requires a large counterweight on 
the end of the declination axis opposite the tube, and flexure of that axis 
can cause severe decollimation of the four-mirror coude focus. It is be­
coming a less frequently used mounting for large instruments, the McDonald 
observatory 82-inch and 108-inch telescopes being two of the largest 
English mounted instruments. Most polar mounts, with the exception of the 
fork, can be tilted slightly to remove the effects of flexure of the polar 
axis and to some extent refraction, e.g. Arend (1951) and Bowen (1967). 
Flexure of the declination axis of a polar mount causes pointing (and 
tracking) errors. With a fork mounting however, it also causes field 
rotation which can be eliminated only at the cost of an increase in the 
declination pointing error; Yaselevskis (1962) shows that it is possible 
to design fork tynes which minimize both field rotation and pointing error 
in hourangle at the cost of the declination pointing error. Yaselevskis 
considers the rotation to be the worst effect but Kühne (1957), by seeking 
to minimize the average pointing error over the sky, derives a latitude 
criterion for a choice between a fork and crossed-axis mounting. Unfort­
unately the criterion is somewhat arbitrary since it is critically depend­
ent on the nature of the function averaged and the function used is not 
necessarily the most appropriate.

Various modifications to the fork mounting exist; the fork tynes 
may be bent for ergonomic reasons such as ease of access to instruments 
(e.g. 98-inch Maura Kea, Hawaii), or as in the case of the Isaac Newton 
98-inch the tynes may be rigidly mounted on a large oil pad borne disk,
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w hich  s e r v e s  as  t h e  p o l a r  a x i s  ( S i s s o n  1 9 6 5 ) .  C o m p le te ly  a sy m m etr ic  d e ­

s ig n s  e x i s t ,  e . g .  M eine l  (1971) ( s e e  a l s o  M eine l  i n  K u ip e r  I960), and  can  

a f f o r d  g r e a t  c o n v e n ie n c e  o f  o p e r a t i o n ;  t h e y  a r e  common up t o  60 in c h  

a p e r t u r e  b u t  become e x c e s s i v e l y  m ass iv e  i f  u s e d  f o r  l a r g e  i n s t r u m e n t s .

O th e r  o r i e n t a t i o n s  o f  t h e  p r im a ry  a x i s  a r e  p o s s i b l e ,  f o r  example t h e  X-Y 

m oun ting  w h ich  h a s  i t  h o r i z o n t a l  and  ( u s u a l l y )  d i r e c t e d  n o r t h - s o u t h ;  i t  

i s  u se d  e x t e n s i v e l y  f o r  such  a p p l i c a t i o n s  a s  n e a r - e a r t h  s a t e l l i t e  t r a c k ­

in g  and h a s  b een  s u g g e s t e d  i n  t h e  a s t r o n o m i c a l  l i t e r a t u r e  (where i t  i s  

c a l l e d  t h e  a l t - a l t ) .  As G asco igne  (1970) n o t e s ,  i t  h a s  no a d v a n ta g e s  ove r  

o t h e r  mounts f o r  norm al a s t r o n o m i c a l  u sa g e ,  e x c e p t  t h a t  a  t h r e e - m i r r o r  

coude f o c a l  s t a t i o n  i s  f e a s i b l e .

The b e a r i n g s  a s s o c i a t e d  w i t h  t e l e s c o p e  m oun tings  a r e  t h e  s o u rc e  o f  

c o n s i d e r a b l e  t r o u b l e  due t o  t h e  e f f e c t s  o f  s t i c t i o n  o r  t o r q u e  n o i s e  a t  

t h e  e x t r e m e ly  low sp e ed s  i n v o lv e d .  C o n v e n t io n a l  r o l l e r  and  b a l l  b e a r i n g s  

t e n d  t o  s l i d e  and  s t i c k ,  and  t h e r e  i s  an  i n c r e a s i n g  u sage  o f  o i l  pad  ty p e  

h y d r o s t a t i c  b e a r i n g s ,  f o r  example P e a r s o n  (1 9 7 2 ) .  E s t im a t e s  o f  h y d r o s t a t i c  

b e a r i n g  f r i c t i o n s  a r e  g iv e n  by B a r r  (1 9 6 9 ) .  The d e c l i n a t i o n  b e a r i n g s  i n  

p o l a r  mounts g iv e  p a r t i c u l a r  t r o u b l e  f o r ,  w i t h  v a r i a t i o n  o f  h o u r a n g l e ,  

t h e y  m ust p r o v id e  v a r y i n g  d e g r e e s  o f  a x i a l  and  r a d i a l  t h r u s t .  F l e x u r e  

b e a r i n g s  o f f e r  low s t i c t i o n  b u t  a r e  o f  no use  when m o tio n  th r o u g h  l a r g e  

a n g l e s ,  o r  h eav y  lo a d s  a r e  i n v o lv e d .  Such b e a r i n g s  w i t h  b reak aw ay  t o r q u e s  

o f  0 .001 l b . f t .  and  r o t a t i o n  a n g le s  o f  4 d e g r e e s  have  been  u s e d  i n  sp ace  

v e h i c l e  a p p l i c a t i o n s .  ( P ro d u c t  E n g in e e r in g  November 1971)

( 1 . 2 . 2 )  T e le s c o p e  S t r u c t u r e s

S t r i c t l y  s p e a k in g ,  ’ s t r u c t u r e ’ i n c l u d e s  t h e  t e l e s c o p e  m oun ting , b u t  

h e re  we c o n s i d e r  t h e  t e l e s c o p e  tu b e  and o t h e r  com ponents  w hich  c an  be 

d iv o r c e d  from  s e c t i o n  ( 1 . 2 . 1 ) .  G r a v i t a t i o n a l l y  in d u c e d  d e f o r m a t io n s  i n  

t h e  t e l e s c o p e  s t r u c t u r e  a r e  p o s s i b l y  t h e  l a r g e s t  s i n g l e  cau se  o f  p o i n t i n g  

e r r o r s  and  one o f  t h e  m ost d i f f i c u l t  t o  m easure  and  p r e d i c t .  One o f  t h e  

m ost im p o r t a n t  a c h ie v e m e n ts  t o  d a te  w hich  re d u c e  t h i s  so u rc e  o f  e r r o r  i s  

t h e  S e r r u r i e r  t r u s s  d e s ig n  o f  t u b e .  I l l u s t r a t e d  i n  F ig u r e  1 . 3 ,  i t  deform s 

a s  a  p a r a l l e l o g r a m ,  p e r m i t t i n g  t h e  o p t i c s  t o  re m a in  p a r a l l e l  and  c o r r e c t l y  

s p a c e d  even  th o u g h  a p p r e c i a b l y  d i s p l a c e d  from  t h e  c e n t r e  s e c t i o n .  F o r  

example (R ule  1965) ,  t h e  H ale  2 0 0 -in c h  d e f l e c t s  a p p r o x im a te ly  1 cm f o r  a 

t r a n s l a t i o n  b e tw e en  th e  end r i n g s  o f  o n ly  \  mm. The d e s ig n  i s  s t i l l  

e f f e c t i v e  f o r  u n e q u a l  tu b e  h a l f  l e n g t h s  s in c e  one c an  use  u n e q u a l  tu b e  

d i a m e t e r s ,  (R ule  1971) ,  and  t h e  r e m a in in g  p o i n t i n g  e r r o r s  a r e  u s u a l l y  due 

t o  t h e  p r im a ry  m i r r o r  c e l l  and  t h e  s e c o n d a ry  cage e x e r t i n g  a moment upon 

t h e i r  r e s p e c t i v e  end r i n g s ,  a s  shown by A bde l-G avad  (1969) and  Pope (1971) .
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The primary mirror movement and rotation is caused by mirror cell 

flexure (particularly when the four-fold symmetric truss tube is mated 
vith a 120° spaced 3 point mirror support), and the secondary rotation is 
due to lack of rigidity of the secondary support drum. The two references 
last cited show that the three movements, that is rotations of the two 
mirrors and their relative translation, produce pointing errors and comatic 
aberration due to decollimation,and that in the case(s) considered (150- 
inch K.P.N.O. and A.A.T. telescopes) the pointing error is the more string­
ent criterion of design adequacy. If we were to assume a rigid tube mount­
ed on torsionally elastic axes, telescope flexure would show a sine depend­
ence on zenith angle.

Rule (1965) and Bertin (1971) draw attention to the desirability of 
keeping the structure mechanical resonance as high,and the mechanical Q 
as low as possible; most telescope structures have relatively undamped 
resonances in the region of 0.5 Hz, which is unfortunately similar to the 
periods involved in wind gusts and microseisms and imply an excessively 
long time for the structural motion to damp. For radio instruments the 
structure is associated not only with pointing but with the focussing and 
optical behaviour. Both active and passive forms of surface control are 
employed, for example Minnett et al (1967), Weidlinger (1967) and Findlay 
(1971), but one of the most promising techniques is the use of homologous 
deformations. It is possible, e.g. von Hoener (1967a), to design parabo­
loids which, with change of attitude, deform into other paraboloids of 
different focal length and axial direction. Pointing errors of typically 
45 arcsecond can be thereby introduced,e.g. von Hoener (1967b); and thus 
effective methods of pointing error correction are highly desirable.

(1.2.3) Optics Support Systems

Pointing errors are also introduced by movements of the optical com­
ponents themselves in their supports. Various support systems are treated 
at length in the literature, for example various authors in IAU Symposium 
No. 27, and in Crawford et al (1966). The actual deformations causing 
optical aberrations are also widely treated; the classical work here is 
by Couder and the articles by Schwesinger (1969) and Malvick (1972) give 
more recent suitable references. All support systems aim at applying 
uniform loading to the mirror for various attitudes,whilst allowing its 
positional constraint by a small number of adjustable supports (usually 
the kinematic requirement of three each axially and radially). Systems 
using passive air or mercury bags, active pneumatic systems and mechanical 
lever arrays are all used,but are not discussed here.



( 1 . 2 . 4 )  G e a r in g  and  D r iv e  System s

1 .9

No p o i n t i n g  e r r o r s  would, be i n t r o d u c e d  by t h e  t e l e s c o p e  d r iv e  sy s tem  

i f  t h e  a t t i t u d e  e n c o d in g  o r  r e a d o u t  was t a k e n  d i r e c t l y  from  th e  axes ; and 

i f  t h e r e  were no com ponents i n  common t o  t h e  d r i v e  and  r e a d o u t  s y s te m s ,  

b u t  t h i s  i s  r a r e l y  t h e  c a se  i n  p r a c t i c e .  R e c e n t l y ,  t i g h t ,  h ig h -p e r fo r m a n c e  

s e rv o  d r i v e s  have  become p o s s i b l e  w hich  can  be a p p l i e d  v e r y  c lo s e  t o  t h e  

a x i s ,  f o r  example d r i v i n g  th e  f i n a l  g e a rw h e e l .  Trumbo (1965) d e s c r i b e s  a 

t y p e  o f  d r i v e  w hich  t a k e s  d i g i t a l  r a t e  i n f o r m a t i o n  from  t h e  f i n a l  p i n i o n  

o r  w orm sha f t  and  u s e s  i t  t o  c o n t r o l  a  t o r q u e  m o to r .  I t  i s  p a r t i c u l a r l y  

s u i t e d  t o  com pu te r  c o n t r o l  o f  t h e  t r a c k i n g  r a t e ,  and  can  be u s e d  t o  s lew  

t h e  i n s t r u m e n t  f o r  s e t t i n g  p u r p o s e s .  S te p p in g  m o to rs  can  be u s e d  f o r  v e r y  

s m a l l  i n s t r u m e n t s ,  e . g .  C la rk e  ( 1 9 7 1 ) .  B e r t i n  (1971) n o t e s  t h a t  t h e  h i g h ­

e s t  r e s o n a n t  f r e q u e n c y  o f  t h e  m oun ting  i s  a c h ie v e d  by a p p ly i n g  th e  d r i v e  

t o  l a r g e  d i a m e te r  com ponents a s  c l o s e  t o  t h e  s e c t i o n s  o f  h ig h  moments of  

i n e r t i a  a s  p o s s i b l e ,  and  t h a t  f a c t o r s  o f  im provem ent o f  t h e  o r d e r  o f  1 .5  

c an  be o b t a i n e d ,  f o r  exam p le ,  by d r i v i n g  th e  h o r s e s h o e  o f  a  h o r s e s h o e  

m o d i f ie d  yoke m oun ting  a s  opposed  t o  d r i v i n g  t h e  o t h e r  end o f  t h e  p o l a r  

a x i s .  The l a r g e  d i a m e te r  a l s o  i m p l i e s  a  l a r g e  number o f  t e e t h  on th e  d r i v e  

g e a r  and  lo w e r  t a n g e n t i a l  t o o t h  l o a d in g  w hich  i s  an  a d v a n ta g e ,  b u t  th e  

d e f o r m a t io n  o f  t h e  g e a r  i s  i n c r e a s e d , a n d  s u i t a b l e  geo m etry  m ust be found  

t o  a v o id  t h e  g e n e r a t i o n  o f  p o i n t i n g  (and  t r a c k i n g )  e r r o r s .  B a c k la s h  i n  

t h e  f i n a l  d r i v e  g e a r s  can  be removed by a t a n g e n t i a l  p r e l o a d , b u t  t h i s  

c a u s e s  t h e  d r i v e  sy s tem  s e rv o  p e rfo rm a n c e  t o  be asy m m etr ic ,  and  f o r  t h i s  

r e a s o n  such  a scheme was r e j e c t e d  i n  f a v o u r  o f  d u a l  o p p o s i t e l y  lo a d e d  

p i n i o n s  by t h e  A .A .T . a s  d e s c r i b e d  i n  M in n e t t  (1 9 7 1 )-

The f i n a l  d r i v e  g e a r s  can  be worm wheels, s p u r  o r  h e l i c o i d a l  g e a r s .

P rob lem s e x i s t  w i t h  worm g e a r s  in - a s -m u c h  t h a t  t h e y  a r e  n o t  r e v e r s i b l e ,

and e i t h e r  p r o t e c t i v e  i n e r t i a  m ust be added  t o  t h e  worm (w hich  d e g ra d e s

th e  d r i v e  sy s te m  re s p o n s e ) ,  o r  t h e  worm m ust be m ounted i n  a  s l i d e  c a r r i a g e

(w hich  d e g ra d e s  r i g i d i t y  and  a l i g n m e n t ) ; a l s o  t h e y  have low e f f i c i e n c y

e . g .  10 t o  157& f o r  a  1 :7 2 0  r a t i o  worm/wheel p a i r . Zero  w e a r ,  w hich  i s

g o v e rn e d  by a c r i t i c a l  r a t i o  o f  maximum s h e a r  s t r e s s  i n  t h e  t o o t h  c o n t a c t

zone t o  t h e  s h e a r  y i e l d  p o i n t  o f  t h e  g e a r  m a t e r i a l ,  c a n n o t  be a t t a i n e d  by
@t h e  u s u a l  h a rd e n e d  s t e e l  worm and  a b ro n ze  o r  m e e h a n i te  wormwheel; see  

B e r t i n  (1 9 7 1 ) .  However worm g e a r s  can  be made more a c c u r a t e l y  t h a n  

c y l i n d r i c a l  g e a r s  b e c a u s e  t h e  wormwheel i s  g e n e r a t e d  by an  e n v e lo p e  m ethod 

e s s e n t i a l l y  t h e  same a s  u s in g  t h e  worm a s  a hob .

@ Type o f  c a s t  i r o n .
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Bertin (1971) gives a figure of 5 micron for the tooth to tooth error,
and 25 micron for the accumulated pitch error on a 3.6 metre diameter
cylindrical gear; these figures correspond to angular figures of 0.5 and
2.5 arcsecond, and are approximately 2.5 times worse than those for a

@ .similar wormwheel, particularly if a duplex worm is used. Baustian (1965) 
gives somewhat different figures but agrees that worms are more accurate. 
The tangential tooth to tooth composite error is the accumulation of pitch 
and profile errors and may be up to 2 arcsecond for high quality cylindr­
ical gears (Bertin 1971). Combined with similar errors of the meshing 
pinion;a tangential jump of about 3.5 arcsecond is possible for a contact 
ratio (number of teeth in contact) of unity.

Martin (1967) found experimentally that the tooth to tooth composite
error decreases quickly for increasing contact ratios7and for a given
ratio is reasonably independent of pitch and pressure angle; his graph is

@@reproduced in Figure 1.4. For a standard spur gear with a given number 
of teeth we can vary only the pressure angle to increase the contact ratio, 
and the limit is in the region of 2.9>with a pressure angle of 12.5°. The 
risk of tangential jumps disappears if the contact ratio approaches 6 or 
8;and this is possible with helicoidal gears since we can vary the helix 
angle and the gear face width, e.g. tangential jumps can be reduced to 
0.04 arcsecond on a 10 metre diameter helical gear of 175 mm width. Barr 
(1969) concludes, for cases involving roller bearings, that the extra 
accuracy of the worm is not realisable due to the manner in which the 
drive load is applied to the bearings, and quotes a helical gear with a 
contact ratio of 4.4. Groenveld (1969) gives the requirements of high 
positional accuracy and smooth slow speed running as being, (i) an invol­
ute helicoidal thread form, (ii) low (10°) pressure angle and (iii) the 
use of all-receeding tooth action.

A drive system employing a hardened steel friction roller is feasible, 
and is used on the French Chilean 60-inch. A similar drive was originally 
proposed for the 3.66-metre E.S.0. telescope at Cerro La Silla Chile, but 
extreme cleanliness is necessary for their successful operation and a 
helical gear system was eventually used. Barr (1969) dismisses steel belt 
type friction drives by showing that the circumferential stretch on an

@ The pressure angle and pitch varies along the length of a duplex 
worm, increasing the contact ratio.

@@ With equal addendum and module.
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inch vide 150 inch long belt of 0.03 inch steel is of the order of 1/3 
inch under sieving (fast motion) conditions, but his reasoning is related 
to the performance of the drive servos, not pointing or tracking errors.

Pointing errors produced by gear imperfections (assuming there are 
no tangential jumps etc.) are largely periodic vith periods of a single 
revolution and low multiples of it caused primarily by eccentricity and 
pitch errors, and also errors at the tooth period and multiples of it 
caused by tooth profile errors. Tooth period errors are more usually a 
cause of tracking rather than pointing error. Kron (i960) gives one 
possible explanation of periodic errors in worm drives, viz. a worm which 
has been made with the correct hob but is of incorrect pitch diameter.
The simpler forms of periodic error in worm drives can be removed by 
using a tilted thrust bearing on the worm shaft, or, as noted by Hardie 
et al (1962), an eccentrically mounted spur gear pair driving the worm 
shaft to produce a compensatory oscillation. Clearly both techniques are 
more difficult to implement than a form of programmed or software correct­
ion of pointing (and tracking) errors.

(1.3) TELESCOPE ATTITUDE READOUT SYSTEMS

It is important to distinguish pointing errors caused by the system 
for readout of the telescope axes from those which are due to the struct­
ure, mounting and optics supports, since the former is more easily modif­
ied or updated. Simple analogue systems, for example selsyns, often ex­
hibit quite large errors, e.g. tens of arcseconds, particularly when large 
gear train ratios are required to produce the required angular resolution. 
If gear errors are not dominant, considerable improvement can be obtained 
by digitizing the selsyn transmitter outputs, e.g. as on the Parkes 210- 
foot radio dish. The ideal requirement of an absolute transducer with a 
resolution and accuracy of the order of an arcsecond is onerous, and has 
not been achieved on instruments of large aperture. Commercial absolute 
digital shaft encoders are available with a wide range of resolutions and 
codes, and are usually either brush contact type of resolutions of up to 
about 12 bits (5 arcminute); which combine simplicity of operation with 
economy, or optical types which are capable of higher resolutions up to 
21 bits (0.7 arcsecond) and have longer rotation lives, but require more 
elaborate electronics. Both types employ either monostrophic codes, e.g. 
Gray-code, or use redundant tracks and lead-lag sensor selection to remove 
the inter-track ambiguity. It is often most convenient to feed the en­
coder output directly to a computer for reduction and formatting for dis­
play purposes, but many installations exist,or are proposed,which use 
special purpose hardware to handle the encoder data, for example Vokac
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(1970). Matara (1969) discusses some of the errors which can occur in 
conventional systems.

Moire fringe optical gratings can achieve very high resolutions and 
accuracies. N.E.L. Scotland have a master grating of 43,200 lines on a 
17.5 inch diameter, and firms such as Baldwin-Rotax U.S.A. have developed 
similar masters; it is now fairly certain that the accuracy of these 
large gratings is of the order of an arcsecond. Moire gratings have been 
used in incremental encoders, often with two read heads in phase-quadrat­
ure to give directional information. Russell (1966 and 1969) has devel­
oped a method of obtaining absolute readout from a series of concentric 
gratings of different but integrally related angular pitches, each of which 
can be electronically divided by integers as high as 60. The scheme de­
pends on analogue segmentation of the serrusoidal waveforms from reading 
sensors in phase-quadrature, and has been applied to the elevation axis of 
a kinetheodolite at Edinburgh Observatory by Whitwell (1972). The use of 
multiple read heads can remove the effects of grating eccentricity on the 
accuracy of the readout, but a limit to the tolerable eccentricity is set 
by its effect on the amplitude of the serrusoidal signals from the aver­
aged heads. Linear Moir6 gratings ruled on steel tapes can be obtained 
in resolutions of a micron for a total range of 2 metres (Whitwell 1972), 
and could be used for angular readout by winding them on a carefully 
machined diameter.

The bearings in commercial shaft encoders can be precise with an 
adequately low runout,e.g. a runout of 30 micro-inch for 4 inch diameter 
angular contact ball bearings, and the constraint on the system accuracy 
is often the manner in which the encoder is driven from the axis. Serious 
wind-up errors occur in flexible disc or bellows couplings used to couple 
the encoder to the axis or to intermediate gearing. Bertin (1971) and 
Barr (1969) discuss the use of a friction roller system to drive the 
attitude encoders, and note that although more accurate than gear systems, 
extreme cleanliness is required,and there is positional creep with both 
predictable and random components. It is very doubtful that any coupled 
or separately driven encoder can realise an accuracy commensurate with 
the resolution required, and making the encoder integral with the mounting 
bearing structure,alone offers substantial improvement. Provided dis­
continuous effects like backlash are removed, encoder system errors are 
often quite smooth and repeatable, and thus in principle well suited for 
software elimination.

Many other types of angle transducers exist, and a survey article by 
Sydenham (1968) lists several; with two exceptions they have found little
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use in telescope attitude readout. Inductosyns are a magnetic device 
comprising two stator windings in quadrature, and a rotor with many poles; 
the sinusoidal output waveform is digitized using an analogue to digital 
converter (A.D.C.). Klock et al (1969) describe a 12 inch diameter, 2048 
pole version incorporated into the U.S. Naval Observatory transit circle, 
which affords a resolution of 0.05 arcsecond,with a calibrated mean error 
of 0.5 arcsecond,when read with a 15 hit A.D.C. Struve et al (i960) de­
scribe similar units made by Farrand Optical Co. and installed on the 
N.R.A.O. 140-foot radio telescope, which is intended for source position 
measurement with an accuracy of 10 arcsecond.

A very similar device called a Raksyn, employing a toothed rotor and 
stator with capacitive sensing,is used on the 150-foot radio telescope at 
Algonquin Park Ontario, and is described by Ayre (1967). Like the Parkes 
210-foot instrument, this instrument employs a master equatorial unit 
(M.E.U. ) which is pointed appropriately and the main structure, which is 
altazimuth mounted, is slaved to it. Pointing accuracies of 30 arcsecond 
are quoted but are not limited by the Raksyns, which are used both on the 
M.E.U. (2 foot diameter) and on the telescope proper (9 foot diameter);
9 arcsecond is given as the accuracy of the M.E.U. Inductosyns and 
Raksyns appear to be less troublesome than optical encoders, and can be 
built to larger diameters, promising increased accuracy; they are, however, 
somewhat rare.

(1.4) SOFTWARE CORRECTION OF POINTING ERRORS

A decade ago the notion of using a computer to correct telescope 
errors would have been somewhat premature, but with the steadily increas­
ing application of computers to telescopes for other reasons like data 
handling, and the decreased relative cost of small computer installations, 
it is now seen as an obvious step. The adoption of computer-control by 
astronomy has been slow by comparison to other fields; articles such as 
Clarke (1967) and Endeavour (1970) record the process. The computerizat­
ion of various telescope functions along with increased use of small tele­
scopes and photodetectors of higher quantum efficiency, is quoted by 
Maran (1967) and Disney (1973) as one of the possible cures for astronom­
ical research bottlenecks. Complete automation of optical telescopes has 
been investigated, for example the 98-inch Mauna Kea telescope Hawaii, and 
a 24-inch instrument at M.I.T. described by McCord et al (1972). Remotely 
operated telescopes have been constructed; the twin 16-inch Edinburgh 
instrument is described by Reddish (1966), and a less successful 50-inch 
by Maran (1967), but the best examples have been the various orbiting 
space telescopes.
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The incentive for computer correction of errors is firstly necessity, 

for no other technique is to date sufficiently successful. The second and 
possibly prime attraction of such a scheme is its possible application on 
existing, older telescopes, -whose design and construction predates the vari­
ous design improvements so far discussed. Its usefulness on more recent 
’state-of-the-art’ instruments is not impaired,since such improvements 
result in a higher degree of repeatability as veil as smaller errors; 
hence the possibility of attaining the accuracy goals cited before. The 
Anglo-Australian Telescope Project hopes to reduce the A.A.T. 150-inch 
pointing errors from 10 arcsecond to 3 arcsecond by suitable software 
correction (design figures Pope 1971)?while Solf (1971) intends programm­
ing out flexure, decollimation and circle errors as well as the usual 
refraction to achieve 10 arcsecond on the Max Planck 2.2-metre. The vari­
ous methods proposed are only vaguely described and there are no general 
treatments of the problem in the literature; Lausten and Malm (1971) 
propose a table look-up procedure for the gear errors on the E.S.O. 3.6- 
metre instrument, while A.A.T. intend to obtain suitable values for para­
meters in error model functions (private communication). Smith (1967), 
considering radio telescopes, dismisses the problem for reasons of diffic- 
ultyJ Simpler cases can be solved quite neatly, for example the standard 
approach of Fourier analysis of meridian circle errors (single axis in 
declination) as in Dejaiffe (1970).

Two of the more elaborate treatments which appear in the literature 
involve parameter estimation studies of the Australian 210-foot radio 
telescope at Parkes and the M.I.T. Haystack antenna. Minnett et al (1967) 
use a six parameter model to represent the vertex co-ordinates, the direct­
ion of the optic axis and the focal length of the Parkes paraboloid as it 
distorts with motion in zenith angle, and fit 150 survey measurements of 
the paraboloid by a least-squares process to find a law for optimum 
focussing. Meeks et al (1968) used 172 settings on radio sources of 
known position corrected for refraction, and least-squares fitted for 
seven parameters describing azimuth axis tilt, azimuth offset, collimation 
error, elevation axis skew and gravitational flexure. The flexure term 
was simply the sum of a linear function of zenith angle, and a constant 
which can be taken to be the elevation offset, this giving better results 
than the expected sine function of zenith angle. The sumsquared error in 
each co-ordinate was separately minimised, giving two independent estim­
ates of each parameter which were then averaged; applying the fitted 
model as pointing corrections, they obtained an improvement of a factor of 
2 in the peak to peak error of the weighted azimuth co-ordinate A.cos(h) 
and a factor of 3 in elevation h.
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T h is  t h e s i s  c o n t a i n s  a more g e n e r a l  i n v e s t i g a t i o n  o f  com puter  c o r r e c t ­

i o n  o f  t e l e s c o p e  p o i n t i n g  e r r o r s ,  and  a l t h o u g h  th e  f i n a l  a s s e s s m e n t  o f  t h e  

v a r i o u s  i d e a s  d i s c u s s e d  h e r e i n  i n v o lv e s  t h e  use  o f  p o i n t i n g  d a t a  from  a 

s p e c i f i c  t e l e s c o p e  ( se e  C h a p te r  4 ) ,  g u i d e l i n e s  a r e  e s t a b l i s h e d  w hich  a r e  

of  g e n e r a l  u t i l i t y .  F o r  t h e  m ost p a r t  a p o l a r  mounted o p t i c a l  t e l e s c o p e  

i s  d i s c u s s e d ,  b u t  nowhere i s  t h i s  a s s u m p t io n  r e s t r i c t i v e .  B ecause  o f  th e  

s i z e  o f  t y p i c a l  p o i n t i n g  e r r o r s  r e l a t i v e  t o  t h e  r an g e  o f  movement o f  th e  

t e l e s c o p e ,  t h e  b e s t  m ethod o f  m e a s u r in g  p o i n t i n g  e r r o r s  i s  by  s e t t i n g  on 

s u i t a b l e  c e l e s t i a l  o b j e c t s ,  and  com paring  t h e  e x p e c te d  t o p o c e n t r i c  c o - o r d ­

in a te s ®  d e c l i n a t i o n  and  h o u r a n g le  w i t h  t h e  c o r r e s p o n d in g  v a lu e s  S 
and H o b t a i n e d  from  t h e  t e l e s c o p e  r e a d o u t  sy s te m . The p o i n t i n g  e r r o r s  i n  

t h e  two c o - o r d i n a t e s  a r e  h e r e  d e f i n e d  i n  t h e  s e n se

A6 = S0 - S

and A h = H -  H ,

and a r e  t a k e n  t o  be f u n c t i o n s  o f  6 and  H, t h e  t e l e s c o p e  a t t i t u d e .

C o n c e p tu a l ly  t h e  s i m p l e s t  a p p ro a c h  w ould  be t o  i s o l a t e  t h e  v a r i o u s  

c a u s e s ,  e . g .  g e a rw h e e l  e c c e n t r i c i t y ,  tu b e  f l e x u r e  and  so on , and  p h y s i c a l l y  

m easure  e a ch  o f  them s e p a r a t e l y .  D e s p i t e  t h e  a t t r a c t i v e n e s s  o f  t h i s  

m ethod , i t  i s  v e r y  l i m i t e d  i n  p r a c t i c e ;  m e a s u r in g  a p a ra m e te r  r e q u i r e s  

d i s s e m b ly  o f ,  o r  s p e c i a l  m o d i f i c a t i o n s  t o  t h e  t e l e s c o p e ,  u p d a t i n g  th e  

m easurem ent w i t h  change o f  t e l e s c o p e  c o n f i g u r a t i o n  i s  o n e ro u s ,  and d i f f i ­

c u l t y  o f  m easurem ent i n c r e a s e s  t h e  c l o s e r  one t r i e s  t o  m easure  t o  t h e  

o p t i c  a x i s  o f  t h e  sy s te m  ( s e e  F ig u r e  1 . 1 ) .  Thus t h e  b a s ic  q u e s t i o n  i s  

t h a t  s u p p o s in g  we have sam pled  t h e  e r r o r s  o v e r  t h e  a r e a  o f  t h e  sky  i t  i s  

d e s i r e d  t o  u s e ,  how b e s t  t o  u se  t h i s  d a t a  t o  im prove th e  p o i n t i n g  a c c u r a c y  

a t  any g iv e n  p o i n t  w i t h i n  t h i s  a r e a .  A l i m i t  t o  t h e  im provem ent p o s s i b l e  

i n  any  g iv e n  c a s e  i s  s e t  by  t h e  e x t e n t  t o  w hich  t h e  e r r o r s  a r e  r e p e a t a b l e ,

i . e .  f o r  a  g iv e n  t e l e s c o p e  c o n f i g u r a t i o n  t h e  e x t e n t  t o  w hich  t h e y  a r e
@@

s i n g l e - v a l u e d  f u n c t i o n s  o f  t e l e s c o p e  a t t i t u d e  , and  t o  w hich  b a c k la s h  and  

m e c h a n ic a l  h y s t e r e s i s  a r e  a b s e n t .

The a p p ro a c h  t a k e n  c l e a r l y  depends  on how much i s  known a b o u t  t h e  

c a u se  o f  t h e  e r r o r s .  I f  no a s s u m p t io n s  can  be made a s  t o  t h e  c a u s a l  

n a t u r e  o f  t h e  e r r o r s ,  we have  t h e  p rob lem  o f  two e r r o r  s u r f a c e s  A S  and 

A H, i n  t h e  v a r i a b l e s  5 and H ,w hich  m ust be i n t e r p o l a t e d  o r  s u r f a c e  f i t t e d

@ c o r r e c t e d  f o r  r e f r a c t i o n  and any  e f f e c t  n o t  c a u s e d  by t h e  i n s t r u m e n t  
i t s e l f .

@@ and p e rh a p s  o t h e r  s im p le  e n v i r o n m e n ta l  v a r i a b l e s  such  a s  t e m p e r a t u r e .
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to effect the required improvement in pointing accuracy. This is consid­
ered in Chapter 3. Should ve have insight into the error causes, then a 
mathematical model of the erratic telescope can be postulated,and the 
data fitted by finding the best values of the model-defining parameters 
according to some suitable criterion. Such models are rarely linear in 
the parameters and the problem of non-linear parameter estimation of 
telescope models is discussed in Chapter 2.

Fundamental to both surface and model fitting is the choice of a
suitable criterion of fit. If we have n observations over the area of
interest, and S and H are the co-ordinates computed from 8 and H on c c
the basis of our surface or model function, we need to minimize a suitable 

@norm of the 2n-dimensional error vector which has components of the form 

(Sn - 8 ) or (H - H ) . ... 1.2U C U c
The two most common norms used in optimization methods are the least-

f a ®square or norm and the minimax or L̂ , norm . The latter enables the 
maximum error to be minimized,and, although this would be highly desirable 
for practical reasons, 1^ is a function peculiar to the data used and is 
not even a differentiable function of the parameters or of the error 
vector components, and thus is considerably more difficult to minimize. 
Although other more complicated norms exist, the leastsquares norm alone is 
both easily computed,and appropriate to our problem. In Chapter 2, it is 
shown that (with the choice of a suitable weighting function) the norm 
can represent a physically important angle on the sky. If the components 
of the error vector are normally distributed about a zero mean, then an 
estimate of the model parameters or surface coefficients obtained by 
minimizing the norm is identical with the statistical maximum-likeli­
hood estimate, and thus the use of the norm is also dictated by regress­
ion theory. The computation of such estimates of the model parameters or 
surface fit coefficients is the key to software pointing error correction.

On the subject of model fitting, Box and Hunter (l965)>and others 
note that it is necessary to distinguish between ’response surface 
optimization’ in which we attempt to optimize a variable of interest, (in 
our case the root mean square error on the sky) and are not particularly

@ generalised definition of a vector’s ’length’; the Euclidean norm 
corresponds to the physical length in the 3-dimensional case.

@@ known also as the Euclidean and Chebyshev norms respectively.
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interested in the means by which it is done, and ’mechanism determination’ 
in which we wish to ascertain the causes of the behaviour of that variable 
’Mechanism determination’ requires better statistical design of the experi 
ment; and more careful statistical testing of the results than the former 
does. The manner in which pointing error data can be acquired is quite 
restrictive; it is quite impossible to obtain data points at arbitrary 
positions on the sky, or obtain them on a uniformly spaced grid, and so 
designing an experiment by specifying the co-ordinates at which data is 
taken;e.g. Box and Coutie (1956),is out of the question. It is possible 
to obtain data on lines of constant 6^, and whilst it would slightly 
simplify surface fitting procedures (see Chapter 3), it is prohibitively 
difficult and time consuming to be used in practice. The practical con­
straints of data gathering certainly favour the ’response surface optim­
ization’ approach but in Chapter 4, it is shown that, with suitable care, 
model fitting can locate some of the causes of pointing errors,though by 
no means all. However, it is, along with surface fitting, emminently 
satisfactory as a means of their reduction. In the final chapter 
(Chapter 5) the practicalities of automated pointing error reduction and 
the limitations imposed by hysteresial errors are discussed.
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CHAPTER TWO
PARAMETER ESTIMATION IN TELESCOPE POINTING ERROR MODELS 

(2.1) PRELIMINARY

It is generally supposed that a knowledge of the pointing error 
causes is an advantage in any scheme intended to reduce pointing errors, 
since a mathematical model can be proposed for the errors in terms of 
physical parameters of the instrument, for example gear eccentricities, 
misalignments, structure,! parameters etc. We represent the model by

y f(x,b) , . . .  2.1

where y is the experimentally observed dependent variable, _b = (b.) ,
J

j=1,...k is the vector of k (unknown) parameters, and x = (x ) , q=1,...m 
is the vector of m independent variables. Suppose we have y^ , i=1,...n 
which are n observations of y, and x . = x , q=1,...m, i=1,...n the
corresponding observations of the independent variables, then our problem 
is to find B, an estimate of parameter vector Jb,such that the sum of 
squares

$ = Z < yi - v
i=i 1

is a minimum, where

. . . 2.2

fi = > ... 2.3

and we are using the leastsquares criterion discussed in Chapter 1. It 
should be noted that ’ sumsquare' f i in equation 2.2 is a function of _b 
alone (for a given set of data y^, _x̂ > i=1,...n) and can be written

<p = <f) (b) . ... 2.4

Thus the problem is essentially one of function optimization, but many 
algorithms have been designed specifically to minimize sums of squares, 
and it is the literature on leastsquares parameter estimation, much of it 
written by authors in the chemical engineering field, which is perhaps 
more relevant.

In our pointing error work the (two) components of vector x. are the
X U
i observations of the telescope attitude 6 and H taken from the axis 
readout system, y_̂  is either of the topocentric co-ordinates & or Hg of 
the particular celestial object, and f. is the corresponding co-ordinate 
Sc o r computed from our model function. Since f i is scalar and one 
requires a unique ’best’ estimate of the parameter vector one cannot 
simultaneously minimize the residuals
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E  (Ab)2 = E  (60 - bf ,
data data

and E (AH)2 = E (H0 - H,)2 .
data data

Meeks et al (1968) minimize them separately and average the two _b vectors
obtained,but a far better scheme is that now described.

Where it is desired to weight certain of the n data points obtained 
from the experiment, equation 2.2 can be written 

n
0 = H  (y. - *•)' . . .  2.6

i=1
where w. is the value of the weighting function for the i point. Here 
we extend this equation to include s such terms and define (f> by

0 = E E [:
1=1 i=1

f ? ] 2- L“ ](1)1 2

If we use s=2 and make the following identifications:

2.7

1 i

*~2i
11)

f*21i

- 5

telescope attitude reading for i 
observation;

topocentric position of object for i 
observation;

computed from model function;

2.8

weighting function;

then <P in equation 2.7 comprises the first order terms of (A R), the 
square of the resultant error on the celestial sphere,which is given (to 
second order) by

(Ar) = (AS) + (Ah)2 c o s28 + (AS)2(Ah)2/ 2 . ... 2.9
Thus by minimizing <fi as defined in equation 2.7 we approximate very 
closely the minimization of a practically tangible variable, namely the 
Root Mean Square (R.M.S.) pointing error.

Fortunately our modified definition of (ft is compatible with exist-
@ing formulations of leastsquares problems . Many of the more successful 

nonlinear parameter estimation algorithms are based on the traditional

@ In fact all we have done is to employ n.s data points with s 
different expressions for the weighting and model functions.
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Gaussian approach of expanding the model function in a Taylor series about
the current estimate of the parameter vector b^, retaining only terms to
first order. This expansion is substituted in f t in equation 2.7 and the
derivative of 0 with respect to a general parameter b. set to zero; thisD
results in a system of matrix equations (called the ’normal equations’)

A t = £, ...2.10

to be solved for vector t_ which is a correction vector, and allows us to 
iteratively improve our estimate of the parameter vector by

_b = + _t •

The kxk matrix A = (A. ), and the k-vector £  = (g.) are given byD ̂ 1

2.11

A.Or

and g . 
J

n *~ID 3 2 df1' 'bf1)-l . — l ,E E R']2 •1=1 i=1 L 1 J D b . db 3 r

E t F1=1 i=1 L J L 3b.

2 .1 2

2.13

respectively and differ from those usually given only in the extra 
summation over the s parts of our sumsquare (f> .

(2.2) ALGORITHMS FOR NONLINEAR PARAMETER ESTIMATION

A discussion of some of the algorithms which have been used in the 
literature for estimating the parameters of nonlinear models follows. A 
broad outline of this field is given, but, except for the algorithms 
actually implemented and tested later in this chapter, it is in no way 
detailed or complete. Most methods of any significance are discussed in 
a review article by Spang (1962), texts by Wilde (1964) and by Draper and 
Smith (1966)®, and/or a review monograph by Kowalik and Osborne (1968).

Minimizing a function of one variable (or parameter), or minimizing 
a multivariate function along a line is comparatively straightforward. 
Direct search algorithms, which involve simple comparisons of a sequence 
of trial solutions in such a manner that the trials become closer together 
in either a golden or Fibonacci sequence, are very stable but slow, and 
more efficient behaviour is exhibited by algorithms which employ quadratic 
interpolation to find the line minimum. In an algorithm by Powell (in 
Powell 1964) a quadratic interpolation is fitted to three evaluations of 
the function, and the analytically calculated minimum of this interpolating 
quadratic is used to replace one of the original points. An alternative

@ See for example the bibliography on nonlinear methods in Draper and 
Smith (1966).
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/ . @approach by Swann et al (1964) uses the calculated quadratic minimum to 

improve a group of points bracketing the function minimum. All of the 
above algorithms are treated by Kowalik and Osborne (1968), and flowcharts 
of the Powell and ’golden section’ direct search algorithms are given 
later. Direct search methods tend to have very slow convergence propert­
ies when used for higher dimensions particularly when approaching the

@@minimum. Despite this, methods such as the Simplex method , in which a 
geometric pattern of points is progressively translated and scaled so as 
to locate the minimum,and others which involve sequential searches in 
orthogonal directions, the most notable of which is due to Rosenbrock 
(i960), have found many applications.

(2.2.1) Descent Methods

The slow convergence of direct search methods is due to their use of 
function values alone, and to their simple utilization of these values.
By contrast, descent methods employ the gradient vector of the function to 
be minimized in such a way that the progress of the algorithm is always 
directed ‘downhill’. In general, the new estimate of the parameter vector 
is formed from the current estimate b^ by

b = bß + oCD , ... 2.14

where = (g.) is the negative gradient of (j) and is given by
gj = - b<P/b bj , ... 2.15®

oc is the iterative step size and D is a positive definite weighting
matrix. The most common such algorithm is the method of ’steepest descent ’ 
in which D is simply the unit matrix and the algorithm proceeds directly 
down the gradient orthogonal to contours of constant . Other weight­
ing matrices are in use, for example Newton’s method which uses

D. = d 2 <f> . ... 2.16
3r c)b.bb3 r

Such a scheme entails rather onerous computing requirements and in this 
chapter we restrict ourselves to methods which require the computation of 
(at most) only the first derivatives.

It is usual in nonlinear problems for the contours of constant (p to

@ Called the Davies-Swann-Campey algorithm in the literature.
@@ In a k-dimensional problem a simplex is a set of k+1 points.
@@@ Vector in equations 2.15 and 2.13 are identical apart from a 

multiplicative factor of 2.
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LEGEND TO FIGURE 2,1, GRADNT FLOWCHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

L .qi

db . 
1

gd

b . 
1

b \ 
1

gd

gl!

^n

06

<fi

t o

e

r

r, t

data points 

data values

computed values of the model function

computed values of the derivative of 
the model function

the gradient vector of equation 2.15

current estimate of the parameters

temporary estimate of the parameters

correction vector given by equation 
2.18

temporary value for normalized 
correction vector

sequential iteration number

step size, see equation 2.14

residual sum of squares (current)

residual sum of squares from previous iteration

angle between successive correction vectors

criterion for 0 (here set to 80°)

constants for calculating new value for o6 
see equation 2.19 (here d^=0.5 d^l.O)

-1 er nr
convergence criteria, ~C = 10 , 6 = 10” .

where 
i = 1

► 1 = 1  
1 =  1 

q = 1
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be grossly elongated rather than near-circular, and frequently the gradient 
vector _£ points almost at right angles to the actual direction of the 
minimum. This seriously retards the progress of descent algorithms and 
the situation can often be improved by suitably scaling the parameters, or 
by a transformation of the parameter space. A transformation used with 
success by Marquardt (1959) is to replace parameter b. by

b ’.1 arctan b .1
whereon the transformed gradient vector components g\ are given by

g t = -(1+b. ) . d 0 / d b .  .D D J

2.17

2.18

Some strategy must be employed in descent algorithms to determine a 
suitable value for the step size . A commonly used one is that if the 
successive estimates lie approximately on a straight line then otis too 
small and should be increased for the next iteration, and if the estimates 
’zig-zag’ acutely 06 is too large. In an implementation of this by 
Marquardt (1959) the angle 9 between successive correction vectors is 
calculated; if 9 is greater than some criterion angle ^ , o' is divided 
by 4 and the new estimate of the parameter vector in equation 2.14 
recalculated with this value of °t . If 9 is less than the routine 
advances to the next iteration and calculates a new value for oC from

306 = oc (d + d cos 0) , ... 2.19new 1 2
where choice of d^ and d s u c h  that 0 < d^ <  1 , and ( l - d ^ ^ d ^ l  results 
in an increased value of oc if 9 is near zero, and a decreased value if 9 
becomes large. A similar scheme is used by Brown et al (1956). A 
steepest descent algorithm using the parameter transformation and the 
scheme for determining cc given above was implemented by the author, and 
the detailed strategy of the routine (named OfRADNT) is given in the flow­
chart in Figure 2.1.

As discussed later in the presentation of numerical results, the strat­
egy used above to regulate step size is still too coarse to ensure stable 
convergence; and a class of algorithms known as ’optimum gradient’ algor­
ithms attempt to line minimize the function along the chosen correction 
direction. Obviously the routine becomes inefficient if too great an 
effort is spent in line minimization before a new iteration and new 
correction direction are introduced, and various compromise strategies are 
found in the literature. Here, to test the basic strategy of using the 
steepest descent direction, a version of the steepest descent algorithm 
employing fairly complete line minimization within an iteration was im­
plemented. Called G-RAD2, it was used with both the golden-section and



FIG 2.2

FLOWCHART DETAILS FOR ROUTINE GRAD 2.

see figures 2 . 3 , 2 . 4
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FIG 2.3

FLOWCHART FOR GOLDEN-6ECTION ROUTINE GMIN.
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LEGEND TO FIGURE 2.3 GMIN FLOWCHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

b

K

S

e

current residual sum of squares

current parameter vector

direction of required line minimization

step size within which the line minimum of is expected 
to lie

5line minimization convergence criterion? £ = S/10

<P U>)

<V

r = the golden ratio ( = 1.61803) 

r ' = 1 - r

B
dynamic endpoints of an interval bracketing the minimum (A<B)

original value of B

X2I

4>\

4> 2

trial steps along see below (A^A^)

l = evaluations of <fi at the points J — + 1̂-̂:J [b +
final solution of step size along which is within £ of 
line minimum of along

iteration number.



FIG 2.4

FLOWCHART FOR POW ELL ROUTINE LMIN.
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LEGEND TO FIGURE 2.4 LMIN FLOWCHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

b

R

S

Sn

e

current parameter vector 

direction of required line minimization 

current residual sumsquare 

= typical working step size 

= maximum permissable step along

= line minimization convergence criterion, £ = S/10

- (b.)3
= (g.)

= j> (b)

b + \ p
evaluations of <p at the points J _b 4-

1-

b + \

trial steps along (see above)

X.

0,

K’
\

= turning point of a quadratic interpolating^, <f)̂ 
computed from
X = i. (A22-X,2 )^1 + ( \ 2- \ 2)̂>2 + <At2~A22 )^3

(^2 ” 3̂) $  \ + ^3  2 + $ 3

= second derivative of quadratic interpolant computed from
d2 = -2. (W^ + <y x1v2 +

(Al-X2)(A2-A3)(A3-A1)
= sumsquare corresponding to X m

A., A, = specified members of the set (A , \  , A~)3 k 1 2  3

= temporary value of step size

(p. , <P., (f) , (j)f = corresponding sumsquare values3' 'k 

= iteration number.
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Powell line minimization algorithms and is flowcharted in Figure 2.2.
The flow details of the golden-section (program name GrMIN) and Powell 
(named LMIN) routines are included for completeness and are seen in Figures 
2.3 and 2.4 respectively. The routine LMIN is used also in Powell’s (1965) 
algorithm for minimization of multivariate sums of squares, which is alluded 
to later.

Neither of the two steepest descent routines G-RADNT or G-RAI)2 proved 
to be successful in numerical tests described later, and Kowalik and 
Osborne (1968) note that, even for k greater than 2,such algorithms often 
eventually approach the solution in a two-dimensional subspace, and can 
become trapped in a ’cage’ whilst working along the level floor of a steep­
sided valley. Various methods, for example those due to Davidon (1959), 
Swann et al (1964) and Powell (1964), have been devised to avoid this 
problem and employ conjugate directions, that is consecutive searches are 
conducted in directions in parameter space which are linearly independent; 
however implementations of them have not been investigated here.

(2,2.2) The Levenberg and Marquardt Algorithms

A number of the more successful algorithms to be found in the liter­
ature are based on the Gaussian approach mentioned earlier, and solve the 
matrix equation of equation 2.10. When the model function is linear in 
the parameters, equation 2.10 need only be solved once to yield the

@(unique) leastsquares parameter estimate. Matrix A is positive definite
@@but often ill-conditioned and certain factorizations of A like Choleski 

decomposition and the method of Golub (1965) have been found very useful 
in such cases. However, for nonlinear models the most important consider­
ation is the strategy within an iteration,after equation 2.10 has been 
solved:- how best to deal with a solution for the correction vector _b 
which is only an approximation.

Simply solving equation 2.10 and correcting the current parameter 
vector by _t,as in equation 2.11, each iteration proves unstable for most 
problems, and so Levenberg (1944), with the idea of minimizing both (p 
and the length of the correction vector _t simultaneously, solves a modi­
fied form of equation 2.10 viz.,

(A + XI) t  =  g  ... 2.20

@ All the eigenvalues of A are positive.
@@ Small perturbations in the elements of A produce extremely large

errors in the numerically calculated inverse matrix A ~ \



FIG 2.5

FLOWCHART FOR LEVENBERG ROUTINE DLSQ.

legend over page



LEGEND TO FIGURE 2.5 DLSQ FLO¥CHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

i = sequential iteration number

yvqi
(l)
y i

b

A

E.

4

4>o

X

e
X

_fc

I

= iteration number after which damping is removed 
(break point iteration)

= the n data points s

= the n data values

= (b.) the current estimate of the parameter vector

= (A. ) the kxk matrix in equation 2.12

where

i = 1, 
1 = 1 , 
j  = 1 » 

q = 1,

. .n
2
. .k
2

= (g.) the k-vector in equation 2.13
3

r1

— the current residual sum of squares (see equation 2.7) 

= the value of (f) saved from previous iteration

-1 5= 10 constant preventing division by zero

_5
= 10 relative tolerance for convergence criterion

= damping factor added to diagonal elements of A 
(see equation 2.21)

= (t.) correction vector found from solution of equation 2.20
2

= kxk unit matrix.



FIG 2.6

Typical situation encountered by Gaussian type algorithms.

t ( Taylor vector )

solution
(Marquardt)

steepest descent 
vector a

of constant ^



2.7
In this equation, A and g  are as given in equations 2.12 and 2.13 respect­
ively, I is the unit matrix and X  is a ’damping factor’ calculated from 

k
x - ^  22 L  g-j i f  ■ 

0=1 3
2.21

This optimized choice of damping factor X has the effect of inhibiting 
the divergence of successive parameter estimates, which would be caused by 
nonlinearity or poor scaling in the model, but unfortunately markedly 
decreases the rate of convergence, and so the damping is switched off ( X 
is set to zero) after a certain number of iterations (called here the 
breakpoint iteration) in the implementation used here. The Levenberg alg­
orithm was programmed here as routine DLSQ and is flowcharted in Figure 2.5

A typical situation encountered by Gaussian-type algorithms is that 
depicted in Figure 2.6; the steepest descent vector may often lie al­
most perpendicular to the Taylor direction. The algorithm by Marquardt 
(1963) uses a correction vector jb which is an interpolation between the
Taylor direction and and in their common plane. Marquardt generates 

* * * * scaled matrix A = (A. )and vector g  = (g.) by
D 3

*  / /--------------   ̂  ̂@A. = A . /./A. ..A , .jr v n  rrJr
*

and g . 
3 8/ v n

respectively and, like Levenberg, solves the equation
* * *

(A + XI) t = E.

The correction vector _t is obtained from 
*t./VÄTTi v n

2.22

2.23

2.24

2.25
3 3' v 33

Marquardt shows that, as X  increases, the angle in Figure 2.6 
decreases, and jb rotates so as to approach the steepest descent direction 
£. The basic strategy employed for the determination of X is to increase 
X  within an iteration until a reduction in <j> is obtained, but between 
iterations A  is decreased to ensure fast convergence when approaching the 
minimum. The Marquardt algorithm in its original form ( and in the 
implementation here) involves re-inversion of the matrix (A + Xl) 
whenever A is changed; Jones (1970) shows that this may be obviated
by using a matrix multiplication process involving the eigenvalues and

* % eigenvectors of A . One of the advantages of adding A  to the diagonal 
*

elements of A is that the resulting matrix is always better conditioned 
than A itself, and cannot be singular for any value of A  which is larger

@ This produces ones on the leading diagonal of A which is effectively 
the matrix of correlation coefficients between the parameters.



FIG 2.7

FLOWCHART FOR MARQDT.
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LEGEND TO FIGURE 2.7 MARQDT FLOWCHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

n 

x .q1
(l)
yi
b

bT
*A
*

£ *t

sequential iteration number 

data points 

data values

current estimate of parameter vector 

temporary parameter vector

These quantities result from the scaling of 
matrix A to give ones on the leading diagonal. 
They are related to A, £  and jb by equations 
2.22 to 2.25

>

where
i = 1, 
j  = 1 , 

1 = 1 , 
<1 = 1 , 
r  = 1,

. .n

. .k
2
2
. .k

X =
X’

V

lc

s

7

To =

r
£

© , ®

quantity added to diagonal in equation 2.24 

temporary value of X

10, constant for reducing X by division 

step size

flag indicating history of X  within an iteration

angle between the vector jb and direction of steepest 
descent

criterion angle (here set at 77/4)

-1 510 constant preventing division by zero

_510 convergence criterion

= points at which CMPRES, EXPAND routines are optionally 
included (see Chapter 4).



FIG 2.8

The search  pa ttern  of Jones' SPIRAL routine.
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FIG 2.9

FLOWCHART FOR ROUTINE SPIRAL.
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LEGEND TO FIGURE 2.9 SPIRAL FLOWCHART

The small numbers against flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listing in 
Appendix D; other symbols are as follows:

x . qi

A

K

b

b ’

s_

s’

t_

t"

t ’

A

/S
/J~2

^"n

is

XP
r
0

0o

0"

r
6

data points 

data values

computed function values 

kxk matrix of equation 2.12

k-vector of equation 2.13, and steepest descent vector 

current vector of parameter estimates 

temporary parameter vector 

k-vector giving point on spiral

point on spiral found by interpolating three other points 
which are downwardly concave in p>

Taylor point found from solving equation 2.10

previous Taylor point saved

Taylor point found from interpolating along Taylor direction

scalar parameter generated by a recurrence relation to prov­
ide consecutive points along the spiral

initial value of^4<.

final value of yU.

iteration number

number of spiral being searched

sequential number of point on spiral

angle between Taylor direction jb and steepest descent g

current sum of squares 
previous sum of squares

value of p for previous Taylor point 
-1 510 constant preventing division by zero for some b .=03
-5 convergence criterion
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than the numerical errors. Kovalik and Osborne (1968) are mildly critical 
of the algorithm noting that it is awkward to experiment with X within 
an iteration, and that it is no disadvantage in G-aussian algorithms for _t 
to lie well away from jr,since algorithms using the steepest descent direct­
ion rarely perform well. Despite this, the version of the Marquardt algor­
ithm used here, called MARQDT and shown in Figure 2.7, behaves extremely 
well on the model used and in fact spends most of its time pursuing a path 
nearly perpendicular to g_.

(2.2.3) Jones* SPIRAL Algorithm

Another Gaussian type algorithm investigated here is the routine 
’SPIRAL’ originated by Jones (1970). Like the Marquardt algorithm it 
concerns itself with the area between, and in the plane of the steepest 
descent vector jr and the Taylor direction _t,as shown in Figure 2.8.
Searches for a reduced sum of squares 0 are made along spirals connect­
ing the base point 0 with the calculated Taylor point T in the isosceles 
triangle ODT. The points on the spiral are chosen so that they get closer 
together as they approach the steepest descent direction. The strategy 
of the SPIRAL algorithm, which is flowcharted in Figure 2.9 is as follows:

(i) The current Taylor point T is checked for a reduced sum of squares
and if found the next iteration is entered (the base point 

shifted to the Taylor point) otherwise,

(ii) points on the spiral curve TO starting from T are checked and if 
no reduced is found,

(iii) vector _t is halved producing point T ’ and if this gives no reduct­
ion in <p the spiral OT’ is searched as above;

(iv) if four spirals have been searched without finding a reduced <p 

the steepest descent direction is searched.

Jones also checks for downward concavity of (J) for points on the 
spiral, and if this is encountered an interpolation is performed; he also 
compares the value of <fr at the original and halved Taylor points for 
possible interpolation along the Taylor direction. Whereas in MARQDT 
consecutive search points within an iteration are generated by matrix 
inversion, the search points _s in SPIRAL are generated by vector addition.

_s = Dg + T_t , ... 2.26

where s is the search point on the spiral and D and T are scalar functions 
of a parameter yuL , the index of the spiral point, which is generated by 
the recurrence relation

/“ next “ 2^/(1+/^) ... 2.27
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As soon as a satisfactory point _s is found,the current parameter estimate 
b^ is updated by

_b = b^ + _s ... 2.28

(2.2.4) Algorithms which do not Require Derivatives

All the algorithms so far described require the analytic calculation 
of the model derivatives with respect to the parameters, which for com­
plicated models can be extremely onerous. A few methods exist which 
require only function values. Fletcher in a review article (Fletcher 1965) 
compares three such algorithms by Swann et al (1964), Smith (1962) and 
Powell (1965). Possibly the best for our purpose would be the Powell 
algorithm which has found wide application. Powell initially uses the 
co-ordinate directions (in parameter space) as k linearly independent 
search directions, and, as in the Gaussian methods, solves the normal 
equations for the correction vector d but using numerically estimated 
derivatives. His 1964 line minimization algorithm (which is discussed 
earlier by the name LMIN and shown in Figure 2.4) is used to minimize (ft 

along jl and the direction cl replaces one of the existing set of search 
directions. The necessary function evaluations along & are used to esti­
mate derivatives in such a way that subsequent iterations do not require 
an excessive number of further evaluations.

Unfortunately, an implementation of this algorithm was not developed 
in time for the numerical comparisons later in the chapter, and here we 
simply note the comparison of it with the Marquardt and SPIRAL algorithms 
in Jones (1970); in the majority of the standard test problems tried,it 
proved satisfactory but inferior to the two last mentioned methods. There 
is no reason to suspect that the model function used here would produce 
a comparison differing greatly to Jones’, particularly since his comparison 
of SPIRAL and Marquardt does not disagree greatly with our own results.
To assess the necessity of analytically calculated derivatives, a version 
of the Marquardt algorithm using numerically estimated derivatives was 
implemented,and is hereafter referred to as MARQT2. As in Jones (1970), 
a simple finite difference formula was used for the derivative estimat­
ions,with the step size e. in each component b . of _b being given byJ 3

e. = 5 x 10“5.lb.| , ... 2.29D 1 31
or e . = 5 x 1 0

if equation 2.29 produced e.<\10
J

-1 0

• • • 2.30
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2 .1 0

( 2 .3 )  THE TELESCOPE POINTING ERROR MODEL 

( 2 . 3 . 1 )  Model F u n c t io n

The model d e v i s e d  t o  t e s t  t h e  m ethods o f  p a ra m e te r  e s t i m a t i o n  p r o ­

grammed i s  t h a t  o f  a p e r f e c t l y  r i g i d ,  e q u a t o r i a l l y  m ounted t e l e s c o p e  w i th  

t h e  i n s t r u m e n t  p o le  m is a l i g n e d  from  th e  c e l e s t i a l  p o l e ,  t h e  two ax es  skew 

( n o t  o r th o g o n a l )  and  f i d u c i a r y  e r r o r s  ( z e r o  o f f s e t s )  i n  b o th  a x i s  t r a n s ­

d u c e r s ;  i t  i s  d e s c r i b e d  by f i v e  p a r a m e te r s  b . ,  b _ ,  b 0 , b^ and b_ d e f i n e d
1 2 3 4  5

be low . I t  i s  s u f f i c i e n t l y  s im p le  t o  p e rm i t  e a s e  o f  e x p e r i m e n t a t i o n  w i th  

t h e  a p p r o p r i a t e  com puter  p rogram s y e t  u s e f u l  i n  a s  much t h a t  i t  can  be 

i n c o r p o r a t e d  i n t o  more c o m p l ic a t e d  m odels f o r  a c t u a l  p o i n t i n g  e r r o r  i n ­

v e s t i g a t i o n s .  I t  i s  r e p r e s e n t a t i v e  o f  t h e  ty p e  o f  f u n c t i o n s  t o  be 

e x p e c te d  i n  p o i n t i n g  e r r o r  w ork .

The e f f e c t  o f  p o l a r  m is a l ig n m e n t  and h o u r a n g le  f i d u c i a r y  e r r o r  i s  

shown i n  F i g u r e s  2 .1 0 a  and  2 .1 0 b .  Thus f a r  t h e  s e t  o f  a x e s  O x 'y ’ z* a r e  

s t i l l  o r th o g o n a l^ a n d  th e  t r a n s f o r m a t i o n  be tw een  th e  c o r r e c t  e q u a t o r i a l  

sy s tem  Oxyz and  th e  m i s a l i g n e d  sy s tem  O x 'y ' z ’ i s  g iv e n  by th e  E u l e r i a n  

a n g le  t r a n s f o r m  u s in g  t h e  f i r s t  t h r e e  o f  t h e  p a r a m e te r s  b ^ , b^ and b^ .  

W ith  r e g a r d  t o  q u a n t i t i e s  w hich  a r e  p h y s i c a l l y  m e a s u re a b le  on th e  t e l e ­

s c o p e ,  b^ i s  t h e  p o l a r  m is a l ig n m e n t ,  b^ i s  t h e  c o r r e c t  h o u r a n g le  z e ro  

p o i n t  w i th  r e s p e c t  t o  t h e  i n s t r u m e n t  z e ro  p o i n t , a n d  i s  t h e  h o u r a n g le  

o f  t h e  t r u e  p o le  w i t h  r e s p e c t  t o  t h e  i n s t r u m e n t  a x e s  Ox’y ’ z '  and  i s  r e ­

l a t e d  t o  b^ by

F i g u r e s  2 .1 1 a  and  2 .1 1 b .  The skew d e c l i n a t i o n  a x i s  i s  assum ed t o  l i e  i n

w i th  no l o s s  o f  g e n e r a l i t y ,  s i n c e  t h i s  can  a lw ays  be a r r a n g e d  by s u i t a b l e

2.31

th e  p la n e  o f  t h e  i d e a l  ( o r th o g o n a l )  a x i s  and th e  i n s t r u m e n t  p o le  z* ,

c h o ic e  o f  b ^ j  t h e  h o u r a n g le  o f f s e t .

To compute t h e  d e c l i n a t i o n  and  h o u r a n g le  components o f  t h e  model 

f u n c t i o n  6^ and  H r e s p e c t i v e l y ,  t h e  a x i s  r e a d o u t  c o - o r d i n a t e s  S and H 

a r e  f i r s t  c o r r e c t e d  f o r  d e c l i n a t i o n  o f f s e t  and  skew ness  by

and
. . .  2 .3 2

P o l a r  m is a l ig n m e n t  and h o u r a n g le  o f f s e t  a r e  t h e n  c o r r e c t e d  by th e  

E u l e r i a n  a n g le  t r a n s f o r m a t i o n  e q u a t i o n s  :



X =

+ sin S', sinb .sin(b +b ) , ... 2.33a

(^2 -^3 ) . sin(b^+Hf )Jy
... 2.33b 

... 2.33cz cos S 1 •sinb^. sin(b^+H’) + sin S'.cosb^

Finally,the model function is given by the rectangular to polar trans­
formation

where - 77/2 ̂ &c ̂ 77 “/ 2  and O ^ H ^ ^ ^ T T  .

(2.3.2) The Model Derivatives

The routines GRADNT, GRAD2, DLSQ, MARQDT and SPIRAL all require the 
derivatives of the model function with respect to the parameters. Jones 
(1970) and others regard the analytic calculation of derivatives as being 
well worthwhile, although they consider model functions somewhat less 
complicated than that used here. Techniques for simplifying and approx­
imating telescope pointing error models by simply summing the component 
causes are discussed in Chapter 4,but here the exact model derivatives

are calculated analytically.

Equations 2.36 to 2.40 inclusive and equation 2.42 below (in which 
£>’, H* and x, y, z are defined in equations 2.32 and 2.33 respectively) 
give these derivatives:

2.34

^b .1
... 2.35

2 - —+ cos S' • sinb^ . cos (b^+HT). (1 -z ) ••• 2 .... 2.39

In equations 2.39 and 2.40 the derivatives of S’ and H T are given by



2 .12

'bS'/^b, = - sin(6+b_) • sinb j~1 -4 5 4
£̂>T/^b_ = cos (S+b_) • cosb .fl -5 5 4 u
ĉ H’/^b = tan(S+b_) • cosb Fl +4 5 4 u

and ^ H ’/dbr = sinb . sec2 (6+b_). [ 15 4 5 L-

sin2(S+b_) • cos^b .] 2 5 4J ... 2.41a

sin^(6+b )•cos^bJ 2 D 4 ... 2.41b

tan2 (S+b ) • s in2b4] 1 ... 2.41c
2 2 1 + tan (S+b).sin b J 5 4J ... 2.41d

The derivatives ^f /^b. are given by equations of the form3
^f ̂y^b . = (ydx/db . - x.by/db . )/(x^ + y2)3 3 3 ... 2.42

where j = 1,2,3,4,5 and the derivatives b x/db . and c)y/^b. are in turn3 3
given by

cos S’- sinb .sin(b -b ) sin(b +H*)

^>x/db2

^y/db0

by/bh.

b x/db^ 

by/bh^ 

^x/dbc 

dy/db(

+ sinS’•cosb^ .sin(b2~b^)

cos S1 .sinb^ .cos(b2~b ).si^b^+H’) 
+ sin S’ • cosb^ • cos(b^b^)

... 2.43a

... 2.43b

- cos S’ ■ [c°s^ 3 +^ T ̂ • s^n^2~^3^'+ cosb^ . cos(b2~b^) sin(b^+H’)J
... 2.43c+ sin S'.sinb^ .cos(b^-b^)

cos 5T • [cosb.j . sin(b2-b^) . sin(b2+HT) - cos (b^b^) cos(b^+HT )J
... 2.43d- sinS*•sinb^.sin(b2~b2)

^x/db0 = - cos S’ • ("cos (b -b ) . sin(b„+H’ ) + cosb ..sin(b -b_ ). cos (b^+H* )1 3 * - 2 3  3 1 2 3  3 J
- ̂ x/db. ... 2.43e

cosS’. j]sin(b2-b2). sin(b2+H’) - cosb^ . cos (b^b^ ).cos (b^+H’)] 
- dy/dh

A.^&’ /db + B.bH’/öb,4 4

C.^S’/db, + D.^H’/db4 4

A. <3S’/^b + B.bH’/dbr5 5
C.bb'/bhc + D.bH’/dbc5 5

... 2.43f 

... 2.43g 

... 2.43h 

... 2.43i 

... 2.43j

The quantities A, B, C and D in equations 2.43g to 2.43j are given by

A = sin S’ Tcosb .sin(b -b ).sin(b +H’) - cos(b -b ).cos(b +H')1 
u 1 2 3 3 2 3  3 4

+ cos sinb.j. sin(b2~b^) ... 2.44a

B — - cos S' ■ £cos(b0-b^) ,sin(b^+H’) + cosb^ sin(b2~b^).cos(b^+H’)J
... 2.44b
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sin 8’• [~sin(b -b ) . cos (b +H ’) 4- cosb cos (b -b ) . sin(b +H’)~]

^ Z 3 3 I Z 3 3 - 3
+ cos S’ •sinb^.cos(b9-b ) ... 2.44c

cos S' ^sin(b2~b^). sin(b^+HT) + cosb^ .cos(b^-b^) .cos(b^+H’)J
... 2.44d

vhere again the derivatives of b ’ and H ’ are defined in equations 2.41a 
to 2.41d.

(2.4) THE PERFORMANCE AND COMPARISON OF THE ALGORITHMS

The six routines G-RADNT, GRAD2, DLSQ, MARQDT, SPIRAL and MARQT2 
described above were programmed in FORTRAN as subroutines for an I.B.M. 
360/50 and later a UNIYAC 1108 computer; the code listings for these 
routines and also the necessary supporting subroutines are to be found in 
Appendix D. The parameter estimation program takes the form of a main 
section which merely reads a card containing the sequence in which the 
various subroutines above are to be executed. Two additional subroutines 
are required: DATGEN which, given n the number of data points and _b a
k-vector of telescope mounting parameters, generates pointing error data
xu  (the independent variable) and y^ (the ’experimentally measured’
variable) where 1 = 1 , 2  and i = 1,...n; and also DAPERT which takes the
experimental variables y"̂  above and perturbs them by adding to each a

1 @normally distributed pseudo-random number with zero mean and a specified 
standard deviation. These last two subroutines enable one to synthesize 
pointing error data such as would be taken from a telescope with appropri­
ate parameter vector _b, and to superimpose on this a pseudo-random vari­
ation to permit assessment of an algorithm under real conditions, and also 
to test whether or not an algorithm produces stable solutions.

In the following computing runs several sets of model parameters were
used and these are tabulated in Table 2.1. Labelled from A to F the models
represent progressively more erratic telescope mountings. Model D (for
example) represents a telescope mounting with a polar misalignment (b )
of 30.9 arcsecond oriented at an hourangle (77/2 - b ) of 245 degrees, a
polar axis zero error (b^) of -103 arcsecond, 41.2 arcsecond skewness of
the axes (b,), and a declination zero error (b_) of 103 arcsecond. Such a 4 5
mounting produces a R.M.S. pointing error of approximately 2 arcminute.

All of the algorithms require an initial estimate of the parameters

@ ’random’ but for the fact that repeated computer runs would produce 
an identical set of such numbers; this is necessary for purposes 
of comparison.
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TABLE 2.1

Test Model A B C D E F

bi .00004 .0001 .00013 .00015 .0003 .01

Parameter b2 -.00006 .0002 .0002 -.0005 .0008 -.01

value in b3 .6 1.0 .14 -2.0005 1 .0 -1 .0

radian b4 -.00003 -.00015 -.0002 .0002 -.0006 .01

b5 .00005 -.0002 .00017 .0005 .0007 -.01

Sum of squares $ .26-6 .17"5 .35"5

io• .47"4 .10"1

R.M.S. on-sky error 19 sec. 50 sec. 70 sec. 2 min. 4 min. 1 deg.

TABLE 2.2

Starting Point Number SP1 SP2 SP3 SP4 SP5 SP6

_7 -5L 10 .002 .01 0 -10 -.00015
-7 -5Parameter b^ 10 .002 .01 0 -10 .0005
-7 -5value in b^ 10 .002 .01 0 -10 2.0005
-7 -5radian b^ 10 .002 .01 0 -10 -.0002
-7 -5

b5 10 .002 .01 0 -10 .0005

-1 2 , -3 o -2 -8 „ -4Sum of squares cf> .77 .31 .78 0 .77 .11

R.M.S. on-sky error .03 sec. 1 1 min. 50 min. 0 3 sec. 2 min.

N.B. superscripts are decimal exponents e.g. .26-6 .26 x 10-6
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which is iteratively improved to obtain the eventual solution. The six 
initial estimates or starting points used in the computing runs are 
tabulated in Table 2.2 and referred to hereafter by SP1 etc. The residual

In all runs 30 data points were used and so the constants appearing in 
equations 2.7 to 2.13 above are n=30, m=2, k=5 and s=2.

Although problems were experienced in getting all the algorithms to
run reliably, most of these were with certain constants or with minor
points of strategy. The exceptions are the two steepest descent routines
G-RADNT and GRAD2 which,despite quite drastic modifications and redesigning,
proved quite unsatisfactory as practical methods. The expression for the
step size in routine G-RADNT given in Marquardt (1959) involves cos^9
and is in error since as the successive steps turn from being collinear
to zig-zag, 9 varies from 0 through 7T/2 to 7T, and cos9 from +1 through
0 to -1. Thus an expression involving an odd integral exponent of cos9
is necessary if oC is to decrease as 9 increases, and expressions with 

5cos9 and cos 9 were used here.

The choice of initial step size, the parameter transformation used, 
and the fundamental strategy of GRADNT were varied with little success.
In all runs examined the routine exhibits the same tendency, namely a slow 
and steady reduction in <f> along a straight path until a sudden sharp 
descent or a bend in the contours of is encountered,whereon the routine 
’zig-zags’ abruptly and in the attempt to find a further reduction in <j) 
the step size is reduced ad nauseam until a floating point divide under­
flow occurs. Table 2.3 shows the progress of GRADNT starting at SP1 with 
data generated from model D. At iteration number 8 there is a sudden bend 
in the contours as shown by the decrease in cos9; the routine then keeps 
dividing 06 by 4 but does not find a reduced (f> before underflow occurs.
If we limit the number of times oC is divided by 4, in this case to 12, 
the column labelled 9 describes the result; the routine has run up the 
side of a valley and is proceeding in a straight line with such diminished 
steps that it cannot find the valley floor in a convenient number of 
iterations. No modification to the manner in which oC is computed that 
was tried produced any substantial difference in the behaviour of GRADNT.

Like GRADNT,the routine GRAD2 runs into troubles early in the course 
of the solution. Which of the golden section (GMIN) and Powell (LMIN)

sumsquare 0 in Tables 2.1 and 2.2 has been calculated from equation 2.7 
with x  ̂ substituted for f^ (since f^ = x^^ for a perfect mounting) and 
the R.M.S. on-sky error calculated from

... 2.45

i
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TABLE 2.3

The behaviour of GRADNT

Iteration number 1 2 3 4 5 6 7 8 9@

step size o c .10“2 .50"3 .TS'3 .11“2 -2.17 .25~2 . 37~2 -3.20 ■59-12

cos© - .9996 .9999 .9995 .9981 .9982 .7784 .0656 .9945

</> .94“ 5 _5.88 -5.80 .67_5 .50-5 .31"5 .34~5 .72~7 .21-6

R.M.S. 115. 112. 107. 97.5 84.2 66.3 69.4 10.1 16.8

N.B. superscripts are decimal exponents e.g. .75 = .75 x 10

@ see text.

TABLE 2.4

The performance of G-MIN and LMIN in the routine G-RAD2

GRAD2 iteration number 1 2 3 4 /
Ct? (radian) .46-6 .74-7 . 57~7 .56-7 /
R.M.S. (arcsecond) 25.5 10.2 9.0 8.9 /
Number of
function
evaluations

GMIN 23 45 67 89 /
LMIN 7 13 17 21 /

. .46  ̂= .46 x 10N.B superscripts are decimal exponents e.g



FIG 2.12

0  in the direction of the correct result for Model D. 

0  in the direction of steepest descent.

solution

5 10 20000 2 00 05
-4Distance in param eter space from point SP1, radian x 10

2 0010



FIG 2.13

DLSQ on Model D starting at SP4, i = 50.s

DLSQ

Number of iterations.



2.17
line minimization routines is used,has very little effect on the progress 
of GRAD2,which, although exhibiting a much faster initial rate of converg­
ence than GRADNT, stagnates at more or less the same value of <f) , in this 
case .56 x 10 (equivalent to 8.9 arcsecond R.M.S.). There is however 
a marked difference in efficiency between GMIN and LMIN; the latter 
requires much fewer function evaluations to perform the line minimization 
and is much less critical of the step size and line minimization tolerance 
6 used. Table 2.4 shows the relative number of function evaluations 
required by GMIN and LMIN for the first four iterations of GRAD2 on model 
D and starting from SP1. It shows conclusively that the model function 
is such that it can he adequately represented by the quadratic approximat­
ion used in the Powell algorithm,and that Powell should be the algorithm 
used if line minimization is required. Nevertheless GRAD2 overall is no 
more satisfying than GRADNT, and because it uses the optimum gradient 
strategy it can be concluded that no algorithm employing the gradient or 
steepest descent direction will be found satisfactory for the problem 
treated here. It is not difficult to see why; the gradient direction for 
model D at starting point SP1 is oriented at an angle of 89.98 degrees to 
the actual direction of the solution, and such routines get trapped in an 
extremely narrow valley, whereas the solution can be reached by proceed­
ing along a gently sloping and nearly straight path. Figure 2.12, in 
which the solid line gives the variation of (p along the steepest descent 
direction,and the broken one that for the solution direction, is illustrat­
ive of this.

The other algorithms DLSQ, MARQDT, SPIRAL and MARQT2, the estimated 
derivative version of MARQDT, perform sufficiently well for useful com­
parisons to be made. The convergence criterion in each is identical, 
namely that convergence is reached when

|t.|/(|b.| +T) ^  £ for all j = 1,...k ... 2.46
«J 0

where the t. are the components of the particular correction vector,
—5  ̂ —15£ = 10 is the convergence tolerance and ~C - 10 is to guard against

underflow in case some b. = 0, (see flowchart in Figure 2.9 for alterna-
U

tive ways that SPIRAL can converge). However to enable such comparisons
to be made a suitable number must be decided for the iteration breakpoint
i at which to ’switch off’ the damping (set X = 0) in the routine DLSQ, s
for otherwise the rate of convergence is rapidly decreased. A test was 
run using DLSQ with i = 50 on data generated from model D and starting 
from SP4, and the behaviour of (j) with successive iterations is shown in 
Figure 2.13. After an initial steep decrease in <fi for about 8 iterations 
the routine slows to a rate of convergence which is markedly inferior to
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that of the others (see Figure 2.14).

The routine was also run on the same data and starting point as above 
with various values of iteration breakpoint, and the effect of these is 
seen in Table 2.5. In all the runs the convergence was complete and the 
final parameter estimates were correct to better than 8 significant fig­
ures. Neither the total number of iterations required,nor the number 
required after the breakpoint, varies simply with the breakpoint i and 
this is attributed to the non-monotonic behaviour of DLSQ directly after 
the breakpoint. For the breakpoints tried below 26, (j> at some stage in­
creased rather than decreased, usually 2 or 3 iterations after the break­
point. To discourage this potentially unstable behaviour we require a 
fairly large number for the breakpoint yet not so large that it prolongs 
convergence; on the basis of Figure 2.13 and Table 2.5 a breakpoint of 
10 was chosen for all subsequent work with DLSQ.

TABLE 2.5

BREAKPOINT is 3 5 8 11 14 19 26 50

iterations required 
for convergence 14 13 15 17 22 24 30 52

iterations required 
after breakpoint 11 8 7 6 8 5 4 2

iterations at which 
increased 5,6,8,11 7,8 10,11 13,14 16 21 none none

j @final sumsquare <p
-272.5 -331.7 -322.7 4.2-34 , -341 .7 1.7~34 2.0“34 „ -26 2.0

@ superscripts are decimal exponents e.g. 2.5 = 2 . 5 x 1 0

Literature comparisons of parameter estimation algorithms applied to 
specific problems often compare computation time, number of iterations or 
number of function evaluations required to produce a convergence. The 
first is complicated by computational overheads and coding inefficiencies, 
and the second by the vague meaning of which loop in an iterative strategy 
one considers to be 'the iteration'. The number of function evaluations 
would appear to be the best criterion for comparing algorithms of quite 
different strategy and is used by Powell (1965), Jones (1970) and others. 
All the three routines, DLSQ, MARQDT and SPIRAL calculate the derivatives

ion itself f^ is computed. DLSQ calculates it once; MARQDT usually 
calculates it once or twice (depending on whether X needs decreasing or 
not), but if a reduced sum of squares <f> is difficult to find;a function
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evaluation is required for every new trial value of A generated (see 
Figure 2.7). SPIRAL evaluates a completely variable number of times 
depending on the number of points generated along a spiral and where on 
the spiral a reduced sum of squares Cb was encountered.

Routines DLSQ, MARQDT, SPIRAL and MARQT2 were run on data generated 
from model D starting from each of the six starting points in Table 2.2, 
and in every case completely converged to the correct parameter values. 
Table 2.6 gives the number of iterations and function evaluations required 
for convergence, and only in the case of starting point SP4 did any of the 
routines experience trouble. MARQDT, SPIRAL and MARQT2 all experience 
divide errors due to division by zero when scaling the parameters,but if 
this is supressed,carry on and converge normally. MARQT2 after an initial 
few satisfactory iterations converges prematurely on an incorrect answer. 
Figure 2.14 shows the variation in with number of function evaluations 

for each of the routines starting from SP1. Paths in (ft are not shown 
for the other starting points, but Figure 2.14 is certainly typical of the 
behaviour of the algorithms. DLSQ was often observed to oscillate before 
converging but the other two are restricted to a monotonic path by virtue 
of their internal check that is reduced after each iteration. A tend­
ency existed for all routines (though to a lesser extent with DLSQ pre­
sumably because of its initial slow rate of convergence) to find an answer 
for parameter b^ which included an additive constant 2m7T where m is an 
integer, or to find both b̂  and b^ negative; this is, of course, still a 
correct result.

To test the stability of the solutions, tests similar to those above 
were run but with the data of model D perturbed by an additional 14 arc- 
second R.M.S. using the routine DAPERT which adds a normally distributed 
pseudo-random number (of known standard deviation) to each y^. All four 
routines converged to a final R.M.S. error of 13.5 arcsecond and parameter 
estimates which were identical to a precision of 8 significant figures, in 
all cases. Table 2.7 shows the number of iterations and function evalu­
ations required in each case; again for the case SP4 a divide error had 
to be suppressed before the figures for MARQDT and SPIRAL could be ob­
tained and MARQT2 converged prematurely. The orientation parameter b^ 
differed from the unperturbed estimate by 0.73 degrees and the other four 
parameters by an average of 3.4 arcsecond. Figure 2.15 shows the perform­
ance of the four routines starting from SP1 as a function of the number of 
function evaluations, and demonstrates the oscillatory behaviour of DLSQ 
once the damping is removed in contrast to the very uniform behaviour of 
the other three routines. The data of model D was also perturbed by 
various other amounts and Table 2.8 gives the number of iterations and
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function evaluations for the routines working on data with introduced 
R.M.S. perturbations of 2.8, 7, 14, 28 and 56 arcseconds. The routines 
were started at SP1 and for a given perturbation all converged to the 
same final value of R.M.S. error and a consistent parameter estimate.

TABLE 2.6
Unperturbed data from model D

ROUTINE
Starting point number DLSQ MARQDT SPIRAL MARQT2

SP1 fn. 17 5 5 36 (6)
iter. 17 5 5 6

SP2 fn. 18 14 17 59 (14)
iter. 18 9 8 9

SP3 fn. 21 15 16 70 (15)
iter. 21 11 7 11

SP4 fn. 17 10 34 premature
iter. 17 7 7 convergence

SP5 fn. 17 7 5 42 (7)
iter. 17 7 5 7

SP6 fn. 19 5 5 30 (5)
iter. 19 5 5 5

UPPER figure is number of function evaluations required for convergence. 
LOWER figure is number of iterations required for convergence.
Figure in parenthesis for MARQT2 gives the number of function evaluations 
if those used solely for estimating the derivatives are excluded.

Finally the four routines were tried on data generated from all six 
of the sets of model parameters given in Table 2.1. Starting point SP4 
because of its symmetry and uniqueness is the obvious choice for such a 
comparison,but because of the numerical problems it causes all of the 
routines except DLSQ,it must be avoided and SP1 was used as a suitable 
alternative. Table 2.9 gives the performance of the routines on the vari­
ous models, and Table 2.10 shows similar runs but with the data from each 
model perturbed by an additional 14 arcsecond. Model F (which admittedly 
represents a more erratic mounting than would normally be encountered in 
practice) caused considerable problems to the estimated derivative routine 
MARQT2, which became ’stuck’ after only 2 or 3 iterations and then con­
verged prematurely. Figure 2.16 shows the progress of DLSQ, MARQDT and 
SPIRAL on the perturbed data of model F starting from SP1. This is one
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TABLE 2 .7

D a ta  p e r t u r b e d  by a d d i t i o n a l  R.M .S. o f  14 a r c s e c o n d

ROUTINE

S t a r t i n g  p o i n t  number DLSQ MARQDT SPIRAL MARQT2

SP1 f n . 21 9 18 54 (9)

i t e r . 21 9 9 9

SP2 f n . 18 14 17 64 (14)

i t e r . 18 10 8 10

SP3 f n . 19 12 16 62 (12)

i t e r . 19 10 7 10

SP4 f n . 19 10 34 p re m a tu re

i t e r . 19 7 7 c o n v e rg e n c e

SP5 f n . 20 24 36 87 (22)

i t e r . 20 14 9 13

SP6 f n . 18 5 5 30 (5)

i t e r . 18 5 5 5

TABLE 2 .8

D a ta  from  model D v a r i o u s  p e r t u r b a t i o n s ,  s t a r t i n g  p o i n t  SP1

I n t r o d u c e d  R.M.S. 
e r r o r  a r c s e c o n d

ROUTINE
F i n a l  R.M.S. 
e r r o r  a r c s e cDLSQ MARQDT SPIRAL MARQT2

2.81 f n . 17 19 7
/ \ @ 66 (16) 2 .7 4

i t e r . 17 11 7 10

1 7 .0 4 f n . 17 16 7 54 (9) 6 .8 6

i t e r . 17 10 7 9

1 4 .0 7 f n . 21 9 18 54 (9) 13.71

i t e r . 21 9 9 9

2 8 .1 4 f n . 16 8 34 48 (8) 2 7 .4 2

i t e r . 16 8 7 8

56 .2 8 f n . 15 19 8 56 (11) 54 .85

i t e r . 15 11 8 9

@ F i g u r e  i n  p a r e n t h e s i s  f o r  MARQT2 g iv e s  t h e  number o f  f u n c t i o n
e v a l u a t i o n s  i f  t h o s e  u s e d  s o l e l y  f o r  e s t i m a t i n g  th e  d e r i v a t i v e s  
a r e  e x c lu d e d .



TABLE 2.9
Solution to various models starting from SP1
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MODEL
ROUTINE

DLSQ MARQDT SPIRAL MARQT2
A fn. 15 6 6 36 (6)®

iter. 15 6 6 6
B fn. 17 7 8 42 (7)

iter. 17 7 8 7
C fn. 14 7 6 42 (7)

iter. 14 7 6 7
D fn. 17 5 5 36 (6)

iter. 17 5 5 6

E fn. 17 18 66 122 (32)
iter. 17 11 10 18

F fn. 16 7 28 premature
iter. 16 7 10 convergence

TABLE 2.10
Various models perturbed by additional 14 arcsec. R.M.S., SP1

ROUTINE
MODEL DLSQ MARQDT SPIRAL MARQT2

A fn. 10 15 17 / \ @ 60 (15)
iter. 10 9 8 9

B fn. 15 6 99 42 (7)
iter. 15 6 11 7

C fn. 12 5 18 30 (5)
iter. 12 5 9 5

D fn. 21 9 18 54 (9)
iter. 21 9 9 9

E fn. 17 6 7 42 (7)
iter. 17 6 7 7

F fn. 16 5 19 premature
iter. 16 5 10 convergence

Q Figure in parenthesis for MARQT2 gives the number of function 
evaluations if those used solely for estimating the derivatives 
are excluded.



2.23
of a number of cases in which SPIRAL requires an abnormally large number 
of function evaluations, and the three routines show quite different 
overall rates of convergence.

(2.3) CONCLUDING DISCUSSION

The computing runs discussed above show that it is quite feasible to 
estimate the parameters in models of pointing errors typically exhibited 
by telescopes. The steepest descent routines proved quite unsatisfactory 
as practical methods and are incapable of coping with the topography of 
the 0 surface. It was initially thought that the solution could be 
started with a descent method and one of the Gaussian type of algorithms 
used when nearing the solution,but even the initial progress of GRALNT 
and GRAL2 is unimpressive, and in any case the Gaussian routines experience 
little trouble in attaining the correct result wherever they are started.
The only conclusion worthy of note which comes from the study of the two 
descent routines is the usefulness and efficiency of LMIN as a line 
minimization scheme.

The other four routines should prove quite satisfactory in practice.
On the unperturbed data generated from the various sets of model parameters

—25 —33they all converge to a final sumsquare (f> of between 10 and 10 , and
for the perturbed data they converge to an identical parameter estimate and <f> ; 
this is to be expected since the process of leastsquares minimization en­
sures a unique solution, which for the perturbed case, lies well away from 
the region of cumulative machine error. The solutions are quite stable as 
is indicated by the fact that the fractional variation between the para­
meter estimates for the perturbed and unperturbed cases is approximately 
the same as that fraction of the total R.M.S. error in the data which is 
made up by the perturbation. It should be noted that the fits generated 
to the perturbed data are apparently better than would be expected from 
the error introduced into the data by some 2 to 3$. This is because some 
of the error in the resulting data has been fitted by the estimation pro­
cess, and if standard deviations had been tabulated (with due regard to 
the appropriate degrees of freedom) instead of R.M.S. error, only very 
small differences would have been observed.

The Levenberg algorithm DLSQ suffers from a rate of convergence which 
is markedly inferior to the other (Gaussian) routines. Marquardt (1963) 
predicts this and likens the method to a steepest descent process; yet 
this is not entirely true since it is capable of steady, reliable progress 
towards the solution as is seen in Figure 2.13 where a residual error 
level of approximately an arcsecond is attained within 40 iterations. It 
is the only one of the algorithms which does not give trouble when certain
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avkvard values of the parameters (e.g. zero) are encountered and could 
prove very useful in practice on problems which are less stable or more 
prone to numerical troubles. The device adopted here of suddenly switch­
ing off the damping often causes severe oscillations (see Figure 2.15) and 
is not recommended. Other schemes for progressively reducing X could be 
devised but in view of the effectiveness of the Marquardt algorithm such 
effort is probably not warranted.

In about 60 percent of the computer runs described above the routine 
MARQDT proved the most efficient method; this was particularly noticeable 
when the starting point was distant from the eventual solution. When the 
progress of the routines on the (p surface is such that the correction 
vectors lie near the Taylor direction, MARQDT and SPIRAL proceed along 
quite similar paths, and in about 20 percent of the runs SPIRAL is in fact 
the superior routine. Occasionally, using SPIRAL, a large number of 
function evaluations are required within an iteration to search along the 
spiral paths for a reduced sumsquare (f) , and in such cases the routine 
compares poorly with MARQDT,and even DLSQ. In Jones (1970), SPIRAL is 
shown to be substantially superior to MARQDT but it is not uncommon for 
comparisons of this nature to be both problem and data dependent.

MARQT2, the estimated derivative version of MARQDT, proved surpris­
ingly effective; in 70 percent of the tests it follows the path of MARQDT 
very closely. On a few spurious occasions it is actually superior to 
MARQDT, and since most of these are for the perturbed data cases (which 
are the more typical of data to be encountered in practice) it is clear 
that estimated derivatives may suffice for many problems in practice where 
analytic differentiation of the model function is considered either excess­
ively onerous, or an impedance to experimentation with the model. MARQT2 
was, however, somewhat more susceptible to numerical problems and premat­
ure convergence, particularly when zero values of the parameters were 
encountered.

It is clear from the foregoing that the routine to be recommended 
for parameter estimation of pointing error models is Marquardt's 1963 
algorithm MARQDT, preferably with the modification suggested by Jones 
(1970) included. The geometric nature of the process being modelled^and 
the practical limitations on both the domain and range of the model 
function ensure that such functions are well behaved even though large 
numbers of parameters may be involved in practice. The greatest diffi­
culty in model estimation lies in formulating a model in which there are 
no redundant parameters. This is essential if we wish to use the para­
meter estimates as a basis for conclusions concerning the physical causes
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of error , and even when we do not, redundant parameters can cause un­
stable solutions ?„nd numerical trouble in the routines used. Chapter 4 
demonstrates problems of this nature encountered in devising a model for 
a practical telescope.

@ see Chapter 1 for a brief discussion of 'mechanism determination 
v.s. response surface optimization’.
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CHAPTER THREE

ERROR SURFACE FITTING- AND INTERPOLATION 

(3.1) PRELIMINARY

The main causes of telescope pointing errors are fairly evident: 
structural flexure, gear errors, encoder nonlinearities and mounting geo­
metry errors. Yet the difficulty of deriving the model function in 
Chapter 2 for a given case, and the fact that there may exist numerous 
unexpected causes whose effects dominate the expected ones, suggest a con­
sideration of the surface fitting process. That is, we attempt to approx­
imate the error surfaces A b  and A h (which are functions of the two 
variables S , H) by some approximating functions and 7^^ respectively.
We need to decide the form of these approximating functions, and the crit­
erion for a satisfactory approximation. For the reasons cited in Chapter 
1,we use here the criterion of minimization of the leastsquares or L0 
norm; in fact we seek the minimum of (j) defined in equation 2.7 since 
this minimizes the R.M.S. resultant error on the sky.

The approximating functions can be polynomials, or periodic functions 
(e.g. Fourier series), or rational functions etc; in all cases a number 
of coefficients or parameters must be determined according to the criterion 
above. There is a formal similarity to parameter estimation in this regard, 
but by making the approximating functions linear in the parameters (coeff­
icients) we permit considerable simplification of the process by which 
these are determined, and by further restricting ourselves to polynomials 
we can avoid numerical instabilities in the computations. We explain 
this by briefly alluding to the one dimension case, namely curve fitting.

(3.2) CURVE FITTING

Let x ,...x^ be n observations of the independent experimental vari­
able, and let Y-| > • * »y be the corresponding values of the dependent vari­
able. We wish to find the coefficients c. j = 0,...k in the approxim- 
ating function ^  given by

fi = f (xi] = ^  °3 V Xi U
@where the P. are polynomials in x , such that the expression J

k
i> = iz [Vi-yJ2 "i2 = n  [yA- n  ^ p.u)]

i=1 L ' ^  i=1 j= 0  J J J

2 2 w . l

3.1

3.2

@ For the c. to be unique, the P. must be linearly independent i.e. P.
J 3 3

must not be expressible as a linear combination of all the other P^
for q^j. In practice this may be arranged by having P. of degree 
equal to j. ^
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is minimized (where w^ is an arbitrary weighting function). Setting the 
derivatives of <p with respect to the coefficients c . to zero, gives the 
matrix equation

A c = b ... 3.3

where c = (c.) is the (k+1)-vector of coefficients,and matrix A = (A .),
J

where for r = 0,...k and j = 0,...k

A .
n ?

= Y1 P (x. ) P . (x.) w.
f c i  r  1 3 1 1

... 3.4

n 22 Pj cr
1

C_
l. = H y, •

i=1 J
... 3.5

(3.3) ORTHOGONAL POLYNOMIALS

The matrix A in equation 3.3 is often ill-conditioned for arbitrary 
choice of the polynomials P. (e.g. power series), and we utilize polynom- 
ials which are orthogonal, that is 

n 2) P (x.) P . (x.) w. = 0 for all r^j. ... 3.6Hj r i 3 i i

In this case A becomes a diagonal matrix and the coefficients c . are given

It is clear from equation 3.6 that the polynomials used depend on the 
range and distribution of the discrete data and on the weighting function 
used; thus we must generate orthogonal polynomials specifically for the 
data taken in the experiment.

A method of generating suitable polynomials is the Gram-Schmidt
orthogonalization procedure as used by Cadwell and Williams (1961), and
others. P is taken identically as unity, and subsequent P. given by ^ 1

“I (§ )P. = xJ + a linear combination of P_,...P, .. .«. 3.83 0 o-1
The coefficients in the linear combination in equation 3.8 can be deter­
mined so that the resultant P. satisfy equation 3.6. For an approximat- 
ing function of degree kjsome k(k+1)/2 such coefficients must be found, 
and a somewhat more convenient and widely used process is that described 
(though not originated) by Forsythe (1957). As above, Forsythe’s method 
sets Pq = 1, but the recurrence relation for P. involves only the previous

@ TljijLs -*-s mos^ usual form; in general x^ could be replaced by the
j term of a sequence of basis functions which span the space formed 
from the product of k real lines R .
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tvo terms,

P. = x.P. „ + linear combination of P. , and P.  ̂ ... 3.90 1-1 1-1 I"2
Thus only 2k-1 coefficients in equation 3.9 need be computed to obtain
the required orthogonal polynomials. Forsythe’s method has had vide
application in discrete data curve fitting problems e.g. Clenshav (i960),
Berztiss(1964), and Clenshav and Hayes (1965), and is the method generalized
to multiple dimensions in Weisfeld (1959).

(3.4) SURFACE FITTING WITH RESTRICTED DATA DISTRIBUTIONS

Surface fitting, that is fitting a scalar function of tvo independent 
variables y_̂  = y(x^,X2^), can be regarded as an extension of curve 
fitting if certain restrictions are placed on the manner in vhich the 
data is distributed. If the data lies on the intersections of a rectang­
ular grid (see Figure 3.1), then one can fit a series of orthogonal poly­
nomials in x̂  to the data points along each line x^ = x^g , and then fit 
the coefficients obtained by a series of orthogonal polynomials in x^• 
Hayes (in Hayes 1970) shovs that this procedure is identical to a least- 
squares surface fit using product polynomials of the form P^(x^).P^(x0).

If the data lies on lines parallel to the x^ axis (say), but is 
distributed randomly along those lines (see Figure 3.2), ve need to abandon 
our orthogonal polynomials in favour of polynomials vhich are the same 
for each line, or modify the Forsythe method by actually expressing each 
of the generated polynomials in terms of their Chebyshev expansion. The 
latter technique (Clenshav I960) permits surface fitting the data distrib­
ution of Figure 3.2 by repeated application of curve fitting,and indeed 
can be extended even further to cover the case vhere the boundaries of the 
data domain are not straight but are simple analytic functions as in Figure 
3.3. Fitting the data of Figures 3.2 and 3.3 in this manner does not 
produce the true leastsquares surface fit as in the case of a complete 
grid,and the fit is not necessarily unique, but the results are deemed to 
be the same for most practical purposes (Clenshav and Hayes 1965).

Unfortunately, the methods above are not applicable to our vork vith 
pointing errors vhich involve randomly distributed data. It could be 
argued that for the case of an equatorial mounting,a given celestial object 
could be used at different times and therefore different hourangles, and 
thus the data vould lie on lines of constant declination. Hovever this 
renders the collection of pointing error data difficult and time consuming, 
necessitates the interchanging of dependent and independent variables, and 
is out of the question if ve envisage some form of automatic softvare 
package vhich vill measure and process pointing errors vhilst the telescope
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sy s tem  i s  i n  no rm al a s t r o n o m i c a l  u s e .  So we a r e  l e f t  w i t h  t h e  p rob lem  

o f  d o in g  a l e a s t s q u a r e s  s u r f a c e  f i t  u s in g  some form  o f  p o ly n o m ia ls  w hich  

a r e  o r th o g o n a l  o v e r  ou r  random ly  d i s t r i b u t e d  tw o - d im e n s io n a l  d a t a .  B e fo re  

d e s c r i b i n g  t h i s  p r o c e s s  we s h o u ld  d i s t i n g u i s h  t h e  c a se  o f  s u r f a c e  i n t e r ­

p o l a t i o n .

( 3 .3 )  SURFACE INTERPOLATION

S hou ld  t h e  d e g re e  k  o f  t h e  a p p ro x im a t in g  f u n c t i o n  Y  and  t h e  number

o f  d a t a  p o i n t s  n be such  t h a t  k + 1 ^  n^ we sp e a k  o f  s u r f a c e  i n t e r p o l a t i o n ,

s i n c e ,  f o r  exam p le ,  i f  t h e  number o f  d a t a  p o i n t s  i s  a c t u a l l y  e q u a l  t o  th e

number o f  c o e f f i c i e n t s  ( o r  p a r a m e te r s )  t o  be fo u n d ,  t h e  r e s i d u a l s  i n

e q u a t i o n  3 .2  can  a l l  be f o r c e d  t o  z e r o ,  and  th e  s u r f a c e  made t o  p a s s

e x a c t l y  t h ro u g h  e a ch  d a t a  p o i n t .  I f  r e c o u r s e  m ust be made t o  c o m p l ic a t e d

f u n c t i o n s  f o r  Y', t h e r e  a p p e a r s  l i t t l e  p o i n t  i n  i n t e r p o l a t i n g  a s  d i s t i n c t

from  f i t t i n g , a n d  i n  most o f  t h e  l i t e r a t u r e  on s u r f a c e  f i t t i n g , f a i r l y

s im p le  f u n c t i o n s ,  d e s ig n e d  p r i m a r i l y  w i t h  d a t a  sm oo th ing  i n  m ind , a r e

em ployed . T h e i lh e im e r  and  S t a r k w e a th e r  (1961), and  B i r k h o f f  and de Boor

(1965) work w i th  c u b ic  s p l i n e s  on th e  r e c t a n g u l a r  g r i d  o f  F ig u r e  3 . 1 ,

w h i le  B i r k h o f f  and G-arabedian ( i9 6 0 )  u se  c u b ic  s p l i n e s  on d a t a  d i s t r i b u t -
@i o n s  r a n g in g  from  r e c t a n g l e s  t o  c u r v i l i n e a r  t r i a n g l e s  . F e rg u so n  (1964) 

and  Coons (1967) e x p r e s s  t h e  s u r f a c e  i n  p a r a m e t r i c  form  and d e a l  w i t h  any 

d a t a  d i s t r i b u t i o n  w hich  i s  t o p o l o g i c a l l y  e q u i v a l e n t  t o  a r e c t a n g u l a r  g r i d .

None o f  t h e  above i d e a s  s u i t  ou r  d a t a  d i s t r i b u t i o n  s in c e ,  even  f o r  t h e  

l a s t  two m e n t i o n e d , i t  i s  t h e o r e t i c a l l y  im p o s s ib l e  t o  g e t  an  a u to m a t i c  

r o u t i n e  t o  draw a ’t w i s t e d ’ g r i d  t h ro u g h  t h e  d a t a  o b t a i n e d .  T h a c h e r  and 

M ilne  (1960) t r e a t  random m u l t i v a r i a t e  d a t a  d i s t r i b u t i o n s  and  g iv e  a 

g e n e r a l  d e te r m in a n t  fo rm u la  f o r  t h e  c o e f f i c i e n t s  o f  t h e  i n t e r p o l a t i n g  

f u n c t i o n s ,  b u t  i n  many c a s e s  t h e  s e t  o f  i n t e r p o l a t i n g  f u n c t i o n s  c h o s e n  l e a d s  

t o  i l l - c o n d i t i o n i n g  o f  t h e  p ro b le m ,a n d  i m p l i c i t  i n  t h e  scheme i s  r e p e a t e d  

t r a n s f o r m a t i o n s  o f  t h e  i n t e r p o l a t i n g  f u n c t i o n s  u n t i l  a  s a t i s f a c t o r y  s e t  

i s  fo u n d .  S in c e  t h i s  p r o c e s s  i s  f a r  more d i f f i c u l t  t h a n  c a l c u l a t i o n  o f  

tw o - d im e n s io n a l  o r th o g o n a l  p o ly n o m ia ls ,  and  s in c e  i t  i s  d i f f i c u l t  t o  a r r a n g e  

t h a t  t h e  number o f  d a t a  and  o r d e r  o f  f i t  a r e  e q u a l ,w e  r e s t r i c t  o u r  i n t e r e s t  

t o  s u r f a c e  f i t t i n g  u s in g  su c h  p o ly n o m ia l s ;  i n d e e d ,  s h o u ld  one i n s i s t  on 

i n t e r p o l a t i o n  r a t h e r  t h a n  f i t t i n g  one n eed  o n ly  a r r a n g e  f o r  (k + 1 ) and  n t o  

be e q u a l  i n  th e  r o u t i n e  t o  be d e s c r i b e d .

@ A c u b ic  s p l i n e  i s  a  p o ly n o m ia l  w hich  ru n s  e x a c t l y  t h r o u g h  a  number
o f  p o i n t s  ( k n o ts )  on t h e  f u n c t i o n  b e in g  i n t e r p o l a t e d ;  i t s  f i r s t  and 
seco n d  d e r i v a t i v e s  a r e  c o n t in u o u s  a t  th e  k n o t s , a n d  b e tw e en  a d j a c e n t  
k n o t s  i t  i s  o f  d e g re e  t h r e e .



(3.6) THE GENERATION OF TWO-DIMENSIONAL ORTHOGONAL POLYNOMIALS
3.5

Weisfeld (1959) generalizes the Forsythe orthogonalization procedure 
to several variables taking functions of the form x^’. x^3 ... and
showing that orthogonal linear combinations of them can be constructed. 
Using Veisfeld’s generalized notation for the specific case of two dimens­
ions would be both unnecessary and unwieldy, and since the published usage 
of the method,e.g. Bain (1961) or (slightly altered) Cadwell and Williams 
(1961), does not include a complete description, the method of computing 
two-dimensional orthogonal polynomials for a given data set and weighting 
function is given here.

If we denote the n data points by x^ = ^>X2i^?  ̂= 1>»*»n,we
require k+1 polynomials P .(x^) of maximum degree k which are orthogonal 
in the sense that

n
r  P .(x.) P ..(x.) v. = 0 for all j£j ’ , ... 3.10£r-| 3 3' i

where j = 0,...k; j * = 0,...k. We generate the P. in groups from a set
s t ̂of basis functions comprising the monomials x^ . x^. These monomials have 

an inherent two-dimensional ordering (by s and t), and if P. introduces
the t ’°term x„ . x^ for the first time,and P.f the term x„ . x0 , then a one-1 2  n ’ 1 2 7
dimensional ordering is induced in the P. by defining3

3 <3 if 
or if

s+t < s ’+t’ 
s+t =s’+t’

3.11
and t <( t

Thus the monomials are introduced into the P. in the order3

1

v

x, x

x ,  X.

etc.

■~»x
3
2

As in the one-dimensional case P^ is set to one identically and the 
subsequent polynomials computed as follows:
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t h

0 g roup

s t
1 g roup

ond2 g roup

5

e t c .

”f c hS p e c i f  i c a l ly ^  p o ly n o m ia l  P .  i n  t h e  g g roup  i s  g e n e r a t e d  by a t e rm  v h ic h  
s t  ^i n t r o d u c e s  and  a l i n e a r  c o m b in a t io n  o f  a l l  t h e  p o ly n o m ia l s  p r e ­

c e d in g  P .  i n  t h a t  g roup  and  i n  t h e  p r e v i o u s  two g r o u p s .  D e n o t in g  by g ( j )

t h e  g roup  i n  w h ich  t h e  p o ly n o m ia l  P .  i s  fo u n d ,  we have
0

P . = x P -  )  OC. P 
o 1 q. or  r

. . .  3 .1 3

where t h e  summ ation i s  o v e r  a l l  r  j  f o r  w hich  g ( j )  -  g ( r ) ^ 2 .  The g roup  

num ber, p o ly n o m ia l  number and i n d i c e s  o f  t h e  i n t r o d u c e d  te rm  a r e  r e l a t e d  by

g

and j

s + t

g ( g + 1 ) /2  + t

. . .  3 .1 4  

. . .  3 .1 5

T ab le  3 .1  shows t h e  scheme f o r  t h e  f i r s t  21 p o ly n o m ia ls  and  g i v e s  th e  

a p p r o p r i a t e  v a l u e s  o f  1 and  q f o r  e q u a t i o n  3 .1 3 .

An a l g o r i t h m  f o r  f i n d i n g  1 and  q g iv e n  o n ly  t h e  j  v a lu e  i s  shown i n  

e 3 . 4  anc 

computed from

F ig u r e  3 .4  a n d ,  t h i s  h a v in g  b e e n  done , t h e  Q6_.  ̂ dn e q u a t i o n  3 .1 3  a r e

06.

H x _  .P .P w. ‘ — 1 q r  l

r p 2 2/  P w..— r ll

E
i=1

X P ( x . ) P ( x . ) w /  l i  q —-l r  —l  l . . .  3 .1 6

E
i=1

Fr 2 ( - )

where t h e  sums a r e  o v e r  a l l  t h e  d a t a  p o i n t s , a n d  x i s  t h e  v a lu e  o f  t h e
"b h  ^

c o - o r d i n a t e  x^ a t  t h e  i  p o i n t .  E q u a t io n s  3 .1 3  and 3 .1 6  a r e  a n a lo g o u s  

t o  t h e  t h r e e  te rm  r e c u r r e n c e  r e l a t i o n  o f  F o r s y th e  i n  t h e  s i n g l e  v a r i a b l e  

c a s e .  T h is  tw o - d im e n s io n a l  o r th o g o n a l  p o ly n o m ia l  g e n e r a t i n g  scheme i s  

u se d  i n  t h e  e r r o r  s u r f a c e  f i t t i n g  r o u t i n e  d e s c r i b e d  be low .
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Algorithm for finding 1 and q given j.

save *. t , 2 

se t :
S = g - t

calculate ;



TABLE 3.1

T w o -d im en sio n a l o r th o g o n a l  p o ly n o m ia l c o m p u ta tio n  scheme

3 .7

r e s u l t a n t  p o ly n o m ia l 

P

s t te rm  in tr o d u c e d  
s t  

X1 x 2

1 q. group  

g = s + t

p o
0 0 1 - 0

P 1
1 0 x i 1 0

1

P2
0 1 X2

2 0

P3
2 0 2

X1 1 1

P4
1 1 X1 X2 2 1 2

P 5
0 2 2

X2 2 2

P 6
3 0 3

X1 1 3

PT
2 1 2

X1 X2 
2

2 3
3

P8
1 2 X1 X2 2 4

P9
0 3 3

X2 2 5

h o 4 0 4
X1 1 6

P 11
3 1 3

X1 X2 
2 2

2 6

P !2
2 2

X1 X2 2 7 4

P13
1 3 3

X1 X2 2 8

P 14 0 4 4
X2

2 9

P 15 5 0 5
X1 1 10

P 16
4 1 4

X1 X2 
3 2

2 10

P 17
3 2 X1 x 2 

2 3

2 11
5

P 18
2 3 X1 X2 2 12

P 19
1 4 4

X1 X2 2 13

P 20
0 5

5
X2 2 14
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(3.7) THE ERROR SURFACE FITTING- ROUTINE

For fitting telescope error surfaces S , A  H we make identificat­
ions similar to those labelled 2.8 in Chapter 2 as follows:

‘1 i

y,

7 i

n

Telescope transducer readings for i 
observation.

Topocentric jggsition of celestial 
object for i observation.

Weighting functions, see below.

fitting function for surface A&. 
fitting function for surface A h .

... 3.17

Note that as in equation 3.1 the fitting functions are of the form

y T E  ca'pa’(x.),j=ö 3 3 - 1 , 2 ; ... 3.18

and, if the weights for the two surfaces differ (w? ^ v*), not only will
(1) (2> 1 1different sets of coefficients c., c. be obtained, but two distinct sets

(1) (2 ) ^ ^of (k+1 ) polynomials P., P. will be required. Fortunately this fits in
3 0

well with our adoption of the resultant on-sky error for <py our function
to be minimized; we simply take the weights w_. 
in equation 3.19 below:

, ß- A  r (i> V1 <in2 r an 20 = 2- Z_ [Ni - 2_ c p J • Lwi J 11=1 i=i i=o J 3 J L J

1 and w. = cos(x„.)1 1 1

3.19

Setting the derivatives of (f) with respect to the 2(k+1 ) coefficients
(pc . to zero produces expressions for the coefficients which are identical 
to those produced by minimizing the leastsquares fitting errors of the 
two surfaces A S  , A H  separately® and are given by

(1) c .
a gKvl2 3.20

where 1 = 1 , 2  and j = 0,...k.

@ This is not true for the case of parameter estimation where the 
unique solution does not simultaneously minimize the errors in 
the two co-ordinates.
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The routine computes fits for the various orders sequentially since,

(1)because the P. are orthogonal, the lover order coefficients are unaffected 
by later inclusion of higher order ones in the fitting function, and the 

order sumsquare (j) is given by
± a (D2 r3- ,_}1) (1L2 (2)2 r3- ,(2) (2K2 „
^ (j) “ ^(j-1) °3 * H-/ j Vi Cj * Sj ( 3 Wi * ’

Within a given order of fit the polynomials P. are stored by the 2(j+1)3
n-vectors of their values at each data point. The storage requirements 
could be reduced considerably by storing the Forsythe coefficients OC 
(equation 3.16) or, as suggested in Cadvell and Williams (1961), by stor­
ing the partial sums

Unfortunately both of these techniques can seriously increase the comput­
ing overheads and result in loss of accuracy, and so they are not used here; 
neither can the technique of Clenshav (i960) be used since Chebyshev 
expansions only exist for functions of a single variable.

Loss of accuracy also results if the independent variable x is badly 
scaled, and the routine normalizes the components of to the interval 
(-1, 1) by the relation

a x . + b m mi mmi
where m = 1 , 2; -1-^x*.^1, and a , b
also transform the y; vectors and weights by

, v are suitable constants, m m

(m)’
y .

(m)'w.l

/ (m)
% (yi - Xn
<m) /v. / a.

)

o. 3.23 

If we

.. 3.24

where a^ is the same constant as in equation 3.23, we can leave the inter­
pretation of (p (equation 3.19) unchanged,but now we are fitting the errors 
AS, A h  rather than the co-ordinates &, H. Such a system offers numer­
ical advantages especially when we use the resultant fit for the purpose 
of data interpolation.

The choice of transformation for the data xf and weight w given 
above is labelled ’method one’ in the computer implementation which follows, 
and if our final criterion of a good fit is to be the practical one of an 
actual on-sky measurable angle, (as in equation 3.19), method one should be
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optimal. As a simple test of this, two other methods are considered. In 
’method two’ the same transformation is used for x and 2L weights
w(1 and w^* are all set to unity. In ’method three’ the components of x_ 
are first normalized to the interval (0,TT) and then the cosine taken so 
that

X ' . = cos(a x . + b ) m mi m ... 3.25mi

where 0^(a m x . + b )< TT, and the v vector given by mi m

ll

V (m)
yi " Xmi ... 3.26

The reason for this strategy is that now y may be regarded as an even (or 
symmetric) function on the domain (-TT, TT ), and thus expressible as a half 
Fourier series

00 oO •
y = YL a • c°s(jx) = YZ. a - (cosx)J ... 3.27j=0 3 j=0 3

@where x, y denote either of the x or components respectively . The fit 
is now similar to a Fourier analysis scheme in which various Fourier terms 
have been grouped into orthogonal terms. As for method two, unity weights 
are used.

A suitable method of determining at which order the fit is adequate 
is needed,and although we can,at each order,examine the root-mean-square 
(R.M.S.) on-sky error, we do not necessarily know the extent of the random 
error in the data which constitutes the practical limit. The variance- 
ratio F given by

where a:3 ■- <f. . /  2 ( n - j - l )  ,

... 3.28 

... 3.29

gives a measure of the improvement obtained by adding the j term, and is 
used by Hayes, Payne and others (see for example Hayes 1970). The routine 
calculates F after each order has been added and we discuss this in the 
next section (3.8).

A method for checking for numerical error propagation and loss of 
accuracy is included in the routine. Clenshaw and Hayes (1965) show that 
the expected fractional error in coefficient c . is given by:

@ Note that it is not possible to use the sine in such a way because 
sin nx cannot be expressed as a power series in sinx and it would 
also impose the constraint y(0) = y(jf)  •
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LEGEND TO FIGURES 3.5 and 3.6

The small numbers against the flowchart blocks correspond to the 
labels of FORTRAN statements in the computer code listings in 
Appendix D; other symbols are as follows:

mi

y.
<r >w.1

11) c . 3

= independent data vector 

= dependent data vector 

= weights

= Forsythe coefficients see equation 3.16 

Orthogonal Polynomials 

Polynomial series coefficients.

Q),P.(x.)0

i = 1 ,. . .n
j = 0,.. .k

> m - 1, 2
1 = 1, 2
r see below

r = summation index in equation 3.13,is always less than the order j 

n = number of data points, 

k = maximum order of fit.

^ = sumsquare and variance respectively, obtained from the
transformed variables.

RoM.S. = R.M.S. error on-sky.
(p 1 = sumsquare obtained from on-sky variables.

E., E!, 6. 3 3 3 parameters related to numerical accuracy tests, 
see text.

F = F-ratio, see text.

j = current order of fit.

g = group containing polynomial P.3
S ”fcP. introduces monomial term xH.x~ . 3 1 2

special indices (peculiar to order j) required by equation 3.13.
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6. = c . - c. ^  (E ,/E I - l)/2 ... 3.303 r ---*  3 sr J 3 3

^theoretically ^actually 
exact computed

where El is the reduction in <f) when going from order j-1 to order j 
3

obtained in theory, that is by taking the last two terms of equation 3.21, 
and E. is the value of the reduction in <f> actually obtained by evaluating 
the fitting functions ^ ^  anĉ  ^ en comPufing ^ from equation 3.19.
The parameter £ is also computed at each order of fit.

(3.8) THE COMPUTER ROUTINES AND NUMERICAL RESULTS

The error surface fitting routine was programmed in FORTRAN on a 
Univac 1108 using double precision arithmetic (60 bit floating point man­
tissa). A data generating routine (called DATGEN in computer listings) 
which synthesizes an erratic telescope mounting using the five parameter 
model of Chapter 2 is included,and is similar to the routine of the same 
name in Chapter 2 except that the x, data are distributed randomly rather 
than in a grid. A flowchart of the actual fitting routine ESFIT is shown 
in Figure 3.5 and the orthogonal polynomial generating routine ORG-POL 
called by ESFIT is flowcharted in Figure 3.6. The only other major com­
ponent of the fitting package is a routine FITEST which takes the fit
obtained from ESFIT, as stored in the coefficients c^ andOC^ and compares

3 jr
it with additional data generated from a different pseudo-random x distri­
bution.

Four different sets of model parameters were used in the testing of
ESFIT; these are given in Table 
A, B, C and D.

3.2 and 

TABLE 3

referred

.2

to as parameter sets

parameter set model parameters (radian) generated on-sky
-u •u ■U ■u R.M.S. error
b1 b2 b3 b4 b5 arcsecond

A .001 -.001 -1.001 .001 .001 231.3

B .0001 -.0005 -2.0005 .0002 .0002 104.2

C -.0002 -.0002 -1.0002 .0001 .0001 71.9

D .0001 -.0001 - .0001 .0001 .0001 29.2

Data was generated at 100 points (n=100) using each of the parameter sets
above and fitted using the three methods of ESFIT with maximum order k

2set to 32. Table 3.3 gives the on-sky R.M.S. error and the value of G  
(calculated from equation 3.29 with the transformed variables) at certain



3 .1 2

TABLE 3 .3

o r d e r  
o f  f i t

m ethod 1 m ethod 2 m ethod 3

model
g e n e ra te d
f ro m

k a 2 R.M. S. a 2 R.M. S. o 2 R .M .S .

6 . 51 ~8 20. . 50_ ‘ 32. ■ 9 4 - 7 37.
p a ra m e te rs

10 .2 2 ~ 8 13. . O ' 7 21 . •

1 -3

34 .
A

15 . 44-9 5 .6 .2 4 ~ 8 7 .5 .2 7  7 21.
R .M .S .=231 
a rc s e c o n d

21 . 13~9
1 n

2 .9 . 44~9 
1 n

3 .9 . I S ' 7

. 7 5 - 8

19.

28 . 2 5 ' 10 1 .2 . 6 7 " 10 1 .5 13.

6 , 15- 9 3 .4 . 16- 8 5 .7 . 45~8 7 .9

B 10 .TO’ 10 2 .3 . 44~9 3 .7 • ro
1 00

5 .0

15 . 1 5 - 10 1 .0 . 7 9 - 10 1 .4 . 1 5 - 8 5 .0
104”

21 .3 8 ~ 11 .51 . 1 8~1° .69 . 96-9 4 .3

28 .7 8 -1 2 .22 . 3 2 ' 11 .29 .4 0 -9 3 .0

6 . 1 2-9 3.1 . 55~9 3 .8 . n - 8 4 .9

10 • v-0 O
I o

1 .5 . 1 2- 9 2 .0 . 5 8 ' 9 4 .0

15
-11

.44 .5 6 . 2 2 - 10 .73 ■ 2 1 '9 2 .2
72" 21 -1 2.98 2 .6 . 5 4 -11 .3 4 . 1 0 '9 1 .6

28 . 2 2 ~ 12 .12 . 1 7 • SO’ 10 .95

6 . 2 8 - 10 1 .5 . 12-9 1 .9 . 16- 9 2.1

TV
10

-1 1 
.3 0 .48

-1 0
.19 .68 . 4 4 -10 1.1U

15
-1 2

.9 7 2 .6 1.46 .36 . 2 2 - 10 .73
29" 21 . I ? " 12 .11

-12
.89 .15 . 1 2 - 10 .4 7

28 . 4 6 -13 .05 . 17 _ 1 2 .0 7 • 7 5 - 11 .41

—8
= .51 x  10 .N .B S u p e r s c r ip t s  d e no te  d e c im a l  e xpone n t e . g .  .51
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orders of fit for each of the parameter sets and methods. In all twelve

2 r fits C  decreases monotonically with the order of fit; the quantity c .
-16 -17 3(equation 3.30) is about 10 to 10 initially, and no larger than 

10 2 around order 32, thus we are well away from conditions under which
we would need to prematurely cease our fitting process because of numer­
ical loss of accuracy.

2The on-sky R.M.S0 error behaves similarly to O', excepting in methods
two and three where there are occasional slight increases going from one
order to the next. This is, of course, to be expected. However the de- 

2crease in O' going from start to a given order, for methods two and three, 
is not impressive when compared to method one, and in Figure 3.7 we show 
the fits generated for parameters B. The R.M.S. error (broken lines) and 
(J ^  (solid) are plotted for each order and demonstrate firstly, the differ­
ent performances of the methods, but also that, in each method, most of

2the decrease in O' or R.M.S. occurs when certain specific terms e.g. 
x^ at order 15, are added. Figure 3.7 and Table 3.3 confirm that there is 
little point in minimizing an objective function other than the expression 
for <f) which represents the on-shy error, and in all the following com­
puter runs method one alone was used.

The plot of CT2 against polynomial order for ESFIT (method one) on
data from parameters B is shown again in Figure 3.8, this time with the
value of F calculated from equation 3.28 annotated,, The critical value

"bhwhich F must exceed for the j order fit to be considered significant
depends on (i) the number of degrees of freedom of the numerator of
equation 3.28 which is 1; (ii) the number of degrees of freedom in the
denominator which is 2(n-j-1), and (iii) the desired risk of falsely
accepting the fit. For values of 2(n-j-l) between 10 and 400 this F value
lies roughly between 5.0 and 3.9 respectively for a 5$ > risk, increasing to
between 21 and 10 for a 0.1^ risk. In Figure 3.8 we observe occasional
runs of quite low F preceeding an order with a high F and which manifestly
leads to a substantial improvement of fit. Thus, even more so than in
curve fitting, it is virtually impossible to use the F ratio as a simple
test for the order at which to discontinue the fitting process, at least
for the case of exact data. The test is only slightly more useful in the
case of data which includes random perturbations, for example in the runs
shown in Figure 3.9 below. The two broken lines in Figure 3.8 are the on-
sky worst case error (upper plot), and the R.M.S. error (lower plot). Both

2of these follow the step decreases in (7 , the maximum error being always 
of the order of 3 to 5 times the R.M.S. error.

To produce Figure 3.9, data was generated from parameters B and pert-
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urbed by an additional 11.7, 5.89 and 2.35 arcsecond R.M.S. error (on-sky). 
The R.M.S. error of fit for each order is shown for these three cases, a,nd 
the point at which the fit error is less than that introduced randomly 
into the data marked with an arrow. The routine manages to fit some of 
this random error since the number of data points (n=100), though adequate, 
is not large. The F-ratio was found to decrease suddenly at orders 7, 8 
and 8 respectively for the fits, and although these points represent pract­
ical cut-off limits for the first two, the use of the test on fit three 
(random data R.M.S. = 2.35") would result in premature termination of the 
fit. The broken line in Figure 3.9 represents the worst case on-sky error 
for the centre fit (random data R.M.S. = 5.89") and is approximately 1.6 
times the R.M.S. error at the point where a satisfactory fit has been 
achieved, whereafter it begins to oscillate.

Tables 3.4 and 3.5 are the results of using the routine FITEST to 
test fits generated by ESFIT to data from parameters B for various values 
of data point number n, and order k. In each case FITEST was applied 
using six different test data sets; these are labelled 1 to 6 while the 
original data from which the fit was generated is labelled 0. In Table 
3.4 fits of order 10 were generated for numbers of data points equal to 
200, 140, 100, 70, 35 and 20. The upper of the two entries is the R.M.S. 
on-sky error (in arcseconds) which results from evaluating the fit at 
the points of the new data set, whilst the lower figures in parentheses are 
the corresponding worst case on-sky errors. The last column contains the
largest of these worst case errors for the data sets 1 to 6, and the pen­
ultimate column contains the largest value of the ratio of R.M.S. error of 
fit to the R.M.S. error of fit for the original data (data set 0).

There is no simple statistical test which one can apply to Table 3.4, 
but it is clear that for the case of k=10 decreasing the number of data 
points below about 100 rapidly increases the errors at points other than 
the original data points. Apart from a few spurious good fits the worst 
case error is approximately constant at 10 to 16 arcsecond for n^-100.
Note that the extremely low R.M.S. error for the original fit in the case 
n=20 shows we are approaching the interpolation case where n=k+1 and the 
residual error goes to zero.

In Table 3.5, which is interpreted similarly to Table 3.4, n has been 
held constant at 100 and fits of orders k = 4, 6, 11, 15, 22, 28, 36 and 
44 generated. Again it is clear that for n=100 there seems little point 
fitting to an order greater than about 11. However extremely good fits 
can be generated for orders of 20 and above and although the R.M.S. errors 
of fit for the additional data are poor compared to the original fit, both
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TABLE 3.4

number 
of data

data set number of 
additionally generated data

R.M.S.
ratio

largest
worst

points
n 0 1 2 3 4 5 6

(see
text)

case
error

2.1 2.6 2.1 2.2 2.2 1.9 1.9 1.22
200

(14) (16) (12) (15) (15) (15) (12) (1 5 .6 )

2.1 2.8 2.3 2.8 2.6 -2.5 1.9 1.37
140

(13) (16) (6.7) (16) (15) (16) (12) (16.1)

2.3 3.9 2.9 3.5 3.1 3.8 4.8 1.71
100

(12) (9.2) (5.8) (16) (15) (16) (14) (16.2)

2.1 12 4.4 6.1 5.8 5.3 4.5 5.36
70

(8.9) (21) (11) (19) (23) (17) (14) (22.6)

2.0 16.3 3.9 11 5.0 9.8 13 7.99
35

(4.9) (25) (9.1) (18) (8.2) (25) (25) (25.2)

1.4 17 12 9.9 9.2 9.4 13 12.4
20

(3.0) (38) (22) (21) (23) (26) (29) (37.7)

UPPER figures are R.M.S. errors. 
LOWER figures are worst case errors.
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TABLE 3.5

order data sei number of R.M.S. largest
of fit additionally generated data ratio worst

(see case
k 0 1 2 3 4 5 6 text) error

6.1 6.6 5.9 8.4 8.2 7.8 8.1 1.36
4

(29) (22) (24) (32) (31) (32) (30) (32.0)

3.5 4.1 3.7 5.3 4.8 5.2 6.4 1.84
6

(20) (9.8) (13) (23) (22) (23) (21) (23.4)

1.7 4.6 2.7 3.0 2.7 3.9 4.8 2.74
11

(8.9) (13) (6.6) (id (10) (12) d o (12.8)

1.0 4.7 2.8 2.4 2.1 3.6 5.6 4.50
15

(4.7) (13) (6.4) (8.1) (6.5) (8.4) (6.6) (13.1)

.38 4.6 2.6 2.2 1.8 3.6 4.8 12.5
22

(1.7) (16) (6.9) (5.1) (3.7) (6.5) (6.2) (16.2)

.22 4.5 2.7 2.1 1.7 3.5 4.7 21.8
28

(.83) (15) (8.2) (4.6) (2.8) (5.2) (6.0) (14.7)

.08 4.3 2.6 2.1 1.7 3.4 4.7 56.4
36

(.31) (14) (8.7) (4.9) (2.6) (5.2) (6.0) (14.3)

.04 4.2 2.6 2.1 1.8 3.5 4.7 107.
44

(.16) (13) (8.6) (5.5) (3.7) (6.2) (6.3) (13.4)

UPPER figures are R.M.S. errors. 
LOWER figures are worst case errors.
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the R.M.S. errors and the worst case errors steadily improve with the order 
of fit, and are a worthwhile improvement over the original R.M.S. errors in 
the raw data (104.2 arcsecond). This suggests that, in fact, it may be 
beneficial fitting to reasonably high orders (e.g. 20 to 30) even with 
insufficient data, provided one can tolerate an error at a given inter­
polation point which is many times the R.M.S. error of fit. Statistical 
techniques from regression theory permit calculation of confidence inter­
vals for the value the fit predicts at a point of interpolation,but this 
has not been treated here.

(3.9) SURFACE FITTING: CONCLUDING DISCUSSION

The computations of the previous section show the fitting of error 
surfaces by orthogonal polynomials in the normalized co-ordinates to be 
a stable and well-behaved process. Various techniques which reduce round­
ing errors are referred to in Cadwell and Villiams (1961), but even with­
out these, the fitting routine was at no stage prejudiced by numerical 
errors. Clenshaw and Hayes (1965) experimenting with curve fitting up to 
very high orders (e.g. 90) found that E. (see equation 3.30) eventually 
departs from Et and changes sign for high orders due to cumulative numer- 
ical errors, but there is no trace of this occurring in the fits above, 
primarily because of the arithmetic precision used, but also because even 
with order k set to 44 the highest power of x̂  or x^ introduced is only 8.

An important consideration involved in the fitting process is that
an adequate number of data points be used for the particular order fitted.

thHayes (1970) by considering the extrema of the k degree Chebyshev poly­
nomial gives an upper limit of TT/M for k where M is the largest differ­
ence between the inverse cosines of adjacent data points. For evenly 
spread data this limit is very approximately \/2n' where n is the number 
of data points. For the two-dimensional case there is no analogous argu­
ment, but simple mindedly we can take it also to be of order n/ÜT^. This 
is in agreement with the results shown in Tables 3.4 and 3.5 and suggests 
that only for impracticably large amounts of data would such surface fits 
acquire statistical validity; despite this, surface fitting undoubtedly 
constitutes a practically useful technique for telescope improvement.

The preceeding results suggest that where the telescope behaviour

@ Imagine the process as curve fitting with /n points in each dimens­
ion separately, in which case the limit above is >/2.n4, but for sur­
face fitting the order k is related to the index t of x^ (or x ) 
approximately by kftit /fl, hence k »/2n .
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follows the assumed mathematical model very closely, surface fitting pro­
duces significantly poorer results than we would expect a model estimation 
process to, and despite the simplicity of the particular model used here, 
this statement is most probably true in general. The next chapter (Chap­
ter 4) shows that such mathematical models can often produce disappointing 
results when applied to practical data, and that in these cases the utility 
of surface fitting is enhanced. The reason for this is that in surface 
fitting,the orthogonal polynomials span the set of all polynomials of 
degree^k, and thus may completely represent all of the functions necess­
ary for the description of the telescope errors. Moreover there is no 
reason to consider the use of any other type of polynomials, since fitting 
with them would achieve identical results but would be more prone to 
numerical error problems. Finally, the numerical results here also show 
that the definition of <f> given in equation 3.19 is an appropriate object­
ive function to minimize, and that the use of trigonometric functions of 
S and H as our independent variables may not offer any advantage; the 

results for the case given here in fact show it to be inferior.

An extremely attractive technique which has found wide application 
and considerable success in curve fitting is that of piece-wise fitting. 
Many functions which are fitted only poorly in their entirety by high 
degree polynomials or other complicated, fitting functions are quite adequ­
ately approximated by simple functions (e.g. cubic splines) if fitted 
piece-wise, especially if the boundaries between pieces can be optimally 
positioned. A suitable scheme for optimizing the configuration of pieces 
in two dimensions and ensuring that the boundary conditions are met un­
fortunately does not exist, and in the absence of such scheme the most 
useful technique is probably to model estimate for those error causes 
which are large, highly repeatable and well understood, and to use orthog­
onal polynomial surface fitting to further reduce residuals.
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CHAPTER FOUR

THE APPLICATION OF SOFTWARE CORRECTION TECHNIQUES 
j TO POINTING DATA FROM THE MT. STROMLO 74-INCH TELESCOPE j

(4.1) PRELIMINARY

In the previous tvo chapters the stability and relative efficiency of 
various algorithms were investigated using data synthetically generated 
with a simple but representative model of telescope pointing errors. This 
chapter is a practical assessment of the application of the surface fitt­
ing and one of the parameter estimation algorithms to pointing error data 
obtained experimentally from the 74-inch equatorial reflector of Mount 
Stromlo Observatory, Department of Astronomy, Australian National Univer­
sity. The relevant descriptive details of this instrument appear in 
Appendix C, and it is sufficient here to note that it is not renowned for 
accurate pointing, being afflicted with a number of systematic and hyster- 
esial errors, which can cause discrepancies of up to 3 minute of arc at 
large zenith and hourangles. As was noted in Chapter 1, our problem is
more one of response surface optimization rather than mechanism determin- 

@ation, yet in addition to a reduction in R.M.S. pointing error for the 
74-inch,it is shown later that some conclusions regarding the nature and 
causes of error are indeed possible.

(4.2) POINTING DATA ACQUISITION

An attempt to obtain pointing data in late 1969 using a single oper­
ator and the existing selsyn position readout system was quite unsatis­
factory. It resulted in an inadequate amount of data which contained 
large hysteresial errors inherent in the selsyn system,which were due to 
backlash in the selsyn transmitter gearing and stiction in the passive 
receivers. The author spent some time designing a digital readout system 
for the 74-inch using 15 bit optical shaft encoders geared 27:1 (47.25:1) 
to the polar (declination) axis, together with 8 bit brush contact encoders 
geared 1:1 with each axis to remove the readout ambiguity. The shaft en­
coder data reduction and display generation is performed by a Hewlett 
Packard H.P. 2100A minicomputer,which in addition to this function has 
become useful as a versatile on-line machine for astronomical da,ta acquis­
ition and instrument control. An improved way of generating sidereal time 
was devised (see Hovey 1973 or Appendix E) and the complete encoder and

@ In addition to Chapter 1, see for example Box and Hunter (1965) or 
Box and Coutie (1956).
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timing system is described in Appendix C . In addition, a program enabl­
ing the rapid logging on teleprinter o,nd paper-tape of the instantaneous
position of the telescope axes and various diagnostic data from the encoder

@@system was implemented . Thus, provided the co-ordinates of the next 
desired object are immediately available, data collection can proceed at a 
rate limited only by the time taken to set the telescope.

A routine was devised by the author which generates an observing list 
of bright stars distributed so that (i) the desired area of sky is evenly 
covered and, (ii) the sequence in which the stars are observed is such 
that the telescope need only be moved a minimum distance between observat­
ions. The total number of grid points used is set on the basis of an 
estimated rate of data collection (mean time between observations) and the 
grid spacing calculated from assumed co-ordinate limits for the telescope. 
Condition (i) above is achieved by generating a grid with uniform declin­
ation increments, but with hourangle increments inversely proportional to 
cos S (thus a rectangular grid in the variables 6 and H cosS is gener­
ated); and (ii) by ordering the points in a rectangular ’zig-zag’ manner. 
The actual list of stars is obtained by searching a computer file of bright 
star positions for an object whose apparent place corrected for refraction 
is nearest the generated grid point at the time of observation. This time 
is incremented by the estimated mean time for an observation whenever the 
file is searched for a star for the next grid point. The use of the same 
star for adjacent grid points is inhibited and the routine rejects points 
which lie outside the 6 and H co-ordinate limits and below a zenith angle 
limit.

A flowchart for this routine, which is called CATALOG.OBS and which 
was coded in FORTRAN and run on a UNIYAC U1108, appears in Figure 4.1. It 
uses the author's UNIYAC system file (called STARS) containing the 1970.0 
mean co-ordinates and magnitude data for the 1078 bright stars listed in 
the Astronomical Ephemeris, and employs algorithms for mean to apparent 
place computation and refraction correction which are described in Appendix 
A. A mean observation time of 3 minutes was assumed and a 19 by 19 point 
grid generated for observing lists for a pointing data run in early March 
1973. The observations were made with the telescope for the most part 
east of the polar axis and used a Cassegrain offset guider head centered

@ Acknowledgement is due to Wayne Ruting (detailed hardware design), 
Ron Howe (software modifications and final implementation) and John 
Hart (shaft encoder mechanics), all of Mt0 Stromlo Observatory.

@@ written and implemented by Ron Howe.
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4.3
on the rotational axis of the instrument mount. In addition to the ob­
server, separate operators ■were used for the various tasks, setting in both 
co-ordinates, dome control, computer operation etc., and approximately 160
data points were obtained between S = -80° to +20°, hourangle limits -4

o  @hours to -1-6 hours, and above a zenith angle of 65 . The actual grid of
stars used is shown in Figure 4.2. The total time required for the observ­
ations was hours so that a mean observation time of 2\ minutes would
have been slightly more appropriate.

The pointing data was output from the H.P. 2100A on paper-tape and 
transferred to a U1108 system file for editing and preliminary processing. 
Some data had to be rejected because of obviously incorrect setting or 
premature logging of an observation, and an eventual data set of 148 points 
taken with the telescope east of the polar axis was obtained. This data 
set was processed by a routine which, using the algorithms for mean to 
apparent place and refraction correction of Appendix A, generates the x 
and v vectors (see equations 2.8, 3.17 and Chapters 2, 3 in general) which 
constitute the basic input to the surface fitting and parameter estimation 
routines. This preliminary processor called TA obtains the telescope 
position directly from the shaft encoder words in the raw data, and since 
the U1108 can be used with greater arithmetic precision and need not employ 
certain simplifications designed into the H.P. 2100A software, a useful 
assessment of the performance of the H.P. 2100A encoder and timing system 
software is possible. This assessment is mentioned again in Appendix B, 
and here we simply note that with the addition of some minor adjustments 
after the pointing tests the H.P. 2100A handling of the encoder and timing 
data is quite adequate.

Line-printer plots were generated of the pointing errors in declinat­
ion ( AS), hourangle (Ah), the resultant error on the sky (Ar) and the 
co-ordinate errors resolved in zenith angle (Az), against declination ( 8), 
hourangle (H) and zenith angle (Z), and reductions of these plots are shown 
in Figures 4.3a to 4.31. In general they show considerable scatter in 
the data, though much of this is due to the limitations of graphing a 
function of more than one argument in such a manner, and to the vagaries 
of the line-printer. No simple dependencies are evident but definite 
trends, for example the increase in AS and A R with more northern declin­
ations (graphs 4.3a, 4.3c), the effect of hourangle on the zenith error

@ Note that the grid spacing is approximately 5 degrees and many grid
points are not used since they either use the same star as an adjacent 
one, or exceed the zenith angle limit. The full observing list con­
tained about 200 stars.
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(graph 4.3h), and the sudden nonlinear increase in A H, A R below 30° 
zenith angle (graphs 4.3j, 4.3k). "We shall allude to these later when 
discussing the spurious data points and the possible causes of error. The 
considerable scatter in all the graphs with zenith angle abscissae (graphs 
4o3i to 4.31) show conclusively that there is no simple dependence of 
pointing error on zenith angle and that there would be little point in 
transforming our independent variables into an azimuth/zenith angle system.

(4.3) SURFACE FITTING- THE 74-INCH TELESCOPE POINTING DATA

The surface fitting routine ESFIT described in Chapter 3 was applied 
to the 148 point data set with the maximum order of fit k set to 40. As 
a stability test the data was perturbed by a further 7.7 arcsecond R.M.S.
(20 arcsecond peak to peak) error and then fitted. Figure 4.4 shows the 
R.M.S. error of fit (solid line) and the worst case error (broken line) 
for the original and perturbed data for sequential orders of fit. As in 
Chapter 3 most of the decrease in R.M.S. error occurs at certain orders
e.g. 5, 9 and 14 where groups of polynomial terms become complete. The

—2 —6coefficients range from 0.27 x 10 to 0.7 x 10 with some of the larger 
values occuring for k^ 25 when the solution attempts to fit the fast vari­
ations in the data. The R.M.S. error is 87.09 arcsecond in the original

@data, and decreases monotonically with the order of fit , but the worst 
case error increases beyond order 14 and even oscillates. The coefficients 
for the two runs, perturbed and original, differ by up to about 10^ which 
is consistent with the ratio of the perturbation introduced R.M.S. to the 
original data set R.M.S. error. Numerical error accumulation as measured 
by the variable £ (see equation 3.30) was negligible.

It is necessary to test in some way the adequacy of the fit generated, 
that is to assess whether the residual sumsquare <P or R.M.S. error that 
remains after fitting,is primarily due to pure error in the data or inade­
quacy of the assumed model (in this case orthogonal polynomials). If the 
assumed model is adequate, the expressions

= <f> / 2(n-k-l)

and = 2(n-k-l) ,

where n is the number of data points fitted to order k in both co-ordinates, 
give estimates of the variance of the experimental errors and its associ­
ated degree of freedom respectively. Ideally this should be compared to

@ This is inevitable since the R.M.S. error (or in fact <fi ) is the 
objective function being minimized by the routine.
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an independently obtained estimate for the experimental error variance, but 
the amount of work involved and the disruption to telescope scheduling 
precludes the collection of substantial additional data. Instead the 
original data set of 148 points (called here XT1) is subdivided into 2, 3 
and 4 data subsets, each containing approximately 1/2, 1/3 and 1/4 of the 
original 148 points respectively. Since the ordering of the original data 
set was of no significance this has been done by simply sorting alternate 
points. The data sets are listed in Table 4.1 with their number of points, 
R.M.So and worst case errors.

TABLE 4.1

dataset number of RoM.S. error worst case
data points arcsecond error arcsec0

■
XT1 148 8 7 .0 9 2 07 .17

XT 2 74 8 6 .1 9 180 .18

XI3 74 8 7 .9 7 2 0 7 .1 7

XT4 49 8 4 .6 3 149.21

XT 5 49 85.21 180 .18

XT 6 49 8 7 .2 3 153.61
—

XT7 37 83 .3 5 142 .47

XT 8 37 8 3 .7 4 149.21

XT 9 37 88 .95 180 .18

XT10 37 92.01 20 7 .1 7

The nine data sets XT2, XT3..oXT10 were fitted to maximum order 2,
5, 9 and 20 and the resultant fits tested against the data in XT1. Al­
though this procedure is a more valid test than a succession of tests of,
for example, XT4 against XT5 etc., none of the nine data subsets is entirely

@disjoint with the complete set XT1. Thus the variance and associated
2degree of freedom with which in equation 4.1 must be compared,are

given by

0”12 = ( <f> ’ - <f> ) / 2(n* - n)

and V = 2(n’ - n)

where (f) and n are as in equation 4.1, is the residual sum of squares
resulting from the test on a data set with n ’ (=148) points. This

@ disjoint in the sense of having no data points in common.



express5.on allows for the points which are common to the fitted and test 
data sets which in our case comprise all of the points in the fitted set0 
Note that in the case of complementary data sets XT2, XY3, testing the fit 
to XY2 on XY3 is equivalent to testing the same on XT1. If all data sets 
were quite disjoint, the more usual techniques of analysis of variance 
would be appropriate, and if repeat observations at the same point were 
practicable, a number of studies such as Anscombe and Tukey (1963) on the 
treatment of residuals, which involve two-way classifications of the data, 
could also be applied.

The results of these tests appear in Table 4.2 to Table 4.5, and the 
2 2ratio CT / O'̂  calculated from expressions 4.1, 4.2 is compared with

F. (V.,V0) the upper oC point of the Fisher distribution. If
1 —06 I 2

a i 2 / a 22 >  P1— • "  4 *3

we reject the model or fit as being inadequate to describe the data in
question, and we do so with significance level 1 0 0 0 6 6̂, that is a 100oC$
probability that we have wrongly rejected it when in fact it was adequate.
This test is common in regression theory and is used in Box and Coutie

2 2(1956), Beale (i960), and Draper and Smith (1966). The ratio / O’ 
is given in the tables for all of the tests, and the penultimate row con­
tains the percentage level oC at which the fit being tested would be 
rejected on the basis of relation 4.3 above; significances of 1 fo and 5% 
are in common usage. Together with the other quantities indicated by , 
o6 is averaged over the group of tests on data sets of similar number of 
points, but others like the R.M.S. and worst case errors are given for 
each test to show the variation involved. The final row gives the ratio 
of the degree of freedom of fit to the number of fitted parameters, and is 
discussed later.

Two other indications of the performance of the fits included in 
2Tables 4.2 to 4.5 are R the multiple regression coefficient, and the mean

2square ratio MSR. R is expressed as a percentage and measures the pro­
portion of the variation of the data about the mean which is explained by 
the fit. It is given by the ratio of SSR,the sum of squares due to the fit 
or regression,to SSM,the sum of squares of the original data corrected for 
mean, that is by

R2 = SSR/SSM ... 4.4
@where, for our case here, SSR and SSM are given by :

@ In the case of surface fitting, f1̂  is used to represent the evalu­
ation of the polynomial series at the point x-.
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TABLE 4.2
surface fit, k = 2.

DATA SET X11 i XI2_ XI3 XI4 XI5 XY6 XT7 XI8 XI9 XII0

number of points n 1 AH 74 49 37 __*
2R # (group average) 79.57* 79.7# 81.7# 803#

MSR (group average) 225. 113. 838 58-3

FI
T RMS error (arcsec.) 21*8 21-5 21-9 208 17*7 21*3 19*3 19.0 23.0 2 >8

worst case (arcsec.) 98.6 72-3 95*4 48-3 470 70-3 49.5 48-3 73.4 89.4

RMS (group average) 21 .7 19.9 21 .3

E-t RMS error 218 218 22*2 21.9 22.1 22*3 22-3 21-9 22-1
00w
H worst case 102. 97.3 103 990 100, 108, 105. 97.6 91.6

F-ratio <%*/ 1.03 .957 1.14 1.71 1.05 1.34 1.37 .795 .752

C0
MP
AR
IS
0] degrees of V, 148 198 222

freedom 142 92 68
average probability# 51 # 21# 49#

ratio V^/p 23.7 15..4 10.3

@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4.3
surface fit, k = 5

DATA SET X 11 X I 2 X I3 XY4 X I 5 X I6 XX7 X I8 X I9 X I1 0

number of points n 148 7 4 49 37

2R # (group average) 89.2# 89.6# 90-3# 90.1#

MSR (group average) 2 1 4 . 107. 72.5 51*8

FI
T RMS error (arcsec.) 158 14.9 16.1 14.7 13.7 153 13.7 149 1 52 1 64

worst case (arcsec.) 61.1 49.2 55.0 44.1 378 4 9 2 42.6 358 45.0 4&1

RMS (group average) k 'X 1 5 . 5 1 4 . 6 15 . 5

H RMS error 160 16-3 172 167 16-2 188 17.5 16.4 16-2
COWEh worst case 68-3 63.6 75j5 68.1 653 85.1 72.0 66.1 576

F-ratio 0̂ *1 K > 1*20 .9 5 7 1.36 1.50 1.05 183 127 101 .817

o X /
COM degrees of V, /s' * 148 198 222

s
1o

freedom Vx 136 86 62

average probability# 3 5 # 1 6 # 3 7 #

ratio V^/p 1 1 . 3 7 . 2 5.2

@
@

@

@

@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4 .4

.su rface  f i t ,  k  = 9

DATA SET XT1 XI2 XI3 XI4 X I5 XI6 XT7 ! XI8 XI9 j H 10

number o f p o in ts  n 148 74 49 37

1 w ? Pt,' 
1

!

L

1

;
(group av erag e) 

MSB (group av erag e) 172.

92///

882

98///

39-8

93

A

u7%

-25

Ij© 

i ®

RMS e r r o r  ( a r c s e c . )  

w o rs t case  ( a r c s e c . )

13.4

57.6

12-8

51.0

12-7

43.9

11-5

43.9

11*6

33.0

12.4

476

11-7

42.1

11.3

308

12-7

44.1

12.4 |

31-5
— — 4

RMS (group av e rag e ) 12.8 11.8 12.0 j@

RMS e r r o r  

w o rst case 114.0

60*5

142

626

15.4

67.3

15.1

65.0

144

60.9

169

81.1

17.1

674

148
60.1

14*3 ■;
I

590 ]

©CO

1
I8

F - r a t i o  & \* l ^ 1.20 1-30 1.76 1.63 1.20 1.79 1.99 1.03 105 j

d eg ree s  o f V,

freedom

av erag e  p r o b a b i l i t y 06
6 =

148

128

10 2 /

198

78

6*3/

222

54

2 2 / I @

r a t i o  V^/p 6 .4 3 .9 2 .7  I

@ d en o tes  q u a n t i ty  av e ra g ed  over group o f d a ta  s u b s e ts  o f s im i la r  n .

TABLE 4 .5

su r fa c e  f i t ,  k  = 20

DATA SET XI1 XI2 XI3 XI4 XI5 XI6 XX7 XI8 XI9 XI10 |

number o f p o in ts  n 148 74 49 37

2R /  (g roup  av e rag e ) 9 4 3 / 95-2/» 96*2/ 9 6 6 /

MSR (group av e rag e ) 102. 54*3 35*2 252

PI
T RMS e r r o r  ( a r c s e c . ) 11*2 114 9.4 9.2 8-3 98 100 8.1 97 69

w o rst case  ( a r c s e c . ) 58.1 448 26.1 338 174 342 37.6 157 27.9 145

RMS (group av e rag e ) 1C).4 9 .0 8 .7

E h
RMS e r r o r 13.4 134 158 208 157 17.9 17*2 167 152

a
E h

w o rs t case 648 693 69.4 138. 659 6d0 74.6 667 7 >2

F - r a t i o  cr£ / / 1*24 223 2-18 5-13 198 1*71 2*49 1*56 365

CO
M

PA
RI

SO
N

d eg ree s  o f V,

freedom  Vx

average  p r o b a b i l i t y 06

148

106

6 0 /

198

56

0.1/

222

32

2.6/

| r a t i o  V j/p 2 .5 1 .3 75

©

©

©

©

© d en o tes  q u a n t i ty  a v e ra g e s  over group of d a ta  s u b s e ts  of s im i la r  n .
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n 2

SSR E E R 2 R']2 ,
i=1 1=1 L 1 “X J L 1 J
n 2

and SSM = Tl FyV - x.,..- (v-x) ] 2 | w^
i=1 1=1 J • L ij

and the difference mean (y-x) in the above equations by

(ŷ x) £  £  (^’- XlJ.vf/2n .
i=1 1=1 * 11 ’ 1

The mean square ratio MSR is given by

MSR SSR / (p-1)

... 4.5

... 4o 6

... 4.7

O • O I o4.8

where p = 2(k+l) is the total number of parameters or coefficients fitted, 
and can be compared with the Fisher distribution. If

MSR }/ v2) •" 4,9
2

the fit explains R $ of the variation in the data; a greater percentage 
of explained data would be expected by chance only in 100(1-<x)$ of such 
sets of data. Other criteria of adequacy of fit exist, for example, con­
fidence limits can be placed on the values of the fitted coefficients or 
on the predicted function value at a desired point of interpolation.
Unless we are already convinced of the fit’s adequacy and are model fitting
for parameters of physical interest, the former are of no great value to us0

@Prediction confidence intervals would have far greater utility , but to be
2reliable, require an estimate of the variance based on substantial

additional data, and both measures are less valid and awkward to compute 
for the case of non-linear model fitting.

Inspection of Tables 4.2 to 4.5 shows that in general the data sets
2are all fitted to approximately the same level of R.M.S. error and R for 

a given order k, and only for k=20 does the Fisher test show substantial 
inadequacy of fit, in part due to overfitting which has occurred because of 
an excessively small ratio "V̂ /p. Occasionally, spuriously good fits are 
generated which are not consistent with the full data set XT1, for example 
the fit of order 9 to XI8 and most of the fits of order 20. For a given 
number of data points the mean square ratio MSR decreases with increasing 
order of fit, but in all cases is very large. Wetz (1964) found that for

@ Perhaps from the observer’s viewpoint it may be even more useful to 
know the limits of the pointing error rather than the R.M.S. value.
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the fit to be useful for predictive purposes MSR should exceed about four 
times F (p-1, V0) instead of relation 4.9 above, and this is indeed the 
case for all surface fits shown. Unlike the lack of fit test (relation 
4.3) the probability oc associated vith MSR in relation 4.9 is extremely 
lov and is not given in the Tables. The residual errors of fit in declin­
ation A S  , and in hourangleAH cos S were plotted against the two co­
ordinates 6 and H for the surface fits to the complete data set XI1. For 
k=9 and 20 these four graphs show a good normal distribution without trends 
or wedge-ness, but in the case k=5 very slight trends are evident, and in 
k=2 significant quadratic trends are visible in all the plots other than 
A S  v.s. S. All the cases, however, revealed a number of outlying data 
points and these are discussed later.

(4.4) MODEL FITTING THE 74-INCH TELESCOPE POINTING DATA 

(4,4,1) An Extended Model for the 74-inch

The simple five parameter model used in Chapter 2 omits a number of 
suspected causes of the pointing errors of the Mt. Stromlo 74-inch. The 
full 148 data point set XI1 was fitted by this model using the Marquardt 
algorithm (program MARQDT in Chapter 2), and a system, described later in 
this chapter, which allows selected parameters to be frozen at their start 
values and not be involved in the iterative improvement. Table 4.6 shows 
these results and gives the R.M.S. and worst case errors of fit attained, 
and the parameter estimates with various combinations of parameters 
frozen. The initial R.M.S. error of 87.1 arcsecond of the data set is at 
best improved to approximately 33 arcsecond; far worse is the fact that 
nearly all of this improvement comes from fitting parameters b^ and b 
which are simply the zero errors (or fiduciary offsets) of the hourangle 
and declination encoders respectively] Thus an improved model is required 
which will adequately represent: (i) polar misalignment (which includes
hourangle zero error), (ii) skewness of the axes, (iii) encoder zero and 
additional periodic errors, (iv) torsional elasticity of the axes and (v) 
flexure of the tube and secondary optic supports.

Errors A 8 in declination and A H in hourangle due to polar misalign­
ment (i) are given by

A S  = arcsin z - 6 . ... 4.10

and A h = arctan(-y/x) - H . ... 4.11

where 8 and H are our independent co-ordinate variables, and x, y and z 
are obtained from Euler expressions similar to equations 2.33. x, y and z 
involve the three parameters b̂  the polar misalignment, b^ the hourangle
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zero error, and b^ the orientation of the instrument pole as in Chapter 2. 
Skewness of the declination axis from the polar axis (ii) is accounted for 
by

A  S = arcsin(sinS.cosb^) - S ... 4.12

A e = arctan(tanS.sinb^) , ... 4.13

vhere parameter is the departure from mutual perpendicularity of the 
axes.

TABLE 4.6

number of
parameters
operative

errors of

R.M.S.

fit (arcsec.) 

worst case

@ parameter 
except b^

b1 b2

estimates 
degrees)

b3 b4

(arcsec.

b5

5 33.18 109.2 -8.4 94.3 -13.6 5.0 34.4

2 33.92 114.2 89.1 35.7

1 83.83 207.0 32.2

1 49.2 121.3 89.1

1 79.5 203.1 35.7

4 33.3 111.3 -9.9 92.6 .025 36.0

@ Blanks indicate parameter frozen at value of zero.

The encoder errors (iii) comprise the declination offset b^, the 
eccentricity of the main encoder gear -wheels (declination 1512 teeth, 
polar 864 teeth), eccentricity of the encoder pinions (32 teeth), and the 
first harmonic term of the composite tooth error. The latter includes 
the effect of accumulated pitch errors and the tooth profile error and in 
practice often appears as a varying but smooth trochoid or sinusoid.
Noting that the hourangle zero error has already appeared as b^^the errors 
are given by:

A b  = b5
+ b, cos S + b sin S 6 7
+ bQ c o s(1512&) + b sin(l5128) o 9
, ,1512 rs . , . ,1512+ b1Q cos ( —  6) + b11 sm( b )

and A H = b 2 cosH + b sinH

+ b ^ 4 cos(864H) + b ^  sin(864H)

zero error
main gear eccentricity

composite tooth error

encoder pinion 
eccentricity ... 4.14

main gear eccentricity

composite tooth error
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+ b , cos(^~H) + b sin(~~H) encoder pinion

• O  I) if -/“  I • • I a -1 r"0 c c Gntric l"ty • • • 4» » 5

Details of the encoder system mechanics appear in Appendix C, and a dis­
cussion of the level of error tolerated by the encoder processing electr­
onics is given in Appendix B.

To completely and accurately analyse the structural flexure of the 
74-inch telescope would be extremely difficult and as likely misleading; 
fortunately a satisfactory approximation can be devised. Since the polar 
axis is constantly loaded, polar axis flexure appears as polar misalign­
ment above, and needs no further consideration. Assuming a general state 
of imbalance of the telescope, the torque about the polar axis depends on 
both declination and hourangle, but the effect is confined to hourangle 
and expressible on the basis of a (constant) torsional stiffness parameter 
for the polar axis, and a parameter which represents the telescope imbal­
ance. The declination axis situation is somewhat more complex since there 
exists (a) a transverse force producing bending of the axis in a vertical 
plane, (b) a moment due to the imbalanced tube producing bending of the 
axis in the common plane of the tube and axis, and (c) a similar moment 
producing twisting of the declination axis, all three being dependent on 
5 and H as well as the imbalances. We take the view here that due to the 
extremely short and compact geometry of the declination axis effects (a) 
and (b) will be of secondary importance; indeed some (and at moderate 
latitudes most) of the declination axis flexure appears as if it were tors­
ional movement in the polar axis.

Figure 4.5 shows a schematic diagram of the 74-inch English crossed
axis mounting with the telescope east of the polar axis, and the forces on
the structure idealized to m acting vertically through point R the centre
of mass of the tube system, and m^ acting through Q the centre of mass of
the counterweight and west end of the declination axis. For the effective
distances 1 = R P (which may be negative), 1 = 0 P and 1 = 0 Q thex c
errors caused by lack of stiffness of the axes (iv) are given by

Z\ 6 = K̂ . m̂ . l(cos ̂ .cosH.sink - sin^.cos£) . •o 4.16

and H = K . cos ̂  (m .1 - m. .1. ).cosH + m, . 1. cos S.sinHIp ' L c c t t  t J ... 4.17

where K., and K are the declination and polar torsional stiffness constants d p
and <f> is the latitude (-35»32 degrees at Mt. Stromlo).

The remaining error cause considered is the non rigidity of the tube 
apd optic supports (v). Again certain simplifying assumptions are necess­
ary and we assume that the telescope cell and primary point in the theor-
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etical direction of the tube axis obtained by applying corrections (i) to 
(iv); this is justifiable because of the extremely stiff design of the 
cell. Unfortunately both the complicated truss type tube, and the ’spider1 
secondary support are statically indeterminate and excessively difficult 
to analyse, and ve employ here a suitable empirical method for obtaining 
the corrections. An alignment laser was mounted rigidly in the cell and 
pointed so that the position of the reflected beam from the secondary can 
be measured in the Cassegrain focal plane using the offset guider optics. 
The position of the laser spot vas noted for the succession of declinat­
ions -90, -60, -30, 0, +30 degrees and back again for constant hourangle 
settings of -6, -4, -2, 0, +2, +4 and +6 hours,-with the telescope east of
the polar axis, to enable the tube and secondary movement and the mechanical

@hysteresis to be assessed e Although the laser optical configuration does 
not behave exactly as a star on the principle axis of the primary mirror, 
the empirical lav obtained is very similar.

Figures 4.6 and 4.7 shov the plots of AS v.s. S and -A H v.s. H 
respectively and demonstrate veil the hysteresial nature of the 74-inch 
pointing errors. By manually loading various parts of the structure vith 
the tube horizontal, the bulk of the hysteresis vas traced to movement in 
the secondary mirror support drum and focussing system. There is no point 
in automatic fitting of such data but approximate equations may be fitted 
by eye to the graphs and are indicated by the solid thick curves. The
equations used are

A s = cos (a1 6 + a, ) cos(a_H) + Cj 3 d ... 4.18

A h = M a,H + a_.sin( pL 4 5 a,S)H - a s] + C , 6 7 J p ... 4.19

vhere the constants â  = 9/14, a^ = 70 degrees, a^ = .85, a4 = 14.2/157T,
= 4.8/15TT, a^ = 1.28 and a^ = 10/15TT. The vertical scale units in 

Figures 4.6 and 4.7 are millimetres measured in the (Cassegrain) focal 
plane but the parameters M^, are fitted in the model estimation process 
and not constrained to the values used to produce the thick lines in the 
figures.

Oving to the smallness of pointing error corrections and to the orth­
ogonality of the co-ordinate variables 6 and H it is reasonable to simply 
superpose or add together the expressions for A S  and A h  given in equat­
ions 4.10 to 4.19 to form the model equation. This is common practice

@ Acknovledgement is due to Dr A.W. Rodgers and John Hart of Mt. Stromlo 
Observatory for the results of this experiment.
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when the error caused by so doing is substantially less than the expected 
error of the fit,and has been done in the simple model used by Meeks, Ball 
and Hull (1968) in their calibration of the M.I.T. ’Haystack’ antenna.
Such a model is more prone to the accidental inclusion of redundant para­
meters than if the corrections vere applied sequentially. For example the 
inclusion of both b (equation 4.14) and (equation 4.18) in our model 
function for A S  would result in poor conditioning of the problem and 
retard convergence; thus neither nor appear in the model. Various 
convergence and stability problems with an initial model of this type 
were traced to the first term in equation 4.17 which, because cos (f) is 
constant, is redundantly linked with the term b  ̂ cosH in equation 4.15.

It is necessary to distinguish cases like the above where complete 
redundancy exists, from others where a given term, for example b^ cos 8 , is 
redundantly linked with only part of another, in this case part of equat­
ion 4.16 which appears in the model as b^Q (cos^cosH sin 8 - sin^cos6 ).
Omission of one or other of the terms in b, or b „  may be deleterious to6 20
the model’s ability to describe the data, and at worst results only in 
the trading of values between the coefficient b^ and b^Q. It is customary 
in model estimation to inspect the matrix A of equation 2.22, which be­
cause of the choice of scaling represents the matrix of coefficients of 
correlation between the parameters. Figure 4.8 shows this matrix for a
fit by the model eventually arrived at (see Table 4.7) to the data set

@XT1. The matrix does not vary greatly from iteration to iteration and 
the values shown occurred in the final iteration just before convergence. 
Parameter redundancy is indicated by large off-diagonal elements and 
whilst some redundancy still exists in the model it is in no way damaging; 
for example the periodic terms like bQ cos(1512-6) and b sin(l512-S) give 
rise to a near unity correlation coefficient but are both necessary if a 
sinusoidal error of unknown amplitude and phase is to be fitted.

The choice of scale can also be important; initial values of a^, a
and a_ in equation 4.19 which (although proportional to the values given)

' @@ were extremely small, caused the parameter space of the problem to be
excessively cramped in the corresponding dimension, resulting in slow con­
vergence. It is not always possible to scale the model completely evenly

@ because the model is not too nonlinear.
the k-dimension space in which the parameter vector _b = (b^,...b^) 
defines a point.
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since essential ’orientation’ parameters such as b^ (as opposed to ’error 
magnitude’ parameters like b^ , b^, b^ etc.) cannot be eliminated. However 
a test of a version of the model employing terms of the form a.sin(A&+b) 
in lieu of form a ’cos(AS) + b ’sin(A S) in equations 4.14 and 4.15 con­
vinced the author that it is best to eliminate all the nonessential ones. 
The above reasoning on design of the model led to the 21 parameter model 
given in full in Table 4.7 and whose derivations with respect to the para­
meters appear in Table 4.8.

To test the validity of adding the A 8 and A H to produce an approp­
riate model, an ’exact’ version was produced by sequentially applying the 
five corrections in the order: encoder errors, torsional movement of the
axes, skewness of the axes, polar misalignment and finally tube and second-

<1) r <2)ary flexure. If we temporarily let f represent either f = or f =
(the components of the model function), and f^ the value from the telescope 
readout, then f = f^(f^) gives (i) the encoder corrections and the corr­
ection (u) is given by

f = f (f J  4.20u u u—1

It would be onerous to attempt to derive full analytic expressions of the 
derivatives for the exact model, but it is easy to compute them iteratively 
by considering the total derivative of equation 4.20 with respect to para­
meter b . :0

u—1 a»f
, db. u-1 a

+ u-1
d H  , d b . u-1 o

+
df__u
Ö b .

a

4.21

At each stage df^/db_. is computed and replaces the stored value 
df^ ^/db_., the necessary 2k+4 partial derivatives being computed from 
analytic expressions.

The exact and approximate models were fitted to synthetic data of 
approximately 500 arcsecond R.M.S. error and their performance compared. 
Only in the first 2 to 4 iterations were differences of more than a few 
percent noticed in the sumsquare or parameter values, and a nearly 
identical path was taken to the solution, nearing which <f> differed by 
approximately 1$ and the parameter values by no more than 0.01%. When 
fitted to telescope data set XX1, the results were similar, with the con­
verged value of different by less than 0.02$ and the parameters by at 
most 0.5$. It is therefore safe to conclude that the difficulty in calc­
ulating the various extra analytic expressions needed for the derivatives 
of the exact model and the increased computing time overhead is not just­
ified by the quite negligible improvement in accuracy; in the remainder
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TABLE 4 .8

7 4 - in c h  model f u n c t i o n  d e r i v a t i v e s

4 .1 7

2 — —

D e f in e  E = (1 -z  ) 2 , t h e n :

W ^ /d b ^  = Ecos S s i n ( b 2 +H) cosb^ -  E s in &  sinb^

^ f ^ / d b ^  = 0 , b f ^ / d b ^  = Ecos S.sinb^ . cos (b^+H)

D e f in e  DX = b x / d b .  and D^ = d y / d b .  , t h e n :
3 3 3 3

b f 2/ d b .  = (yDX -  x D ^ ) / ( x 2 + y 2 ) f o r  j  = 1, 2 ,  3; and :
t) J 3

x yD̂  i s  g iv e n  by e q u a t i o n  2 .4 3 a ,  D̂j by  e q u a t i o n  2 .4 3 b ,

x yD' 2  i s  g iv e n  by e q u a t i o n  2 .4 3 c ,  D^ by  e q u a t i o n  2 .4 3 d ,

DX i s  g iv e n  by e q u a t i o n  2 .4 3 e ,  D^ by  e q u a t i o n  2 . 4 3 f .

b P / b b ^  = -  ^  -  s i n 2 S c o s ^ b j  2. s i n 8  s in b ^  

b f ^ b b ^  = t a n & c o s b ^ /  ^  + t a n 2 8 s i n ^ b ^ J

b P / b b  = 1
5

b f 1>/ d b ,  = cos  S , d f ^ / d b  = s i n  8 , o (

b P / b b ^  = c o s (1512&) ,

Ö f1)/Öb9 = s i n (  1512 8) ,

3>ft1)/ ^ b 10 = c o s ( 1- | j 2 S) ,

d f ^ / d b ^  = s i n ( 1- | p 6 )  ,

(1)
b t  / b b .  = 0 f o r  j  = 12, 1 3 , . . . 1 7 .

O)
b f  / £ b • = 0  f o r  j  = 5 ,  6 , . . . 1 1 .

3

b f ^ / b b ^  = cosH , b P / b b ^ ^  = s inH  , 

b P / b  b 14 = cos  (864H) ,

l2)
b f  /bb^, .  = s in (8 6 4 H ) , 

b f 2ydb16 = c o s (8- | | h ) ,

b f l2)/ d b 17 = s i n ( 8-|^H) ,

ä f m/ d b 1g = d f 1' / d b 19 = 0 , b f 2/b b ^ g  = cos (f> cos  S s inH  
12)

b f  / d b . ^  = a^H + â _ s in ( a ^ S )H  -  a^.8

d f^ /^ b ^ Q  = c o s ^ c o s H  s i n  S -  s in ^ c o s S  

^ f  / ö b 21 = c o s ( a ^ + a ^ ) •c o s ( a ^ H ) .

b P / b b 20 = b f 2)/ b b ^  = 0 .
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of this chapter the approximate model alone is used»

(4.4.2) Parameter ’Freezing’

In the applications below of the model to telescope data the Marquardt 
algorithm (MARQDT) has been used. It is efficient, stable and uncritical 
of the initial parameter values and in no case observed did it prove 
troublesome, except where the models used suffered extensively from poor 
scaling or redundant parameters. To assess which parameters of the model 
are important and which ones fail to contribute to the reduction of or
R.M.S. error, a scheme is necessary which allows selected parameters to be 
TfrozenT at their start values and only the remaining parameters to be 
iteratively improved. Techniques somewhat akin to this are used in mult­
iple regression work, see for example Chapter 6 of Draper and Smith (1966),
but rely heavily on automatic selection of the parameters to be included 

@in the model, and suffer the disadvantage that parameters can only be 
included or excluded and not fixed at a value which may be desirable for 
physical reasons. They are also less useful for non linear models.

The method used here is to include with the initial parameter k-vector
on input to the routine, another ’masking’ k-vector which contains ones or
zeros depending on whether a parameter is operative, or frozen, respect-

* *ively. Immediately after matrix A and vector £ are computed (see MARQDT 
flowchart Figure 2.7) they are ’compressed’ by eliminating the rows and 
columns associated with the frozen parameters using a routine called 
CMPRES shown in the flowchart in Figure 4.9. Subsequently, whenever an 
updated parameter vector b is required, the correction vector jb,which is 
added to the previous t>,is ’expanded’ using routine EXPAND (flowcharted 
in Figure 4.10); this restores the elements of Jb to their appropriate 
positions, filling the elements corresponding to the frozen parameters 
with zeros. Within the matrix equation solution section of the Marquardt 
algorithm the method merely operates with a reduced dimensionality and so 
the geometrical basis for its strategy is preserved.

(4.4.3) Fitting the Extended Model to Telescope Data

The full data set XX1 was fitted by the model using as the initial
—8parameters b. = 10 radian for all j£3, and b^ = 1.0 radian, using a number 

of different masking vectors. The errors and sumsquare <fi remaining after 
the fit, together with the estimates of the parameters produced by the 
various combinations of operative parameters are seen in Table 4.9.

@ whereas physical insight may be more appropriate here
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Satisfactory convergence was obtained in each of the 19 cases, but for 
some a R.M.S. error of fit is obtained which is considerably poorer than 
that of the surface fits previously described. The estimated value for 
a given parameter varies considerably, even for fits with similar R.M.S. 
error, and this is partly due to the parameter redundancies discussed 
earlier. It does not detract from the usefulness of the fit for predict­
ion purposes and the exact values of the parameters are possibly of less 
interest, except perhaps for the parameters governing certain gear errors 
which are always very small; this will be discussed later.

For the parameter combinations numbered PC 1, 2, 3, 6, 9, 10 and 13,
fits were generated to data sets XI2, XI3 to XT10 and tested against the
data set XY1 as was done for the surface fitting routine. The results are
shown in Tables 4.10 to 4.16 which have the same format as Tables 4.2 to

24.5. The test variance cr and its degree of freedom *V has been cal-
' 2 'culated from equation 4.2,whilst the variance of fit CT̂  and are 

given by

cr22 = ?S/(2n-k’)

V2 = 2n - k'
where k* is the number of operative parameters. In general the R.M.S. 
error of fit improves with increased numbers of parameters but the adequ­
acy of the model as measured by the probability oo deteriorates.

Line-printer plots of the residuals A& and Ah cos S against 8 and 
H were produced,and, as in surface fits, the plots of Z\8 v.s. 6 and 
A h  c o s 8 V oS. H are quite satisfactory with only very slight traces of 
trends or wedge-ness. The exception is the plot of A S v.s. 8 for PC3 
shown in Figure 4.11 which features a prominent linear trend in 8 . AS 
goes through zero at approximately -35 degrees (which is the zenith if H=0), 
and since the operative parameters of PC3 are just those of the simple 
five parameter model used in Chapter 2, it is easily seen why the latter 
was inadequate, and why the surface fitting routine with its inclusion of 
linear terms in the co-ordinates rather than the predominantly trigono­
metrical terms of the model, fares better. With regard to the plots of 
A H cosS v.s. 8 and of AS v.s. H,only the fit with parameter combin­

ation PC1 (all parameters operative) is beyond reproach. A severe quadr­
atic type of trend is present in the A h cos 8 v.s. S plot for all 
the other parameter combinations, and a similar (but inverted) trend is 
present in the plots of A 8 v.s. H for PC2, PC3 and PC9. These last 
mentioned defects are typified by those shown in Figures 4.12 and 4.13 
respectively. In the three Figures 4.11, 4.12 and 4.13, outlying data
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TABLE 4.10

parameter combination no. 1 (all parameters operative)
DATA SET X11 XI2 XI3 XI4 XI5 XI6 XI7 XI8 XI9 XI10

number of points n 148 74 49 37
2R $ (group average) ?ai $ 91*2$ 93.4$ 93-3 $

MSR (group average) 121. 638 48.1 32*8

FI
T RMS error (arcsec.) 15.4 144 14.7 13-5 11.7 13*2 129 11.5 129 15.7

worst case (arcsec.) 7 2 0 45*3 54.1 46*7 240 41-3 43.6 20.9 38*8 43.1
RMS (group average) 14.6 12.8 13 .3

EH RMS error 162 164 17*4 17.1 108 1 7j6 17.0 17.7 18-8
CO
wEH worst case 9OJ0 589 992 6Q0 807 109. 665 74.4 642

F-ratio &*/ 1-29 >28 >58 2-12 >50 >55 1*85 >54 >13

CO
MP
AR
IS
Ol degrees of V, 148 198 222

freedom 127 77 3
average probability06 7.5$ 1.1$ 8.1$

ratio V*/p 13.1 6.05 3.67 2. 52

@ denotes quantity averaged over group of data subsets of similar n.

@
@

@

@

TABLE 4.11
parameter combination no. 2 (8 parameters operative)

DATA SET X11 XI2 XI3 XX4 XI5 XI6 XX7 XI8 XI9 m o

number of points n 148 74 49 37
2R $ (group average) 320$ 824$ 83*6$ 83*5$

MSR (group average) 18a 964 67-8 49J3

FI
T RMS error (arcsec.) 204 21.4 18*8 20*2 16.1 20-2 18*3 16*2 236 206

worst case (arcsec.) 74.7 66-1 674 507 48-2 587 43*8 33.6 568 61.5
RMS (group average) rvl 20.1 18.8 19 o4

Eh RMS error 20.6 20.6 21*2 207 20.6 22-1 207 2Q8 209
COWEh worst case 83.0 67.4 84.4 78j6 75.6 95.8 75*2 7>1 6 >5

F-ratio O* .814 >33 1j06 >80 .967 144 U55 .708 .926
OCOw degrees of V, 148 198 222
es
$.

freedom Vx0 140 90 66
oo average probability06 47$ 32$ 42$

ratio V^/p 36 17.5 11.3 8. 24

@

@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4,12

parameter combination no, 3 (5 parameters operative)
DATA SET X I I X I 2 X I 3 X I 4 XX5 XX6 XT7 X I 8 XX9 XX10

number of points n 148 74 49 37

2R $  (group average) 52,3% 52*6/ 53.4/o 53*2/

MSR (group average) 79.7 39.8 26-7 198

FI
T 
*

RMS error (arcsec.) 3 >2 33.4 32*7 31.6 3Q8 339 3Q8 30-2 353 347

worst case (arcsec.) 109. 88.0 105. 60-5 808 76-5 602 51.8 83.1 1 0 2 .

RMS (group average) 3 3 . 0 3 1 .8 32 .8

EH RMS error 33*3 33-3 33*5 33.4 33-3 337 33.4 33.4 33.5
COwEH worst case 113. 105. 115. 109. 110. 116. 109. 110. 102 .

F-ratio .956 1.04 1.12 1*21 .976 1.17 1*22 •803 •845
OCOw degrees of V, 148 198 222

§& freedom 143 93 69Aoo average probabilityOC 50% 3 3 / 5 2 /

ratio Vfc/p 5 8 .2 28>.6 1 8 .6 13 .8

@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4.13
parameter combination no, 6 (9 parameters operative)

DATA SET XI1 X12 XI3 XI4 XI5 XI6 XI7 XI8 XI9 XI10

number of points n 148 74 49 37
2R / (group average) 83.6/ 84.0/ 84.7/ 849/

MSR (group average) 183. 94*3 627 47*3

FI
T RMS error (arcsec.) 19-5 20-5 17-8 188 16.3 19.5 18*2 1 59 21.5 187

worst case (arcsec.) 627 62-5 5 U 465 48.1 592 44.9 368 549 43-3

RMS (group average) 19M 18.2 18• 6

EH RMS error 19.7 19.7 20-2 202 —1 .vO 00 209 20.1 199 199
COW£h worst case 708 63-5 67-9 692 67*6 84.4 669 58.3 609

F-ratio c r f i cr* .802 1.39 1.11 1j6 3 •945 1-26 1*58 •703 >03
&COM degrees of V,Ha 148 198 222
g
O
°

freedom Vx 139 89 t>5
average probability06 46/ 31/ 40/

i ratio "î /p 31.7 15.5 7.22

@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4 .1 4

p a ra m e te r  c o m b in a tio n  n o . 9 (6 p a ra m e te rs  o p e r a t iv e )

BATA SET XII X I2 X I3 X I4 X I5 X I6 XI7 X I8 XI9 XI10

num ber o f  p o in t s  n 148 74 49 37
2

R $  (g ro u p  a v e ra g e ) 729$ 73.1$ 733$ 739$

MSR (g ro u p  a v e ra g e ) 156. 78.0 513 38.9

FI
T RMS e r r o r  ( a r c s e c . ) 25.0 25*6 242 24.7 225 243 233 22-1 263 25.7

v o r s t  c a se  ( a r c s e c . ) 76*2 68j5 71*3 47.5 62.5 62.1 45.2 36.9 62-7 663

RMS (g ro u p  a v e ra g e ) 24-.9 2 3 .7 2^k 4

F-t RMS e r r o r 252 25.1 25.5 25-3 252 26.0 253 25-3 25*3
cow
EH v o r s t  c a se 82£ 71-3 803 81.2 793 90.0 773 75.9 663

55
F - r a t i o  d f / ' c r £ .901 1.11 1.03 1.31 1.01 1-20 1.31 .802 .880

o
COM d e g re e s  o f  V, 148 198 222

Ö freedom  y^ 142 92 68
so
o a v e ra g e  p r o b a b i l i t y # 50$ 33$ 48$

r a t i o  V j/p 4 8 .4 2 3 .7 15«A 1 1 .3

@ d e n o te s  q u a n t i t y  a v e ra g e d  o v e r  g ro u p  o f  d a ta  s u b s e t s  o f s i m i l a r  n .

TABLE 4 .1 5

p a ra m e te r  c o m b in a tio n  n o . 10 (12 p a ra m e te rs  o p e r a t in g )

BATA SET XI1 X I2 XT 3 X I4 X I5 X I6 X I7 X I8 X I9 X I10

num ber o f  p o in t s  n 148 74 49 37
2

R $  (g ro u p  a v e ra g e ) 86.6$ 87.0$ 88.5$ 88.4$

MSR (g ro u p  a v e ra g e ) 167. sao 644 454-

PI
T RMS e r r o r  ( a r c s e c . ) 17.6 192 15-3 17-3 12-7 17-3 163 134 18.5 16.1

v o r s t  c a se  ( a r c s e c . ) 65.4 669 567 43.5 25-3 584 442 309 57.1 513

RMS (g ro u p  a v e ra g e ) "Vd 17.1 1 3 . 8 1 5 . 2

EH RMS e r r o r 17.9 17.9 18.9 189 182 20.1 183 165 184
CO
«Eh v o r s t  c a se 669 65*2 743 782 67*3 853 72-3 709 659

F - r a t i o  C f f lC t* •724 1.59 1.14 248 122 1.33 135 .846 1.12

O k V iCOM d e g re e s  o f  V, 148 198 222

3
g

freedom  Vxn136 86 62
OO a v e ra g e  p r o b a b i l i t y # 4 6 $ 24$ 30$

r a t i o  V^/p 2 3 . 7 11 .3 7 . 1 7 5. 17

@

@  d e n o te s  q u a n t i t y  a v e ra g e s  o v e r  g ro u p  o f  d a ta  s u b s e t s  o f s i m i l a r  n .
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TABLE 4.16

parameter combination no. 13 (7 parameters operative)
DATA SET X11 XI2 XI3 XI4 XI5 XI6 XI7 XI8 XI9 XI10

number of points n 148 74 49 37
2R ^ (group average) 344%> 846% 85.4% 85-5%

MSR (group average) 237. 121. 81-3 616

PI
T RMS error (arcsec.) 19.9 21.0 1 84- 19.6 16.7 19.9 18.5 16.7 22.0 19.2

vorst case (arcsec.) 61-3 58.5 57.6 45-3 53-3 54,6 44.1 31.2 5Q2 46-5
RMS (group average) 19.7 18.7 20. 6
RMS error 2Q0 2 0 0 204 20.4 2Q2 21-2 20.3 20-3 203

CO
w vorst case 669 58-1 65J3 76.4 6 6 6 79-3 71.6 566 566

P-ratio .783 1-30 1.04 1j61 .964 1.28 1.49 .729 1.06

co
mp

ar
is

o: degrees of V, % 148 198 222
freedom y^ 141 91 67
average probabilityOC 50% 34% 37%

ratio V^/p 41.2 2C.2 13.0 9. 58

@ denotes quantity averaged over group of data subsets of similar n.
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points have been circled and annotated with the observation number.

(4.4.4) The Appropriateness of Linear Statistics

Whilst inspection and comparison of sumsquares and variances is satis­
factory, the use of the Fisher test to produce a measure of the model’s 
adequacy is not theoretically valid for the case of a non-linear model; 
although the model used is intrinsically very nearly linear, an assessment 
of the appropriateness of applying linear statistics is pertinent. Beale
(i960) has developed such a measure of non-linearity based on the depart-

@ure of the solution locus from a plane which is tangent to it at the 
point on the locus corresponding to 13 = (B.), the leastsquares estimate of 
_b. Using m different vectors b = (b. ) q=1,...m, in the neighbourhood of
B,Beale calculates a normalised measure of this departure N which in our 
case is given by

m n 2 r m  m  kE E E [f"(V - f ’(B) - E<vV*q=1 i=1 1=1 U ~  j=1 J
N = ------------1 ^ --------  ... 4.23

B.1
]2- Ef

£(EEpJv-«!0t
The model is then regarded as adequately linear for linear statistics to 
be applicable if N<(.01/F (k, V ) and disastrously non-linear ifI — oc
N y 1/F (k, V)?where V  is the degree of freedom of the variance of fit.

Beale’s measure N in equation 4.23 was computed for a number of diff­
erent distributions and total numbers of sample points using the exact 
version of the model. As predicted by Beale, the value of N obtained is 
largely independent of m the number of sample points and is more dependent
upon their actual configuration. However Beale also states that N should

'lb \ 0 .), Vnot vary greatly with the distance of the points f^(b^) from f^(B), the 
point on the locus corresponding to the leastsquares estimate B; this was 
not confirmed by any of the tests carried out. In Figure 4.14, N is plotted 
against the mean distance of the components of vectors b^ from the corres­
ponding component of JB for several different distributions of the sample
points. The case designated A was formed by generating the b. as a14
uniform distribution over an interval which is proportional to the magni­
tude of B̂ ., case B is a uniform distribution over a specified interval

(Ü> Hero ’sample space’ is the 2n-dimensional space containing the point
(y.,» y2’-**yn> yr***yn)’ where (yi> yî  = ^ oi> Hoi) 1S the 1 
observation point. The ’solution locks’ is a k-dimensional surface in 
this space generated by the points f ± - f ^ x  b), regarding b as the
variable, and is a hyper—plane if the model is exactly linear in the 
parameters.
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@which is the same for each component of the parameter vector , case C is a 

normal distribution of the b. over a proportional interval, and case D----- jq
shows a. normal distribution on the specified interval. 40 sample points 
were used and the intervals concerned were varied to obtain the abscissa 
of Figure 4.14. To show the typical variation of N with number of points 
used, a fifth case labelled A ’ has been included and is identical to A 
except that only 10 of the 40 points were used.

It is clear that N increases monotonically with decreasing size of 
the distribution of the sample points and is relatively unaffected by m 
or by the type of distribution. The suprisingly large difference between 
the cases with proportional and specified intervals is not easy to explain; 
numerical error propagation was originally considered but is now rejected 
on the basis of further tests and the quite smooth variation of N. Lines
representing Beale1s criteria are marked on Figure 4.14, and on the basis
of the cases A and C we would not hesitate to deem the model sufficiently
linear; however, the scheme’s arbitrariness with regard to choice of the 
sample points necessitates our agreement with Jones (1970) that the scheme 
is not particularly useful. One further peculiarity is that whilst Beale 
states that the scheme is valid if the sample points are not too distant

(lb Vfrom f_̂ (B), the results for the model here become less stable the smaller 
this distance becomes. A more extensive appraisal of Beale’s non-linear­
ity measure is given in Guttman and Meeter (1965) where a two parameter 
model which permits theoretical investigation is considered. Here we 
conclude that the limited and confusing information obtained from the test 
is not worth the computing effort involved.

(4.5) REJECTION OF OUTLIERS
In compiling the original 148 point data set XI1, certain observations 

with which trouble was experienced or whose accuracy was suspect were not 
used. An assessment of the fits so far described indicates that it might 
be advantageous to reject a number of others. Although work has been done 
on schemes which permit automatic rejection of spurious data points or 
’outliers’, their unfettered use on data is not a wise procedure, since 
it is rarely clear whether a peculiar data point is spurious or actually 
representative of an unnoticed trend. Grubbs (1950) gives rejection 
criteria based on the distance of the largest observation from the mean, 
and Anscombe (i960) discusses rejection rules involving the size of the 
largest residual compared to the standard deviation of the errors.

@ except for b^, of course, which took the same interval in degrees as 
did the others in arcseconds.
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Anscombe, by considering the ’insurance premium’ (the increase in residual 
variance due to unnecessary use of the rejection rule), and the ’protect­
ion offered' (the chance that a spurious data point -will escape detection) 
concludes that such rules are somewhat arbitrary when only a single sample 
of data is available, and highly ineffective since, for practical ’premiums’, 
spurious points can easily escape detection. Irwin (1925) discusses a 
criterion based on the difference between the largest and next largest 
observations, and several other schemes are proposed in the literature; 
the commonly cited viewpoint is, however, that the only safe procedures 
are graphical inspection of the data and residuals^and, of course, disting­
uishing outliers purely on the basis of different or inconsistent condit­
ions of observation and without regard to magnitude. Alternatives 
to rejection of a suspected outlier include data set truncation,where an 
equal percentage of high and low valued observations are rejected (irresp­
ective of individual magnitudes), and ’Winsoration' (after C. Winsor) where 
the extreme observations are decreased in magnitude until they are equal 
to the next most extreme onesQ Only rejection has been considered here.

The plots of errors v.s. co-ordinates shown in Figures 4.3a to 4.31 
show occasional points lying well off the main stream or trend; these 
points are numbers 2, 75, 123, 124, 148 and to a lesser extent 13 and 17o 
Also, inspection of plots of the residuals resulting from surface fitting 
the data set XT1 reveals that points number 2, 13, 75 and 148 are not 
typical, and similarly, in the residual plots for the extended model fits 
with various parameter combinations we can single out points number 2, 13, 
75, 148 and possibly 59, 74 and 100. Point 148 is also suspect since it 
was taken at an extremely large zenith angle (routine CATALOG-.OBS checks 
the zenith angle of the generated grid point, not that of the associated 
star), at which gross misbehaviour of the telescope is expected and where 
the accuracy of the refraction correction cannot be guaranteed«, The two 
consecutive points 123 and 124 appear to indicate a period of unusually 
poor observational accuracy and the points 2, 13, 75, 123, 124 and 148 
are consistently the worst case residuals in most of the fits. It was 
therefore decided to delete these 6 points to form a data set of 142 points«, 
As before, this modified data set is divided into data subsets: 2 of 71 
points, 3 of 47 points and 4 of 35 points as detailed in Table 4.17.

Surface fits with k=2, 5, 9 and 20 were generated to the data subsets 
and the result tested against the full set XI1; these tests are tabulated 
in Table 4.18 to 4.21. Although the removal of the spurious points im­
proves the R.M.S. error of the data set and subsets by only about 1$, the 
effect upon the fitting process is quite marked«, Comparison of these
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Tables vith Tables 4.2 to 4.5 shows a 10 - 2QF/o improvement in the R.M0S.
error of fit, slightly less variation between subsets and a considerable
improvement in worst case error. The adequacy of fit (indicated by oo)
has improved particularly for k=5 and 9, whilst the case k=20, although

@improved in this regard, still suffers from overfitting . A small improve-
2ment of 2 to 4$> in the proportion of variation explained (R ) is evident, 

and there is also an increase in MSR. The latter, however, is sufficiently 
large in each case that the exact value is of no consequence. Residual 
plots of the surface fits to the modified data set are discussed below.

TABLE 4.17

data set number of 
points

R.M.S. error 
arcsecond

worst case 
error

xri 142 86.2 180.2

XT2 71 86.3 180.2

XT3 71 86.0 153.6

XI4 47 84.4 153.6

XI5 47 84.9 149.2

XI6 47 89.2 180.2

XX7 35 87.3 180.2

XI8 35 87.3 153.6

XI9 35 84.9 142.5

XI10 35 84.9 152.9

Similar fits and tests on modified data were run using the model 
estimation routine MARQDT with operative parameter combinations PC1, 2, 3,
6, 9, 10 and 13 as was done in Tables 4.10 to 4.16, and the results are 
given in Tables 4.22 to 4.28. In general the nature and extent of improve­
ment is very similar to the surface fitting comparison except that the 
improvement in the R.M.S. error of fit is even larger (20 to 30 percent) 
and the adequacy of fit for the smaller data subsets is considerably better.

© Overfitting results from using an excessively large number of para­
meters or coefficients for the number of data points and is indicated 
by very low ratios "V̂ /p. In such cases the fitting functions are 
said to be fitted to the errors.
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TABLE 4 .1 8

s u r f a c e  f i t ,  k  = 2

DATA SET X11 X I2 X I3 X I4 X I5 X I6 XI7 X I8 X I9 XI10

num ber o f p o in t s  n 142 71 47 35

2
R #  (g ro u p  a v e ra g e ) 34.1# 84.1# 84.3# 84.4#

MSR (g ro u p  a v e ra g e ) 240. 144. 95-3 92*1

FI
T RMS e r r o r  ( a r c s e c . ) 182 1SO 18.3 16-7 17.8 19.6 183 17-9 171) 1&6

w o rs t  c a se  ( a r c s e c . ) 48.7 48.5 44.6 37.1 48.8 44.2 47.6 45.4 3&6 38X)

RMS (g ro u p  a v e ra g e ) 18 .1 1 8 .0 1 7 .9

RMS e r r o r 182 18.4 1 82 18.6 184 1&6 18-5 18-5 ia 6
COw
EH

w o rs t  c a se 48X) 50.1 50.1 51.9 49.1 47.9 50.7 53.3 4^8

F - r a t i o  <f*/ KXl •987 •982 1-21 1.06 .763 •964 •991 1.13 .922

CO
M

PA
RI

SO
]

d e g re e s  o f 142 190 214

freed o m  y^ 136 88 (>4
a v e ra g e  p r o b a b i l i t y # 54# 49# 52#

r a t i o  V^/p 4 6 .3 22 . 6 14 .3 1 0 .7

@ d e n o te s  q u a n t i t y  a v e ra g e d  o v e r  g ro u p  o f d a ta  s u b s e t s  o f  s i m i l a r  n .

@

@

@

@

TABLE 4 .1 9

s u r f a c e  f i t ,  k  = 5

DATA SET X 11 X I 2 X I3 X I4 X I 5 X I6 X I7 X I8 X I9 X I1 0

num ber o f  p o in t s  n 142 71 47 35

2
R #  (g ro u p  a v e ra g e ) 92-1# 92-2# 92*4# 9 2 6 #

MSR (g ro u p  a v e ra g e ) 289. 1 4 0 . 91-8 6 6 6

FI
T RMS e r r o r  ( a r c s e c . ) 128 13.1 123 11.5 1 2-5 13-5 126 11*4 126 12*7

w o rs t  c a se  ( a r c s e c . ) 34-2 328 286 22-1 30.8 29 4 31-9 24.5 29.9 23.6

RMS (g ro u p  a v e ra g e ) 12 .7 1 2 .5 1 2 .3

EH
RMS e r r o r 12.9 13.1 13*2 14j0 13.1 13.4 1 3 4 14j6 135

CO
w
Eh

w o rs t  c a se 3 2 4 36-2 37.1 36.1 37.1 37.5 31.4 37.8 40.1

F - r a t i o  c f f l  cr^ > > •855 1.15 1-30 1*21 .802 •974 1*25 1-20 .9 8 6
5z:O
COM d e g re e s  o f V, 142 190 2 1 4

I1o
freedom  Vx 130 82 38

a v e ra g e  p r o b a b i l i t y # 5 1 # 3 8 # 3 7 #

r a t i o  y j  p 2 2 .7 1C) .8 6 .7 4 . 8

@ d e n o te s  q u a n t i t y  a v e ra g e s  o v e r  g ro u p  o f d a ta  s u b s e t s  o f  s i m i l a r  n .
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TABLE 4 .2 0

surface fit, k = 9
DATA SET X11 X I2 X I3 X I4 X I5 X I6 XI7 X I8 XI9 XT10

num ber o f p o in t s  n 142 71 47 35
2

R io (g ro u p  a v e ra g e ) 95*395 95-595 96.195 96295

MSR (g ro u p  a v e ra g e ) 283. 142. 91*2 680

FI
T RMS e r r o r  ( a r c s e c . ) 9.8 10.4 as 8-5 8.9 10-3 96 8.1 9.5 8.1

w o rs t  c a se  ( a r c s e c . ) 24.1 25.6 24.9 18-3 20-3 188 208 15-5 19.3 17.8

RMS (g ro u p  a v e ra g e ) sTÄ 1 4 .6 9 .2 8 . 8

EH
RMS e r r o r 10.1 10.5 10.4 11.8 10.5 10.8 10.8 11.9 11.8

COw w o rs t  ca se 25-3 26.4 27.6 348 24,6 31-3 27.1 43.2 329

;2*
F - r a t i o  &*/ .776 1.62 1-35 1-67 .826 .970 143 1-24 1*76

O
COw d e g re e s  o f V, 142 190 214

freedom 122 74 50
oo a v e ra g e  p ro b a b ility O C 4695 3195 2195

r a t i o  3^ /p 1 3 .2 6 . 1 3 .6 2. 5

@ d e n o te s  q u a n t i t y  a v e ra g e d  o v e r  g ro u p  o f  d a ta  s u b s e t s  o f  s i m i l a r  n .

@

@

@

@

TABLE 4 .21

surface fit, k = 20
DATA SET X11 X I2 XI3 XX4 X I5 XI6 XI7 XI8 XI9 XI10

num ber o f p o in t s  n 142 71 47 35

2R io (g ro u p  a v e ra g e ) 96.895 97.195 97.895 98*295

MSR (g ro u p  a v e ra g e ) 179. 822 57.1 39A

FI
T RMS e r r o r  ( a r c s e c . ) 8.1 7.8 7.7 67 6*7 68 5.9 66 6*1 5.4

w o rs t  c a se  ( a r c s e c . ) 17*2 15.8 14.5 16.5 12*6 1 3.8 96 12*2 12*7 1 20

RMS (g ro u p  a v e ra g e ) 7 . 8 6 .7 6 ,.0

EH
RMS e r r o r 89 9.1 9-5 124 15*2 11*7 11-7 19.9 19.7

COWH w o rs t  c a se 219 20.4 265 55.8 892 37.6 310 99.7 140.

F - r a t i o  ( f f l  O'* / / 1*15 1*26 1.42 260 391 1.96 1Ö 6 5-57 7.01
!ziO / /
COM d e g re e s  o f V, / s ' 142 190 214
«

1 freedom  Vx & 100 52 >8

OO a v e ra g e  p r o b a b i l i t y 06r 1795 2.395 2-595

r a t i o  V^/p 5 .9 2 .4 1 . :? 0 .7

@

@

@

@ d e n o te s  q u a n t i t y  a v e ra g e s  o v e r  g ro u p  o f d a ta  s u b s e t s  o f  s i m i l a r  n .
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TABLE 4.22

parameter combination no. 1 (all parameters operative)
DATA SET X11 XI2 XI3 XI4 XI5 XI6 XI7 XI8 XI9 XI10

number of points n 142 71 47 35
2R $ (group average) 92*7$ 93*3 $ 938$ 943$

MSR (group average) 164. 762 49.9 37.0

PI
T RMS error (arcsec.) 124 12*2 126 11.6 11.6 12.5 12.3 114 94 13.3

worst case (arcsec.) 38.1 34.1 26.8 25.0 21.0 22.9 25.1 28-3 19.0 22.4

RMS (group average) o 124 11.9 11.6

FH RMS error 13.0 12.8 12*7 13.6 137 13.6 14.1 149 14.5
COCfi
EH worst case 34.1 40.5 38.7 53.9 52.9 328 37.6 55.0 44.0

5»; F-ratio öf/ cr£ 1.08 .913 101 1.23 *996 .904 1.19 209 •884
O
COM degrees of V, 142 190 214
1i freedom y*. 121 73 21-9
oo average probability# 51$ 39$ 42$

ratio 3^/p 12.5 5.8 3.5 2 .3

@ denotes quantity averaged over group of data subsets of similar n.

@
@

@

@

TABLE 4.23
parameter combination no. 2 (8 parameters operative)

DATA SET X11 XI2 XJ3 XI4 XI5 XI6 XI7 XI8 XI9 XI10

number of points n 142 71 47 35
2R $ (group average) 

MSR (group average)
85.4$
230.

855$
112.

85.9$ 
75.1.

85-5$
53.8

FI
T RMS error (arcsec.) 17.4 170 17.8 16.9 16-3 18.1 186 16.5 14.9 19.1

worst case (arcsec.) 55.1 552 418 395 34.0 46.6 5 3D 37.1 387 43.8
RMS (group average) 17o4 17.1 17.5

E-i RMS error 174 174 17.5 178 18D 175 17.4 17.8 17.6
COwE-i worst case 55.2 55D 56j5 614 555 550 565 575 535

F-ratio A 1.05 .879 1.02 1.19 .907 .761 1.03 1.40 .706
O
COw degrees of V, / V 142 190 214

£ freedom Vxn134 86 52
oo average probability# 58$ 45$ 60$

ratio V j  p 34.5 1 608 10. 3 7.8

@

@

@

@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4.24

parameter combination no. 3 (5 parameters operative)
DATA SET X11 XY2 XI3 XI4 XI5 ]XI6 XI7 XI8 _ XI9 XI10

number of points n 142 71 47 35
2R / (group average) 54.8/ 54.8/o 55.1/ 54.3/

MSR (group average) 845 41.6 27.4 19A

FI
T RMS error (arcsec.) 30.6 30*2 31D 29.4 29.7 32-3 30.5 298 29.9 32.4

worst case (arcsec.) 84.4 83.7 687 56.1 558 78*2 82.6 54J0 66.1 698

RMS (group average) 30.6 30.8 30.6

Eh RMS error 30.6 30.6 307 30.8 31.0 30.7 30.6 3Q8 30.6
cow
EH worst case 83.7 85.1 85.7 88.1 78*2 8-24 83-5 84.4 86*2

!z F-ratio cf*/ 1.01 .922 1.07 1.05 •836 .941 .999 1.01 •800

CO
MP
AR
T S
O] degrees of V, 142 190 214

freedom y*. 137 89 55
average probability# 58/ 54/ 63/

ratio V^/p 55.8 27.4 17. 8 13.0

@ denotes quantity averaged over group of data subsets of similar n.

@

@

@

@

TABLE 4.25
parameter combination no. 6 (9 parameters operative)

DATA SET X11 XI2 XI3 XI4 XI5 XI6 XX7 XI8 XI9 XI10

number of points n 142 71 47 35
2R / (group average) 86.6/ 86.6/ 87.2/ 87.0/

MSR (group average) 222 108. 72-8 52-2

FI
T RMS error (arcsec.) 167 16.1 17.1 16.3 14.9 17.7 17.0 1 5 8 14.4 18.4

worst case (arcsec.) 52.5 51.5 38.5 383 32.9 453 48/ 37.3 423 38.4

RMS (group average) K ^ 1 1 6 .6 1 6.3 1 6 .3

EH RMS error 167 167 16.8 17.0 17.3 17.1 1 6$ 17.4 168
CO
wEh worst case 51.5 533 55-3 55.1 52.5 524 5 3$ 53.8 52.8

F-ratio Cf̂ / 1-07 •845 .994 1-30 •850 •879 1.06 1.40 •678
OCOw degrees of V, 142 190 214
§
%

freedom Vx 133 85 51
00 average probability# 60/ 48/ 55/

ratio "Vj p 3 0 .6 1 4 .8 9 .5 6 .8

@
@

@

@

@ denotes quantity averages over group of data subsets of similar n.
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TABLE 4.26

parameter combination no. 9 (6 parameters operative)
DATA SET X11 XI2 | XI3 XI4 XI5 : XI6 XI7 XI8 XI9 XI10

number of points n 142 71 47 35

PI
T

2R % (group average) 
MSR (group average)

74.9fo 

166.
74&fo 

81-2
752?S
533

74776
38X)

RMS error (arcsec.) 
vorst case (arcsec.)

22-8
63-2

226

632
23.0
45*2

22-3
448

2 2 0

43.0
23.6
59.4

235
624

224
41.9

21.6
37.3

24.1 
4 52

RMS (group average) 22.8 22.6 22.8

TE
ST

RMS error 
worst case

22-8 
6 >2

22-8 
6 >2

23.0
66*1

23.1
64-1

23.1
59.4

23D 

624
228

6 2 6

23.1
64.4

22.9
63.9

CO
MP
AR
IS
ON

F-ratio & * / CT^ -995 .938 1.02 1.07 •876 •860 1.00 W9 •796
degrees of
freedom y^
average probability#

142
136
58/6

190
88
5476

214
64
6376

I ratio 3^/p 46.3 22.7 14.7 10.7

@ denotes quantity averaged over group of data subsets of similar n.

TABLE 4.27
parameter conbination no. 10 (12 parameters operative)

DATA SET X11 XI2 XI3 XY4 XI5 XI6 XI7 XI8 XX9 XX10

number of points n 1 4 2 71 4 7 35

2R 76 (group average) 89276 89.476 90.776 90.176

MSR (group average) 2 0 4 . 1 0 0 . 73j5 51.6

FI
T RMS error (arcsec.) 15.0 14.4 1 5 2 14.7 1 3 2 1 3 7 1 5*2 13.7 11-3 16.5

worst case (arcsec.) 4 1 5 47.3 37.8 35.0 3 1 4 2 6 8 40.1 34*2 24-3 39L5

RMS (group average) 1 4 . 8 1 3 . 9 1 4 .2

E-i RMS error 154 154 5 1 2 15.9 17.1 15.5 1 5*2 18.5 15.1
01
WH worst case

/ y
47-3 47-3 51.8 61-3 77-9 47-3 49-5 88.8 44.3

F-ratio c f^ j a
1.10 •8 7 2 .9 7 3 U 7 1 6 0 •873 1J38 2-70 .6 5 7

Ö
CO
M degrees of V, 1 4 2 1 9 0 2 1 4

9
g

freedom 1 3 0 8 2 C58

O
O average probability# 5476 3076 5376

ratio Vj/p 2 2 . 7 1 0 . 8 6 . 8 4 . 8

@

©

© denotes quantity averages over group of data subsets of similar n.
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TABLE 4.28

parameter combination no. 13 (7 parameters operative)
DATA SET X11 X I2 X I3 X I4 X I5 X I6 X I7 X I8 X I9 xri 0

num ber of' point:-; n 142 71 47 35

2R $  (g roup  average) 87A% 87.5$ 873% 87.5$

MSR (group average) 277. 136. 90.7 66J

FI
T RMS error (arcsec.) 17-4 16*7 17.9 17.1 1 6r0 18.1 18.5 163 143 19.4

worst case (arcsec.) 56-7 55-3 42*2 39.6 37-2 49.2 53.4 38*2 38-7 42.0

RMS (group average) k V 17.3 17.1 17.2

H RMS error 17.4 17.4 17-5 17j6 17-9 17.5 17.5 17.6 174
CO
wH worst case 553 57.9 60.3 59.4 51-7 53.4 58.9 56.8 56.0

iz F-ratio 1.11 •838 •9 9 4 132 .900 •783 1.09 1.45 .673

CO
MP
AR
IS
O] degrees of V, 142 190 214

freedom y^ 135 87 63
average probability# 56$ 46$ 57$

ratio 3^/p 3 9 .6 19.3 1 2 . 9 .0

@ denotes quantity averaged over group of data subsets of similar n.

@
@

@

@
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FIG 4.16

x • □

o
Ti­

to
CO

o
CO

lo

o
<N

a

in

in

o

N
um

be
r 

of
 P

ar
am

et
er

s 
or

 C
oe

ff
ic

ie
nt

s 
F

it
te

d.



FIG 4.17

iS iS

co

öeo

O

O
ui

o
CO

O
<N

o

o o

b
o o

ra
tio



4.35
The line-printer plots of the residuals of fit v.s. the co-ordinates also 
show the benefits of removing the spurious points. Those for the surface 
fits are improved with regards the scatter of the residuals,and the sugg­
estion of a trend in A H  cos & v.s. H for the fit of order 5, and the 
trends in the plots of order 2 are rendered less significant. The model 
fit residual plots are also improved but only slightly so; the quadratic 
trends in A h cos6 v.s. S and Z\ & v.s. H, examples of which appear in 
Figures 4.12 and 4.13, are still very significant.

(4.6) DISCUSSION OF TELESCOPE DATA FITS

Despite the degree of randomness imposed on the results by the hyst- 
eresial nature of the telescope errors, interesting comparisons are poss­
ible. In Figure 4.15 the R.M.S. error of the surface and model fits to
the complete data sets (both original and modified) is plotted against the

@effective order of fit p . Quite distinct trends are visible and are 
delineated in the figure. They are different for the surface as opposed 
to the model fits in that surface fitting can produce superior fits for 
small values of p, but at p=8 to p=10 the fits have similar R.M0S0 error. 
Rejection of outliers causes the trends for the modified data to be de­
pressed by an (approximately) constant number of arcseconds from those of 
the original data set. In Figure 4.16 the significance percentage oo 
averaged for the original and modified half data sets XY2 and XY3 is 
plotted against p. The trends in Figure 4.16 are much less definite than 
in the preceding figure, but show that worthwhile improvements in the 
significance level 06 can accrue from rejection of spurious data points, 
and that (at least on the basis of 06 ) we can expect slightly more adequ­
ate fits from the model rather than the surface fitting process.

Overfitting occurs when the ratio of h^the degree of freedom of fit, 
to p,the number of parameters or coefficients fitted,is too lowQ The lit­
erature is quite vague on the minimum necessary value for V^/pjbut values 
of about 5 or 10 are taken to be desirable. Clearly, this is not always 
practicable when data acquisition is onerous and time consuming, and when 
quite complicated behaviour is being fitted. A plot of OC averaged within 
each group of modified data subsets v.s. the ratio D^/p for the surface 
and the model fits is shown in Figure 4.17. There is a definite trend in 
the adequacy of the surface fits, and to a lesser extent in that of the

@ The effective order of fit p is the total number of parameters
(p = k ’) or the total number of coefficients (p = 2k+2) fitted.
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model fits (owing to the dependence which model fitting has on exactly 
which parameters are operative). It is not easy to discern the value of 
"y^/p for which either type of fit becomes overfitted. However, even for 
the surface fits,Figure 4.17 indicates that reliable fitting results may 
be possible down to ratios as low as 2 provided reasonable attempts have 
been made to rid the data of spurious points.

Though complicated by the fact that our independent variable is two-
dimensional, visual inspection of residual plots is the most useful single
method of assessing the appropriateness of the model. For order k=5 and
above,the surface fit residual plots show no sign of trends and it is
clear that surface fitting allows fits with less systematic variation in
the residuals. In general the model fits display a larger incidence of
trends and uneveness in the plotted residuals, the exception being the fit
with PC1 (all parameters operative) which compares well with the best of
the surface fits above. In the fits to PC2, 3, 6, 9, 10 and 13 a trend of
form -cos( & - <f>) is evident to varied extent in the plots of cos 6 vos0
8 o The worst case of this particular trend is for the fit with PC10
and is seen in Figure 4.12. The simplest possible cause of such behaviour
would be the lack of a term in 8 - <f> in the model function component 
<21f =H ; a similar term (the term in bon) already appears in the component
\p c ^f =& . It is unlikely to be caused by parameter redundancy in the model c
since it appears in the case of the surface fit with k=2, but is undoubt­
edly affected by redundancy since the model fit with PC1 manages to remove 
it by employing the slight redundancy which exists between the terms in b^ 
and b^«

As well as the trend noted above, the model fit for PC3 has a residual 
trend involving a linear dependence of A S on 8, but since the fit, 
which uses only the five parameters of the simple model of Chapter 2, is 
very poor,there is very little to be learnt there-from. Two other trends 
noted: a cosH type trend in A 8 v.s. H in the fit with PC9 (see Figure 
4.13), and very slight cos{&-<ft) tendency in AS v.s. S in the PC13 
fit, do appear to be caused by parameter redundancy. The parameter com­
bination PC9 excludes the terms in b, and b_, and b^, which is redundantlyo 7 21
linked to them tends to act as a substitute, so introducing an excess of 
the term cos(a^H). The minor trend in the PC13 fit is not observed in any 
other fit and is probably caused by the absence of b,_ which causes b^ and 
b^ to be adjusted. The interactions between parameters are best assessed 
by an examination of the coefficient correlation matrix in Figure 4.8.

(4.7) CONCLUDING DISCUSSION

The above study though specific, permits a number of important
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general conclusions on the use of purely computational correction methods
for reducing pointing errors. They are listed and discussed below.

The construction of a suitable model for a given case is always a 
problem, but it is fortunately simplified by the fact that:

(a) simple additive models constructed by summing the separately calcul­
ated causes of error are perfectly adequate. This is primarily due 
to the smallness of the errors with respect to the co-ordinates and 
the orthogonality of the co-ordinates, and allows the simple calcul­
ation of analytic derivatives which can be advantageous in model 
fitting routines.

(b) Such models are usually intrinsically reasonably linear for the reas­
ons just given, but in any case the use of a non-linearity measure 
such as Beale’s is not recommended. The criterion is too arbitrary, 
the numerical results too dependent upon the exact siting of the 
sample points, and the computing time requirements are more onerous 
than any other program treated here (even those for the data fitting 
itself)o

(c) It is not easy to devise a model with sufficiently independent para­
meters. Although in general, models may be more complicated and 
somewhat less linear than the one used, larger numbers of parameters 
imply an increasing amount of redundancy in the parameter set which 
is not always obvious from an inspection of the model function. A 
term appearing solely in f^ cannot be redundant with one solely in f, 
but within f{̂  or f^ unexpected interdependencies occur which are 
detrimental to accuracy and adequacy of fit.

(d) Because of point (c) above, the fitting of models with large numbers 
of parameters is not as useful as would be expected,as a means of 
locating error causes or measuring physical parameters (unless tests 
show redundancy to be very slight or nonexistent). Table 4.9 shows 
the extent to which the fitted parameter value can vary owing to 
redundancy, however:

(e) because a model can contain terms which describe the telescope behav­
iour better than polynomials, the adequacy of fit and therefore the 
usefulness of the fit for prediction purposes is often better for 
model fitting than for surface fitting. The smallest possible number 
of parameters should be used, but, should the model fail to account 
for some trend in the telescope errors, a surface fit with equivalent 
p will be found superior. This is simply because the terms (poly­
nomials) used in surface fitting span the set of all polynomial



4.38
functions in the domain of &, H which are of degree ^  k. Visual 
inspection of residual v.s. co-ordinate plots is the most useful 
means of assessing adequacy of the model in this regard.

(f) For a given order p,surface fitting will always produce a fit of 
lower R.M.S. error, but there can be a range of p (= 8 to 10 in our 
case) where surface and model fitting are not significantly different.

(g) As is evident in Figure 4.3 surface fits should be generated with 
k = 2, 5, 9, 15 etc., (see Chapter 3, Table 3.1) so that all terms
of degree k are employed; sudden decreases in R.M.S. error are often 
observed whenever a polynomial group is completed.

(h) Attempts to eliminate outliers or spurious data points are very 
worthwhile. In Figure 4.16 the adequacy of fit is shown to be more 
dependent on whether or not the spurious points are included than on 
whether surface or model fitting is used. Elimination of spurious 
points causes a decrease in the R.M.S. error which appears to be 
roughly independent of the order of fit and which of surface or model 
fitting is used.

(i) The adequacy of a surface fit is particularly contingent on the re­
jection of outliers since the polynomials are particularly suited to 
fitting a trend in the data which is unexpected,and which would not 
have been incorporated into a model function were model fitting 
employed.

(j) Finally, if there are very few spurious data points, a degree of free­
dom to order ratio y^/p of as low as 2 can be used when the aim is
to satisfactorily correct telescope errors; for the determination of 
error causes ratios of at least 6 are required.

The contribution of the mechanical hysteresis error to the nett 
pointing error of the 74-inch telescope can be estimated, albeit 
rather roughly. It is true that at least a minute of arc hysteresial 
movement was found in the secondary support by manually pulling on it, 
but the level of hysteresis manifest in the pointing errors is (fort­
unately) far less, as is evidenced by the ability of the routines 
described to generate adequate fits to less than 20 arcsecond R.M.S.
It is highly improbable that any more than a few arcsecond of this is 
due to the new encoder and timing system (E.T.S., see Appendix C) 
because of the basic design and the consistency indicated by various 
checks on it, and since the pointing observations were the subject 
of considerable care, it is concluded that most of the residual R.M.S. 
error is in fact hysteresial. A figure of about j arcminute R.M.S.
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is quite plausible and is in approximate agreement with the figure 
of 30 to 35 arcsecond peak to peak suggested by the laser data plots 
Figures 4.6, 4.7.

Despite the spirit of pessimism vested in point (d) above cer­
tain other conclusions relevant to the 74-inch are appropriate:

(k) Given the current amount of hysteresial movement in the secondary, 
composite gear tooth errors and the eccentricity of the encoder pin­
ions are negligible. The terms involving bg, b , b^, b̂  1 , b^, b^, 
b ^  and b.^, because of their period are each quite independent, and 
in all the model fits generated the estimates of those parameters 
have very low values. It is unlikely that if the hysteresis were 
eliminated any significant change would be observed in those values 
and thus we can eliminate composite tooth errors and pinion errors 
from any discussion of error causes. It is unfortunately not possible 
to assess the eccentricity of the main instrument gears since the 
parameters b^, b^, b ^  an<l b ^  are each redundantly linked to several 
others.

By use of the parameter freezing technique described earlier it 
is often quite possible to eliminate those other parameters which 
are redundantly linked to the one of interest.

(l) Thus reasoning, it is possible using Table 4.9 to set an upper limit 
on the 74-inch axis skewness of about 6 arcsecond.

(m) The final conclusion specific to the 74—inch is that, on the basis
of an inspection of the various error v. s. co-ordinate plots there is 
no obvious transformation of co-ordinates (e.g. into azimuth/zenith 
angle), or of errors (e.g. magnitude/position angle) which would 
facilitate improvements in the 74-inch data fitting.

It is clear that a definitive assessment of the use of model estim­
ation in locating and measuring pointing error causes would require a 
telescope with a much lower level of hysteresial error, and since this type 
of error cannot be simply dealt with by the techniques discussed in the 
foregoing chapters, it should perhaps be given priority in any program of 
telescope pointing improvement. In the case of the Mt. Stromlo 74-inch, 
the author recommends that the secondary optics support and focussing 
system be redesigned as this is the major cause of that telescope’s hyst­
eresial pointing data.

The following and final chapter discusses the use of model and sur­
face fitting in a practical environment, and emphasizes the fact that 
hysteresial error is indeed the most serious limit on their effectiveness.
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CHAPTER FIVE

THE FUTURE OF SOFTWARE POINTING ERROR- CORRECTION

(5.1) SOFTWARE CORRECTION IN PRACTICE

In the foregoing chapters, techniques for computing model and surface 
fits to telescope pointing error data have been described and evaluated. 
This has been done using a synthesized or previously collected data set 
and a large off-line computer, and was not subject to the various con­
straints and problems that beset the task of using such techniques in 
practice. The following discussion places these techniques in the context 
of their practical usage, and delineates the difficulties which are likely 
to be encountered.

It should firstly be noted that the process of calculating a suitable 
fit to a set of pointing error data is significantly more demanding in 
terms of computing time, storage requirements and numerical precision, than 
evaluating that fit at a given point on the sky for the purpose of error 
correction or reduction. Since it can always be arranged that the errors 
in the co-ordinates are evaluated, rather than the corrected co-ordinate 
values per se, a lower degree of numerical precision can be tolerated when 
only fit evaluation is required. This may often permit a reduction by a 
factor of 2 in the storage (from double precision to single precision), 
and of 2 to 4 in execution time required for evaluation. Quite apart from 
this, the programs used in previous chapters indicate that, for both types 
of fit, approximately 3 times the number of instructions and at least 10 
times the data storage are required for fit calculation, compared to evalu­
ation. Comparisons of execution time are more variable and range from a 
factor of 10 to 200. Thus, interpolation or evaluation of a fit is quite 
suited to implementation on a small computer on-line to the telescope con­
cerned, but fit generation on such a machine may require a closer look at 
the storage and time overheads.

Two distinct modes of software error correction can be envisaged. In 
one, a continuously active program in the telescope computer invites the 
astronomer to log any definite identifications of an object during the 
course of normal astronomical observation; this accumulated data is fitted 
by an automatic fitting routine in the computer, when other higher priority 
tasks, such as telescope or instrument control and astronomical data acquis­
ition, are dormant. This is discussed below in section (5.3). Alternat­
ively, the generation of an error correction fit can be another mainten­
ance-type task like instrument change-over or optics aluminizing, for 
which the telescope must be 'down'. In this case a grid of bright stars
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, 'may be observed as in Chapter 4, and processed to yield a static data set. 

From the foregoing paragraph it is clearly simpler for this preliminary 
processing, and the generation of a fit to the data set, to be performed on 
a large computer off-line. However, such a machine is not always available, 
and, for reasons of over-all efficiency (as in any scheme that necessitates 
the transfer of data between machines), may not be desirable. Because of 
the increasing extent to which fast access, large capacity disk storage is 
being utilized in small computer installations, it is the author’s content­
ion that software correction schemes can be completely implemented on small 
telescope computers.

(3.2) THE ’STATIC DATA SET’ APPROACH

Whatever size machine is used, the desirable procedure for the static 
data set approach can be specified as follows:

(i) Firstly, it is important that graphs of the pointing errors v.s. 
co-ordinates be produced and examined for trends and hysteresial 
effects. Other ordinates which should be graphed are the result­
ant error Ar, the error resolved along the zenith circle A Z and 
also along any other direction of physical significance for the 
telescope concerned. Additional abscissae should include the 
zenith angle and any direction of special significance. Although 
it has not been done in Figure 4.3, the points should be identif­
ied with their co-ordinates (other than that which is being graphed 
as the abscissa) since surface trends in two dimensions are not 
easily noticed in simple ordinate-abscissa plots. The use of con­
tour plots of an error against two co-ordinates, e.g. & and H, 
would be very useful; there is an increasing usage of such plots 
in other fields which involve two-dimensional data, such as seismic 
data processing and in geomorphological studies (see for example 
Harbaugh and Merriam 1968, who describe their use in trend surface 
analysis of geomorphological data). Obvious trends visible in 
these graphs may alter or reinforce our ideas on the causes of error, 
and may suggest a suitable transformation of the co-ordinate vari­
ables, which will amplify the trends and permit more effective 
fitting. The level of hysteresial error can be roughly assessed
by comparing the error at adjacent observations which are within 
say 6 degrees of each other; error jumps in excess of about 10$ 
of the total error variation usually indicate hysteresis rather 
than a fast-varying repeatable error cause.

(ii) It should be noted at this point that, if surface fitting alone
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was contemplated and the graphs show simple hut distinct trends,
a model, no more complicated than necessary to describe the trends, 
should be used and the residuals to this model fit,surface fitted.
In such cases this will always be more effective than a surface 
fit alone.

(iii) Outlying or spurious data points should be removed from the data 
set. Data points whose observational accuracy is suspect for any 
reason should be removed, whatever form the graphs take. If there 
are no simple trends visible in the graphs these are the only 
points which should be considered as spurious; if obvious trends 
exist, points which are inconsistent to it may also be removed, 
but only if they are placed at least twice the standard deviation 
from the centre of the trend. (See, for example, data points 
number 148 and 75 in Figure 4.3). During the fitting process, 
points which are consistently the worst case errors in fits of 
different order may also be advantageously discarded.

(iv) A surface fit in the co-ordinate variables b and H should be 
generated. The R.M.S. on-sky error should be graphed against the 
order of fit, to determine the appropriate order to use for evalu­
ation purposes, and it will often be best to use the various orders 
of fit k = 2, 5, 9 etc. at which the groups of orthogonal poly­
nomials become complete. Lack of fit due to inadequacy of the

@fitting function, can be tested for by dividing the data set in 
half and testing the fit to that half on the other half, as in 
Chapter 4. The F-ratio test should be employed as a criterion in 
this cross checking, but there is little point in dividing the data 
set into more than two (or at most three) parts, since overfitting 
can occur with small data subsets. The use of the F-test on 
consecutive orders of fit, to assess significance of fit with in­
creasing order is extremely misleading; see for example Figure 3.8. 
A modification to this test which renders it somewhat more useful 
is given in section (5.3.3).

(v) Surface fits of various orders should be generated using the vari­
ables cos 6 and cosH, where 6 and H have been scaled as in Chap­
ter 3, and also fits using the co-ordinate variables transformed 
in any way which is suggested by the graphs of step (i) above, or

@ i.e. inappropriate choice of independent variables and order of
fit.
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the physical nature of the telescope. The various tests mentioned 
in (iv) should be carried out.

(vi) If a suitable model for the error causes can be devised, it should 
be fitted using the Marquardt algorithm and with estimated deriv­
atives. The effectiveness and accuracy of numerically estimated 
derivatives depends on the numerical precision used, and where un­
stable behaviour of the model estimation program is observed in a 
reduced precision environment, recourse should be had to analytic­
ally calculated derivatives. The tests of step (iv) above should 
be used, and model parameters of less importance may be frozen at 
desired values, to attempt to distinguish the role played by the 
various error causes.

. . . .  *(vii) The model equations and the correlation coefficient matrix A
(see Figure 4.8 and equation 2.22) should be inspected for inst­
ances of parameter redundancy. Such redundancy may not prejudice 
the fits utility for error evaluation purposes, but must temper 
any conclusions about the physical nature of the error causes 
obtained in step (vi).

(viii) Finally, the fit which is accepted for evaluation purposes should 
of course be the one with the lowest R.M.S. error, consistent with 
a satisfactory result for the lack of fit test on the divided 
data subsets.

(5.3) AN AUTOMATIC ERROR CORRECTION PACKAGE

The static data set mode of software pointing error correction de­
scribed above requires a substantial level of human involvement, judge­
ment and decision making, not to mention about a night of observing time, 
which is a scarce commodity given the current pressures on the observat­
ional scheduling of larger telescopes. Daylight observation of bright

@stars is quite possible , but, because of heating of the telescope struct­
ure and optics, and the restriction that the observations cannot be too 
near the sun, is not particularly practicable. Hence we return to our 
notion of an automatic package which is not seen by the telescope user, and 
which processes sequentially obtained pointing data, and corrects the tele­
scope pointing on the basis of the best currently available fit. Surface 
fitting, because of the way in which independent fitting terms are added 
in a simple hierarchical manner, is belter suited to automation,

(<» I n the author's experience, the daytime limiting magnitude' in the on so 
of the Mt. Stromlo 74-inch is approximately magnitude A.
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and is more tolerant of reduced precision than a model fitting process
(largely because the latter involves matrix inversion). Even so, double
precision arithmetic would be required on 16 bit word machines, and possibly
even triple precision for astronomical co-ordinate corrections where

@required . Matrix inversion would almost certainly require triple precis­
ion.

(5.3.1) Storage Requirements

Provided suitable program segmentation or overlaying is employed, and 
disk memory available, the storage requirements of software correction 
are certainly practicable, even for quite small machines. Table 5.1 shows 
estimates of the data storage necessary when generating surface and model 
fits, and when evaluating them at a point on the sky at which error corr­
ection is desired. The storage is given as a number of variables, and 
should be multiplied by the number of words occupied by a real variable in 
the implementation to be used. The estimates have been obtained from the 
routines mentioned in earlier chapters by neglecting unnecessary storage, 
and assuming, in the case of each dimensioned variable, the most compact 
form of storage. Approximate instruction code requirements are given in 
Table 5.2 in numbers of words. In estimating these, large amounts of 
'housekeeping’ and experimental code that appears in the listings in 
Appendix D had to be judiciously neglected, and so the estimates should be 
taken as a guide rather than exact figures for a particular implementation. 
The instruction code estimates are also exclusive of the various arithmet­
ical and trigonometrical functions, which are required by all of the pro­
gram segments.

There is little difference between the two types of fit in the case 
of fit evaluation, but somewhat more storage is required to generate a 
surface as opposed to a model fit, primarily because, during the fitting
process, the orthogonal polynomials P.yx.) are stored by their values at3
each data point. This is not strictly necessary, see for example equations 
3.22, and the reference to Cadwell and Williams 1961 in section (3.7), but 
more compact storage is gained only at the expense of decreased numerical 
accuracy, which is not tolerable in small word-length machines. Extensive 
use can be made of integer formats (multiple length where necessary) for 
storing pointing data,but fits must be stored by the Forsythe coefficients

@ A precision of 60 bits in the mantissa of a real variable was used in 
the computations discussed in earlier chapters; the level of error 
introduced into astronomical correction algorithms by the use of a 
24 bit mantissa is briefly noted in Appendix A.
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TABLE 5.1

Data storage requirements for fit generation and evaluation purposes;

n = number of observations, p = order of fit; 
numerical estimates assume n = 100, p = 20; 
storage is in terms of number of variables, and must be 
multiplied by 2 (3) if double (triple) precision arith­
metic is used.

SURFACE FITTING generation evaluation MODEL FITTING generation evaluation

data points x .
— i

2n 2 data points x. 2n 2

data values 2n 2 data values 2n

coefficients function ^ 9

of fit c1
1

P P values —i

parameters _b P P
masking vector 
for parameter P

polynomial
values p'1’“3 np P freezing
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@ analytic derivatives will only rarely be necessary in practice.

@@ this estimate is somewhat theoretical since incidental storage 
requirements would be at least this much again.
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oC . and the coefficients of fit C . and require a real number representation.

TABLE 5.2
Approximate instruction code requirements for fit generation and evaluation

SURFACE FITTING generation evaluation MODEL FITTING generation evaluation

polynomial
group
initialization

210 210
model
function
evaluation

630 630

orthogonal
polynomial
generation

570
matrix 
equation 
setting up

330

orthogonal
polynomial
evaluation

290 matrix
inversion 440

surface fitting 
routine 740 model fitting 

routine 780

TOTAL 1520 500 TOTAL 2180 630

(5.3.2) Automatic Selection of Best Fit

The fit to be used for error interpolation must be automatically 
selected by our error correction package, and this is not possible if a 
complicated model with a large number of parameters is employed. Thus 
surface fitting must be predominantly used in the package. The package 
could use to advantage an initial model fit which has only a few parameters, 
each of them continually operative, and only those parameters which spec­
ify a definite physical error cause known to be active, for example vari­
ation of instrument mass, simple flexure terms and optical misalignments.
A preliminary pointing data run may be necessary to determine whether this 
is worthwhile and which parameters should be involved, but such a run need 
not be as extensive as for the static data set mode of operation.

Successively higher orders of surface fit should be calculated until
either a nominated level of R.M.S. pointing accuracy is attained, or until
a Fisher test on the ratio of the variances of fit calculated on the
successive orders of fit k = 2, 5, 9, 14 etc. (at which polynomial groups
are completed) indicates insignificance of fit, which ever is the sooner.
The two most important parameters which the system should display to the
user as an indication of the performance of the package in real time, are
the R.M.S. residual error of the fit being used as the interpolant, and

2the multiple regression coefficient R (see equations 4.4 to 4.7). The 
latter measures the fraction of variation in the data which is accounted
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LEGEND TO FIGURES 5.1, 5.2, 5.3, 5.4 and ASSOCIATED TEXT

FLAG1

FLAG2

FLAG3

R.M.S.

MSR

F

maximum permissable number of data points (set by storage allocated).

maximum desirable number of data points.

minimum desirable number of data points.

maximum permissable order of surface fit.

current limiting order of fit (calculated by algorithm).

number of (operative) model parameters to be used.
radius defining a neighbourhood for restricted domain fitting.

Root Mean Square tolerance on fit.

percentage tolerance on multiple regression coefficient R^.

= 1 if an initial model fit is desired;
; 0 if not.

= 1 if global fitting (all data points used in fit) desired;
= 0 if restricted domain fitting (a subset of data points in the

immediate neighbourhood is fitted) desired.

= 1 if, in restricted domain fitting, the number of points n in
the domain is to be determined by the neighbourhood radius £ ;

= 0 if the domain is to include the n^ nearest points.
= Root Mean Square residual error of fit.
= multiple regression coefficient defined in equations 4.4 to 4.7.

= mean square ratio of equation 4.8.

= ratio of the variances of consecutive orders of fit at which 
polynomial groups are completed.

F? = 4F (p—1 , V  ), the tolerance on the mean square ratio (MSR) to
ensure the fit is useful for prediction purposes; see equation 
4.9 and associated text.

= (in Figure 5.2) Decision: is point 6 ,H within 6^ of centre
of domain of current fit, and have no points been added since 
that fit?
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for by the fit, and, along with MSR, the mean square ratio given in equat­
ion 4.8, may also be utilized in automatic procedures to determine the 
minimum order of fit necessary. Even if MSR is not used as a criterion, 
it should be calculated,and used as an indication of the probable effect­
iveness of the fit for prediction purposes.

(5.3.3) A Suggested Strategy for an Automatic Correction Package

Figures 5.1, 5.2, 5.3 and 5.4 show the details of a proposed auto­
matic correction package which embodies the ideas so far discussed. It is 
assumed that whether or not an initial model should be used has been 
ascertained, and that if necessary, the model function has been incorpor­
ated into the system. On initialization, the parameters n^, n^f n^, k^,
k , £ , £ and 6 , which are defined in the legend following Figure 5.4, m n e r
are set, and the flag FLAG-1 set to 1 or 0 according to whether a model fit 
is desired or not. Other options available include a choice of whether 
global fitting (use of all data points for each fit) is to be used, or 
whether fits should be generated to subsets of data points in the immedi­
ate locality of the point at which error evaluation is required. The

@latter, called ’restricted domain fitting’ here, is controlled by FLAG-2.
When using restricted domain fitting a further flag FLAG-3 indicates whether
the domain to be used is to be decided on the basis of a certain set
number of data points n0, or by an angular radius £ , which defines a2. n
’neighbourhood’ or region inside which the data points of the restricted 
domain must lie.

It is assumed that some form of integer representation for the point­
ing data is used (in the interests of fast sorting of points and other 
’housekeeping’ tasks), and that each data point is tagged with an index 
number (necessary for array calculations), and also an integer code repre­
senting the date and time of acquisition. Allowing a precision of about 
a minute (of time) for the latter and about \ arcsecond for the co-ordin­
ates 8 , H and the errors A S , A H, it can be seen that 5 to 6 words of 
storage are required for each data point. This is unavoidable since, even 
for global fitting where a single unique fit is stored, all the data must 
be retained so that the fit can be improved with the accumulation of more
data. In the case of restricted domain fitting a number of fits for

2different areas could be stored,but since 4k 4- 9k + k + 5  quantities7 s s m
need to be stored for each fit, and since such a procedure may result in

@ In a sense this is piece-wise fitting, but without the important 
constraint that the fits to the various pieces match along their 
common boundaries in some way.
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the use of an inferior fit to evaluate the error at a general point, this 
is not recommended. Each fit generated is tagged with the date and time 
of its generation.

The data accumulation section of the algorithm is shown in Figure 5.1,
and accumulates pointing data until n , the available storage allocation,is 

© 1exceeded , whereon it substitutes the point immediately acquired for the 
earliest point. When the telescope control system requires the pointing 
error to be evaluated at a given point in the sky, the algorithm checks 
whether the existing stored fit is current and appropriate (Figure 5.2); 
in the case of global fitting, this is contingent on whether or not data 
points have been added since the fit was generated, but for restricted 
domain fitting, there is the additional test that the point of evaluation 
is within the neighbourhood £ ̂  of the centre of the existing fit domain.
6 , depending on FLAG-3, is either set at initialization time, or is cal­
culated on the basis of the distribution of points in the existing fit 
domain (see Figure 5.3). If the existing fit cannot be used, a new fit is 
generated and, if FLAG1 = 1 and there is adequate data, includes an 
initial model fit, as well as a surface fit whose order is chosen using 
techniques discussed in section (5.3.2) above. If the total number of 
data points n exceeds n^, restricted domain fitting can be employed, and 
the data set to be fitted is chosen as the nearest n^ data points (FLAG-3=0),
or as all points within radius £ (FLAG-3=1) .n

(3.4) THE PROBLEMS INVOLVED IN SOFTWARE ERROR CORRECTION

The use of on-line disk storage with small telescope computers makes 
the implementation of an automatic error correction algorithm, such as 
described in section (5.3) above, quite practicable. When tracking an 
object, or when setting on different objects in the same region of sky, the 
frequency with which new fits must be generated will be quite low, partic­
ularly if global fitting is used; thus much of the algorithm can be 
rolled in from the disk in a number of segments as required, and the whole 
process can be relegated to a fairly low priority. Similarly, if tele­
scope time can be set aside for occasional pointing error data runs, for 
example in poorer conditions or during twilight, software correction em­
ploying a static data set approach, of section (5.2), can certainly be 
implemented in the form of a concatenation of disk-resident programs. 
However, there exist a number of problems which are common to whichever of 
the two approaches is used.

@ Alternatively an age limit could be imposed on the data points.
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(5.4.1) Change of Telescope Configuration

Pointing data acquired using a particular telescope configuration, 
that is, a particular instrument, focal station, balance weight setting etc., 
will not in general be pertinent to the behaviour of the telescope differ­
ently configured. Since instrument changeover and other alterations occur 

@quite frequently , there is the problem that error fits become obsolete 
rapidly, and there is insufficient time spent in the one configuration to 
permit the accumulation of a satisfactory number of data points. The 
only remedy applicable here, is to alter the telescope hardware or operat­
ing procedures so that change of configuration produces less variation in 
pointing error.

The two most important configuration variables are the optical ad­
justments and changes to the state of balance of the telescope. Partic­
ularly for telescopes for which optical changeovers involve the manual re­
placement of a mirror or other components, rather than mechanically switched 
systems, for example flip mirrors, the position of the optic axis changes 
with change of configuration and is not even constant for a given config­
uration. A consistent scheme for collimating the telescope is required, 
and the increasing use of small, low power (typically several milliwatt) 
alignment lasers is a step in the correct direction. Focal stations 
should incorporate a fiduciary or reference point in the focal plane, to 
which the optic axis is consistently adjusted whatever optics are employed. 
Balance changes with different instrument weights can be similarly ob­
viated, by the (automatic?) adjustment of the balance weights for a spec­
ific state of balance of the telescope in a given attitude. Often a 
(known) imbalance is to be preferred, since many telescopes exhibit more 
constant and repeatable pointing errors with suitable preloads and biass- 
ing forces.

Provided the pointing behaviour can be made consistent for a given 
configuration, the change in behaviour for different configurations may 
be allowed for by additional parameters, e.g. optic misalignments, balance 
weight and flip mirror positions etc., which are included in the model 
estimation process, and, either initialized differently for different con­
figurations, or fitted using a limited amount of fresh pointing data, ob­
tained after a changeover. Thus an existing global fit could be slightly

@ o.g. almost weekly for optical telescopes, whose usage scheduling is 
based on the lunar month for reasons of sky background brilli­
ance. Radio telescopes are far less affected by instrument 
changes.
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modified to accomodate changeovers. Alternatively, data taken for different 
configurations can be distinguished, separately stored, and the appropriate 
data set selected; this is, of course, only practicable if a relatively 
small number of different instruments, focal stations etc., are used. Often 
different telescope attitudes may have to be considered different 'config­
urations’ in this context; an example of this is the discontinuity in
excess of an arcminute in declination, observed when the Mt. Stromlo 74-

@inch is used on the opposite side of the pier . A further point which 
should be noted is that the extent to which pointing errors are hyst- 
eresial may also be configuration dependent.

(5.4.2) Alteration of Telescope System Hardware

Another factor which may jeopardize the usefulness of a set of point­
ing error data, is the unavoidable removal of, and maintenance on equipment 
and components which, either influence the direction of the optic axis (e.g. 
optic supports, focussing units), or comprise part of the attitude read­
out chain (e.g. encoders, encoder drive gears). Ideally the component re­
moved for repair or modification should be replaced exactly as found, and, 
if this is at all possible, it should be attempted. Where a component does 
not contribute substantially to the hysteresial errors, and is responsible 
for certain independent parameters of an error model, the techniques of 
'parameter freezing’, described in Chapter 4, may be useful in refitting 
just those parameters to a limited amount of new data. This will only be 
possible if (i) the component contributes a noticeable fraction of the 
total pointing error and in the manner described by the parameters con­
cerned, and (ii) those parameters are not badly redundant. Unfortunately 
there is little which can be done if the component is not related to any 
error cause incorporated into the model; the surface fitting section of 
the correction algorithm requires a completely new set of pointing data, 
to generate a fit comparable with the previous one, once any such error 
contributing component is disturbed.

(5.4.3) Hysteresial Errors

Although the various problems mentioned above will assume greater or 
lesser importance for different telescopes, the problem which is of uni­
versal concern, and which most endangers the viability of software error 
correction, is the presence of hysteresis or nonrepeatable errors. There

@ This probably is due to the use of a diametrically split instrument 
gear in the cube (see Appendix C). The gear was split in half to 
allow it to fit through the cube access hatch during installation.
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is no way to estimate errors which are a discontinuous (and unknown) funct­
ion of the co-ordinate variables, unless the statistics of their distribut­
ion is known, in which case use could be made of confidence intervals which 
specify an interval inside which the error has a known probability of lying. 
In general nothing can be known of the hysteresial error statistics, and 
it is doubtful whether pointing error confidence intervals are of much use 
to the observer, if the hysteresis is large. A more rewarding scheme would 
be to prescribe a process to obtain, or a route to, a given point on the 
sky, in such a manner that the resulting pointing actually becomes repeat- 
able .

The problem is trivial in the case of one-dimensional positioning.
The position v.s. time graph of Figure 5.5 portrays the nature of simple 
’backlash’ or ’dead-zone’ type of hysteresis, for a one-dimensional case 
involving a dead-zone of size D. To overcome such hysteresis it is suff­
icient merely to ensure the final positioning is done in the -x direction 
only. A (trivial) algorithm for moving from position to position x^ is 
given in Figure 5.6 for the sake of completeness. In practice, hysteresial 
behaviour is more complicated than simple backlash, and in Figure 5.7 the 
hysteresial error v.s. position graphs for backlash (Figure 5.7 A) is con­
trasted with the behaviour of systems which involve elastic effects, such 
as structural take-up" or gear teeth deflection (solid line Figure 5.7 B), 
or stiction (broken line same figure). A suitable upper bound on the hyst­
eresial error D can conveniently be defined similarly to the waveform rise
time in electronics: the position change D required to produce 90^,or

@some other specified amount, of the total observed hysteresis; this en­
ables any oscillatory or asymptotic effects to be included, without using 
an excessively large value for D. Whatever value for D is used, even if 
it is a (known) function of position D(x), pointing can be made repeatable 
by the same algorithm as before (see Figure 5.6).

In two dimensions the problem is far from simple unless the two mot­
ions are entirely independent; in this case the algorithm above could be 
applied separately in the two co-ordinates to produce repeatable pointing, 
which can then be the subject of the model and surface fitting techniques 
so far presented. If simple backlash is present in the two independent 
co-ordinates, the area of cause/effect discontinuity is rectangular as 
shown by the broken line in Figure 5.8. For a more general case of simple

@ Another convenient choice here would be the total hysteresis observed 
minus the required pointing error tolerance.
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backlash,the dead area may be as shown by the solid line in Figure 5.8, and 
D = D(x^, x^,©) is now a function of both co-ordinates, and also of position 
angle 0, and by definition is periodic in 9 with period 7T. Complete know­
ledge of D = D(x , x9, 9) is unnecessary, since the largest diameter of the 
area in Figure 5.8, or the largest projections of it onto the co-ordinate 
axes, can be used in practice, provided the hysteresial process is no more 
complicated than a simple backlash effect.

One of the restrictions on the practical use of such notions as above 
to counter hysteresis, is that the hysteresial process is rarely simple 
backlash. The error versus co-ordinate curve is more often as shown in 
Figure 5.7 B for both co-ordinates, and the two motions interact to the 
extent that the hysteresis in one is affected by the positional history of 
the other. D for practical telescopes may often be an extremely large 
angle on the sky, and thus an impracticably long slew may be required about 
an axis to remove a worthwhile fraction of the error. If we add to these 
problems the fact that, the hysteresial behaviour of a mechanism which is 
itself composed of a number of hysteresial components, cannot be treated 
simply as if it exhibits a positional cause/effect delay, it is clear that 
hysteresial errors impose a very tangible limit to the efficacy of soft­
ware correction techniques.

(3.5) CONCLUSION
(5.5.1) Summary of Conclusions from Previous Chapters

The results of previous chapters make a clear case for the feasi­
bility of software pointing error correction,as well as highlighting its 
attendant difficulties; here we summarize briefly the conclusions to be 
made from these chapters. The utility of model estimation is assured when­
ever the experimenter has a firm conviction, or evidence, of the exact 
causes of pointing error. It will no doubt be found most useful for tele­
scopes of recent design, where elaborate analysis of the pointing per­
formance has already been done. Even where many of the error causes have 
been physically measured independently, the model estimation routines, 
along with the scheme of ’parameter freezing’ of Chapter 4, will be found 
most useful for overall testing and improvement. The data perturbation 
experiments of Chapter 2 show such processes to be quite stable, and al­
though some descent type algorithms are shown to behave extremely badly, 
routines of the Gaussian type (Levenberg, Marquardt, SPIRAL) are all 
satisfactory. The algorithm which is to be preferred for reasons of both 
performance and its uncritical nature, is the Marquardt algorithm, and it 
is suggested that, on new problems or models, it could be started from a



5.14
point very close to the origin of the parameter space , and with an initial 
value of X  calculated as per Levenberg (1944). The use of numerically 
estimated derivatives should suffice for most practical problems, and the 
performance of model fits will not depend on the fitting routine used, as 
much as on the properties of the postulated model.

In Chapter 3, two-dimensional orthogonal polynomial fitting of the 
pointing error surfaces is examined, and shown to be stable and possibly 
less critical numerically than model estimation. Although statistical 
assessments of the adequacy of fit indicate that very large numbers of data 
points are desirable, satisfactory fits can be generated up to polynomial 
order n/2ii, where n is the number of data points. The decision as to 
whether to model or surface fit is often a critical one, since some models 
may not be approximated well by polynomial fits. Surface fitting is by 
far the method most adaptable to the requirements of an automatic soft­
ware correction package, due to the hierarchical generation of higher orders 
of fit, and the applicability of conventional statistical techniques for 
selection of a satisfactory fit.

Chapter 4 delineates the difficulties imposed by practical pointing
data, and the vagaries of telescope error causes. The constraints on the
manner in which data can be collected are far more serious than for other 

@@similar problems, and virtually rule out the use of model estimation for 
'mechanism determination': the selection and physical measurement of an
error cause. In theory, mechanism determination is also precluded by the 
inappropriateness of conventional statistical tests for assessing non­
linear models, fortunately however, because of the magnitude of the errors 
compared to the co-ordinate variables, most telescope models will not be 
too non-linear. Although simple additive models are shown to be quite 
adequate, model construction is difficult, because of the ease with which
redundant parameters are incorporated, and monitoring the elements of the

*correlation coefficient matrix A is helpful here. Because of redundancy, 
model fits with very large numbers of parameters may be less effective 
than expected. Visual inspection of the plots of residual error against 
co-ordinates, is the most useful single indication of model adequacy, out­
lying data points, and the prevailing level of hysteresial error ; pro­
vision for this must be incorporated into any model fitting routine

@ e.g. b. —  10  ̂ or 10 ^ for j = 1,...k.

@@ Consider for example, the simple two-dimensional data grids of ship 
hull fitting, and geomorphological data.
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intended for practical application. Despite reservations as to statistical 
validity, both surface and model fits will usually be found useful for 
error correction purposes, even when V/p^the ratio of the degree of free­
dom of fit to the number of fitted quantities, is as low as 2.

(5.5.2) Suggestions for Further Work

The section (5.4.3) above, as well as defining the limitations of 
our software correction scheme, also provides a direction for future en­
deavour. It is evident that, in any projected program of telescope hard­
ware improvement, highest priority must be given to eliminating the causes 
of hysteresial error; even if these causes are not the largest contribut­
ors to the total error, they are the ones least capable of being improved 
by software methods alone. Vith special regard to the Mt. Stromlo 74-inch, 
this priority should be allocated initially to improvement or redesign of 
the secondary mirror support. On the basis of the results of Chapter 4, the 
application of software error correction to that instrument would result 
in a R.M.S. pointing accuracy of about 20 arcsecond, and, with suitable 
improvement in the secondary support hysteresis, a figure in the region of 
10 arcsecond R.M.S. may indeed be feasible. Other improvements to the 74- 
inch should include a rationalized and calibrated balancing system, and an 
extension of the current usage of alignment lasers to maintain an absol­
ute relationship between the optic axis and the encoder readout, which 
would survive configuration changeovers. The author would also like to 
see the practical implementation of the type of automatic correction 
algorithm discussed above in section (5.3). There is little doubt that, 
if incorporated into existing telescope computer systems, the benefits of 
increased pointing accuracy would be well worth the storage and processor 
time overheads required. It is suggested that the basic ideas embodied in 
the algorithm discussed in (5.3.3) be extended,and evaluated on a suitable 
general purpose, large telescope.

In a more theoretical vein, the phenomenon of hysteresis in mechanical 
systems is worthy of attention in its own right. The behaviour of a hyst­
eresial mechanism may be best understood from a purely statistical view­
point, and although this does not easily fit in with the approach
to repeatable errors adopted here, it may result in analyses or formulat­
ions of the problem, which give as their tangible result, a confidence 
interval or other type of probabalistic specification for the error of such 
mechanisms. Most advanced texts on control system theory touch on the 
analysis of systems employing components with dead-zones or backlash in 
their(discontinuous) transfer functions, but the prime interest is in the 
(worst case) stability of such systems, and not in the statistics
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of their behaviour. State-space techniques are far more applicable here 
than the more classical approaches to control theory, and within this frame­
work, there is clearly room for a statistical, unified treatment of dis­
continuous mechanical processes such as hysteresis.

For many telescopes, the pointing behaviour will be found to be 
largely repeatable, even if erratic, and the greater part of this thesis 
will apply directly. Yet a number of possible improvements can be suggest­
ed. In the static data set case in section (5.2), the operator can assess 
visually graphs of the errors and residuals of fit v.s. co-ordinates, and 
can evaluate many different (and often inconsistent) factors to arrive at 
a decision; in such cases automatic outlier rejection is ill advised. 
Contrarily, with a completely automatic package, there is a definite need 
for data rejection procedures to guard against extreme cases. Comparing 
the currently existing fit, with a fit which includes in addition the data
point in question, is one possible strategy. Points which would decrease

@significantly the adequacy of fit could be rejected advantageously, and 
statistics of their behaviour logged for possible later investigation. 
Because of the increasing extent to which computer control and analysis 
systems have become self contained, and lack interaction with the human 
operator, it is no longer tenable to shun completely the notion of automat­
ic data screening, and research in this area could be beneficial to many 
such systems.

Model fitting, because of the conscious selection and formulation of 
the mathematical model by the experimenter, is not a process conducive to 
automation. On the other hand, in a surface fit employing orthogonal poly­
nomials in a given variable, the order of fit alone can be altered to 
facilitate the search for a satisfactory fit. The case for orthogonal 
polynomials has already been made in section (3.3), and so a method of 
altering or transforming the co-ordinate variables used (and therefore the 
basis functions which constitute our orthogonal polynomial functions), is 
required. Automatic transformation of variables has been used by Thacher 
and Milne (i960) in surface interpolation studies, but only in a limited 
fashion. A variable transformation scheme operating within a standard 
surface fitting algorithm is actually two nested optimization loops, and 
poses special problems of selection and uniqueness of the solution. Never­
theless, it constitutes an avenue for improvement which would be applicable

@ as measured by tests involving subdivisions of the data set as in 
Chapter 4.
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to a gamut of data approximation techniques.

The final line of endeavour suggested here, is the construction of a
two-dimensional analog of a class of methods in one-dimension that employ
piecewise fitting, and which automatically optimize the positions of the
boimdaries between pieces. One such routine involves piecewise fitting 

@with cubic splines , and dynamically varies the position of the knots to 
achieve an optimum fit. It has proven extremely effective in a number of 
curve fitting applications in which conventional methods behave poorly. 
Mention should also be made of an automatic curve fitting package developed 
by Payne, in Hayes (1970). A piecewise surface fitting routine with optimal 
piece boundary positioning, is a difficult, but worthwhile objective.

In general the more accurate and precise a mechanism is required to 
be the more complex the design necessary to achieve that precision, and as 
complexity increases so too does the difficulty of tracing the exact cause 
of a slight defect in the mechanism’s accuracy through its multifarious 
parts and functions. There is clearly a level in the scale of accuracy, 
where the application of software error correction becomes advantageous.
In the case of astronomical telescope pointing errors, that level has been 
reached, and the author believes that software correction of pointing 
errors can be effective, and, in contrast to Smith (1967), is difficult, but 
not ’too difficult’.

@ see footnote page 3. 4.



APPENDIX A.
Algorithms for the Computation of Astronomical Corrections

A. 1

The topocentric position of a celestial object required for tele­
scope pointing purposes is obtained from its catalogued or otherwise 
known mean place at a given epoch by applying the following corrections:
(i) PROPER MOTION which is the intrinsic motion of the object with 

respect to the celestial co-ordinate system and rarely exceeds 1 
or 2 arcsecond per year,

(ii) ANNUAL PARALLAX due to the earth’s orbital motion which is 
periodic and even for the closest object does not exceed an 
amplitude of 0.7 arcsecond,

(iii) Lunisolar and planetary PRECESSION of the plane of the earth’s 
orbit which is a secular drift of approximately 50 arcsecond 
per year,

(iv) NUTATION which is periodic of several arcsecond amplitude and 
has the same cause as (iii) above, and finally

(v) STELLAR ABERRATION, a periodic shift of 20 arcsecond dependent 
on the instantaneous direction of the earth’s motion with respect 
to that of the light ray from the object.
This astronomical position is then transformed into topocentric 
co-ordinates by accounting for the earth’s rotation and then

(vi) ATMOSPHERIC REFRACTION, which is a function of the zenith angle 
of the object and the environmental variables atmospheric pressure 
and temperature, is corrected.

Conventionally the reduction of the catalogued mean place (06 ,A ) to 
@ . 0 0

the apparent true place at date (0^,63) proceeds by calculating the mean 
place at the nearest beginning of a Besselian year (o^1 8 2 ) as an inter­
mediate step, and expresses the apparent true place at date as an expans­
ion in terms of that mean place; see Table A.1. The reduction is applied 
to a fixed star in such a manner that only two types of function occur: 
functions of co-ordinates an<̂  ^u21ĉ aons "the da'te in the form
of the standard Day Numbers A, B, C, D, E (Besselian) or f, g, G, h, H, i 
(independent), and the second order Day Numbers J and J ’, all of which 
are tabulated in references and ephemerides. Certain refinements incorp-

Q Note that an astronomical position may be TRUE or MEAN according to 
which equinox and equator is used as the reference frame, and 
APPARENT or ASTROMETRIC according to whether the aberration correct­
ion has been included or not. Although such terms as ’apparent true’ 
are necessary here to distinguish the various cases, they are not 
in general astronomical usage.



A.2
orated in the method permit accurate reductions of mean to apparent place 
by a minimum amount of computation, and if necessary by manual methods; 
see for example Woolard and Clemence (1966), Porter and Sadler (1953) and 
the Explanatory Supplement to the Astronomical Ephemeris (1961).

Telescope pointing and various other astronomical tasks need an 
algorithm enabling a digital computer to perform the reduction without 
the onerous requirement that the machine have access to the tabulated 
Day Numbers. The machine could calculate the Day Numbers as required, 
but it can be shown that this is wasteful of time and less accurate than 
a method of direct calculation which is now described. This direct 
algorithm is very similar to that of Harris and Large (1967) to the extent 
that,although independently discovered, it post-dates the above and can­
not be published. A comparison of the direct and conventional methods is 
clearly shown in Table A.1. In the direct algorithm the mean place at 
date is found directly, by applying proper motion and precession correct­
ions. Aberration at date is then applied with the necessary parameters 
referred to the mean equinox and equator of date, and finally nutation at 
date is applied using the 13 most significant terms of the nutation series 
(all terms with coefficients greater than 0.01 arcsecond). The eventual 
result is the apparent true place at date and the only input data 
necessary are the mean co-ordinates and proper motions at epoch, and the 
Julian Dates of epoch and of date.

A DIRECT MACHINE ALGORITHM FOR MEAN TO APPARENT PLACE REDUCTION

Starting with the Julian Dates of epoch t^ and of date t^, the mean 
co-ordinates at epoch (°̂ q >£q ) and yearly proper motions Ä
calculate

Z = (t3-t1)/365.24220

and so obtain the co-ordinates (o^ , 6^) by 

06

A. 1

and 8 1 = & 0 + / 6 s.r

Transform (od. , ) to rectangular co-ordinates ( x ^ y ^ z ^ )  by

x., = C0SC6 cos 8.
1 1 1

y„ = sino^c os1 1

z„ = sin <8 .1 1

Calculate time intervals TQ and T in tropical centuries by 

Tq = (t1-2415020.313)/36524.220

T = (t3-t1)/36524.220
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LEGEND FOR TABLE A.1 (and text).

SYMBOLS

right ascension 
declination
equatorial rectangular co-ordinates.

06
s
x,y,z =

SUBSCRIPTS indicate the equinox and equator to which the 
co-ordinate is referred.

for equinox and equator of initial epoch t̂

for equinox and equator of intermediate epoch t^, 
(nearest beginning of Besselian year)

for equinox and equator of t , the date of observation.

PRIMES

0,1

2

3

Astrometric co-ordinates are not primed, 
apparent mean co-ordinates have single primes, 
apparent true co-ordinates have double primes.

UNITS

All angles are in radian measure,
all times t^, t^* t^ etc. are in Julian Date form,
sidereal times 9, 9 ,9 etc. are in radian.g gm

epoch t 
t

1

2
t

3

epoch of catalogue,
beginning of Besselian year closest to date 
(abbreviated BIR),
date of observation.



and thence the precessional parameters 5̂ , z and 0 by

% (1 ,11713192"X + 6.768~^ Tq )T 4- 1.464 * T2 + 8.7 9 T? , 
r * m2+ 3.835' T % > . . . A.5

and 9 = (9.7189726'3 - 4.146*6 Tq)T - 2.065 6 T2 - 2.04 7 T3,

Calculate the precessional rotation matrix elements:

S 1! = cos ^ c o s © .cosz - sin ̂ 0-sinz,

S 12 -sin cos© .cosz - cos ^,-sinz,

S 13 = -sin9 cosz,

S21 = cos ̂ •cos© .sinz + sin p0-cosz,

S 22 = -sin %a- cos© sinz + cos ^ } c o s z , >

S23 = - s i n © .s i n z ,

S31 = cos sin©,

S32 = -sin <jp0.sin©,

S33 = cos©. -

A. 6

and S

Calculate the mean (rectangular) co-ordinates at date (x^,y^,z^) by

U 3,y3,z3)
11 s12 S13 X1

21 S22 S23 • y 1

31 S32 S33 , Z1;

• •• A.7

Unlike precession (or nutation), stellar aberration does not merely 
involve a simple rotation of the co-ordinate frame. We set the aberration 
constant k to

-5k = 9*93674 (20.496 arcsecond),

and calculate time interval T in Julian centuries by 

T = (t3-2415020.0)/36525.0 .

... A.8

... A.9

Calculate the geometric mean longitude of the sun L, the mean longitude 
of the solar perigee 77”, the solar mean anomaly M, the mean obliquity of 
the ecliptic 8^ and the eccentricity of the solar orbit e by

~6 2L = 4.881627938 + 628.3319510 T + 5.2796 T ,

7T = 4.908229463 + 3.000526416 % T + 7.9025~6 T2 + 5.82~Ä T3 ,

Note superscripts appended to figures are decimal exponents,
e,g’ 6.768-6 6.768 x 10 -6



M = 6.256583784 + 628.3019457 T - 2.6180* T2 - 5.82 8 T3, 1... A.10

8 q = 4.093197474 ' - 2.2711097 * T - 2.86 9 T2 + 8.8 ’ T3, 

and e = 1.675104”^ - 4.1 80 5 T - 1 . 26 ? T2.

Calculate the geometric elliptic longitude of the sun 0 using the 
'equation of centre’ approximated by

(0 - L) = (2e-e3/4) • sinM + (5/4)e2. sin2M + (13/12)e3. sin3M ... A.11

Calculate the aberration Day Numbers C and D by 

C

and D = -k(sin0 + esin7T) .

-k(cos© .c o s6q + ecos7T.cos£^) ,
... A.12

The terms in e in equations A.12 (the elliptic or 'E-terms’) are approx­
imately constant for fixed objects such as stars, and are included in 
the mean place of the object in the catalogue; for the majority of 
applications they should thus be ommitted from the expression for C and 
D. Moving objects such as planets require the E-terms to be included,and 
Scott (1964) discusses their inclusion for very precise stellar reduct­
ions. Aberration caused by the diurnal rotation of the earth amounts to 
about 0.3 arcsecond in amplitude but is not considered here. The rect­
angular mean co-ordinates at date (x^, y^, z^) are obtained as in Woolard 
and Clemence (1966) and Scott and Hughes (1964), from the equations

*3

x3 - D ,

y3 + C ,
z3 + C tan£^

... A.13

To obtain the nutation correction use T defined in equation A.9 to 
calculate the nutation arguments

1 = 5.168000340 + 8328.691103 T + 1 .60425~*T2 + 2.51~7 T3")
£ p _0 p

1» = 6.256583574 + 628.3019457 T - 2.618 T - 5.8 T ,

F = 0.1963650568 + 8433.466291 T - 5.6045~5 T2 - 5.8”’ T3,^ ... A.14

D = 6.121523940 + 7771.377193 T - 2.5065~5T2 + 3.3~8 T3,

and &  = 4.523601514 - 33.75714624 T + 3.6264_5T2 + 3.9~8 T3.

Calculate the nutation in longitude /S ̂ a n d  in obliquity A  8 from the 
standard series (only terms with coefficients greater than 0.01 arcsecond 
are included here)

A ^ =  -(8.35465~5 +8.421-8 T) sinA> + 1 .01 23~̂  sin2ft
- 6.171 2_6 s in(2F-2D+2 ) + 6.113 5~? sin^*)
- 2.41~7 sin( 1'+2F-2D+2 A  ) + 1.04~? sin(2F-2D+251 -1 ’ )



- S ?

A.7

... A.15

A 5
+ 6.01 sin(2F-2D+$> ) .

(4.4651 5 +4.4 ̂  T) cosfl - 4.383 7 cos2 51 
+ 2.677'^ cos(2F-2D+2ft ) + 1 .047~? cos (l T+2F-2D+2&) ... A.16

The short period nutation terms (terms with periods of less than 35 days) 
are given by the further series

A  ̂ = A y - 9.876 7 sin(2F+2 a ) + 3.272 ? sinl
-7 -7- 1.658 sin(2F+<ft) - 1.265 sin(1+2F+2&)

_© - &- 7.22 sin(l-2D) + 5.53 sin(2F+2ft-l) ... A.17

in longitude, and

A t  = A S  + 4.286 7 cos(2F+2A, ) + 8.87 9 cos (2F+ gh ) 
+ 5.48 cos(2F+2fl>+l) A. 18

in obliquity. Using A.10, A.16 and A.18 calculate the true obliquity 6 

from

... A.19e = £ o  +  A e ,
a n d  t h e n u t a t i o n  r o t a t i o n  m a t r i x e l e m e n t s :

s n = cos A V  ,

S 12 = - s i n  A ^ c o s  E

S 13 = - s i n  A ^ . s i n  S Q ?

S 21 = s i n  A'/'-cos 6 ,

S 22 = cos A ^ . c o s  £ ■cos E 4- s i n  8 q  . s i n  E ,

S 23 = c o s  Ay'- s i n cos E - c os E Q- s i n  S ,

S31 = s i n  A ^ . s i n  t ?

S32 - c o s  A ^ . c o s  8 .s i n  8 - s i n  8 Q' c os 6  j

a n d  S 3 3 = c os A y .sin 8 . s i n  8 +  cos 8 • c os E 0

T h e  ( r e c t a n g u l a r )  a p p a r e n t  t r u e  c o - o r d i n a t e s  of d

\ ... A.20

given by the matrix equation

U3, y'y Z3)
sii S12 S13 X3

S21 S22 S23 * y3

,S31 S32 S33 S

.. A.21

Finally transform (X3, ŷ j, Z3) to equatorial polar co-ordinates (06", S3) 
by using the equations

sin(o6l 2 ..21
+ y3 )'



and cos(&") = *3/U " 2 + y^2)2 >
vhere 06" lies in the interval 0 to 2 7T, and

tan(63) z"/U"2 + y”2)2

A .8 

A. 22a

A.22b

vliere 83 lies in the interval -TT/2 to +77/2.

TOPOCENTRIC CALCULATIONS RELEVANT TO TELESCOPE POINTING

Except for parallax which, if required, is most easily included with
the aberration calculation (see Explanatory Supplement to the Astronomical
Ephemeris 1961), equations A.1 to A.22 give all the necessary astronomical
corrections; the transformation to topocentric co-ordinates requires the
calculation of the local mean sidereal time 9 as follows.
Truncate the Julian Date t to an integral value and add 0.5 to obtain
t a Julian Date corresponding to a Greenwich midnight, and calculate gm
time interval T in Julian centuries by

(t - 2415020.0)/36525.0gmT

Using

^9/dt = 6.30038749 (radian/day)

as the sidereal rate, calculate the Greenwich sidereal time at tgm
3̂ by

and 9

1.739935893 + 628.3319510 T + 6.7558”6 T2

= 6rrrri + (b-, ~ t ).d9/dt , gm 3 gm

. A. 23

. A. 24 

and at

.. A.25 

A.26

respectively. Finally, from the local east longitude X calculate 9, the 
local mean sidereal time by

0 = 9 + A . ... A .27

Should apparent sidereal time be required it is given by

= 9 + A ^ c o s  £ , A.28apparent
where 9 is obtained from A. 27, and A ^ c o s S  is the ’equation of the 
equinoxes’ and can be obtained from A.15, A.17 and A.19. Since observat­
ories are equipped with sources of mean sidereal time (see for example 
Appendix C), it would be most appropriate to use as telescope pointing co­
ordinates the apparent true declination but the apparent mean right 
ascension,in conjunction with the mean sidereal time. A proposal of this 
kind was put forward by Atkinson and Sadler (1951 ) but unfortunately was 
never adopted, and so here the topocentric co-ordinates declination 8, 
and hour angle H are obtained by;



and H ^ a p p a r e n t  3

The r e f r a c t i o n  c o r r e c t i o n  u s e d  i s  q u i t e  s t a n d a r d  and i s  t a k e n  from 

V.'oolard and Clemence (1966 ) .  Given  t h e  b a r o m e t r i c  p r e s s u r e  B i n  m i l l i ­

m e t r e s  o f  m ercu ry  and t h e  t e m p e r a t u r e  t  i n  d e g r e e s  C e l s i u s  t h e  r e f r a c t i o n  

i n d e x  y ( /  i s  c a l c u l a t e d  from

yUQ = 1 + 1 . 0 5 3 4 * B / ( 2 7 3 + t )  ,

and a t m o s p h e r i c  h e i g h t  p a r a m e t e r  i s  t a k e n  as

. . .  A . 30

- 3

Ho =
1.2541 . . . .  A . 31

I f  <fi i s  t h e  l o c a l  g e o d e t i c  l a t i t u d e ,  t h e  z e n i t h  d i s t a n c e  Z o f  an o b j e c t  

i s  o b t a i n e d  from t h e  e q u a t i o n

cosZ = cos 0-cos S.cosH + s i n ^  s i n  & , . . .  A . 32

and  t h e  r e f r a c t i o n  c o e f f i c i e n t  R c a l c u l a t e d  by

. t a n ^ Z .R = ( / 4 0- l ) . ( l - H 0 ) . t anZ  -  ( / V 1) K - K / q- I )

R e s o lv ed  i n t o  t o p o c e n t r i c  d e c l i n a t i o n  and h o u r  a n g l e  t h e  r e f r a c t i o n  

c o r r e c t i o n  becomes

. . .  A . 33

& = S + R ( s i n  ^ .cos  6 - c o s  ^>.sin 6 .c o s H ) /  s i n Z ,

and  H = H -  R cos (p s i n H / ( c o s  S s i n Z ) .

S and H so c a l c u l a t e d  a r e  ou r  t e l e s c o p e  p o i n t i n g  a n g l e s .

. . .  A . 34

CONCLUSION

The d i r e c t  mean t o  a p p a r e n t  p l a c e  r e d u c t i o n  a l g o r i t h m  p r e s e n t e d  

above has  an  a c c u r a c y  o f  b e t t e r  t h a n  0.1 a r c s e c o n d  ( even  c l o s e  t o  t h e  

c e l e s t i a l  p o l e s ) ;  an a b s o l u t e  w o r s t  c a se  e r r o r  o f  0 . 0 7 7  a r c s e c o n d  can  

r e s u l t  f rom t h e  o m is s io n  o f  t h e  n u t a t i o n  t e r m s  o f  a m p l i t u d e  l e s s  t h a n  0.01 

a r c s e c o n d .  A FORTRAN IV i m p l e m e n t a t i o n  o f  t h e  a l g o r i t h m  w i t h  56 b i t  

p r e c i s i o n  on an I .B .M .  360 /50  computer  was t e s t e d  a g a i n s t  a number of  

FK4 s t a r s  i n  A . P . F . S .  The w o r s t  d i f f e r e n c e  n o t e d  was 0 . 0 6  a r c s e c o n d ,  b u t  

i t  s h o u ld  be n o t e d  t h a t  r e d u c t i o n  o f  t h e  machine  p r e c i s i o n  t o  24 b i t s  

p ro d u c e d  d i f f e r e n c e s  a s  l a r g e  as  0 . 4  a r c s e c o n d  due t o  n u m e r i c a l  e r r o r  

p r o p a g a t i o n .  H a r r i s  and  La rge  (1967)  q u o t e  a  s i m i l a r  a c c u r a c y  f o r  t h e i r  

method b u t  t h e y  i n c l u d e  a l l  t e r m s  i n  t h e  n u t a t i o n  s e r i e s  and  t h e  a c c u r a c y  

i n  t h e i r  c a se  a p p e a r s  t o  be l i m i t e d  by a  l e s s  p r e c i s e  fo rm o f  t h e  a b e r r a t ­

i o n  c o r r e c t i o n  t h a n  t h e  one g i v e n  h e r e .  A p o l a r  c o - o r d i n a t e  v e r s i o n  of  

t h e  d i r e c t  a l g o r i t h m  was a l s o  t e s t e d  and a l t h o u g h  a b o u t  2Qffo s l o w e r  t h e  

d i s c r e p a n c i e s  be tw een  i t  and t h e  r e c t a n g u l a r  one g i v e n  were q u i t e  s m a l l



A. 10
(typically 2x10 arcsecond). A breakdown of the timing for the I.B.M. 
implementation of the rectangular version is given in Table A.2; the 
Univac U 1108 version used in the body of the thesis and listed in 
Appendix D is considerably faster.

TABLE A.2

Polar to Rectangular Co-ordinate Transformation: 4.2 ms

Precession Correction: 7.6 ms

Aberration Correction: 11.2 ms

Nutation Correction: 16.8 ms

Rectangular to Polar Co-ordinate Transformation: 2.8 ms

TOTAL 42.6 ms



APPENDIX B
Anti-ambiguity Requirements of Linked Shaft Encoders

Despite widely varying pointing accuracies, the precision -with which
telescopes are pointed is usually an arcsecond in declination and a deci-
second of time (equal to 1.5 arcsecond about the axis) in houranglc^.
Taking the more critical case of declination, a resolution of one part in
1,296,000 is required and, although single turn shaft encoders with resol- 

20 21utions of 2 (1 part in 1,048,576), and 2 (1 part in 2,097,152) are
commercially available, they are rarely employed in practice. Even in-

@@cremental encoders of such high resolution are extremely expensive , and 
it is not possible to drive them in a manner which realizes an accuracy 
commensurate with the resolution, since wind-up errors in flexible-disc 
or bellows couplings are typically tens of arcsecond. It is unlikely that 
a readout precision (and accuracy) of an arcsecond can be obtained directly 
from the axis without designing the axis encoder as an integral part of the 
bearing and structure; hence it is accepted practice to employ encoders of 
lesser resolution (e.g. 2 ), geared to the axis with gears of as high a
quality available.

No problem exists with an incremental system, but if (in the interests 
of consistent accuracy and avoidance of sudden loss of position with power 
failures, noise etc.) an absolute encoder is used, a means of counting 
complete turns, or removing the ambiguity from the readout is necessary.
For a completely absolute system this is most easily done with a second en­
coder, which may be an inexpensive, coarse brush type, geared 1:1 with the 
axis. However, the available encoder resolutions and gear ratios are rarely 
such that the output is exactly the number of turns of the fine encoder, 
nor even related to its resolution, and the angular jitter between the two 
encoders further complicates the computation of the revolution number.
Analogous problems would occur within a shaft encoder when bits change out

@@@of sequence, but are avoided by employing monostrophic codes , or by 
using duplicated tracks in phase quadrature and various means of lead/lag 
brush or read-head selection. These techniques could in principle

@ 10 arcsecond and 1 second of time respectively are common for very
small instruments, but future instruments will doubtlessly require 
a precision even greater than the above.

20@@ for example U.S.$19,000 for a 2 incremental encoder compared to 
U.S.$2,000 each for the 2 absolute units used in the Mt. Stromlo 
Observatory 74-inch encoder system (see Appendix C).

@@@ codes in which only one bit of the word changes in going from i to i+1.
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B.2
be applied to physically separate shaft encoders, but, since special en­
coders vould be required, are rarely used. Here ve consider the anti­
ambiguity requirements of two gear-linked absolute encoders, and the nature 
and extent of errors in such systems.

Consider coarse and fine encoders of resolution R and R^ respectively, 
geared together vith a speed ratio T^:T^. The coarse encoder is assumed to 
be 1:1 vith the axis concerned, and, although and can be thought of 
as the number of teeth on the mating gears attached to the coarse and fine 
encoder shafts respectively, T^ and T^ are assumed to be relatively prime, 
and, of course, T^/T^ ̂ 1. Let the theoretically exact reading of the fine 
encoder be the real quantity then if n is the number of complete fine 
encoder revolutions from a specified fine encoder zero, a general position 
© of the axis, measured in fine bits from that zero, is given by

0 = n R_p + . ... B. 1

If ve consider the coarse encoder to be comprised of a perfectly linear
unit giving exact reading , and differing from that in practice by the
total error e , vhere e includes all the gear, code disk and drive eccen- c c
tricity errors, and if Z is the (exact) reading of this ideal encoder at 
the above fine encoder zero, then © is also given by

6 = (N - Z ) T R / R T . ... B.2c c c x c f
The numbers physically read from the encoders are integer estimates

of N +e and N , denoted here by N and N respectively, and differ from c c f c i
ai

&
N +e and N n by the truncation errors 8 , defined byC C f C I

and &

N - N + ec c <
N - N ,f f ’

... B.3

Likevise, if ve set the axis to the fine zero referred to above and read
the coarse encoder, ve obtain integer Z vhich is related to Z^ by

= Z + c ... B.4

vhere the truncation error & is constant (once ve have defined the zeroz
point), and may be taken to include the value of e^ at the zero point.
The various quantities are defined in Figure B.1, and, from the equations 
above, it can be seen that the integer n is given exactly by 

(N - Z ) T N_  C_____ C C I

RC Tf Rf
(N -Z- e + 8 - ) Tc____c____c_____c_____z c

R Tc f

(Nf + & f)
B.5



B. 3
The computer or arithmetic hardware interfaced to the pair of encoders 

must contain a routine for calculating n, an estimate of n; thence the 
estimate 9 of the position of the axis (in fine bits) is calculated by

0 = n Rf + ... B.6

6 is the required axis position subject only to the usual digitization error
of ±1 fine bit, and, of course, the accuracy of the fine encoder, and may

(0)
be scaled to convenient units and a convenient axis zero point as desired'. 
Here ve are concerned with the possible error in calculating n given by

A n - n ... B.7

and with assessing just how much latitude is allowed by various methods of 
calculating n.

Method A .

The simplest method of calculating n, is to perform an integer divis-
A  A

ion of the (integer) quantity (N - Z ).T by R T„, that is, by calculatingc c c c X

= INt M c- V _ Tc
Rc Tf

... B.8

where the function INT denotes truncation to an integer. Since the re­
mainder of this division must be integral and lie in the interval 
0, R T_£-lJ , we obtain the inequality

0 < ( N - Z ) . T  - K . T . n ^ R  T - 1  ,x c c c c f ^ c f
which, by equations B.3 and B.5, gives

... B.9

0 < R  T A n  + (e - & + & ) . T  + N_. R . T_/ R_ < R  . T -1 ... B.10^  c f c c z c  f e f f  c f
A.

It should be noted that the difference between the quantities and 
is a linear function of N . That is,

S - e c c S + N R T / R T ,a i c ± I c ... B.11

whore, for a particular configuration of encoders and zero setting, S
is a constant, and the argument is clarified by reference to Figure B.1. 
Using equation B.11, the inequality in equation B.10 becomes

0 < R  T „ A n + ( &  - S ) T < ^ R  T - 1 .
\N  r r 7. a c c f ... B.12'c ~f ' ~z ^a' c ^  c f

If we desire no error in the calculated antiambiguity number n, we can set

@ It is often simpler to perform this scaling on the raw quantities
^  A  X ^
N_p, N etc. before computing the antiambiguity number n.



n = 0, and obtain the approximate inequality

0 6 - S < X ,^  7 P X

B.4

B.13

where X = R . T„ / T is the number of coarse bits in a complete revolut- c f c
ion of the fine encoder. Finally, using equation B.11, and with due re­
gard to the intervals in which the various quantities lie, we have (approx­
imately)

-x <  e <  X  - 4 B.14

as the bound on the total permissable error e^ of the coarse encoder, and 
a permissable range for e^ of 2X-4 coarse bits.

In the case of the Mt. Stromlo 74-inch encoder installation (see 
Appendix C), the declination axis is the more critical with regard to this 
error, and since the relevant quantities are R = 256, T = 4 (32), and

/ »@ c x= 189 (1512) , X i n  equations B.15, B.16 has the value 5.42, and the 
coarse encoder error has a permissable range of 6.8 coarse bits. The 
argument has assumed that the function INT in equation B.8 involves trunc­
ation, and that nothing at all is known about the quantity 8 other than 
that it lies in the range -1 to +10 If, in equation B.8, a numerical pro­
cedure which rounds rather than truncates is used, the error e has an ------- c
identical range but is now distributed symmetrically, that is

2 — X < e  <  X - 2 . ...B.15c
If b is known and the coarse zero point Z adjusted accordingly, the z c
range can, in certain cases, be extended by as much as 2 coarse bits, but 
this is rarely practicable.

Method B .

An alternative, (and more involved) means of calculating the anti- 
ambiguity number n, is to perform the integer division of (N^-Z^T R^ -
I^R^T^ by R.T^R^ to obtain

INT
(N -Z ) . T . R _ - N R  T v c c' c f f c f

R T R c f f
B.16

Similarly to Method A, the constraints on the integer remainder of this 
division imply that

0 < ^ R cTfRfA n  + (e„- S„+ S_) .T.R, + 4 B„TA >  ~ 1c f f c f ^  c f f B. 17

@ Figures in parenthesis are the actual numbers of teeth on the 
respective gears«
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S e t t i n g  = 0 and  by n e g l e c t i n g  £>_p th e  e r r o r  i n  t h e  f i n e  e n c o d e r  (w hich

i s  v e r y  s m a l l  compared t o  t h e  c o a r s e  e r r o r s ) , we o b t a i n  t h e  a p p ro x im a te  

r e l a t i o n

O ^ C e  - S + S < ^ X ,  . . .  B. 18^  c c z N

F i n a l l y ,  t h e  bounds on t h e  e r r o r  e a r e  g iv e n  by

2 < e c <^X-1 , . . .  B. 19

and th e  p e r m is s a b le  ran g e  o f  e r r o r  i s  X -3 . F o r  t h e  c a se  o f  t h e  d e c l i n a t ­

io n  a x i s  c i t e d  a b o v e ,  t h i s  i m p l ie s  a  ran g e  f o r  e^ o f  2 .4  c o a r s e  b i t s .  

A ga in  t h e  r a n g e  i s  s y m m e tr ic a l  a b o u t  z e ro  i f  r o u n d in g  r a t h e r  t h a n  t r u n c ­

a t i o n  i s  u s e d  i n  e q u a t i o n  B . 16.

Thus t h e  s im p l e r  o f  t h e  two m ethods i s ,  i n  f a c t ,  t h e  more t o l e r a n t  o f  

a n g u la r  j i t t e r  e r r o r s  b e tw een  th e  g e a r  l i n k e d  e n c o d e r s .  The r e a s o n  f o r
A

t h i s  i s  t h a t ,  i n  Method A, t h e  om m ission o f  a  te rm  i n  i n  e q u a t i o n  B .8 , 

a c t u a l l y  s im u l a t e s  t h e  e f f e c t  o f  t h e  t r u n c a t i o n  p r o c e s s  i n v o lv e d  i n  th e
A

r e l a t i o n  b e tw e en  q u a n t i t i e s  N and  N . The m ethod o r i g i n a l l y  i n c o r p o r a t e d
C C , @i n t o  t h e  Mt. S trom lo  E ncoder  and  Timing System  ( E .T .S . )  s o f tw a r e  w as, i n  

a  s e n s e ,  i n t e r m e d i a t e  be tw een  th e  tw o , s in c e  i t  employed Method A b u t  i n ­

s p e c t e d  th e  two m ost s i g n i f i c a n t  b i t s  o f  N^,, a n d ,  i f  N^<CR^/4, i t  in c re m ­

e n te d  n .  The U1108 t e l e s c o p e  p o i n t i n g  d a t a  p r o c e s s o r  TA0MAIN u se d

th e  ’b r u t e - f o r c e ’ t e c h n i q u e  o f  c a l c u l a t i n g  n  a s  p e r  Method A, t r y i n g  th e  

i n t e g e r s  from  n -2  t o  n+2, and  a c c e p t i n g  t h e  one w h ich  gave th e  minimum

r e s i d u a l  R , where n

Rn
nR + 5  

f  f
(N -  Z ) T R /  R T .

C C C I  c ± o . .  B .20

The v a lu e  o f  t h e  r e s i d u a l  R was r e c o r d e d  by TA.MAIN, p e r m i t t i n g  an  i n t e r -
n

e s t i n g  a s s e s s m e n t  o f  t h e  7 4 - in c h  E .T .S .  r e l i a b i l i t y .  The maximum a n g u la r  

Tj i t t e r ’ b e tw een  t h e  c o a r s e  and f i n e  e n c o d e r s  n o t e d  f o r  t h e  148 o b s e r v a t ­

io n s  made i n  March 1973, am ounted t o  ± 1 .3 4  c o a r s e  b i t s  i n  h o u r a n g l e ,  and 

± 1 .0 8  i n  d e c l i n a t i o n .  S in c e  one b i t  m ust be a l lo w e d  f o r  t h e  c o a r s e  en­

c o d e r  q u a n t i z a t i o n  e r r o r ,  i t  i s  c l e a r  t h a t  t h e  d e s ig n  o f  t h e  7 4 - in c h  E .T .S .  

h a s  been  r e a s o n a b ly  c o n s e r v a t i v e .

@ by Ron Howe; Mt. S tro m lo  O b s e r v a to r y .



APPENDIX C.
74-inch Telescope Timing and Attitude Readout System

C.1

The Mt. Stromlo Observatory 74-inch Grubb Parsons telescope is a 
general purpose English crossed-axis mounted instrument and was installed 
in 1951. Its focal stations comprise a four-mirror Coude of focal ratio 
f/ 31, a Cassegrain of f/18 and a (now rarely used) f/5 Newtonian. Radial 
roller bearings on both piers and a ball thrust bearing on the north pier 
support the polar axis which is driven by a large spur gear for slewing 
purposes and a clutch-connected wormwheel of 720 teeth for tracking and 
fine motion. The declination axis is supported by a pair of axially 
preloaded taper roller bearings in the cube section where the axes inter­
sect, and has a fast motion drive similar to the polar axis. Pine motion 
in declination is by means of an ’A-frame’ which can be clamped to a 
drive ring on the cube, and its apex driven with respect to the tube by a 
screw driven by a DC servo motor. A velocity servo is fed into one input 
of a differential driving the main polar worm,and a DC servo motor into 
the other. The two DC servo motors mentioned were initially used for 
manual guiding adjustments but are now part of an automatic guiding servo 
which can accept input signals from a Coude autoguider head as well as 
manual guide commands.

The original attitude readout system for the 74-inch comprises three 
selsyn transmitters geared up with different ratios onto large instrument 
spur gears on each axis. In declination the transmitters feed passive 
selsyn receivers on the telescope control panel, and, to accomodate the 
two cases of using the telescope east or west of the polar axis, the 
declination receiver dials are equipped with rotatable masks which effect 
a change in the labelling of the finer two of the three dials. The polar 
axis readout is similar except that the transmitter signals feed the 
receivers via following transformers which perform the analogue subtract­
ion of sidereal time. Sidereal time is displayed on a similar group of 
three dials. The readout error in this system can exceed an arcminute or 
so and is caused firstly by the use of passive receivers (which are in­
herently prone to stiction), and also by excessive backlash in the trans­
mitter gearing; the two coarser transmitters are geared down again from 
the pinion driving the fine one,and so all three dials of each group are 
affected. The recently installed digital readout system about to be de­
scribed is now used for all routine sotting and positioning of the tele­
scope, the old selsyn system proving useful as a back-up in case of 
trouble and for maintenance purposes.
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FIG C.2
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C . 2
To improve the observing efficiency of the 74-inch and to permit 

realistic pointing error tests the author proposed a system of digital 
readout employing coarse/fine digital shaft encoder pairs on each axis, 
and a Hevlett Packard 2100A minicomputer -which could also be used as the 
telescope data acquisition and instrument control machine. The author 
was responsible for the overa.il system design and for the encoder data 
handling software, but Wayne Ruting (detailed electronic design), John 
Hart (shaft encoder mechanics) and Ron Howe (software modifications and 
system adjustments) of Mt. Stromlo Observatory were responsible for the 
construction and implementation of it.

The heart of the 74-inch encoder and timing system (E.T.S.) comprises 
two 15 bit Baldwin opticad encoders geared to the instrument spur gee„rs 
on ea..ch axis by precision antibaxklash pinions and double disc flexible 
couplings; see Figure C.1. The flexible couplings used have a torsional 
rigidity of 10 arcsecond per inch-ounce of applied torque and, with 
typical encoder starting torque of roughly an inch-ounce, undoubtedly 
comprise the weak link as far as accuracy is concerned. The ambiguity 
involved in the geared up fine encoders is removed by coarse 8 bit brush 
encoders driven at axis speed from the existing coarse selsyn shafts. 
Anti-ambiguity requirements of such paired encoder systems are discussed 
in Appendix B. This configuration of encoders gives a bit resolution of 
0.837 arcsecond in declination and 1.47 arcsecond (equivalent to 0.098 
second of time) in hourangle. Due to the slow rate of rotation of shaft 
encoders used on telescope axes, the bearing and brush limited lifetime 
for the system is in excess of 30 years, but the practical mean time 
between failures (M.T.B.F.) will probably be dictated by that of the 
optical encoder lamps which are rated at 20,000 hours (27 months), if not 
the encoder servicing electronics.

A block dia.gra.rn of the encoder and timing system (E.T.S.) is shown in 
Figure C.2. The E.T.S. computer interface accepts data from the encoders 
and the sidereal and solar time code generators, multiplexing it into the 
H.P. 2100A via a standard H.P. 12566A T.T.L. dual input/output interface 
card; it also accepts the computer-generated display data from the card 
and serially transmits it to the ’Nixie-tube’ type co-ordinate display. 
Upon command from the interface, the 23 encoder data bits together with a 
fail flag are captured and serialized for transmission to the interface by 
a module (shown also in Figure C.1) which also converts the Gray code from 
the fine encoders to Natural Binary. The timing data comes from two 
Eldorado 1710 time code generators which produce time to a decisecond in 
B.C.D. and also the standard serial I.R.I.G.-A code for serial trans­
mission to other telescope systems. The sidereal time code generator is



C. 3
fed from a standard 5MHz frequency source, which is a Hewlett Packard 
105B oscillator, via a phase-locked solar to sidereal frequency converter 
of the author’s design (described in Appendix E). The second time code 
generator is normally fed directly from the standard oscillator giving 
solar time but is useful as a back-up should the sidereal one give trouble. 
The 78 bits (B.C.D.) of co-ordinate display data are transmitted serially 
once a second to the display which is buffered to prevent flicker, and 
equipped with suitable dimming circuitry for use in the darkened dome. 
Degrees, arcminutes and arcseconds are displayed in declination, and 
hours, minutes, seconds and deciseconds of time are displayed in right 
ascension and sidereal time; the polar co-ordinate displayed is select­
able:- right ascension or hourangle.

The E.T.S. software was written in H.P. relocatable assembler and 
comprises three separate programs which perform (a) data capture,
(b) data reduction computations and (c) display generation. The data 
capture routine is actuated every decisecond upon receipt of an interrupt 
from the sidereal time code generator and captures the 8 words of encoder 
and timing data loading it into an 8-word data block in core. Although 
it does not use Direct Memory Access (because of the initialization over­
heads), it employs a number of ruses which enable the capture to require 
only about 25 /Ccs. The data capture routine is a mere 14 words in length 
and is permanently core resident. The reduction program, which is 
scheduled only when the raw 8-word data is to be used, is much larger 
(about 700 words), and performs the following tasks:
(i) it checks system fail flags for encoder lamp open circuit, power 

failure and other contingencies;
(ii) it converts days, hours, minutes, seconds and deciseconds of time 

from B.C.D. to separate integer variables and stores them;
(iii) it separates declination and hourangle fine and coarse encoder 

words into four separately stored integers;
(iv) it computes sidereal time in scaled double length integer format 

(D.L.I.);
(v) it computes declination S in D.L.I. format;*^
/ \ @(vi) it computes hour angle H in D.L.I. format;
(vii) it computes zenith angle and then refraction, and corrects fa and 

H for refraction.

@ See also Appendix B for a discussion of encoder anti-ambiguity 
programming.

&& Use here is made of a high speed, relaxed accuracy trigonometric 
function generator similar to that given in Aus and Korn (1969).
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(viii) If the right ascension display is selected it computes right 

a.scension 06.
(ix) It optionally computes azimuth angle e.g. for dome control.

The original version of the reduction program employed the standard
Hevlett Packard floating point arithmetic subroutines a,nd took about

@12 ms to execute, but the final implementation of it uses double length 
integer arithmetic throughout and is much faster with an execution time of 
approximately 2 ms. It can, if required, be FORTRAN called from another 
program, an instrument control routine for example, and is called by the 
co-ordinate display generator which converts the various co-ordinates to 
B.C.D. format ready for serial transmission to the display hardware.
The display generator is usually scheduled with a low priority interrupt 
every second. The E.T.S. software is in current use as a foreground 
program in the H.P. real time executive R.T.E. system used on the 74-inch 
computer.

Q written by Ron Howe.
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APPENDIX D

Computer Program Source Code Listings

This appendix contains the FORTRAN source listings for nearly all of 
the experimental programs used in the thesis. They are programmed for a 
Univac 1108, but in the majority of cases require only trivial modificat­
ions to rim on an I.B.M. 360 series machine. The programs first listed 
are the main programs for observation list generation (CATALOG.OBS), para­
meter estimation (PEST.MAIN), surface fitting (SURFIT.MAIN), and tele­
scope pointing data processing (TA.MAIN), respectively, and require an 
extensive set of subroutines which are then listed alphabetically. They 
are the programs used to obtain the results in the body of the thesis, 
and, like any developmental programs which undergo modifications and im­
provements as the need occasions, do not necessarily represent definitive, 
or even efficient implementations of the procedures or computations. Where 
a flowchart for an algorithm has been given, the numbers against blocks 
correspond to label numbers in the listings. Subroutines which are not 
listed here are RANDU and GAUSS, the Univac uniform and normal pseudo­
random distribution generators respectively, READ, a free-field data input 
routine written by the author and, of course, the usual FORTRAN library 
of trigonometric and arithmetic functions. Virtually all of the computat­
ions use double precision real arithmetic, i.e. a mantissa of 60 bits 
length, to avoid the propagation of numerical errors.
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j F C K 1« E O . H I N J . u a . k 2 . E Q « H | N J « 0R « K 3 » E G . M I N j . 0A « K 4 « c 0 « N | N j 1 c o t o b y o
I F ( N N A . E 0 . 7 » R A l T E l 3 * 3000 > M I ^ J • N , H , O E C  • M A  . R A , Z A . 0 « ! N  300*. F O R M A T  ( / 20X , • M | N V . N . N . 0 . H . R , Z . 0 I F . »  . 14. 213 .5012 . 5 »

c  a p p l y  a s t r o n . c o r r e c t i o n s
B o n  C A L L  P T R X I R A S I M I N J »  , O F K  | N | N J »  , R I  I

C A L L  R R E C F S l R f . T J I . T J 2 . R 0 »C A L L  A 4E R R ( R 0 . T j 2 . E c C . R i )C A L L  N U T A T F ( R | . T J 2 . R 0 , K S W O R T »
C A L L  R T P X ( R A , O E C , R O »C

11 p -

D.2
c a l l «rr«<<(H»iOLCi»>*.!i»*,*»o,o[ci!.*»i i 
o e c »o c c o»AMST.MAO
c »ll SHirri**i
c a l l z«NSLeiH>,Dcc>t«..Hti

C **INT
Cln« c o n t i n u e

C * L COO*0SlST,0CC>|X.iN.TSeC,LSt*N.LD(LN.LSl CALL COOROSiR a .DCC.KH.KN.SCC»l s j g n .l d .l h .l s » 
i f In n B.c O.1»GO TO 1220.RR^TCI3.If10(M|Nj,KM.KH.SCC.LttBil«L0»LR«LS.IM«IM,TScC.|0BS,N.M,

I22n CONTINUE
?2in FORMAT«/« STAR *.|4,« APPARENT PL« RA•*.2I3 . f S . 1 , • OCC«*«IRl. CI2.2I3,« «10 TIME Sh o u l d  BE •,2|3,f5.1,*IOBS.N.h .NCx TIt a R.«.C3I4,15)
C

1F(NNA.CB.7)RR|TE(3,1230)H!NJ.RA.DEC.HA.ZA J23n f ORHa TI« n j n j .RA.OEC.h A.ZA««,!5,4F11.4»
C INCREMENT OBSERVATION NO.

IOBS«I OBS*I GO TO 500
4 EXJT«...«. ............. ....... ............. ...........
48?? Fo Jh a I?///1? ]aLL5PO|NTS on BRIO FIn ISh EO (THANK CHRISTI I0BS*«.I4I 

STOP8 ...............................
cc
^00 DO 1000 1*1•I07Bc r e a d IN SYAR.CATALOg .RCA O M  1 ) ISTaR.OEC.Aa .ISIGN.I0,|N,|s.JN,JN,5,A*AG.BH a4 ,m V AA 
C RAITC CHECK

IF I I.NE. ISTAR» STOA 1F|NNA.n E .2) <0 TO II
RR ITC 13.10)ISTAR.0EC.RA.ISIGN,10,IN.IS.JH.JN,S .ANa G .BNAG .m yAR10 f ORHa T i * f ILECHCCk •.|4.201B.10.2X,IR»,3|3.2X .2I3.^ <2X.F4 . | ),|2)

11 CONTINUE
C 00 a s t r o n c o r r e c t i o n s

c a l l p t r x i r a .o c c .r I)CALL ARf CCSiR«.TJ1.TJ2.r o »
CALL APERRtR0.TJ2.CcC,RI ) 
c a l l n u t a t e |R|.TJ2.R0,k s m o r t i 
CALL RTPXIRAA.0ECA.R0»

C CONVERT COOROS.
CALL COOROS(RAA,DECa .KH.KN.SEC*LSIBN.LD.LH.LS».PR l"c< 3.30» iSTaR.TJ2.KH,k N,SCC.LSIg H.L0.LH,lS,JN,JH.S, t ISIGN. 10,IM,IS,AMaG

30 .rOPNAff/« STAR ',14 • UNRCARAR APP PLCE AT*.F4.I • RA«f(2 13 , FB • I ,
1' OEC»*.1R1 . 12.21 3. * 1 1470.0 NP«•,2!3.FS.I,i X . 1R| .I2.2|5 . F4 . » , • ) * )

lOOn CONTINUE STOA

PEST. MAIN
C ELT.Mi IN G R HOVCT TfLCSCOAC DATA PROCESSING VERSION MOOR 10.
C NONLINFAR Ra R a mCTc R ESTIMATION AROpRAN •••Un IVaC |10P VERSION*
C FIRST CARO IS CONTROL CARO »ITH SEQUENCE NOS. E*G......
C 11.4537 |I GIVES APOGRAN ElECUTfO, AARNS 4.5.3.7 (UP TO 4)C ARE AASSCO TO THAT PROG. AS OPTIONS
C SECDNO CARO CONTAINS OlNCNSfON CONSTANTS N.N.K.NS.
C IHPLICIT r e a l *b i a -m .o -z »AARANCTCR Nn R«I40.Kk K*2S 0 I n e n s I ON OPT I ON(20) .NOATI 4) .0 IN(4 )

0 INE NS|0N PARN(KKK) ,MaSK(KKK),GTCMM(KKK) .SCALC(KKK) , G (KKK ) ,T|KKK) DIMENSION I(NNN.2).Y(NNN.2).FN(Nn N,2),R(NNN,2),0F(Nn N,k k k .J) 
DIMENSION A(KKK.k KK) ,a TEHA|KKk .KKK)DEFINE 0A4C0S«XOUN»«OaCOS(XOUN)OEFINF OARSlNtX0UH)«0ASIN(XOUN)

c
C READ CONTROL CARO..RRITEIS,1010»101n rORMATi« INPUTI ANY fMT»CONYR0L NO*S EG 2.01 3*0...*l 

CALL REAO(NVAR,OAYlON,NERR)IF(NfRR« E Q•I » GO TO 444
i s t o a p n v a r

200n FORMAT!« CONTROLR« * . I0F4.4/12X.1 OFV.4)
c RRfTCI 3.2000»OPT I ON
C READ DIMENSION CONSTANTS..PR l T£I 3 . » 020 »
107n .FORMAT!* INPUT!ANY F NT » N»NO OF PTs.H («2 I ,K«NO OR A aRn s ,«,I'NS («2).*)

CALL RCA0(NV*R.OlH.NrRR)IF(NERR.EQ.I.OR.NVAR.nC.4) GO TO 444 N«0INI I »K «0 IN(3)
NS«0IH(41

C SORT OUT AR 0 6 NO. An O OPTIONS...
c 00 2033 I • I • ISTOP NPROg »OPTlONtT)PROG-OPTI ON(I)-NPROq .0.00000 1

jAROQRO00 300 KK4I,4
PROG« ♦ PROG-JPROG*0*00000 I»•10.00 N«0IH C 2 »JPROG«PROG 

300 NOPTCick )«JPROg
•RITE!3.50»N.N.K.NS.NPROG.NOPT90 .FORNATt/* •••••HOVCT nONLIN. PARn EST1 NAT I ON .NNKS« *.414,« •••••••$,TART*/* •••••PROGRAM SELECTED«*.19,* OPTIONS *,413/1

C SELECT PROGRAM
GO TO (1,2,3.4.9.4.7.S.4.10,|I,12).NPROG

C RETURN
lOfln CONTINUE

RRITEM.40» NPROG40 FORHa T i/« •••••e No NONLIN. PARNEST. PROG NO«*,14/1
200 CONTINUESTOP
C ILLEGAL CARO
444 tRlTEl3!446)NvAR

STOP*1 ** •■■■•ILLEGAL CARO FORMAT•,I 4,•VARI ABLES READ«»
C
C PROG 1 ■ OATGfN
1 c a l l Oa TGENCN.n .k .NS.NOPT .AARm ,|,T)GOTO 1000

5 ...
GO TO 1000

C ..OS 1 • Mt.au,*DT tLSO,ITHM•
3 7^NASK7AÄa*T<N*M,,C ,NS «NOPT»X.T.AARH,fN,OF.R,A,ATCnP»G.BTENP,T,SCALC.

GO TO 1008
* jC*LL)(5»!.,LIN.M.I(.NS,NO.T,«,r1.,»M.rN,or...,,*TEI.».S,STtM,.T.SC,LE.

GO T9 1000
S CALL Ot.f.T(N.M,NS.«,Y . N O P T ISO To 1000

*  ' J L !f0S ^ * g 3 T | N ' H l '( ' , < s '''O P T ' , ' , ' F » « ' , .'',,. O E l « . * , S T E M . . T . S c t U E . N t S K I  
C

C »*06 5E»€Nm TEl ESC0»E 0»T, !N*UT «OuTINE7 CAUL .otT|NIN.m .k ,Nj ,n O»T.«■T I
SO TO 1000

C •■»»OS NOTFST
S CALL MOTEST<N.H,K.NS1NO»T,«,Y.FN,»,»A»N1NtSK>GO TO lOOo 
C
C PROG 4 • BEALE NONL|N TEST.
9 GO1^ * !  o8o‘N,H'K •NS'N0PT*Ä » V FN, OF. ».G. SC ALE»

f. 7c:?fKÄ?-s«7svÄ:sTN5!igp??i!7:;58.?«:s?:ir5?iTe.. ....
GO TO 1000

CORRECT FO R REFRACTION. 
m a « S T - 4 *



*•0« I I • A«Af»2 C*LL A»A0fIN,»,« GO To 1000

.CALL FO«CLU i3CALC .»AS« I60 TO 1000

SURFIT.MA1N
ri»« r o u t i n e. moo • to.

•Rt PAS.fO TO ’mat PROS. AS OPTIONS 
SfC?NB CABO CONTAINS OINCPStON CONSTANTS N iR*

PROOi. MfCO. *T OA’a |N f.LE II AS RIR T», ROUTINC*

I ä s  s s l i s a d f f l l s a f f l T -
101«'

ROB CONTROL C»RO.i
IRNT r#TI CONTROL 

CALL RfAOINVAB,OPTION,NCR.I 
IfINfAR.CR.I I *0 TO ... ISTOP'NVAR

NOS* (•* 1*1*01 1*0 CTC.M

NO. Of RTS. 0 «• Nil OROC«.*l 
«0 TO ...

£ RC AO OINCNSION CONSTANTS.
|0>" Po An a T|)^'n?UT IANT f«T> NR,Jf^,S55t!TrSS:Si:*r5J!i»

N-0I« f1 I
«•Of «I 21
kO«k*I

c SO«T OUT »90« 60. «NO OPTION».••
00 200 I• I•ISTO« 
n FAOS-OFTIONlfI• «06*06T 106(I I-NF«Ob *O.OOOOOI 
jF«06-0
f»0G-?FA06-JF«06*0*00000! 1*10.00 
j««OG»FAOCJO'* NOFT I ««« I • J«A06

c SCLfCT ««OAAAm
60 TO I I.2.J.« •6.4*7.«.«I (Nf«06

c «C Tu«6100« CON T I NUC
40 rO»«AT?/^°*******f6ft fUAFACf FITTING FAOSAAN ,»I«I
700 COJTIMue

C ILLCOAi C A«6
**? ?oi«A^?*f••■•«ILLC6AL CA«0 FOANAT•.16.* VA« |AtLCS Of AO * I

5T0F

Cl I f «I 
c u n t

CALL OaT§^nI«% .««»NOFT . I • 11 #T . > 1 00*00 • 4602 I T7.oO »«276.00 I

.?2S r S8rTW*:«?SS.8W : S 5. « * T * » % ? K X4« ^ .|C .Jl,JT,J6.JO.JL .J*A , J«0 )

tjS,JT,J6.JO.JL.J«A*J««1 
60 TO 1000
•«06 *N TfLT6C06C OaT| IN«UT «OUTINC*CALL T0AT|N|N,K,KO.n O«T,I,T)
60 To 1000CONTINUCC06TINUCco«t fNut
C0«T|«UCCONTINUC

f TO«

TA.MAIN
CLTaA TCLC5C06C OATa FAOCCSSINA AOuTlNC NOO-27.

I ONC «0 «16U« F«I N TI«6 »•I SOnC. *2 ALL.»J 0C»U6 «MINT

s
INITfALJlC tj F 0« Oat <«CHC«8C« 0ATLI6HT saving c no N/J/73.»OAT-NDAT TJ«TJ-TZONf.DA *

IF(NB.fO.2) 60 TO I 100 
«CAO IN «A« TCLCSC0«C DATA.

0§SC«VAT|0n S OF « LINK OATA. 
I • * « A« OATA INFUT*.«Of••• \)

,0n S27?i75J toil NOBS101 FO»NAT|J F NT c« *,|«,*
•«ITCI3.I17)117 FO«**AT ( • I # .«Of ••• I • • «00 170 t-|,N06S «C AO ( 1 .107* k n .LAACl .M.Kl.KC 107 F0«n aT(|a ,a i »|«3.1K»i3.7x *ISsTX*|S)LABTST.3A0NS!F(LA6fL.tO.LA«TST) 60 TO 103 
FoJn aJ?)/?*OSSVN. SfQuCNCt e««OA AT LINE1 0 «

103

...

. I 0
1 0 A 
120 C
C
300
312

CONTINuCNSTA«( I ) •««
1FINA.6F.3I ««ITCI 3,1 OB 1 RN.KA.K6.KCitFO«NaTI/• L N. *.!«,* IN|TL 0B§ NÖ. .STAN.T6AK.NC« 0«t *0.-*.«f«>
00 110 J«|.3 RC AO( I ,107 ) K«F 0«N A T f t A,AI.6104.2x9 I 00 1 10 Ls1 * A LLM*f J-l #*t.
SSiVVAJ ̂ •KÄ,L4,-,IFINA.6C.3I «• I T CI 3 , I 0A) I KC I L«,|I,L«-I * 2«1 FOKNAT(S(2 X . 0A) )
CONTINUC

F60CC*«6A« OATA 6fT SOLA« T|Nf a«0 CNCCK CNCOOC« «C«FO«NANCf IF Nf 
CONTINuC^
f o Ih a I?*?If « 0 < I •fOATA ACOUC 
OATA MASK/07AOOOOOOOOOO/OATA NFO,HCn.NFH.NCM/-2Att03i1 
60*lf|f.00/32.00 
A M M A N  .00/32*00 
OOOMAIaO.OO 
0MMMAI«0.00 OSTMAIaO.OO 
0«M TNI«0.00

«COÜCTIONA CNCOOC« CMCCK**nO(< 
.l«0.»A02l6.-2Nt/

MJt TMX.0.00

30 n
C

DO «SO jm 1 .NOBS*
S«l»0?ot«.KC?A.Ill*0??00*I AOf0.7,«C(•.J»I JH«IA017,7,KC(A. J» »JM«fB0(0.4,KC17 , JJ 1
BT ? Ä K K 5 S » :a :5 8 i? * r t i . .T . |c  , v

t* UT-HMSa* , 2 I S • F A • I .* ........
6CT 01SFLAV OUTFUT.KK-KC < 72.J»JM-tAOlO.A.KKI ! S I 6-1 BO I 7 . I (KKl IS-TBO(A.7 *KK I KKaKC(2 I .J>IN-I ADI 0.7 .KKI 10-1 BO( 7,6,KKl (Hf5lG.C0.0l IO--IO KKaKC'23.J)3-180« 1 .7 .KK I JN-1A0(A.7.KKI Kl-KC <2«.j)S*S*I BO I 1 I .N.KK 1*0*100 SS-1A0««.«.KCl A.J)1*0.100 K K-K £ 1S.J1 SS-SS*!86I0.7.KKI 
JNS-IB0C7.7.KK)
jF?NC.Nc2At««*Tc!3.30N)JMSsJNS.SS.JM•JN.S,|0, I«,J*.FO«MAT(* C T S OISFLAy «AS StD TN-* .2|S . F A . I «A/MA-* . ;|S , F A . | .

t* oec«* . fA.2I6)
«C OUC C CTS 0C6IVC0 coo«os.
.F0«MA$7* *C^2 cOHFU^C04COO«0S UF«C«»«A« 
t •C C T C 0 MA.6A.0CC .B«AC«CTS-«AO!AN••1 KK-KC «t,JI*KC( 10,J»*ITSX
c t s s t »k k *t «/mscCMC C K T t Nf OFT I ON If.NC.O IFINC.NC.0I 5AVC IJ)-C T SST KK«KC(II.J)«KC(12.J|*fTSI 
CCMA«KK*tF/MSC KK-KCfI 3.JI*«FC I«.Jl*fTSX CC*A-Kk *T«/m SC KK.KCI|t.J)*KC(20.Jl*|TSI CMA-KV.TF/MSC
1S I 6-FlO(20.1.KCIlA.Jl)
KK»FL012I .IS.KCI 1 A t JI 1*1TfI*KC tIS.jl 1FI1SI6.C0.|)KK«(KK*NaSKI

MA.ST.DCC/LOaCA-CO««* 

3AVc CTSST |N SAVCUI*

CCDCC«KK*TF/OSC 15IA-FL0« 20.I.KCIIB,J) I KK«FlOI21 .IS.KCI IB.jlI* I F I IS I A.CO.i I KK*|Kk*NA 
---  “l*TF/OSC

JIO
c
<Ssn

C1111 SOFT ION Tm«f c—I INCLUOCt A CMCC« 0« CNCOOC« STSTCn . \
c m n o F T i o «  FBU« -1 FlOTS TclCSCOFC c««o«s ,*2 f« intsaflots..j faints 0)^ 
CfljIfOFTlON Five NOT-0 5|0 T|MC TAKCN F«ON CTS «ATMC« THAN UllOA. (
CMfltOFTfON 311 NOT -0 ST 4« C00«05 TAKC« F«ON CTS «ATMC* THAN UllOA.

; H S ! : : n « ’« • s . i v i m  s u .
liasflininlillT'iTSilsT^ISSljTSiTSiiTiSTiSTIiliiTSiiTSJTlSr e
DfMCNSION «fl3l.AOl3l.FlAl 0IMCN5I0N MINN),0l«Nl
ciufvALCNCC^I^CCO^* J*?MAO»X! |*NN| I ,(DC C » T I , IMA,Y(1*NN|)
DCnSf"«! JJ.NJI-ALU«F ( JJ.NJI 

C F|»3.l«lSt2AS3SAf7t3D0
tf«2.6o *fi 
FBT-«I/2.DO • 10-FI/I 80.00 ASCC-A I 0/3400.00 M«*Ff/1 7.00 TSCC»M«/3A00*00 TM|n-m«/a0.00 
AN1N«F|0/A0.00

c TSX*2.00**1A «01ITSX-2**1 A TSF-7.00**IS DSC-I At•DO* TS X 
m SC-337S.00*TSI

t £SIJ?.*2iHBRT.O INCLUOfS SmONT PfRIOO NUT TfRNS.NfAN.O (|«(S Nf AN S 1“
*3M0«T-0
CL0N6«t.00*M«*SA.00*TM|N*l*lS00*TSCC ',0,*
TXONf- 10.00/2«.DO e
TfNF*|S.A
PM*ItJtl00«PIO-l».00,A"IN*IT*S»»StC

CALL COOROSIITSST.fotC.PH,«M,IS.LS|tN,LO,L".LSI
N^»Mf?o*Rll*fl J*lIo'lC*»I*N^*"?*,>tf**TlNM!NN,SS,COlC .LSItN.LD 

CIO* l^fORNATIJ^j•.0I4*.**I NHSR •■11.,fA•I,.01.•I *.01A••.') ONS» •i 
C 'c a l l'COOROSICCMA.CCoCC.«H,«M,S,LSI RN.LO.LP.LSI

.f5tNA«lll* l*‘.01A.l.'l HNS* ' , ft. ,f A . I ) , ' I*.014..1*1 OPSp *.
I 1*1*11.11.1

COPT IPU(

COPPUTf c 
COPTIPUC
NfOPFLDIll.|S,.C<I*J>>PfPPf LOIII .|S.«CI1*JMs?s:iks:is:s:il!f:i!i|FINAf6T.2l«A|TC13*«0flJ*NFD*NC0|NFMtNCM .FO«NaT(* OB NO**.!«.' «A* FINc .COAASC CNCOOC" "0«0S DCC«*. I 2 1 71 * I A I • * HA* « .2<2*.1 A) I NFD-NFO NFM--NFM
NCO--NCD*NCONCM-NCM.NCM6CT ANTI ANSIAUITT FaCTO«S.
a0-nC0*60*2.00**7
MD-AO/TSFAM*NCH*6M*2.0o **7MM-AM/T SF0MJ N — I.0*20MN1N-1,0*20DO «01 L--7.1.I
n n o«m6«lNM-MM*L«0-INNO*TSF*NfO)«M«(n m*t s f*n f m I AOO-DAiSl«0-A0)AMM-OAAS!AM.AMI IFIAOO.ST.ONINI 60 TO «03 
DM f N-FOOOMINA-(«0 — AOl/I 60*2.00**7 I NAMD-NNDIF(«HH.6T.MMIN» 60 TO «0S 
MMfN-AMM
h m |NB«(Am «AM)/I6M*2.D0**7)«n a m m-nm
CONTINUCCONTfNuf
roAKcA ^ - o„ i r r i ; r jJ iS S jA Mv .? f iS t? s is 5 i,‘ t i? s : o4 . . . . . . . .
If|0*2*l4.* OfCP *.flO*l.l*l

RC A 0 OPTIONS
tops,NO. or OBSERVATIONS 4 04T Of*.fORplT*/*°CNTfR OPT

'.tAO?I!jÖ!pI?nA?pC .PO.NC.Pf.POPS.NOAT 

I* OATf-*.|«l
TJI-IA7D.0.TJ2 STAATS AT TJ-0/I/7J. CALL AfSLTACI t70.B0.Tj! I
TJ«l««lAB2.S00

OCCOIJl-1NAMD*T5F*NF0.«F01*TF/MO*TSFI 
CALLJ|MtFT27oFCOIJl) 
ocfco *occo«N»0<J> *

' j s t A r j A s . i i A i i S J 'U ’ p m c A H ; ;  ; « i " t i j 3 f r ’

LSI
FB« CNCOOC« AA«*

FOINTS.OFTnS-i.412.
C C00A0 0«T I ON II 

|F<NF.CO.O)«0 TO «30 
OCCOIJI-CBC MAO(Jl-CMA 
CONTINUC



IF  C N C . C 9 . 0 ) G 0  TO 8? 0  
c c o m p e t e  u i i o e - t r s  o i f f S

o d d » co c c d j - e o c c >/ a Scc
R M H i ( H » 0 J - F M *  ) /  As ec
T j 2 * t j  + i  i  * r . t j  ) /T P

C LOOK OUT rOR h i o n i g m T s
! F t T | M C ( J ) , L T . 8 . D C | T J 2 - T J 2 * l « D 0CALL ST! Hf ITJ7.EL0*6,57 , C«U ! W , *»t A W I 
OST»(S7-CTSST»/TSfC
i  r <Ca b s ( o o o > • l e . o d Dh a x ) go to  h i
OOONAX.OABS( 0 0 0  »
I D " A X » J

A l l  I f ( O A B S ( D W M ) . l C *O mHh AX)  «0  TO 9 | 2
Om m m A X * d a b s c D h h >
I MM*xmJ

•  ! 7 IF  I DABSCOST I * L f  .D S T h AX I 60  TO M 3  
0STM a X « 0 A * S ( O S T )
I S M A X * j

A l l  CONTINUE
| r ( 0 A 8 S ( M H | N B ) , L E . M j ! T H X l  60  TO A I A 
M J? T M X « D A S S ( M « !N 8 )
I M J | T * J

AI  a l f ( 0 A 9 S ( 0 H ! N 8 | . L E . 0 j l T H x »  60  TO 815
O J I T m x - O a B S ( Oh INft  >

A2n

Ai O
c

I 0 J  I T p j
CONTINUE 
• « t T t i S t A l O l O O O . O M M O S T

. r o p H At ( « u i i o r - e t s  o i r r c P C N T i a l s  o e c  . m a c a Rc s e c >. s t c s c c t m ) * «  ,
i 3 T | 0 » 2 l

CONTINUE

5 0 2

SOI

c READ IN STAR CA T a l O« F I L E  l i t  * 0 0  ASTRO« CORRECT | ONS

5 0 0  CONTINUE
. i r ( N C t N C . O ) R R l  T E C J * S 0 ? ) O 0 0 « A l # l 0 H A X . 0 H M H A * t I M R A A . O S T M a e ,
I i S H A X t O J l T H X # I O J I T i H J | T M X t | H J l T  

• .FO R H a T I » !  HAXIHUH U | l n 8 - E T S  O IF F S |N  DEC tHA t ST t * A X  O.M « ,
I • C N CO O F PJ IT T S✓ OBSn O I n BKT5 • , / S ( F I  0 . 2  ,  * ATO BS N OI • , I A t * I • > I

. f o p h a T ( * i c a t a l o g  Pl a c e  o f  s t a r s  u s e d  i n  o r d e r  or i o c n . * ,
1 » I *  F I L E  . . S T A R S . •«  )

00  S 20  ( • 1 . 1 0 7 8  
R E A D ! I I » I l t A R . O E R . R  
00  5 2 0  J * l , N 0 p S  
! F ( N S T a R ( J > . N C .  I 
OCC<J>*OCK 
NOTE H A U )  CONTI 
H A ( J | * R A
| F ( N A . 6 C . 2 ) r R ? T E ( 3 . 5  I 0 > J . N S T A R I J l , OECC J I , R A . I P . 1 0 . I * . | S . J M , J N . S 

„ FOR MAT ( •  OBS. * t I  3 . *  STAR • . ! 8 , •  CATLS OEC. R A * • . 2D2 Ö, 10 . 3 X , I R I , | 2 .  
» 2 « I X t T 2 ) . | A . l 3 . F S . l )

CONTINUE

, R a . | P . I D . 1 « . t S . J M . J M . S . A H A G . B * a €. NV AR  

. I S T A R I g O TO S20 

CONTAINS R a

SI 0 

52 0

S A 7
C

NAL APPARENT PLACES JN ORDER OF OBSERVAT 1 ON«• )

C

5 4 0

» R IT E  < 1 , 5 8 2 1  
F 0 R H A T ( I |  f t

00  5 3 0  J H l . N O R S
SET j . f ) .  FOR OBSVN. FROH UT TmEN CORRECT MEAN PLACE.  
T J 2 » T J * T | N E C J ) / T F  

CORRECT FOR GOING THRU H lONlG MT 
l F t T l N E l j l . L T . A . O O O )  T J 2 * T J ? * 1 . 0 0

CALL P T R X I M A I J l . O r C l J I . R I I  
CALL PR EC E SC R f t T J l . T J 7 . R 0 )
CALL A B E R R I R 0 . T J 2 , C c C . R l )
CALL NUTATCCRI . T J 2 tR O .K S H O R T I  
CALL R T P X ( R A t O E K , R 0 |

CN E^KS T l H | , O P T i o N ? N^ SHAYWBEN^TSRCO IN SAVe ( J )  Of  ALL PL ACES.  
i r i N C . N C . O I  S T * 5 A V E < J I * C 9 U l N
m a l * s t - p a  
T I N E ( J ) * S T
TO P O C E N TP i f  COOROS*• «M AL tOEK 
OE CC JI * O EK
H A ( J 1«MAL
c a l l  S M l F T I R A i  
CALL S h J F T 2 ( 0 E K )
CALL COOROSIRa .OEK t K H , K N , S t L S I « N , L O . L N . L S )
CALL COO ROSCST.DEK, HM, HN, S S , LS I 6 N t L g . L N , L S 1 

. IF  | N a . 6 C . 2 I « R  I T E (  3tS*»A ) J .N S T A R I  J )  , OCK , RA ,LS 
I L S . K M . K H . S . N M . m h .SS

FORNa T I »  OBS i . l i . *  STAR • t H . # UNREFRAK OEC i  
t l R l . I 2 . 2 l I X . I ? ) . I 4 t | 3 . F S . l i v 5 T * • , | 4 , I 3 , F 5 .  I )

IF  ( N B .E O .  1 ) CO TO S«lO

I S N . L O . L H ,

R A « « i 2 0 I B . I O . S I ,

r e f r a c t i o n  c o r r e c t i o n

( I H A L . O E F . B a R .T E N P . N A O .O E C O .P H I  )CALL REFRAXI  
O E CI J )« OE C O  
h a ! j ) * m ao  
R A « 5 T - h a o
CALL SM I F T 2 I  DEC I J ) I
CALL S h I F T I H A I J )  )

-

I L 5 . F H . X N . S . H H . H H . S S
. F O R N A f i «  08S « . I S , *  STAR « . I R , «  f i n a l  DEC.MA»*
t IR  I * I ? . 2 I 1 X , I 2 > . I 4 . I S . F S . 1 . «  R A « « . I A . I S » F S . D

c o n t i n u e

S I 6 N . L 0 . L N .

• 2 0 l s . 1 0 . 3 X .

r r i t e  x . y o a t a  i n  f i l e  i s .

. 2 )  , Y < J , I  I , V ( j . 2 )

4 0 0  « R I T E I I 3 I N 0 B S
DO 4 1 0  J * l . N O B S
* R l T C < t 3 > X < J . l > , X t J . 2 ) . V ( J . I > » T < J , 2 >  
1 F ( N A . 6 T . | ) R R ! T E I S . 4 2 0 ) J . A ( J * I ) , I < J , 2  

4 2 0  f ORHAT!«  OBS * , I 8 , «  X . T *  * , 8 0 2 0 . 1 0 )
4 1 0  CONTINUE

•  R ! T E ( 3 . 4 3 0 )  NOBS
4 3 0  FORHa T I *  F I L E  IS  r R j T t e n  r i t h  « . i s , *  o a T a p o i n t s «)

C CALCULATE PMY ♦ HA X ERROR.

TOO P H V * 0 . 0 0
e r r h a x - o . oo
00 7 SO J - l  .NOBS 
0 0 ( J ) * D E C C J ) - O E C 0 ( J )

a ! o ^  ! " V i s i o n  ( J )  • i 2 » 0 C 0 S ( 0 E C 0 (  J )  1 * 4 2  
O R E S ! J ) « 0 S 0 R T |  A ) / a Se C 
PH Y* PNV ♦ A
! F ( O R E S ( J ) . L E . E R R M A X )  60  TO 73 0  
e r r h a x « o r e s i J )
1 J 0 R S T . J

PHS« DSO RT <PM T/N OBS ) /ASE C m

. F O R H A T ? * 7 p 2 i  F O R ' o B S ^ ’ t o i o . i o . #SR N SP rR R N A x (A SE C )«  « . 2 F I I . S .
1 * (AT  OBS NO.  • .1 S t  • ) • )

I F ( N O . E O . O )  60  t o  1500

RESOLVE ERRORS ALONG Z ENI TH  l i n e  ♦ P R IN T  ERRORS i n  a r c  s e c . 

CONTINUE
0 0  8 1 0  J » I .N O B S  
CALL Z a N G L E I M A ( J )  , De C ( J ) » 2 A Y . P H I )
CALL z ANGLE( HAO( J ) . O C c D i J )  . Z A X . P h I  I
Z A ( J 1■ Z A X / P l o
OZ( J ) H ( Z A Y - Z A X ) /A S E c
0 0 ( J ) « 0 0 ( J l / A S E C  
D M C J ) « O H ( J ) / A S E C  
0 ( J ) « O f C O ( J J / P I O  
HAG »H AO (J )  
c a l l  s h i f t z i h a g i
H ( J ) « H A G / N R

1 F C N 0 . G T .  1 I R R I T U  3 , 8  2 0 ) J , 0 0 ( j ) . 0 H ( J ) , ORES( J ) . 0 Z ( J ) , 0 ( J ) , H I J ) ,  

82 0  .F CR HAT C*  OBS « . 1 3 .  * 0 0 «  « . F B . 2 , «  OH* « . F B . 2 , *  ORES* « . F B . 2 . «  07 «

s i n  b U v r ' k ' C % rC '  n t H ' 7m
I F 1 N 0 . L T . 3 »  go to  l o o o  
GO TO ! SOO

C PLOT 8 ERRORS (A R c Se C)  a BA IN ST 3 COOROS (RAO)

lOOn CONTINUE
CALL P l O T C N o B S .O . O O )
CALL Pl O T IN O B S .O . O H )
c a l l  Rl O T I n o B S . O . o RES 
c a l l  P l o t <n o b s . o . p z )
CALL P l OTCNOBS , M , 0 0 )
CALL p » O T ( N O B S . H . O H )
c a l l  p l o t i n o b s . M . o R f s
“ “  ■ “ L O T ( N O B S . H . O Z )

73 0

720

C

000

CALL Pl O K N O B S . H . O Z )
c a l l  p l o t <n o 8 s . z a , o o »
C a L I  P l O T ( N O B S . Z A . O h )
c a l l  p l o t c N o B s , z a . o p e s »
CALL Pl O T ( N O B S . Z A , 0 2 )

! ? ! «  F o i J S l f j i ' I S A T  t h E ENO FO LKS«)  
STOP

C LASER OATA INPUT

'■’ C) I On CONTINUE 
NOR 5 • 7 0  
* R I T C ( 3 . 1 1 20»  NOBS

I I 7 n F0P NAT 1« FNTER ' . | 8 , «  LASER OATA P | O N T S . « )  
SC a l e -  I . 0 0 / 3 1 8 0 0 . 0 0

1 1?0  
1 1 f to

D .4
0 0  11 6 0  K K K - l , 2  
00  11 50  F R - 1 , 7  
00  11 5 0  K- 2 . 1 . - 1  
H -5
CALL RCAOCH.R.  IE R)
00  1 ISO 0 - 1 , 5
l * J M * K - l  ) * 5 4 ( K K K - I  1 - 7 - 5
X < I .1  I * - 7 0 » 0 0 . 3 0 . 0 0 * ( J - l  >
Y I ! . K ! • « ( J )
X < I . 2 ) * - 4 . 0 0 * 7 . 0 0 * < K K « !  )
I F ( N a « « T . 2 .  A N o . t C .E « .  1 ) RR I TE 1 3 , 1  1 70  I I  .  X ( 1 ,  1 ) . X < 1 . 2 » • Y I 1 . I ) , Y ( 1 . 2 1 
FORMAT!*  P T .  LASER * . l R . » X . V  READ 1N *  * , 8 F 9 . 3 )
CONTINUE
j - 0
00  11 80  K - l , 7 0
IF C T C K,  1 ) . L T .  1 . O - l O )  60  TO 11 40
X < X . 1 > * X ( K . 1 ) * P I  0
X l K , 7 > * X ( K , 7 ) * H R
T I K ,  1 ) * - Y ( K ,  I ) «SCALE « I I K . I I
V ( K t 2 l * T ( K . 2 ) « S C A L E * X ! K , 2 )
j - j *  i
n S T A R I k ) * J  
GO TO 11 80  
N S T A R i r ) * 1 0 01 I 4 H  N S T A R f r ) *  

11 8 0  CONTI NUE 
NOBS

I IBP

1200 
11Ro

oo  i i f t o  r ■ I , 7 o
J * N S T A R U  )
X ( J , | ) * I ( K , | )
X ( J , 2 I * X ( K , 2 )
Y ( J , I ) • Y ( N ,  I )
T ( J . 2 ) - Y ( r . 2 )
CONTINUE
00  1 1 ^ 0  « - I . N O B S
IF  f M A . 6 E . 3 ) « R T T E 1 3 . I 2 0 0  IK *X <K, | ) , X | K . 2 ) . Y ( K , | ) .  
FORMAT!»  SORTEO P T .  NO.  * . 1 8 , *  X . Y .  * , 8 0 2 0 . 1 0 )  
CONTINUE

NOR HAVE STANOAR0 * , Y  VECTORS

ABERR

♦ 0 * 3 3 3 3 3 0 - 5 « T # T * T

EL T « I ABERR N 0 0 * I  
SUBROUTINE A B f R K l R G . T J . F C C * R A )

I M P L I C I T  R E A L * 8 1A - H , 0 - Z ) 
c a l c u l a t e s  s Tf l l a r  a b e r r a t i o n  .  
i f  e c c  z e r o  o m i t s  e l l i p t i c  t e r n s .
R f  AL• 8  N .R G!  3 )  . R A ( 3 )
P I - 3 . I 8 1 5 9 2 A 5 3 5 8 9 7 7 J O O  
P I 0 * P I / I 0 0 . 0 0
A B C O N - 2 0 . 8 9 4 0 o * P I O / 3 6 0 0 . 0 0  
T - ( T j - 2 8 1 5 0 2 0 . 0 0 1 / 3 4 5 2 5 . 0 0
S U N - 2 T 9 . 6 9 4 4 7 8  0 0 * 3 4 0 0 0 *  74 f t9  2 5 * T * 0 . 3 Q 2 5 0 - 3 » T * T  
S P l - 2 B l . 2 ? 0 " 3 3 3 0 0 * 1 . 7 i 9 i 7 5 0 0 * T * 0 . 8 G 2 7 8 D - 3 * T « T  
H * i 2 9 5 9 4 5 7 9 . 1 0 * T - 0 * 5 8 . T * T  
M - 3 S 8 . 8 7 5 S 8 5 . H / 3 4 0 0 . 0 0  
E P S * 2 3 . 8 5 2 2 9 9 n 0 - 0 . 0 l 3 0 12 5 0 0 * T 
C - O . n 14 75  I 0 8 0 0 - 8 . 1 0 n - 5 * T  
SUN-SU n - P I  0 
H ■ H •  p 1 0 
S P I • SPt  * p  I 0 
E P S * F P S .P  10
CALC.  TRUE LONG.  OF Sl jN FROM E O *N .  OF CENTRE.  
C O R R * ( 2 . O O * C - E - * 3 / 9 . D O ) - D S ! N ( H ) * | . 2 S D O « E - C * D S ! N ( 2 . D O - M ) » | 3 « 0

f . O S l N T j . O O . H l / l Z . O O
SUN*SUN*CCR p

IF  a  c 
ECC-E

C.rg.0.00)60 Tq
CONT I Nl»r
5 5 * 0 S  I N ( SU‘< I 
C 5 * 0 C 0 S ( SUM) 
5 P * 0 S I N ! S P I ) 
C P - O C O S I S P I ) 
CE*O CO S!E PS )

C - - A B C 0 N * 1 C S * C C * C C C * C P *
D - - A B C 0 N » ! S S . r C C . 5 P )

R A ( 1 | * R G1  I ) - 0
R A ( 2 ) * R G ( ? >♦C
R A ( 3 ) - R G ( 3 » * C . 0 T A N ( C P S )
RETURN
ENO

ANABEL if

* 0

100

C LT *F  ANABEL « 0 0  NO* 3 
SUBROUTINE A N A B C L C K . K O . J S , J T , J G . j B , J L . J R A , J R B )
GIVEN j  CONFUTES S . T . 6 . 9 . L
ANO R- t NO CX  L I M I T S  FOR ALL J - O . . . . K .

0 I «ENS ION J S C r O ) , j T | K O ) . J 6C K 0)  . j B | K D ) , J L C K O ) . J R A t K 0 ) , j R § ( K0 )

JS f KOA * 0  
JT  ( KO I * 0  
J G ( K O I * 0  
JR A ( KO) ■ - I 
J R B ( KO) * • t

0 0  1 0 0 - J * | . K
j t e h p - j
J T ( J ) * 0
CAL C.  G ANO TEST IF  INTEGRAL*
A G * S 9 R T ( \ . * 8 . * J T E M P |
A G - ( A 6 - 1 . ) / 2 . * 1 • E - 5
K 6 *  AG
B6«KG
BG -AG-BG
I F C B G t L T .  1 . c - 8  ) 60  TO 30 
J T I J ) * J T C J l 4 |
J T E N P * j T E H P . I  
« 0  TO 20

J 6 C J ) * K 6  
J S ( J ) - K G - J T C J )
I F C J T f j ) . E O . O )  GO To 80 
J U  J ) - 2
J T O * j T I J ) •1  
GO TO 40

J L ( J I ■ I 
JTO-O

K 9 * K G * ( K G - I 1 
JQC J ) M 9 / 2 * J T 0  
CAL C.  I NOE X L I M I T S * .
J B * J - t
I F C J . G T . S )  60  TO 70  
J A * 0
GO TO 90

J A *  J 
J A * J A * I 
J C *J A
i n j C . F 8 . 0 l  J C -K D  
K G * J 6 t  J ) - J 6 C  J O  
I F C K G . L C . 2 1  GO TO «0  
J A * J A * |

J R A ( J ) * J A  
J R B ( J l * J B  
CONTINUE 
RETURN

BEALE
C I T » 8  * e » L t  N O N L l . C A . J T Y  T C S T I N C .  V C . S I O N )  NOr, I t .
s u b r o u t i n e  b e a l c c n . n . k . h s . n o p t  . x . y . b o . f h . o f . f d . b h . s c a l c )

N O P T C l l  GT o FNABl S PRINT

;st?2sä:2,un,:°"m o,5r a ; ,i?c?^:EiNTtr * L
NORN AL 0 I S T . I  OUT ! ON * | T m S .DCV PROPORTIONAL ETC

• J  •  « •  ■ s . c c i r i c o ,

N O P T i j . N )  s i v r s  n o .  o r  p o i n t s  t o  b c  u s e o .

P l * 3 . 1 8 1 5 9 2 4 5 3 5 8 9 7 9 3 DO 
P I 0 * P 1 / 1 8 0 . 0 0  
S E C - P l O / 3 4 0 0 . 0 0



MM»<«n O P Y ! R ) * N f)PT C 3 » •  10 
MRR.. .ORY ( 1 I 
METM«NO»T I 2 I 
S T R A N 0 ■ 4 S 4 7 7 4 ,
CALC ® 4N()U t S ^ t l N O  * 1 )
TBANO(1 » « S T R A N 0 * 2 , * * 3 4
CALC »ANOUf TRa N O . h Mm » c

\  «

c MO IS« NO .  o r  O IF F E R E n Tl Y SCACCO D IS T R IB U T IO N S  £
c $ T A * T « S T A R T | N C  ic FACTO* »ITERATIVE MULTIPLIER '

»*r I s»  I o
S T A R T « ! . 0 » !
I A C t O * « 2 . 0 0

c c °n

C c a l c  r c T N f N , M , K , N s . i . R O , F O * i F F )  * 0
| F ! N R R . C E . 4 | R R ! T E ( 3 , 4 o 4 ) ( I , F O ( l # | l , F D t ! . 2 1 . I » l . N J  

4 0 *  FORM AT!*  r o «  » , M  . 2 o 2 0 * 10»
c a l c  b e Rv c n . m . k , n s . x . s o , o f .  i r r »  r

. 0 , s°
PHY«0 • 00

? S » U 8 , i i i l ? . i » . r B i | . i n . . *  so
r h y « p m y * ( Y ( I , 7 »- F O ( ! »7 » » * * 2 * 0 C 0 S ( X | 1 • ! » I • • 2  

I I «  CONTI NUE
N U « 2 *N - K  c
s !G S o » b h y / n u  c
•  » I T E M ,  12 0 IM rT M ,M M M ,S l G S Q * N U ,P M Y  «0

120  . F O * N A T ( / »  PEACE * *  . 1 2 .  • » N OM . I N  TEST 0 N I . I 4 , »  PNTS OF S a mPLF SPACE* .
i / *  S I GSO( NU1■ * . 0 1 4 . 6 .  1 4 ,  • P H Y » * , 0 1 4 * 4 »  Cq

c * o
DO 10 00  I T •1  .H O I S  C

c 1000

c
| F ( » C T m . E O * 1 . 0 P . H E T m * E « * 3 ) G 0  t o  s s o  

c «E Th « 0 . 2  P B o r O P T f O n Al • • • • •  .................... ..
S K A L E » S T A R T *F a C T O R « * !T  
00  5 I 0 J » I , K

5 1 0  SC AL E»J ) * S K A L E * 0 A 4 S l B O l J l »
GO TO 100  C

c h EYm» | , 3  IN TER VA L e t c  S P E C i r i E O  ..............................................................  c
5 5 0  S * A L C * S T A 4 T « l 0 0 . 0 0 * r A C T 0 » » « l T  C

00 S3 0  j » I , K  C
>30 SC AL E<J » » S P A L r * S E C  

SCALE * 3 » » S K A L E * P 1 0  
GO To 100

c c

100  CONTINUE 
R » 0 . 0 0
S « 0 • 0 0
DO 10S0 J » l  .K  10

105«  B 0 A V ( J ) » 0 * 0 0
MM«1 c

C 1 on
20 0  c o n t i n u e

! r I  me Tm .  G f  . 2 > GO TO 23 0
C

c UNIFORM 0 I STR f BUT I On ...............................................* ........................... .................................  C
r a n O ( 1 ) » T R A n D ( » m ) * 2 . * * 3 4
CALC R a N O U IR AN O .K I  C
| F ( N P * , G E * 2 l  • *  I T E 13 » I 3 0 I I T  , MM,STRAND.RANO 

I 3 n r O P H A T C / ! A , » T M  T E S T * , | H , * T H  P N T .  S T P A N O .P A N O » * . C S F t * , s ) »

00  2 1 0 J » 1 , K
O P » IP A n O I J I - O . S )  110
p H ( j ) « A 0 ( J ) * O S * S C A L E ( J » C

c,SN? i ! «  " 9
§ .............................................................................  ion
C N O . m ac  O I S T . I H U T I O N  nOO

l i e  c
CALL S A U S S I I . A N O . O * 1 » . 0 . 0 . » » « o r  I c
B“  ( J >« B 0 ( J I ♦ . ANO»» S c * L C t J I  i o n

m n  C O N T IN u t  110

' .........................................
[  s o n

C S C N I . A l t  .U N C T I O N  V A L U fS  .

Cion ........ .
4 0 5  r  0 4 0  A T I • PM» * , 1 4 . 2 0 2 0 .  10»

4 | N C » 0 . 0 0  
S I N C » 0 . 0 0  

c

c GENERATE 4 I N C . S I N C  c

320 8 D A V f J »»BOA V I J »* 0  ABS 1§ N 1J ) - 8 0 ( J ) )  f

00  34 0  I » » • N %
B O i r c t » « o . o o  $
n 0 i r ( 2 t « 0 . 0 0  £
00  J I O  J * l , i  <•

b o i n c ? i V » ! b n ? j ) - b o I j ) i • o r i I »J »c »
j r ( N P 4 , « E . * » 4 4 | T E ( 3 , 4 0 4 I B 0 1 N C  C

4 n a FORMAT( • BO lN C » * . 2 0 2 0 * 10» >
B 0 1 F I L ) « B 0 I F I L ) * B D 1 n C ( L I  c

31«  CONTINUE

•  T 2 - O C O S I I  1 1 . 1 »  > 
r o i r T  I » » e n i  i ,  i  » • r i> <  i  • t J

S | i c i i ! ; c M r o i r 7 n . B o f r u n . * 2 M r o i r ( * > . B O i r f 2 » » . . 2 . 4 T 2

i  14:» ? « ?  f s& p
401 FORMAT I • 80  IF  I , 2 » F 0 | F I  . 2 . R 1 NC»STNC» * • 4 0 1 5 . 7 »
340  CONTINUE
c ACCUMULATE NUMERATOR, DENOMINATOR An O RETURN FOR NEAT Mm p o i n t

c S » S * S lN C * R 2
R ■ R ♦ R I N C >
IF(MM.GE*MHM»GO TO 4 0 0  t
MMaMMRI 
GO TO 200

c c a l c u l a t e  b e a l e  f o r  T h i s  o i s t r i u t i o n

moo q n o r m r r / s 40
E N«F

C CALC ♦ RR ITE  AVERAGE B - O I F F 5
C 70

BD AV G» 0* 0 9
00 ! 0 4 0  J«  I , K

I F ( J • F 9 * 3 ) GO TO I 0 A 0 
BOAVG»BOAVG*Bf>AV(J>

1 0 A r  CONTINUE
B O A V G » 8 0 I V 6 / ( M M M * ! K . | | * S E C I
B O A V G 3 » R O A V I3 » / |N M M * P a O)

C
» •  1 T E * 3 • 1 0 7 0 » B 0 A V 6 .B 0 A V G J

10 7« .F O R M A T ! .  R A R M O IF F  A V G . ( S E C ) «  • • 0 I ft * 7 , » P A R M ( 3 » 0 l F F  DEGREES» * .
1 0 1 R . 7 »

C RETURN FOR N E l T  d i s t r i b u t i o n  s k a l e  c

f o o «  CONTINUE S
RETURN }
ENO I

BESLYR )
c I L t  •  F R» ".C YC ••(>!) ■ 7

S " " » C ' I T | ' . I  H F SL T N !  YR .T  J»
f  f A l P U L A T l S  J . D .  OF R l G f N N l N G  OF HESSECCl AN YEAR ,

U«U* L E R R f r i S i n . i  y « , T j , T au
1 r  . t  X« 1 1 On C
T j «7M 1 S « 7 « .  3 I 3 S 7 f i « *  T A j *  ! 36** . 2H71 4 8 7 4 1 ) 0 - 0 .  A5 A D - R*  f  AU I C
./F T UR )
r 40

CMPRES
e c t «n c h p r f s  m d o o «•SUBROUTINE CMR»CS(K,MaSK,A.G.SCAl C.m SUM)
CALCULATES MSUM»SUH of MASKING FUNCTION A COMPRESSES M a TR|* A A VECTORS G A SCALE FROM K DIM. TO MSUM DIM, t1F m Su NRK).N.B. M A SK(J » «0 FREEZES RARM(J),

1MRLIC1T RFAi*8(A-H,0-2»DIMENSION MASr(K),A<K,K),G(K).SCALC<K)
L ■ I
m Su m .o
00 100 J»1.KIF(MAStf CJ» «NE.O» »SUM.MSUM*!
CONTINUE
IF(MSUM.CO.K» GO TO 1000 00 10 1»I.h s u m 
IFIMASk IL».NE.O» GO TO 40 
L» L ♦ 1 GO TO 30
GC1 »»GIL »SCALE! 1 »»SCALE I D  
M •  I
00 20 J»1 .MSUM
1 F INASK(M >,NC.0 I CO TO AO
M ■ M ♦ J
GO TO SO
SET AIJ,I »■A(M . L »I NOE I»J* I 1-1 »«MSUM 
A ( I NOE * I■A (M , L )
H • M ♦ 1
L “C ♦ 1
RETURN
END

COMPOL
EC T■ I COMROL ROO NO.» 1SUBROUTINE C0MB0L<N,K.K0.I*»X,P,ALRHA.jStjT,j6.JQ.JL«JRA.jRB) 
EVALUATES ORTm OGONAl POl t NOm IALS GIVEN MAXIMUM OROCR K 
ANO FORSYTHE COFFFlClFNTS ALRHA.
1 MR| IC1T RFAL*B!A-M.O-Z»
oiüESüsü

CALL ANABKC<K.K0.j 5,JT.JG.JQ.JC.JRA.JRB)
00 lo 1■1. N 
00 10 M»l , 2  R( I .KD,MI»1«00 
GO TO 500
CALC. RCJ»KQ»JO IJ »
IF(KQ*f Q.OI k o »kd 
L■JC1J »JA»JRA(JI 
JB■JR B (J »
00 IAO I• I * N FORH SUH
A »0.00
Op 110 JR»JA•JB 
JC • JR|F(JR,f O.O) JC»KOA»A*ALPHA IJ,JC*N»4Pf 1 •JC.P»
P< I*J.M|»I( I,L»*P1 1 .K0.H1-A
CHECK IF R (I.I»»"«I.2».1 F C 1 R•E 0•0 » GO TO 3Ö0 CHECK IF BOTH M OONf.
IF(M.E0.2» GO TO sooH ■ H ♦ I
GO TO 100

00 310 I• I . N
P! 1 .J.7»»PI 1 .J. I »
ARE ALL ORDERS FINISHED.1 F (j•E0 • K I GO TO AOo 
M» 1

GOJT ̂ 100
RETURNEND

COORDS
ELT«Y COOROS H00»|SUBROUTINE COOROSIRa .OCC.KM,KM,S,LS|GN,L0.LN.LS»
1HRC IC1T RE A L•6 CA-H.O-Z»
CONVERTS RADIAN Ra .OEC TO SERARATE h OURSIOEG.) M iN iSEC 
TO PRECISION OF O.i SEC TIMp , S£C ARCL 5 IGN»1R» OR IR♦ OERfNOlNG On SIGN OF 0EC
PI »3.14 I542A5 35B47R300 
P 1 0 » P I / I 8 0 • 0 0

CONVERT c o o r d s .
RAA»RA«|2.00/PI KH.RAA
RAA»(R a A-FM» *AO.OO K M«R A A
5»!RAA.KM»*40.00
I F I S.LT.54.400» GO TO 50S»0.00KH.KH* J
IF(k m .m E.AO) GO TO 50K H«0
k h »k h A 1
IFIKH.NE.24» GO TO 50 K H«0
CONTINUE

LSIGN»|R*
de c a»o c c /p I 0|f (OECA.GE.O*DO»GO TO 40 L SIGN»1R»
DEC A »«OEC A
l o -o e c a
OECA«!ore a-LO1*40.00 L M*OE C A
DECA«IOECA-LH)*40.00LS*(OECA*0.500)IF10ECA.l t .S4.000» GO TO 70
LM«l h * 1
IFILM.NE.40) 60 TO 70L M«0
L 0»L0*1
CONTINUERETURN
ENO

DATGEN (PEST)
e i t «b o a t g e n  t e s t d a t a g e n e r a t o r  m o o r 3.SUBROUTINE fTATGEN ( N ,M ,K ,NS . NOPT ,BARm ,x ,Y)PROGRAM 1
TELESCOPE POINTING ERROR m OOEL O a Ta GENERATOR

NOPT I ONI I ) ZoT.....7.7.........7.7.7"""" ........ ----OPTION*
K CAROS CONTAIN P aRm VECTOR 
N0PTI2I GE 1 FNABlES PRINT..
i h p l i c T t r ea l *a t a -m 7o -z )" " *.............  *"*0 1 -FNSI ON NOPT (4»
OlMCNSfON X (N ,M ) , YIN .NS» .FARM IK »
R I •3.14IS424535B4743 Rio«P 1/180.00 N*4»NÖBt » 2)

IF (NQPT I I 1 .|Q,0) GO TO 40 RFTURN
RRITEfl.fi IK
FORMAT!» rN Tf R THE *.|4,»m OOCL PARm S(| PER RECOHo»*)00 10 J»1,K



D .6

4 3«
40
c

i on

I 0«

c

?7 0

7 * 0
2 8 0

S.s

C* L L
p • * «  < J » «0»*
CONTI  SUE

G r * E R A T F  X- VECYOR I N I NTERVAL 0 E C 1 . . D E C 2 .
CONTI NUE 
OCC1* - B 0 . * P 1 0  
0 C C 2 * ? 0 . * P I  0
NA t .
M A ? •  I •
SELECT GRI D S OT( N )  SQUARE 
A N •  N
L N * D S QP T ( AN I 
A N » I N
D 0 E C * < D E C 2 - 0 C C I  ) / A N
0 * * * <  m A 2 * m AI  ) / AN 
00 30 I •  I . L N
A ! - I
00  30 J *  I • L *

I J - L N
H H . i i  « o r  c i * a j * o o c c
* < I I . 2 ) * m a i ♦ A i »Oha
1 r  ( N r *  • c o • I ) MR I TE I 3 • 40  I > Af  , A J , X (  I I • 1 ) * X I  I I , 2 )  
r O » * A T < *  401 OAT 6 f  N • , 4 0 1 S • « >
CONTI NUC
c o m p l e t e  o a t a  j o i n t s
L S t O*»»N-LN • I
] r ( LSTßP . L T .  ! » 60  * 0  l OO
00  40 j * 1 . L 5 T OP <
A J *  J  I
L L * J * L N * * 2  1
X < L L . I ) ■ < OEC2 - D C CI  ) / 2 « D O 
X < L L . 2 ) * ( M 4 2 - m A I ) / 2 . D 0 - A J * 0 m A / | 0 . 0 0  
i r ( N P R . E 0 # l » « 8 ! T f l 3 . 4 3 0 )  A J . X ( L L * I ) * X ( L L * 2 )
FORMAT«» 4 3 0  0AT6CN » . 3 0 1 5 . 8 )

CONTI NUr

CONTI NUC
c a l l  n o o e l  f u n c t i o n
CALL C C T N I N , H , K . , N S » I  . P A R H. T  » I )
CAL C.  p m t E 
p m y C * 0 . 0 0  
00 120 I •  I • N

I S 6 » * t i l l 2 ) * X 1 | . 2 ) ) * * 2 * 0 C 0 S I A R G ) * * 2  
PHYE- PMYE♦ ! Y< I . I » - * (  I . »  » » • • 2 * A » «
CONTI NuE
« ? N S » 0 S 0 « T | P M Y r / N l 4 3 4  00  « 0 0 / 8 1 0

PR I NT

. F S S i TA ? ! ? * &° 8 ^ N 6 E 8 R 0 8  OATA ♦ OAT a VALUES SC * «  8T O^ T r E N * / *  8A8M'
T s * *  * S ( 0 1 5 * 8  I 1

F OR MAT ? ^ 1SUm SOUAk J RES ERROR » • . 0 1 5 * 8 » *  8NS A R C S E C * * , F 1 0 . 4 )

I F ( N P r ! n E « 0 I 8 8 I T E I 3 . 4 i M « X I I » | ) » x I I . 2 ) * Y < I . I ) » Y ( | . 2 I
FORMAT! »  X , V • ( • • I 3 .  • » 8 0 1 5 * 8  )
RETURN

DATGEN (SURFIT)
S U B R 0 U T ? N f 6 0 A T G C N l N , K , K 0 . N 0 8 T , X , X X t Y » R A . R B , R C )

t e l e s c o p e  p o i n t i n g  e r r o r  o a t a  s i m u l a t o r  ( R a n d o m  v e r s i o n )

•*.*.».. •••••••••••••••*•*•••*•*•••••*********
I M P L I C I T  R C A L » 8 ( A - M . 0 - I )
0 I ME NS| ON N OPT I R )  . X ( N , 2 I  , X X | N , 2 ) * Y ( N • 2 )
DI MENSI ON P I  2 )

REAL Ci x a 7 ? 0 0 ) • *  XB I 2 0 0 )
P I  « 3 . 1 4 1 5 * 2 4 5 3 5 8 9 7 * 3 0 0  
P I O - P I ✓ 1 8 0 . 0 0  
S E C » 3 4 0 0 « 0 0 / P f 0  
N PR * N OPT ( I )
F X A ( 1 >*RA 
K X B I 1 »* RB

p e r t  o n l y  i f  n o p t i 2 i * 2 
I F  I N O P T ( 2  I . C O . 2 )  GO To 300

GENERATE X VCCTO« t N RANGE 0 C C l « « 0 C C 2  * M A I « » N A 2  
O C C I • • 8 0 • * 8  I 0 
0 r C 2 « 2 0 . 4 P t 0  
HA 1 ■ - I •
M A 2 •  1 •

CALL R a N OU ( K X A . N )  
c a l l  R a N OU ( R A R. N)

CONTI NUE

| F I N O E T I  2 I . S C . I >SO TO 2 0 0  
c » n  " o o C L  f c t n .
C I CL  f c T N I N . N O P T , « . T I
s o  TO 2 T0

e » L L  p o l t m o m i . l  T r S T  g c n c n » t o « .
CONTI NUE .
C * L L  » I T E S T I N . N O E T ■» . X * . T I

I F  I N E N . L T . I I SO TO t l i

r AL CUL ATE PH!
PH 1 * 0 . 0 0  
00 120 1 * 1 . N
A R G « ( y ! !  l i ) * X C I  . 2 )  » • • 2 * 0 C 0 S ( A R 6 ‘ * 4 »
PH I . P H  I ♦ { Y ( I , !  ) -  X < I . 1 ) »4424ARG

82 0L
8S0

8 8 0

c

* * ♦
TTf l

F OPNATf »  NO Oa t a  PERT u RSa T I O N * ) 

CON T I N u E

o p t i o n a l  .Pl o t  o r  x o a t a  
I E ( N P R , N E . R )  GO TO 88 0  
N S - . F A L S E *
0 0  8 S 9  I ■ I . N 
x x f i ,  n  •  x ( f , i  j 
X X ( I , 2 ) * X ( I . 2 )
CALL P l O T L P (  1 . X X . N . ? , I  , N S * * * *  )
CONT! NUE
RETURN

RE AO F A I L  
WRI TE < 3 . 4 * 8  I NVAR 
FORMAT( *  I L L EGAL  
CNO

CARO I N P U T . N O.  OF VA RI ABL ES * E A o a ' » l 4 1

DAPERT
E L T . G  , 0 APERT OATA PERTUJ 8 A T J ON ^ P 0 U t I NC N00 »  4 .

? : S ? ! AS a?A Y t N . N S »  PCRTURB5 I T R f T n  STANDARD O E V I A T I O n NOPT ARC 

RE A L * 8 Y I N . N S ) . X ( N , M ) . R ( N , N S ) . P C R T , Y S M l F T , P M r , S T O . R H S . S C C  
REAL Y t ANO. PERTR 
DI MENSI ON N O P T ( 4 )
S C C * 3 . 1 4 | S R 2 4 S 3 4 0 0 / ( 1 8 0 « 0 0 4 3 4 0 0 . 0 0 )

1 . 2 )  I K X A ( 1 I * F X § (  I I

300

301

CONTI NUE
r m s « d s q r t ( P M l / N ) • s e c

T ' j f i D i i i ^ ^ i s s i I . S K K r K . V I l S p M S  5 « s ! ? ! m " , ,s i s e c i " '

r AT A  PERTURBATI ON FOLLOWS.
CONTI NuE
* 0 » P « T | H r N T E «  Et RT « « P L I T U OE  I «  »NCSe C l » N T  F N T l . ' l

^ ^ E ^ ^ i r H S i T v I i ^ ü l S O  T 0 , NN 
J E <P E RT . L T • I . 0 - I 0 ) GO TO 8 0 0

AP CR T * p E R T « P I / ( 1 8 0 « 0 0 * 3 4 0 0 « 0 0 >
K I A (  I I ■RC 
NN * N*  2 
CALL R a NDUI  
p m  I * 0 • 0 0

• GOO) «APERT

40 I 
6 0 «

C

c

4 2 «

4 3 «

C

» 0«

W ! 2 ) ■ 6c  o s ( x ( i .  I ) )
00  6 0 0  J * 1 . 2
1 R A N D * ( I - I I • 2 ♦ J
y S m ! F T » ( K X A ( I R A N D I - O . S - W » --------

CONTI NUE
R M 5 * 0 S 0 R T ( P N I / N ) 4 S E C

R R ! T f ( 3 , 4 0 2 ) P F R T , P M | , R M S

C AL C.  F I N A L  P m I 
pm  I * 0 . 0 0  

00  6 2 0  I • 1  » N 
P 4 - 0 C 0 S I X l l * | l l

.............*
C ONT I Nt l f
R N S* OS QR T( P m I / N ) * S E c

of  * . t s . . . d i * . * . * i * . * >

• ARCSEC. ( P - P  ) *PM|  I n TRo *«

P M Y* 0 * O0
CALL r t i n . m . n s . x . r i

P E R T « N O P T ( 1 1 * | 0 0 0 * N O P T ( 2 I * I 0 0 4 N O P T ( 3 l * l 0 R N 0 P T ( 4 |

I R A N 0 * 7 R 1 2S3 
00 SO 1* J  » N^

CALL 6 A U S ^ ( i r a n o . p Cr t r . o . o . y r a n o i  
Y S MI F T * T R A N 0 / W ( I . J l
Y ( I . J » - T ( l , j >y * S M ! F T

5 T 0 * 0 S 0 R T ( P m Y / I 2 . 0 0 * N « 1 . 0 0 ) »
RMS«o SO RT ( P m Y / N ) / S Cc

F o i M A T l / » ° ’ s u 2 U u A R E ROr  PERTS GEN BY O A P C R T - « .  D l S * l  
1 0 1 5 . 8 » F I 0 . 4 I  

RETURN 
END

DERV (5 «um.)
H5?7li5̂ -SU:*57i!ts3iig3So’*25ii5i«..
DI MENSI ON OEC( 1 4 0 > . H A ( » 4 0 1 *GC(  S ) . E ^ (  SI  
OEFI NE OARCOS( X0Um > * 0 a C 0 S ( * 0 U M )

O E E I N f  OARSI NJ  X O UH ) * OA S I N ( X 0 U N 1

I 0 F R V * I 0 E R V * I
NPR* 0
TMETA* PARM( I 1 
PS I * PARM t 2 >- P a RM C3 I 
P H Y* PAR M( 3 1  
ET A * P  A RM( 4  )

NE« I  MOD* 2 .

hodel  pa ram ete rs

o e c * p a r m ( 5 )

« R J TF » 3 . 8 2 0 )

S T - O S l N ( T H E T A  I 
C T * D C O S ( T H E T A )

S P - O S I N I P S I )
C P- OC OS( P S ! )
S E * 0 S I N ( E T A )
C E * O C O S ( E T A )
00 I SO J * I  . N 
OEC( J ) ■ X X ( J • !  )

5S5:si:3l:i!?lS!8?S«icS?5i:SS4..*E.

2 *DC OS ( DEK ) * S T 4 S P M * C T . D S | N ( 0 C K )
CO* OCOS( OE K )
5 0 * 0 5 1 N ( OC K )
F A C 4 I . 0 0 / ( * 4 # 7 4 T * 4 2 )
DEW * 0 ARS I N ( 2 )  
m a k - o a t AN( - T / X  »
l F ( N P R , f O . | )  W R | T E ( 3 * 4 2 S I  DEC ( J ) , Ma ( J ) • D C F • MAF 
FORMAT( *  42 S  OERV * » 4 0 1 5 * 8 )
F A F ■ 1 . O O / O S O R T l I * 0 0 » Z * 4 2 )

G G ( 1 ) * F A F * ( C O * S P M * C T » S T * S O )

X!8i:iS5CSi!*!5ift5UTkS|;i!.«5c.;-.;eE--*»
P A F » I * 0 0 / ( l . 0 0 * 0 T A N ( 0 C C ( J i * O E C ) * * 2 * S E * * 2 )  
G 0 0 * - 0 S ! N ( 0 C C ( J ) 4 0 E E ) * S E * P A C
f o o - p a f * o t a n ( o e c ( j ) * o e e ) * C t  
g e o * p a c * o c o s <o e c ( J ) * o f e ) * CE
r E 0 * P A i f * S E / 0 C 0 S ( 0 E C l J ) 4  0 E E ) * 4 2  

G 0 * ( C T * C 0 « S T 4 S P H * b 0 ) * g 0 0 4 C 0 4 S T * C P H * E 0 0

G E * ( C T * C 0 - S T * S 0 * 5 P M  ) * G E 0 4 C 0 * 5 T * c P M * f E 0  
G G ( S ) * G E * F A F

o x * c o * b p * s p m * s t ♦ s o * s p * ct  
0 T * C 0 * C P 4 S P M * S T ♦ s o * c p * ct

0 Y * - C 0 4 ( C P 4 C P m - C T * S P 4 S P m ) - 5 0 4 S T * S P
F E ( 2 ) » F A C * ( Y * 0 X - X * 0 y )
O X * - C O * ( C P * S P m * C T * S r * c p h ) 
o r *  C O * ( 5 P * S P m- C T * C P * C P m ) 
F E ( 3 ) 4 F A C 4 ( Y * 0 X - X * 0 y ) - P F ( 2 )

X G * S T * S P * C 0 - S 0 4 ( C P 4 C P m - C T * S P * S P M )
X F * C 0 4  ( C P* S PM4 C T * SP * C PM)
Y G * S O * ( S P * C P H * C T * C P * S P M ) ♦ C 0 * S Y4 C P 
Y F « C 0 4 ( - S P 4 S P M 4 C T * C P * C P M )
0 X * X G * G 0 0 - X F 4 F 0 0
0 T » Y G * G 0 0 - Y f * E 0 0
F E ( 4 ) R F A C * ( Y * 0 X » X * 0 Y )
0 X * X G * GE O - X F4 E E O
d y * y g * g e o - y f * f e d
E F ( s  ) * F A C * ( Y » O X - X * O y »
00 I SO F F * l , K  
O F ( J , FF  . 1 ) * G G ( FF )
O F ( J , FK . 2 > * F F ( KF )

FORMAT( *  6 2 6  OERV * . 5 0 l S * 8 >
RETURN
END

PERV (7* imoo
E L T * 0  EXTENOEO 7 4 *  MODEL D E R I V A T I V E S  M 0 0 * E9
SUBROUTI NE D E R V ( N | M f F . N S » X X « B . D E  t l o E RV )
CAL C.  T e l e s c o p e  P O I N T I N G ERROR FN D E R I V A T I V E S  RRT M 

M I S A L I G N E D , S k e w  f OTL .  TELESCOPE w i t h  2 e R 0 OFTSETS« 
P E RI OD I C  ENCODER GEa R ERRORS ♦ STRUCTURAL F LEXURE.

i m p l i c i t  r f a l * e c a - m , 0 - 2 )
0 I ME NS I ON x X ( N . M ) t o F ( N t K » N S ) . B ( F ) . G G ( 3 0 ) * F F ( 3 0 )

1 O E R V * I O E R V * I  
N P R •  C.
P I * 3 . l 4 | S 4 2 6 S 3 S 8 f 7 t j 0 0  
P I 0 * P I  /  I 8 0 . DO
P M | * - ( i S . 0 0 4 | 4 . 0 0 / 4 Q . 0 0 4 ) 7 . S 0 0 / 3 6 0 0 « D 0 ) * P I 0

mODCL PARAMf T e RS.



D .7
T M »- y A • 8 ( 1 » 
pmv.n(3 >
• 5  !•* < 2 »-HI 3 )

S’«"SIK(TMf T4 )
CT*DfOS(T hf T A)

S°pOS INIPS1 )
C P*"'C ( PS I )

aconst«is.oo*wi
A I •« .Op/ 1 «4 , 00
• 2 *7 0 «0n*pI 0 
4 3«C . ft«,DO
4M« ) •».jOo/ACOnST 
4S»M.8 0 0 / ACONST 
4 6 * ! • ? 8 0 0  
4 7p »0 »HO/ACONST

«*n• • isi ?.oo 
®dr»pda/ 3 2 .no 
“««■Ht.OO 
p h R p Pm A / 3 2 • 0 0

00 ISO J» 1 . N 
Of C • x * ( J , 1 )
M*»nf j.2)
CPH«0COS ( P W Y ♦ M A )
SPh» 0 5 ! N ( Pmy*m4 )
c o - ocps  t o r e  > 
s o * n s i n ( d e c >
CHPOCOS(Mil 
Cpr'4*0 f 0 S(pO4 pOEC I 
sp0 4 poeos« poarOEC )
CpOflpf»COSfPO8 «0 tC)
spdb-ocos(pob*dec >
CPhB»DCOS(PHB«HA>
5 * M R p OCOS ( P M f t . N *  )
Cp«4pDC0 S(Pha*mA I 
Sp«4»f>C0 5 l ** m 4 • M A )
ShpOSINIHII
*• co»(rp#r8H-cT«sp»S8Mipso*ST«sp
TP. cO«(SP*CpHPCT*CP*SpH)*SO*ST«cp
7» r0•St•s°K*fy«So 
r4fpI ,0 0 /<

r 4 « »i .OO/OSqRtI | .«0 .Z r• 2  )

r,f,( 1 )pru»<CO«SPM»CT-?T»SOl 
&G( 2 *«0 ,C
& G ( 3 ) *F A4 rC0 RSTrC*h

OX»CO»SP*SPh*STpS,'*Sp*CT
OrpCO*CP»SBMî T,Sft»fP*CT
r r ( j I p  r  4 C• ( y r o x - x r Oy )
O'p-CO*ICPM«S4 *CT*Cp»Ŝ M)*̂ 0 »ST«Ĉ 
;».-m .(Cc»,Cpm. ct̂ p«sI»h)-SO»ST»SP
ff(2)rfacriyrox-xrOy)
0 XP-C0 »(CP*SPh*CT*̂ P*ĈM)
0 y p Cf'»»SP*SPN-CT*CP»C,,H) 
m ) l" r 4C»(Y*ftX-X»0 Y»-fF(2 *

T*0
G& I I ••S0 »r»4 ! N I B I 4 I ) / 0 S Q R T ( | .0 0 -S0 »*2 »DC0 S(p(M) ) rr 2 t
rF(M)pnT4Hl0CC>«0f 0s<*<M) > / ( I.D0 r0 T*MDEC>RR2*0 5 iN*BIR1 I

Twoce
GG(S 1• t , 0 0  
GG l 6)»CD 
GG » 7 ) «SO 
GG»B»«Cp 04 
GG » 9 * «SP04 
GG( 1 0 )»C POP 
GG M I IpSPOB 
0 0 160 4 4 ■ | ? . | 9
GG(rr)pQ, 0 0
DO 170 KXpS.11 
rnr» »po.oo
F F t I 7)pr m 
F F (1 3 )pSm 
F F (IH 1.CPH4 
rn is»«SpM4 
FF ( 1 6 )PC PMR 
FF K 17 » pSPMH

rou*
GG(2 0 )«OCOSCPm! )4 fM*Sft
rr(la)poc os(phi )»c o»Sh 
F F 12 0 >«0 . 0 0

r I vf
GG<2 |>R0C0 S(A1R0 1 C*a2 )*DC0 SIA3 *Ma> 
rn2iipft,no
r r i| 9 )p(4 8*4S«nsiM<4 6 *0 tc»»*M»-A7*occ

00 iso KKp| ,i 
0» t j . « « , \ >•g gI * * ) 
orij,K»,?iprri»ri 
CO» T |»lu€
1 r ( NP* . **r , I I f, 0 To 62 7
* H IYf ( 3 .6 7 6 ) ( < OF ( J, 4 4 , 1 ),K»P| . 4 ) ,J«| ,N )
•»1T{;!3 ,6 2 *> f (0 F(J,4 4 .2 ).4 4 R| .4 ) , J« | ,N|
rop-4Ti» 6?6 ofrv *, so Is *«) i
RC Turn

C

M4-HA«R, 1 7 )rCh»S< 1J ) •5 m♦ft(
1 ♦* < U)*CPMR,R| I 7 ) R S P N ft

1 *4 ) • C P H A ♦ B (IS)»SPMA

82 1 

C

83 2

C

-DSINIPMI)#C0

DERV (7 £  inch exact)
t l T p O  EXTENDED 7 M B ( t x 4 C T ) * * 0 0 E L  D E R I V A T I V E S  H0 0 « 2 r  
SUBROUTI NE OERV ( N . m . k . N S . X I  , 8 , 0 r  , l OCRV I
C»LC. TEIFSCOPF POINTING ERROR Fn OEKIVATIVES *KT HODEL 
MIS4LIGNF0 ,SKFP EOTL, TELESCOPE W|TM ZERO OFFSETS* 

Pfwlootc FNCOoF» GEaP ERRORS ♦ STRUCTURAL FLEXURf.

IMPLICIT RfALr8(A-M.0- 7 >
O J M E N S f O N  X X ( N , M ) , o F ( * r , K , N S ) , » ( K ) , O ^ I 3 0 ) , H P ( 3 0 )

lOFRypI OE R v♦1 
NPRp O
pI•3 •1m1S9 7 6S3S8 9 7 * 3 0 0  
p I Op P I /  1 8 0 , 0 0
P H f p - » 3 S . O O * l 9 . D C / 6 o * O O p | 7 * S O O / 3 A O O * 0 0 > * P I O  
T MF T A p R ( 1 )
PHYP0 I 3 ) 
p S I • R (7 )-B( 31

S T p O S I n ( T h ETA)
CT p OCOSI  Tm FTA )

S P p P 5 ! ‘J( PST )
C P-ocOS(PST)

ACPNSTp 1 S •0  o • p 1 
A I P9 .0 Q/I *4 . 0 0
a2 *7 0 •0 0 »P10
4 TeO.BSOO 
4 MP I *4•?0C/ACONST 
4S*M. 8 0 0 /ACONST 
4 6«1 , 2 8 0 0  
A 7 p 1 0 , 0 0 / ACONST

P iy 4 ■ I S j 2 . 0 0
p o b b p o a / 3 2 . 0 0
PM4P8 G9 . 0 0
PmRp P h a / 3 7 . 0 0

no  i s n  j * I  , n 
OF c ■ X X ( J , I ) 
h A « h  ( j  , 2 )

onF FNCOOER ERRORS

8S I
TERS C

fsn

r o p o c o s ( o f c ) 
so«os  I N( OfC ) 
CmpOCOS(mA ) 
CPOApOCOS(POApOCC ) 
SPOAPftfOS(P 0 4 • 0  E C ) 
c p o p p o r o s ( p o b • o e c ) 
SPORpr>f os ( P0B*0 EC ) 
c ° M p p o r o s ( p h B i m a i
SPmHpOCOS( P M 8•M 6 ) 
c PmApOCOS(PhA.hA )
SP«4pOCOS(P H A•M A )
SMP0 SI»)(M4 ) 
o(> a i n I 
OF (j . I ,
OF ( J , I ,
or I J.S , 
or (j,a , 
or I J ,7 ,

OF I •) . 9 ,
or ( vi. I n
OF I J , 1 1 
OF ( J , 1 7 
OF I J , 1 3 
f. I I J , 1 -
Ol I j , I s 
o r ( j , 1 6

>•0.00 
) p p . o n 
)•i.on
)pfn 
) «Sn 
1 PC PO 4 
) p S P O 4
1 I p f  PM'
I I p S P O 8 
/  ) •  C M 
7 )*S"
7 ) p C P m 4 
?» pSPm » 
/ 1 • ( P m R 
7 I pS**mR

torsional MnV'T OF axes

COpOCOSI OFF)
S O p p s I N ( o c c )
CHPOCOS(Nil 
S H - D S I N ( wA I 
to»ot am ofc )
SOPpOSlN(OFC-PMf)
CpM I pftfOS(PM 1 )
DOpI •0 0 ♦B(7 0 )•Cm«0Co5 (0ECpRh[ ) 
OH..QJ ?0 j •S M•S 0 P 
mOp-P(1 8 )»Sm»S0 «CPH1 
h h • I . 0 p - B ( 2  2 ) * S H * c F m 1 
00 8 2 0 !•1,r 
OP( I ) PO.OO 
w P ( 1 ) » 0 • DO 
MP(2 2 )pCm*cpm| 
m p ( j a ) p CO#SM»CPh I 
OR(2 0 )pC h•S0p 
00 82

0 ECp0 EC*B(7 0 )*ChpS0 p
mApha*(4 ( 2 2  I*CH*BI 1 8 )*C0 *SH)pCRm|

tmrfe SrFRNFSS Of axes

COpOCOS tOEC )
SO«OSIN(OCC)
TO»OT4n(oec)
CHpOCOs(ma)
SHPOSIN C MA)
CMPOCOS(B(M)) 
sipftKinfnim >
TAUNpi ,oo*Tft*#2«Si**2
W0 0 TpDSQ»T( 1,0 0 -SOPp2 pC*»»*2 )
OMpO.00 
0 0 pCm»C0 /»O0 T
hhpi.on
m0 pSN/(C0 *»2 «T4NN)
00 83 1 IP I ,K
OR(I)PO.OO
HP( I 1 PO. 0 0
OR(M ) p-SO»Sm/ROOT
HR(M ) »T0 .CM/TANN
00 8 3 2 IpI .K
OF(J, I , I ).OF(J. I , I )•On*OF(J,I.2)*Om.DR(I )
0 F(J » I . 2)«OF(j , I . 1 )*wn*OF(J.I , 2 ) .Hm* Mp( 1 )
0EC«0 4 SIN(SO*CR>
HApMA«nATAN(Tn«SM)

FOUR H I SAL I «HM£4jT FROM ROtC

CRhpOCOS(P M V♦M 4 )
SPmpoSIN(P w Y♦w A )
COpOCOS(OCC)
SOpOSIN(OFC)
CHpOCOS(Ml)
SHPOSlM HA I
XpC0 »TcR«CPm-cTpSp*SRh>9S0 *ST*SR
Tp-CO«(SP*CPM*cT«CR*SpM)*sn#STPCR
ZpCOpSTpSRhtCTpSO

00 8 M0 I■I .K 
OP(f)P0 .O0 
HR(I )PO.OO

F 4C• I*0 0 / ( !.*2*T**2 l 
F 4 K p | «o o / d s o r t ( I • n o - z  * « 2 )

OR( I )*r AS*(cO»SRm«CT“ST.SO»
OR( 2 > «0.00
Op(3 )PF4K»CO»STPCRH

OXpCO*SR*SPmpsT«SO*SR*CT 
OYpCnPCRPSRH«ST*Sp*cRpCT 
MR( 1 ) p F 4 C * ( Y»ftX"I»Oy I
OX.«CO.(Cph«Sp*CT pCP*SpM)6 S0 »ST *cr 
OVp-Co»(Cp«CRw-CTpSp*SRh)-5 opSTpsP 
HP ( 2 ) *F AC • ( Y«r*X-X»Oy)
nip-cft.ifp»sPM.cT.sp.fPM)
OTP C0 »fSP.SPm-CT«CP»CpH) 
MRI3 )PFACP(Y*r)»-X*OY)-HR(2 )

0 0 pFA4 p(CTmC0 -ST«SRm*S0 )
OHpF A4 »CD.ST.rRH
OXpCO.I-CP.SRm-CT.Sp.cRhI
Oyp-CO.(-SR.SPM*CT»cR.CPH)
HMpF A c• I Y*OX-I*OY )
OXp-SOp(CR*CRm-CTpSp«sRH)*COpST*SR 
DY.5o.|SP.CPH*(T.fP,SPM)»CO.ST.CP 
hO«F AC* ( Y.ftX*X*OY)
0 0 8 «4 1 T • 1 • 4
OF(J, I , I IpftrIJ, I ,| > • 0 0 ♦0 F ( J, ! . 2 I •0 m♦0 R ( | ) 
0F(J. I .2l«ftF(j, 1 ,1 >pMO»or(J, I t2)pHM*HP( 1 )

MApCIT»Y(-Y/II 
0 CCP0 8 Sin 17 »

Five fle«urf of tube and optic supports

DPp|.0 0 »AlPR(7 1 )«oC0S|A3 *HA)*0 StN(A|PDCC«A 
OHP-A3«B(f1 )*OCOS(Al*OFC9A2 )»OSlN(A3PMA) 
WHPl • 0 n ♦ B ( 1 9 )»(A*4.As#0 SlN(A6 P0EC) >
HO*P( I 9 )• ( AS*A6 *HA*0C0 S(A6 *0CC)*A7 )
0 0 8 SO IP1 . 400
OR( I )*o.n 
hr( 1 I PO.OO
DR( 21 )p0C0 S(At • D F C * A 2 ) *DCOS(*)»H* 1 
mR( 1 9 Tp(A9 . aS*0 5 1 n( a 6• 0  E C) >*HA-A7 pOCC 
OO SSI I• I , 4
OF(J , I , I )»OF(J.I tl )pOopOFCJ»I • 2 ) »0 m*0R( I ) 
OFTJ.I , 2 )pOF(J , I , 1 )#MO*OrfJt ! ,2 ).hH.hR( I )

COnT JÄuE............................................................................................
|F(NPR.NE. I I GO TO 4 2 7
RRIT£(3 ,4 ?4 ) ( (0F(J,4 4 tl ) ,4 4 * 1  .4 ) »J*! ,N)
RR|T£(3 ,4 2 6 ) ((0 F(J,4 4 .2 ).4 4 p1 .4 ),jpI,N)
FORMAT«* 6 2 4 OERV *,S0 IS.8 )
RETURN

DGELG

M. n i l l . f O*«  
I•‘ ♦*4 ( 1 i ) .S rOM

7 I • S 0 * R * 8 ) • f R

PUtTOSSOLVf A GENERAL SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS. 

USAGE
CALL OGCLGIR.A.m.N.ERS,IER) 

description of parameters
r - double precision m by n right hand sjuf matrix

(Dfstrotco). on return r contains the solutions 
of the equations.

A - DOUBLE PRECISION m by M COEFFICIENT matrix
(DFSTROTCO1•

m . THE NUMBER of EQUATIONS IN THE SYSTEM.
N - the number of right HANO SIOE VECTORS.
F R S - SINGLE PRECISION INPUT CONSTANT RhICh Is uSFO AS

RELATIVE TOLERANCE for TEST ON LOSS OF 
SIGNIF ICANCE.

IfR - RESULTING ERROR PARAMETER CODED A4 F QL L 0 *S 
I E R"C - NO ERROR,
IERP- 1 - NO RESULT BECAUSE OF N LESS Than I OR 

pivot element at any Elimination step 
EQUAL TO 0 ,

IE R • 4 - RaRNING OUF TO possible LOSS OF SIGNIFI­
CANCE INDICATED AT ELIHInAT,On STfP 4 pI.
bmere pivot element »as less than or 
EQUAL TO The INTERNAL TOLERANCE EPS TIMES 
ABSOLUTELY GREATEST ELEMENT OF maTRTx A.

’.°EMjnr3 t matrices r and a arf assumco to be stoRco columnwise
in M6XI R 8 S R • M • m SUCCESSIVE STORAGE LOCATIONS. ON RFTURn 
SOLUTION MATRIX R iS STOREo COLUMNWISE Too.
THE RROCEOURE.GIVES RESULTS JF Th£ NUMBER OF EQUATIONS m is
g•f a t e r than o a ho pivot Elfments at all elimination stfps 
aRF DIFFERENT from 0 . HOWEVER WARNING IERpk - IF GIVEN -
indicates possible loss of Significance* in CaSc of a »ill
SCALFO MATRIX a ANO APPROPRIATE TOLERANCE EPS, IfRpy may BF 
Interp*fTeq That matrix a mas the rank 4 . no warning is
GIVEN I N CASE Mil .

4UBW0 UTINCS ANO FUNCTION SUBPROGRAMS RFQUIREO 
NONE

MCTS8 ?UT,0 N |S DONE by means OF GAUSS-EL IHI Nat I On WITH 
COMWLFTE pivoting.

SUWROMTINE OGFlG(R»A»M,N,EPS, IE R)

OOUB L?1PRr  C I s ! ON * R I  A . p I v , T 8 , T O L . p I  V I 
IF(H)2 3 »7 3 *I
sr arch fop greatest element in matrix a



D.8
1 ic*-o

P T v»0 • f>0
N “ » N •«
00 3 L a | , M M  
T B . O A B S I A  »L » >1 r ( t p - r T V ) 3 .3.2

2 * IV«TB 
I *L

3 C O s T | N u C  T O L » t ^ S * »  T V •(f) IS P | V O T E L E M E N T .  PIV C O N T A I N S  T m C A B S O L U T E  V A L U E  or A(l)

S C A L E  I I 1* 4.0 
c a l l  « a T C O N I N

CALC, orT I NyH VALUE ro* ALANOA
g s u m . o . otj
DO 30 J « 1A K 3* 6SUN»«SUN^6IJ)•
ALA«0A»7.00«GSUN/rMi0 GO TO S O

S T A A T  E L I M I N A T I O N  L O O PLST-I00 IT t»|
TEST ON SINGULAPITT iriPiV)23,?3,A

*» m  IC»)T,S.7 S IrIP jV.TOL ) * . A . 7A
7 P I V ! •1 ,00/A I I )J»<1-1»/"I■ I -J«m .k 

J«J* I *K
!♦* NON-INOEA. Jm K COLUNN-INOE* OF PIVOT ELENFNT 
00V8TL»K*N«r2UCTl0N AN0 *°* fMT**CMANGE in n i g h t  HAND SIDE R 
LL*L♦ 1
Tf)«P I V J #N I L L »AILL>*R IL >8 A<L)*T8
is Elimination terminatedI r (K-N ) 9 , 1«, 18
COLUMN INTERCHANGE in m a TRI* a 4 LENO«LST#N*k 

^ IF!JI12,12. 10• 0 II ■J»M00 11 l *lst .lend 
T 8 • A ( L )LL-L*I I 
A »L1"A(LL »• I A I L L 1 • T 8
R0» INTERCHANGE »2 00 13 L *L S T ,h h ,m 
LL*L♦1
T8•PI V I *A ILL 1 

. A (LL >•A f L I• 3 AIL 1•T 8
s a v e c o l u m n  i n t e r c h a n g e i n e o r m a t i o nAILST)-J
e l e m e n t RroucTI on a n o n e a t p i v o t Se a r c h  
p I V • 0 • 0 0 L5T«l ST*|
J*0
00 14 I I•L S T»LEND 
P I V I••A ( I I )1 S T ■ I !♦*
J m J * 10° IS l m |5T,n n ,M 
LL-L-JA I LI«A(l )*PI V I• A11L I 
TB-0A8S I AIL))
JF ( T 8 »P 1 v M S  . IS, 1 9 P I V«TB

40

•* Si

’ 4 3 T

•-AA1 -[TS
40
C
c___

T A Y L O R  C O N V E R G E N T  A RE A  
A L A M D a - O . O O

~ T e > a r h s ~ ¥ a s *c e o  c o n d e n s e  a * . 4«
C O S T I N U E
S O L V E  E O N  r o R  C O R R E C T I O N  v C c TO»oo to j-i.rG T C M P I J ) « 6 (J)
XLDL 7_0 -IRIa JC_______
A T E H P I  I ,J » * A 1 I ,J 1i r 11. e o . j) a T f m p i __
CONTINUE
i r i N P R . L T . i l  GO TO 4*7
?8UW»*iii'8IK«:i*tt!i8Tc*R I T E ( 3.4 3 I I G S U M . A l A h OA 

-XQAftAJLt.* Ĵ ll üiJift.» jt2Di_5jL 
C O N T I N U EC A L L  O G E L G I C T E M P . a T e MP 
l F l l £ R . N C » 0 ) GO TO 2S 0 
DO 7S J m 1 * KT I J ) *  G T E M P t j )  
i r i N P R . L T . 1) GO TO ?S • 8 I 7 EI 3 I 4 3 3 ) TIJ)

— rJQL**TAT 11 J lU  n L S Q ' »n 1S . | J
c o n t i n u e

c o n t i n u e
a b s e n t  haskc0 ’ c o n s t r u c t  o r i g i n a l  r a r m  v e c t o r

I » JI• A T f N P ( I . J )♦ •L A MDA

m R I J 1 ,J J m 1 • K 1 , J m I • K )

D x S a A J^ _
,1 .1 .

a n d  p i v o t  r o r  r e o u c t i o n  i n  m a t r u  a p a r h ? j ^ I p a r h i .c J 14TCJ |
t e s t ^h a g n i t u d e  or c o Rr # v e c t o r
00 TO JM I ,K
T E S T . D A B S I T I J I  )/ ( D A B S (p A R M  Ijl ) ♦ T A U )— ir(TEST.6E.rPR) ITE4T.I_______
C O N T I N U Eir I ITEST.EO.Ol GO T0 I 30
I T C R m I T C R y I
GO TO 100

C Ö N t !N uE
c a l l  p c t *

c o n t i n u eDO 14 L • K , 4 L L »L♦J 
I LL I MR I _ 5T - l ST. 

e n o  or e l i m i n a t i o n  l o o p

C A L L  F C T N ! N , N , K » N S » X » P A R M » F N » K O U n T | )
C A L L  R h | ( N , N 5 . Y tr N # R , P H ! N . R O R S T , | » o R S T l  
R M S - O S O R T I P M I N / N l / S E C» R I T E  I 3 . 120) l T f R , R H ! N , R M S . K O U N T |  »X0U N T 2 

120 . F O R M A T ! / / »  ITf R N O •* • | 4 » * f |NAL PM I , R N S •• , 01S • « .f I 0 .4 ,• K 0U N T 1.2-* I • 2 I * ./ • C O N V E R G E D  P a R m V E C T O R  r O L L O R S . . » )

C A L L ^ J H I E T I P A R M I 31 I
— nP-AJuipp a j  h  L a  / P-Xo_________S P A R N M P A R M I j l / S E C  

* R I T E I  3,171 )J. P A R M l

ano b a c k i n t e r c m a n g eb a c k  s u b s t i t u t i o n
l 8 i r C M - M 73.77. i9i4 j S T « h 4. h 

L S T • m 4 I
00 71 IM? ,H1 ImLST.I | S T « | S t - l ST I* I S T - h
L*AIL *♦•SOO 00 71 J * 1 I ,NM,« 
t 8 m R (j >
L L ■ J00 70 K m I S T . H h .H 
L L • L L ♦ 140 T8«TB-AIK1*RILLI 
K • J * L R 1J 1» R I K I 

7 I R ( K I m T B 
72 RETURN

F R » O R  R E T U R N  ♦ 3 1 E R m - 1 R E T U R N  
E ND

D L S Q

.sb gti2uvsr5:85:aoAV«o-.;':?.p.sg“« ,.g^u?s.s?f-?.:^CT) T » S C A L E  .M A S K  1 P R O G R A M  7
LEV£NJL£ SG H A N P £ Q  L E a ST S Q U A R E S  P a R m  E S T I M A T I O N .  ________________

El 3 . 171 1 J . P A R N l j l . O P A R M . S P A R N  
12? C O N T I N U E  121 F O R M A T ! • P A R M  NO.RF TURH
c

20

14. D 1S . 8 .» R A O  • I F 1 2 • S . ' D EG • #f I 1.4 . # * C C • »

continue -----• »!TCI 3.21 1 ITERE0RMaT(* iTe R NO.'.lS,* PM I INCREASING

250 »RITET3.2S1I ITER, IrR251 „FORMAT I////# I Tf!■*,I 5 ,*

ABEMO.•1

M A T *  C O N  S O L N  R O U T j N f  O G C L G  F A I L . I C * « *

E S F I T

IMPLICIT REAL*«IA*M,0-21
||2|2||gs
DIMENSION 0»T* ( it ̂ NOPT* ' ( , I , 5C »(. t ( K )

ttt.6 CSriT MOO NO. 21
.SUBROUT INC eSrlTlN.R.KD.NORT,«,««,r.TT,B,R,»LRH».C. 
iJS^JT»JG.JO,JL.JRa *jR b )

o A r , o S * l i o * T ?3 tI"'‘N , r o " " s ,0 » • 'RfTURNS cotrr. »l p m « »n 0 IN0€« c o n s t s l .q .o a nd v a l u e Or R at t a c m I

n o r t i i i r o  OISaBLFS RR|NT|NS,*| so»E c t c .r » PRINTS at e n o .
N0RTI2I.I,2,3 SELECTS NETNOO■IUSU»LL» «II

REAL ERAT.EISm

TINPIKI.NASKIk ) 

--ORTIOWS
c A R D  1 1Nm 1 I N ? T | A L  #P A R H * V A L U E * * * C O R R e s I * M A S K  »ETC 
N 0P T I 2 ) GE I E N A B L E S  P R I N T

ROVNTl.o 
KfcUNf2*0 
P h i O m i.030 
ITC R■1 
E P S * 1*0-5 TAU-I.0-1S NPR-NÖPT(21

P I »3• I 41S424S3S897T3
f io*PL/iMa+na- 5EC»P!/llB

400

f:::100

P I » 3 . I 4 IS424S3S847*3 00 PI O m PI/I80.00 
SEC«3400.00/P|0 N P K m n O P T ( I )
IF INORTC I ) .CO.fl N O p T M I - O  NPRm n OPTI 1 1

».OETERMINE m e t h o d ..»

1141
JOPT . N O P T I ?)
60 TO (100.20 
RETURN

S U R F A C E  F I T T I N G  R O U T I N E  O P T h S»« »4 I 2 ,• N . K M »,2 

0 .300.4001 • J OP T

.TREAT 
CONTINUE FIND Xm a X.TNIn 
X M a I A « T ( 1, 1) 

XMAXA

I AS R M S  E R R O R  ON SK

XM INA« 
X M A X 8 •

f.
112

18 0.00*3400.00>
IE (NOPT (1 I•E 0•0) «0 TO II
r e t u r n 1 A NO Y S I M I L A R L Y .
CONTINUE • RITE C 3 » 1 I 2 1 K 
f Q R N A T t  *_EJ<JC1 * « 14il_ 00 10 k K m j #*

. REAOINN,
A I KK)MOAT 

M A S K (K K )«OAT 
CONTINUE

PARHS AND M aSk S LIKE A GOOD BAST ARn *)

M U lI U ' U »!1

C ENTRY
IOC CONTI

C O N T I N U E
CALL »TIN.m .n S.X.R) 121ENTRY IlStllMIltltlltlSIllSlIllflfllllinillllllltlflfliiisi 1 20
O n TI h u e  

c a l c , phi
c a l l  P C T N | N , M , x , N S » I . P A R M , F n » K O U n T | )C A L L  P h ! ( N , n S . Y , E N » * , P H I N , » 0’ S T, I W O R S T  I
RMS-OSORT (PhltL/NiyStC _______________________ ________________________
RRITE.3.4 ) ITERSR. !TER.ALA«oA,»M|N,RMS

„ r o i p A T ? ^ \ r  if N B E R i M0L 50J A H A L Y 5 IS . I T ( R S r m  • , | % , I B C G  I N | TfR N O . * , I  «&.* L A M m * »0 1? • S • ' PH| ,RH S • • »01B . I . F I 0 .4/
2 * c u r r e n t  F a r m s  I« M A S K S l  A R E . . » » * )  
f ORm a T 1 1 X.0 1 &. 8.141.____________________________________________________

C H E C K  A G A I N S T  P R E V I O U S  R m I 
IF(Rm In .GE.RHIO) GO To 20 C O N T I N U E  
PH I0« P h 1N

GENERATE m a t r i x a * a nd G*
CALL OFRVlN.M.X »NS»I.PARM.OF,K OUn T 2)

■X I 1 .2 )X M I N B M X M A X B
00 110 t■ 2 ,N
! F I X i | , |  I . G T . X M A X A )  X M A X A M X ( I » 1 ) i r i X l t . i l . L T . x H I N A )  X M l N A M X l t . l lIr (Xi 1,2 ) . g t . x m a x b ) x m a x b * k ( i ,2 )
1 r ( X ( 1 , 2 ) .LT. XMI n r ) XM I N B " X ( I » 2 )
C O N T I N U E
s c a l e  X V E C T O R S  TO I N T E R V A L  •!» »<
SCALEAm 2»00/(XHAXA*XM|NA)S C A L E B m ? . O O / ( X M A X B - X M ) N 0 )
C O N S T A . i . O O - S C A L E A » x H a XA 
C 0N S T B » I . O O - S C A L E 4M X M A X B
00 1 70 Im  j ,n
XX I I »1 Im CONSTAm SCALEAm X(I» I )
** ! ! »?)*CONSTr *SCaLCB«X(I.2)T T ( { , | ) . S C A L E A m ( T ( T , 1) » X ( I , 1))TT( I , 2 ) m S C A L E R * I Y I  I . 21- X ( l , 2 >)
»< I . 1 Im i  ,00/ S C A L E A  • Ü A ^ I m O C O S i X ( l . I ) I / S C A L E S

...... e v i j #2 i , . ( i (2 *
C O N T [ N U E

• 9T • 1 I R " I T E ( 3 . I 22 I SC ALE A. SC ALE B. C O N S T  A, C O N S T B  F O R M A T ! *  Mf T m OO 1•S C a L E S  . C O N S t S « • , 40 l S . •)
GO To 400

c *rIt e r 4o r s *y t Is c a *e !(y - x I****!!!!!!!!!!!!!!!!!!!!!!!...... ********200 C O N T I N U E  
C F I N D  X M A X . X M l N . .X M A X A M X 11. 1)

x m j n a * x m a x a  
XMA XB« X I I * 21 XM J N B M X M A  XB
00 210 I■ 2 ,N
IF I X I I , J ) ,6T • X MA XAI X M A X A M X I  I »1 I1 FI I ( I , 1 ) »LT • X M !N A > X M t N A M X f l , ! )
|F(X(1.2).GT.xHAXB) XMAxB*Xli,2)|E 1 X ( 1 , ? ) ,LT . XMINB 1 XMlNBMXIl.2)210 C O N T I N U E

C S C A L E  X V E C T O R S  TO I N T E R V A L  • I • • M | AN D  T S I M I L A R L Y .S C A L E A m 2.00/ ( X M A X a - X M | N a I 
SC a l C8m 2.00/(xMAX8»xM|NB)C 0 N S T A ■ I .00* S C A L E A * X M a XA CONSTi.l.00-SCALt»MXHAX8



D.9

3 0 «

l «  ( i f ?  >1 c 0 N S T A - S C a L C A - X ( ! • * » 
i d  1 , 2 ) - C 0 NST ä * S C A L E B * X (  I * 2 )
y y  ( i . 1 ' - s c a l E a * i y < i . l ) - x  < J • I J  J
v Y < I , 2 > - S C A l E A - ( Y (  I ♦ 2 ) • * (  I » 2 ’ >

' r V l i « “ s Y . I I • • I YC < 3 . 1 2 2 )  S C » l E » . S C » L E B . C O N S T « , C O N S T *
I * « 0

G O  T q  A 0 0  #  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
r i * * j S * s &  P E RI OD I C  FNS X X - C 0 5 ( S C A L E D  X)
C Oh T I  HUE
F 1 NO X M A I . I - l N . .
| M A 1 A - I  ( 1 .  I )
* * M * A « X " A X A
* ma x f l v i ( 1 , 2  1
J -  ! N A - X - A I  A

i5i!li:iT!f;::=?52i ” i5s:;j|:!j 
5=t5S=:il:l!

C O N t I H U f
SC A L T * VECTORS TO I NTERVAL 0 - P I
5 C » L C A « A I / | l A A X * « * " l h A )
S C A L E » « ^ I / ( * MAXB- X»* l NB»
c o n s t a - - s c a l E a * x m i n a
COn S T » - - S C a i E A # X MI N 0

0 0  3 2 0  l - I . N
1 X 1 1 , 1  I - C ON ST  A * S C a L f ' . • * 1 1 . 1 1  
1 1 ( 1  , 2 ) - C O N S T a ^ S C A L E B - X  ( I * 2 )
XX ( I , t ) - 0 C 0 S ( X X ( I . I ) )
XX(  I » 2 ) - 0 C  OS ( 1 1 ( 1 , 2 ) »
Y ▼ (  J ,  I  ) ■ Y (  1 , 1  ) - X  < I  » 1 )  
r r f ! , 2 ) - Y ( I • 2 ) • ! ( I • 2  >
• j 1 , 1 ) • 1 . 0 0

7 f ! NRwT A t ? ? ) H B l T F C 3 , i 2 l » | . X X ( ! , l » , l X ( ! , 2 » , T T I | , | » . T T ( | , 2 )  

? ? < n J X V S T . «  ) RR I T E ( 3 , 1 2  2 ) SCa L C A . S C a L E B . C O N S T a . C O n S T b

c . . .

c

A  0  «

A  I  p  

A 2 0

c
*  •  C 0  N  

J - 0
S T R U C T  O R  T  m O G O n  A l  P O l N S  S E Q U E N T I A L L Y

6 S  _ C A L L  O ^ ß P O L I N , J . X . K D . N O P T , 1 A . X X . » . » . A L P H A , j S , J T , J G . J Q , J L .  
7  J R A , J R A )

C

C * * . * * C A L C U  
7 0 0  J J » J  

I  E  (  J  ,

CULATE C O E r r S  C ( J )

| F ( J , E 0 , 0 )  j j - * o 
0 0  7 2 0  H , I , ?
A - 0 *  0 0  
A - 0 *  0 0
00  7 1 0  I • I , N
A •  A ♦  A  Y |  , M ) » * 2 * P (  1 , J J , n 7 * Y Y (  
A  •  P  ♦  (  •  (  I  , N ) - R (  I  ,  J  J  ,  **  ) )  •  •  27 1 P  A - P *  ( • ( I , M ) - P  

7 2 0  C I J J •  N 1 — A / 8

C S A V E  P R E V I O U S  P H I  A S  P N  I  0  S f S S Q  a S S I G S Q O ,
p m  I O - P m 1 
S l G S Q O - S t C S Q

c
. . . . . . . . . . . . . . . ..  n e b  p m  I  P  m  V  S f G S Q  E A A T I O  P m I T m E O A E T I C  E T C *
7 S 0  P M 1 - 0 * 6 o

0 0  7  A 0  N •  I  ,  2  
0 0  7  A O  I « 1  , n  

c  C A L C .  S f P f f S
S U M - 0 , 0 0  
J C  • -  1

7 3 0  j C - J C * t  
J A - J C
I E  1 J A . r o . 0 1 j r - x o

5 ' ) M - S U M * C  (  J A  , M  )  -  p  I  1 ,  J A  ,  N  )
I f ( J C , N E , J )  G O  T O  7  J O

$  A «  P  M  1 - A H t A l  (  V Y (  1 , M ) - S U » l » P Q l  !  , N >

E  J O - 0  * 0 0  
0 0  7  A O  I  ■ 1  ,  N  
0 0  7  A O  M - I  , 2  

7 4 0  E J O - E J 0 - ( C ( J J . M )
P H 1 T - P M I 0 « f J O  
E J - P H l O - P H I

C C A L C.  EXPECTED ERROR ?N
E P S - O , S O 0 * ( E J / E J 0 - * * 0 O »

C  C A L C  •  E A A T 1 0
E A - E J / S I G S O

C  T E S T  F o r m a t s . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .
9 « ;  E  O A M i T (  •  O N E » )
9 9 2  E O A M A T ( •  T  * 0 •  )
9 9 J  EOANAT( *  THRE E ' »
9  9  A E O R M A T f »  F O U R  » >
9  9  S  F O R M A T (  *  F I V E  ' )
c * * » * « c o m p u T f  o n  - S k y  p m y # r m S  e r r o r ,

P M Y - O • 0 0  
f A R M A X - 0 . 0 0  
0 0  7 7 0  1 - 1  , N

C  F O A M  S E A I E S .
T A - 0 . 0 0  
y B - O . O O  
D O  7  A S  J C - O . J  
J R - J C
I E ( J A , E 0 • 0 1  J A- KO 
Y  A — Y  A ♦  C  ( J R . I  ) - P (  1 , J A  t  1 *

7  A  S  y A - Y B - C ( J R  .  2 » « R *  1 , j f R *  2  *  _  . .
7  A  A  F O R M A T (  •  S U M  (  *  •  2  I  *  ,  •  )  » ,  2 0 1 S  ,  B  )
C A E T A A N S E O R H  Y Y  t o  Y

G O  T O I 9 0 1  . R 0 2 . R 0 3 »  .  J O R T  
C O N T I N U E

« I  # P  f  | , J J » H ) 9 R (  | , N ) ) * * 2  

C ! J )  - E P S

9 0 2  Y A - Y A / S C A L f A * 1 ( I , 1 >  
Y B - Y 0  / S C A L E R - X ( 1 , 2 )

G O  T O  R I O

90S Y A - Y | * l I  I . I ) 
Y B - Y 0 - 1 ( 1 , 2 )  

9 1 0  C O N T I N U E

C

7 BO

F I N A L  OROER REACHED

C

e o n

A O S

S T O R E  S U M S  | N  Y Y  i f  
| F ( J . N r , t l  G O  T O  7 § 0  
Y Y (  I  ,  I  l - Y A  
Y Y ( I , 2 ) - Y B  
C O N T I N U E

N P S - 0
I F ( N PR, ß T •1 ) NPS- 7  
I F ( N P 1 , e Q . 9 . A N 0 . J . E 0 , K ) NAS - 2  
I F  ( N P S . G T .  1 ) B R 1 T E < 3 » 7 A A I  I , M , Y A , Y

| a r - £ r a m  i  y b I y I Ü I »  ) *OCOS ( X I I ,  1 1 ) I 
I F ( E RR• G T , F R R m A X ) E r Rm A x - ERA 
P M Y . P M Y . [ R 9
R M S - O S O R T ( P m Y / n ) * S E c  
E R R M a X - 0 S O R T ( r R B H A X ) « S E C

i ?S4Si: iSnh? i5üsf i?: I?s=5is-ss::: :s: s ;
A R I T E C 3 . B 1 0 ) J . P M I , P m I T . S | G S Q  
FORMa T I I M . »  T m OROER SUm s QUa RE

C » * * » » E I I T
i o n "  CONTI NUE

c STORE N . N U 2 . P H !  , S I 6 S o  I N • (  , 1 )  FOR TESTS 
C

N U 2 - 2 * ( N - X - 1>
A ( 1 , l » - N  
« ( 2 , 1 ) - N U 2  
» ( 3 , 1  ) - P m  I  
» ( 9 , 1  ) - 5  I GSO

F I N A L  P R  I  N T  I  N ß

R M S  e R R - ' F | 0 .

1 2

COMPUTE I N I T I A L  R MS ERROR ON SKY 
PMY. OJOO

? 2 y S p m y 1 T ! y I I , 2 ) - x 1 I , 2 » 1 9 0 C 0 S ( X ( I 1 1 1 1 1 » » !  
p m y - p h y * ( y ( I , 1 ) • ! ( I , 1 ) ) * * 2  
RMS - O S OR T ( P m Y / N ) * S E c

* OA MA T ? ^ F 5 F I T  , Ä l T ? A t  PMY( RAO)  ARMS £ RR*  ON S X Y l S C C l «  » , 2 0 l S . t )

COMPUTE I N I T I A L  t a a n S f o r m a e o  PHI  a  s i g s q  
p m  I - 0 • 0 0
00 A 30 ! • !  , N 
0 0  A 30 M - 1 , 2
P M | —P H | 9 (  I Y y ( I , M I • * ! I I »Ml  I •  A ( I , M)  ) —* 2  
S I G S Q - P M I / ( 2 * 0 0 9 ( N * K * I  ) )

f o r m i t J j * ? 2 | t ? w I a l 1o f ° p h i , s i g s q  f o r  i f o r h e o  v a r i a b l e s -  * , 2 o i * . b )

o * O E . ,
7 »  P h i - «  , 0 1 3 . 6 . » S  !  G S Q  .  N U 2 * '  » 0 1 3 • A . I s )

C  g e t  Y  A V E R A G E  
R E S A v G - 0 . 0 0

I  2 0 «  R E S A V g 2 a e S A V G - Y (  I  ,  I ) » X (  I  , 1 )  ♦  ( Y (  I  , 2 ) - x (  1 ,  2  )  1 * O C O S ( X ( I  ,  1 )  )  
P E S A V G - R E S A V G / ( 2 , 0 0 - N )

C  G E T  S U m S Q U R E  O U E  R E G R E S S , A N O  C O R R  F O R  M E A N
S S E - 0 . 0 0  
S S 9 - 0 . 0 0  
S S M - 0 * 0 0  
» 8 ( I ) -  1 . 0 0  
0 0  1 2 1 0  I - l . N  
w f l ( 2 j - 0 C 0 S ( I I I , I ) 1 • • 2

?h:!8: ; ii i ! : t i  :t! i«?::, Ui*..,, c »
S S M - S S - * ( 7 (  1 •  L  1 • X (  I  , L ) - R E S A V G ) » * 2 » A B ( L >

1 2 1 « "  C O N T I N U E
C  c  X L  c  m u l t  R E G R F S S  c o e f f - a s q . M E A N  S q R  R A T I O - S Q R A T

N U U I • 2 *  X ♦  1 
R S O - S S R » 1 O O . O O / S S M  
S 0 R A T - S S R / ( S I G S Q « N U U 1 1

R * O B - ? O O . O P - (  1 , 0 0 - E I  S M ( F R A T , N U U |  , N u 2 )  )

,  •  R R O B . m u L T R E G C O E F F « »  , F | 0 * * , E B , R |

G O  T O  1 1 0 0I F ( N R  X , N E  •  9  )  G  
0 0  J 0 3 0  J J - O . J

i » ! T ^ ( J ? i 0 2 C ^ CJ J * C < J C . l l f J J . C I J C , 2 )
r  o n  h  a t  I  •  c o t c r ( * . U . »  i  
i r ( J J . E 8 * 0 l  SO TO 1 0 3 0
J « » J N * ( J CI  

‘ - J R N 1J C )

c o c r r I • .  1 3 . *  2 I . • , o I s .

\°0t: i s i - s i f - « i s : i s v * r s ' - ,c
1 0 3 «  C O N T I N U E  
1 1 n o  C O N T I N U E  

r e t u r n

EXPAND
c E L T - 0  EXPAND MOOC 3*

c Jtu s i ? « t T i ,‘ S s 5 J : ? S 2 , s ; Hi ^ ; u r ! ? : : , r . o .  c « N . t s i . i E h s u h < k e «
c  V E C T O R  T  f r o m  M S U M  d i m .  T O  X  0 1 M •  F I L L I N G  i n  •  1 t  m  0 . 0 0 ' S

C  I M P L I C I T  r f a l - b ( a - m . o - z )
0  I  M E  N S  I  O N  m a S X ( K ) , T ( K )

| F ( M S U M . E Q . X ) GO TO l o c o

X M - x - 1 
00  20 *

c

s o
9 0

20

? O n «

J -  1 , X  
S  K (  J  )  •  N E . 0 1  GO To 20

I F ( J . E O . X 1 GO TO
0 0  SO I — X m ,  j , . l  
T ( I ♦1 ) - T ( ! )
CONTINUE
1 » J ) - 0 . 0 0

CONTINUE

RETURN
ENO

PCTN (S PARM)
MOOCL FUN 

( N . M . X , N S ,
CAL C*  TELESCOPE P O I N T I N G  
M I S A L I GN E O. S X E »  EQTl  m TG Rl TM

I M P L I C I T  R E A L # f l ( A - M . 0 - 2 )
OI MENS I ON X X ( N , M) , F N ( N , N S ) , P A R m ! x )

CAUTI ON TEMPORARY O I mE N S I O n EO V A R I A B L E S , * , ,  
D I MEN SI ON  OEC( I A O ) , M A ( 1 A O )
OEFI NE 0 ARCOS( XOUM) « O a COS( XOUM)

0  E  E I N  p  O A R S l N (  X O U M ) - O A S I N (  X O U M )

E L T - E S  . S - P A R M  M O O C L  F U N C J , 0 N ^ C C 0 M P A T , » U C ^ « ' 1  T M  n e r i m o o - s .

c A L C ? U T E L E S f o p e ^ PO I n T I N g ' ERROR MODEL F U N C T j ON FOR 
-------- '  - • T M  ZERO OF F S E T S ,

A  2 r

A  3 0

' f S f ö l l W i W M o .  NSOUCT 1 ON

. 0 2 0 * ® , »  • • • • • • • • • • • » • • • • ♦ • • • • • ’ l

c
a R E S ( X E O R M E O )  . T m C O R V A l U E , S I g S Q  » . 2 0 1 7 , 1  ^  

I N  P M !  . E - R A T I Ö - ' . 2 0 1 S . A . 0 1 3 , A ) c

E XPCCTEOERACT j ONAL  ERROR- »

I S  F I N A L  OROER X R£ A C 
| E ( J , f t . K )  GO TO 1OOO 
J *  J *  I 
GO TO ASO

I F C T N - T F C T N 9 1 
N PR - 0
TME T A - P A R M ( I )
PS 1- P A R M ( 2 ) - P A R M ( 3 » 
P MY- PA RM( 3 )  
E T A - P A R M( H )
OE E - P A R M( S )

S T - O S 1N( T H ET A I 
CT- OCOS« T H E T A )
S P - O S I N ( P S ! )
C R - OC OS ( PS I )
S E - O S 1N ( E T A )
C E - O C O S I E T A )

j F ( N P R . E Q . t )  * R I T  E  ̂ 3 • AOR) S T , C T , S P • C R , SE , CE 
F O R M A T ! / «  4 0 9  FC T n * . A O l S . B »
00  13 0  J - I , N  
OE C( J t - x  I  ( j  , 1 )
h A ( J ) - x 1 ( J , 2 )  . ,  .
0 E F - 0 A R S ! N ( 0 S | N ( 0 f C ( J ) 9 0 E E > * C e ) 
H A X - m A ( J ) 9 0 a T a NCOTAn ( O E C ( J » b DE E 1 « S E )
C P H - O C O S ( R H Y - M A X )
S R M - O S I N ( R H Y 9 H A X 1
X - P C O S I O E X ) • ( C R * C P H - C T * S P 9 S P M ) * 0 S I N ( 0 E X ) - s t - s r
Y - . O C O S ( O E X ) - ( S R 9 C R m - c T . C R 9 S R M ) 9 0 S | N ( D E X ) * S T - C R
Z - O C O S ( O E X ) * S Y p SPh 9 C T - OS 1 N ( OE X 1
I F ( N P R , r O , l )  » K I T e < 3 , A 1 0 )  O E < , M A r , C R h , S R M , X  ,  Y  ,  Z  
F O R M A T ! ? '  A1 0FCTN» • 7 0 I S , 8 )
M A X - O A T A N ( « Y / X I  
O E X - O A R S I N ( Z )
F N ( J ,  1 ) — 0 E X 
F N ( j , 2 ) « H A r
I F ( NPR , L T  .  I ) GO TO I 30
»  R  I  T  E ( 3  ,  A  1 I  )  x  X ( J  ,  1 )  , X X ( J » 2 )  , F  N ( j ,  i  )  , F N ( J « 2 )
F OR M A T ! '  A l l  FCTN ' . H o l S . B )
CONTI NUE
RETURN
END

FCTN (74 men)
E L T - F  FXTENOEO V * w MODEL FUNCTI ON M O D I F I C A T I O N  n o .  E t
SUBROUTI NE F C T N I N , H t x * N S , X X , 8 , F N , I r C T N )
C AL C,  TELESCOPE p o i n t i n g  ERROR m o d e l  F UNCT I ON f o r

S i l I b A ? ? t ? i ? S ^ » E2 J i , , , c S . S A r . z l ? S u ? rT [ i r » I s ^ E « u R E .

I M P L I C I T  r e A L * 8 ( A - M . 0 - 7 )
D I MEN SI ON  X X ( N , M ) , F N ( N , N S ) , B I X ) , 0 0 ( 8 ) . 0 H ( 8 )

I F C T N - I F C T N M
N PR- 0
P I - 3 .  1 R I S 9 2 A S 3 S 8 9 7 9 3 OO 
P I 0 - P I / 1  A O . 00
pm I ■ • (  3 S • 0 0 * 1 9 . 0 0 / A 0 * O 0 * | 7 . S 0 0 / 3 A 0 n * 0 0 * # R l O  
T M T T A - A ( I )
P H Y - i ! 3 )
PS I - A ( ? ) - A ( 3  )9 0 «



D .10
S * « r s f m l » M F T » »
CT. OCOS I Tm CT A ) 
s r - o s I n ( ps  t ) 
c * * « n c o s  i * s  i » 

c

A C OK 5 T » | * > . D 0 # ^ f
A I a 9 , 0 0 / I 9 . 0 0
A ? « 7 o . o o « » r o
A 3 •  C . 8SO0
* “ • i 9 • 7 0 c / « c o n s t
A ' . « M , 8 O0 / A f ON S T  
AA« I . 2 8 0 0  
A 7m 1 0 . 0 0 / A C 0 N 8 T  

C
PO A a j S | 2 , 0 0
•  0 8 - P O A / 3 ?  . 00 
P H A . P 6 * 4 . 00
PHO■ Pm A/ 3  ? . HO 

C
DO 130 Jm 1 . >4 
Of  C" X X ( J . 1 )
* A » I X  »J , ?  )
C P M - D C OS I ^ M r * MA I  
SPw» 05  J N ( P m v ♦ w a )
CD- OCOS < Of C )
SOa O S I N ( Of C )
Cmo OCOS( ha  )
S H - O S ! N i H A )
C^OA- DCOS ( P D A . D E C ) 
s p o a . os i h i p o A . o e c >
C P 0 8 « 0 f O S ( POB• OF C )
SPOB- DS ! N I P O B a PEC J 
CPh B a OCOS( P H 8 • H A )
SPHBo OSI N ( PHB• H A )
CPh A« OCOSI P ha a m A )
S P H A •  0 S I N ( PMA a h a  »
X « C O A ( f P * C P H « f T A S P A S P H ) A S O * S T A S P  
▼ ■ • C O * ( S P * C P H * C T  P . S p h ) * S 0 « 5 T  A f p  

/ 2 * C 0 a S T a s p h * c t a S0
J F I N P R . c Q . I )  * R I T r ( 3 . A l O )  P E C , H A , C P H , S P H , X , T , 2  

A | 0  r 0 R M A T ( / *  A l O F C T N * . 7 0 1 S . 8 )
H A X « O A T A N < - Y / X )
OF F • 0  A S I N { t )

0 0 ( 1 ) « O E X - O r c
P H ( I I a h AK- HA

c

0 0 ( 2 ) « O A S | aM S O a OCP5 ( B( « M ) ) *OEC 
P M ( 2 ) » O A T A N ( O T A N ( O E C , # ° S | N I B < 8 » ) )

c
0 0 ( 3 ) a o ( S ) a 8 ( 6 > a C ^ » 8 ( 7 > a S 0 a 8 ( 8 ) a c P 0 A a B ( 9 ) * s P0A 

»♦8 1 1 0 ) a Cp PBa R(  I 1 ) a Sp P r 
Om ( 3 I ■ « ( 12 > • f  h ♦ 8 (  i 3 ) • S h » b ( 1 9 > a CPh A * § (  | S ) « S PH A 

1 * 8 « | * ) a C P H R » 6 ( | 7 ) • Sp h R
C

0 0 ( 8 ) « a ( 2 0 » a ( o c 0 S ( P h | ) a Ch a S P - O S ! N ( P H I  »a CO»
P h ( A ) » 0 ( 1 8 ) a D C P S ( P h i  ) • C 0 • Sh 

f

0 0 ( S ) « B ( 2 | ) A 0 f P S ( A l A O f C A A 2 » A 0 C O S ( A 3 * H A )
0 h ( S ) ■ 8 (  I 9 I a ( | A A a a S a 0 s ! N ( A 6 a 0EC)  | a m A - A 7 » 0 ! (  I

C

FN » J ,  l ) «OCC
FN t J . 2 ) »HA
00 I *»0 j j m  t , S
F N « J , l  ) a F N ( j , I ) * 0 0  I J J  >

I 9 r  F N ( J . 2 ) a F n ( j , 2 1♦ Om ( j j )

C
l F ( N P P . L T  .  l  ) * 0  TO I 30
•  9 I T f  I 3 . 4 1  I ) I  I  I J • I ) , X * ( J . 2 > I F N ( j  , j I i F M  J , 2 J 

A l t  FOPHAT ( *  A l l  FCTN * , **0 1 S • 8 )
I 3« C ONT l Nu c  

PC TURN 
C NO

FCTN (7/fi INCH CXACT)
C C L T . r  FXTFMOCO 7 8 « ( f X a CT I HOOEL FUNCTI ON H 0 0 a 2F

SURBOUT l Nf  F C T N ( N , H , * #N S , X T , 8 , F N , l r C T N )
C CAL C.  TELESCOPE POI NT t NG e * ro r  HOOEL FUNCTI ON FOR
C N l S A L f S N f O . S K C *  E Q U  m T G a I TH ZERO OFFSETS.
C P f R I O O l C  CNCOoEN r , FAR ERRORS a STRUCTURAL F l E* UR f .

C
I M P L I C I T  RFA L a 8 ( A - H , 0 - 7 )
O l NENSl ON X I  ( N , h ) . F N ( N . N S )  , ROC)

C
I FC TNa l FC Tn a I
NPRAO
P I a 3 . 1 R | S 9 2 a S 3 S 8 9 7 9 3 0 0  
P 10 - P 1 / 1 8 0 . 0 0
Pn Ja - * 3 S . O O a I R . D O / 8 o . D O M 7 . S O O / 3 a O O . OO> * P | PT H F TA - 8  C I )
P H Y . B ( 3  I
PS I ■ « ( ? ) - B ( 3 )

C

C
S T a o s I n ( T h ETA)
C T a OCOS( THETA)
SPa O S I N ( P S T )
CPa O C O S ( P S I )

C

a COn S T a i S . n o * P !
A I •  9 • Of) /  | 9 » 00
A 2 a 7 P » 0 0 a P I 0
A 3 * 0 . 8 S 0 0
A N « I m • 7 0 0 / AC On S T
A S • 9 . 8 0 0 / ACONST
AAAI  , 2  8 PC 
A 7 a I 0 . 0 0 / ACONST 

C
P 0 A• I S I  2 . 0 0  
PDBa POa / 3 2 . 0 0  
P H A• 8  A 9 . 0 0  
P H 8 « p M A / 3 2 . n O

c
0 0  130 JA I *N 
0EC»x  * ( J , 1 ) 
h Aa x x ! J . 2 )

C ONF ENf OOFR ERRORS
C

CDa Oc OS ( DEC )
S O A p S I n ( OEC >
CHa Oc O S ( ha  )
SMa Q S I N ( ha  )
C P 0 A . 0 C 0 S « P 0 A » 0 F C  )
SPD Aa OS I N ( Pf l A. OF C I 
C P 0 8 a Oc o 5»®08*1) EC )
SPOBa O S I N ( POB»OE C )
CPmBa Oc OS ( PM8 • H A )
Sp HR■0 s I N ( P h B • H A >
CPh A * 0 C O S ( P M A • h A )
S P N A « O S I N ( P H A » H A )

C
_ 0 E C A 0 E C * B ( S ) * P ( 6 ) * C n » n ( 7 ) * S ,' * B ( P ) * C P 0 A * B ( 9 ) « S P 0 A  
1 ♦ B ( 1 0 ) a C P 0 R * R (  I I ) • S P 08 

H A ■ H A ♦ R ( I 2 ) •  C H ♦ H ( I 3 ) • S h ♦ R ( M I . C P m A . M  | S ) » 5 P MA  
I ♦ 8 (  | A ) « C P h 8 * R (  I 7 ) • S P h o

C T * 0  TORSI ONAL M O V • T OF AXES
C

COa Oc o s ( DEC I 
CNa OCOS( HA »
D f C A 0 E f * 0 ( 2 0 > A C n * ‘> S l N ( r»EC- p Hl  * 
m Aa h a « ( R ( 2 7 ) « C h + q < | 8 ) « C O * O S ! N ( M A ) I • OC O S ( P h | )

C THREE SFEPNESS OF A»ES
f

TOa OT An ( OFC )
0 f C A 0 A S l N ( 0 5 l N ( 0 E C » * ü f r* S ( r t l 9 )  ) ) 
h A . M A * « a T AN(  T O» OS| N( r f  ( 9 ) ) )

C FOUR h j 5 AI I GNMEn T F r Oh POl E
C

CPn a o C OS( Ph y ^ h A )
SPh a o S I N ( P h y * h a )
C o AOCOS( OEC I 
S^ APS I N ( OFC )
C H . OC OS( h a )
5 H •  P S I N ( H A I
X A f p » ( f 8 # C P H - f T * S P * S P H ) * S 0 « S T A S P
t a - C 0 * ( S P « C P h * c T « C P * 5 P H ) * S 0 * S T * C P
7 a C 0 * S T a SP « * C T « S 0

f
h A» OAT a N ( - Y / X  I 
OC C« 0 A8  I N I 7 )

c F i v r  f l e x u r e  of  t u b p « no o p t i c  s u p p o r t s

O f R A f > C C * P * 7 l » * O C O S ( A l A O E C * X ? > 9 0 C O S ( A 3 A H A )
M A A N t M l  I 9 1 •  ( < » 9 * a S . 0 S I N ( A A * 0 F C >  > * h * - A 7 a DCC>

c

F N  ( j  ,  |  I t o n  
F N ( J , 2 ) A H A  

r 3 ^  C ON T I N U f
RE TURN
F NO

FITEST
C EL T - M f i t e s t  m00 NO.  a 12

. SUB POU T t N F  F ! T F S T ( N . r , r O . N O P T , x , X X . Y . Y Y , W . P , A L p MA. C .
I J S . J T ( J G . J 0 . J L * J R a * j R8)

. . . p r o g r a m  t h r e e  . . .  t e s t s  a c c u r a c y  of  e r r .  s u r f a c e  ( i t  

c n o p  t ( I ) g t p e n a b l e s  p b j n t . a b  g i v e s  p l o t  o r  r i s i o s . - r b o t h .
C NOPT( 2  >•  1 . 7 , 3  G I VF5 h e Th OD*

\ ;52::?Kr5"?3Sp2:;s8s;.g;E,esi2Ti2SrS:?£5:a ““ n ,N n*T‘ -
I MPL I C I T  R f Al  A8 < A- H . 0 - Z )
O l H E N S l ON  NOp T l M )  , X ( N , ? )  , X X ( N , ? 1  , Y ( N , 2 )  . T Y ( N , ? I  , * { N , 2 )
O I N C N S i ON AL p HA ( SO .XO . 2 ) , C ' « 0 , 2 ) . P ( N , r 0 . 7 >
O l H E N S l ON  j S ( r O )  , j T  ( KOI  . JG < K 0 ) • J 0 ( K 0 « , J L ( F O »  , J R * ( X O )  . j p H U O l
0 I H f N S  f on NOAT( 9 )

C CAUTI ON T f - P O P A R J L T  DI MENSI ONED V A R I A B L E S .
REAL 1 1 J . M A ( \ b Q)  . 0 0 «  180 I , DM(  | &0 >  »0R(  I AO» . F R A T l O . F t S M

P I - 3 .  1 9 I S 9 ? a S 3 S 8 9 7 9 j oo  
PI  0 • P I /  I 8 0 . 0 0  
SEC• 3 8 0 0 . 0 C / p 10 
n P R - n Op t ( j )

I F  ( NOPT( I 1 . F 0 . 9  I NPR- 0  
Hf  TM. NOPT ( 7 )
1 DA T A• N 0 P T ( 3 I 
NO A T ( I I a n PR
NO AT ( 2 ) «0
N O» T ( 3 ) a P 
NO A T ( 9 ) »C

C GET NFJT , N U 2 . P M J F I T , S f G2  FRpH «
C

NF I T a * ( J , I )
N U 2 - R ( ? , l )
PH I F I T a * ( 3 t t )
S I G 2 a 8 ( 9 , 1 )

c

c
I F ( I O A T A . E O . 0 ) GO To | 0  
GO TO ( 1 0 0 , 2 0 0  » , l OAT A

10 wRI T C ( ..................................................................................................................................................................
?o . f o p m « T ( / *  • • • • • • s u r f a c e  f i t  Tes T  r o u t i n e  n , k , ®e Th O D * • , 3 19 /

j , p G C N C » » T f 3  A DDI T I ONA L  OA*A USI NG OATGEN»/ »  • • • P l SE I NPUT 7 8 4 NDOH

CALL R E a O ( n v A R . h EG. NERR)
! F ( N [ * 9  . EO• I . OR. NVA R . NE• 2 )  GO TO 99 9  
* R I T f  ( 3 . 3 0  » mE G

30 F ORMAT ( .  NFA DATA GEN.  * I T m RANDOM PARHSa * , 2 F I S , | )
RCa 9 2 7 S . OO 
RAa He g ( I )
RBa mC G( ? )
CALL 0 a T G F N ( N , F , K O . n 0 a T , x , X X , Y , R a , R B , R C )  

f  NO*  HAVE ne w X . Y d a t a ,
GO TO 90 0

c ............................................................................................................................................................................................
t o «  * R ! T F » 3 . M 0 )  N . K . M f T H
i n  _ f o p m a T ( / »  • • • • • e r r * Su r f a c e  f j t  t e s t  r o u t  i n f  u s i n g  e M s t i n g  d a t a  

» N , K , h e T mOPa • , 3 1 9 1  
GO TO 9 0 0

c R f A O *  f N * u f  » * T f l ESc Op E * OA T A * F R 0 H * f i L t  * I R • ...........................................................................
70 0  CONTI NUE

RE A 0 I I 9 ) NOBS 
AR I T f ( 3 . 2  n 1 NOBS

71 0  _ FORHAT( *  NANO.  OF 0 * T a PTS MAS BEEN RESET TO * . I S .  
t *  FOR FOLLOWI NG F | T  T E S T S . * »

N A N 0 B S
00 2 7 0  J a 1 .NOBS
READ(  I 9 ) X ( J , 1 ) • X ( J * 7 » » Y ( J  » I ) I Y ( J , 2 )
IF ( N P W . G T . I  I A R | T E ( T , 2 3 0 » J i X < J . 1 » , X ( J . 2 )  * Y ( j ,  1 » IY ( J I  2 I 

? 3 n f Or h a t i * x y f i l e  1 ** e n t r y  •  • , I 9 ,*>x . 9 0 2 0 . 1  0 )
7? o  c o n t i n u e

c P E T f P M f N l * “ F T H O o I .............................................................................................................................................
9 0 -  GO TO ( I POO . 2 0 0 0 , 3 0 n 0 ) . METH

C . . . . . T » r » T  p m | »s  » ’' S f # » 0 »  OH ^ r . M ,
1 0 « "  CONTI  »In r
C F?Np  x m a i  . « “ I n , ,

x m & x « • * « i , 1 )
X M| N a a X“ AX»
X M * X B * x ( I , 2 )
X“ t » i B A * “ AXP
00 i n n  i ■? . n
I F ( I I I ,  I I , f , Y . X - » U  I X M A X A " * ( I . I »
I F « X 1 I , | ) , L T . I H | N A »  X M f N A A X ( I . l )
I F ( X ( | . ? | . G T . X M A X P »  X - A x B a x ( I , ? >
I F ( X ( I , 7 | . I T . X “ I N8>  X“ I 9 B * Y ( I , 2 )  

i n -  C 0 n T l  •« u r
c SCALE X VECTORS TO I NTERVAL -  I • • •  I A N 0 Y S I M I L A R L Y .

SC * LE I  a 7 . O ? / ( Xm A * A - X M | N a )
S C » L f « A 7 . 0 ? / ( x ' >AXfY- XM| NB)
C 0 NS T A• 1  . 0 « - S C * L t  » * XH»XA 
C O N S T 8■ I . 0 « - S C * L F 9 » X H * xb 

C
00 I ? On I a I , n
XX( J , |  ) a CONSTA♦ S C A L F A # X ( | , I )
X*« I . ? l A C O N S T R * S C A L E b » X (  J , 7 )
T v ( I , I * - s c  » I E A A ( V ( I , I ) - A ( l t l > l  
Y Y ( 1 , 2 ) a s C » i E p * ( V (  I , ? ) -  X ( I . 2 »  »
W ( I , | l . i . o « / S C A L E «
* (  J , 2 » « o C O S ( X (  I , |  I ) / S C * L E N
1 F ( N P R .  C, T . I > - R | T r ( 3 . l 7 | » I , x X ( I . | ) . X X ( I , 2 ) » Y Y ( | . | l « Y Y ( | . 7 ) . W I t . 2 >

| 2 1  FORMAT«.  X * v Y f O S a • , I 9 . SO I S . 8 »
1 2 « "  c 0 N T ! N" r

| F ( N P P . G T ,  1 • AR I T f  ( 3 ,  I ? ? ) S C * L E A » S c A L E B . C 0 N 5 T a »C0NSTB 
| 7 7  r « R M A T ( t  “ r  T mOr I »SCAL E S. CONS TS a * . 9 Q 1 S . 8  )

I w A I
GC TO S« «

C F I T  ERRORS YY. SC » L f • < y - x I ............................................................... ..
7 0 " -  CONTI NUE 
C F l " P  Xm AX . X H I N • •

X H 4 X A A X l l . i l
* “ | NAAXHAX4
x *’ a * P ■ r ( I , 7 )
X H I , R • „ - 4 t I,
0 0  ? I on  I a 2 , N
| F ( X ( | , | ) . r , T . X MAX4)  I h 4 ! A a >(  I i l  I 
I E ( X ( | , | ) . | T . X M | N 4 »  X H l N A " X (  I I I )
I F ( X  ( I , 7 )  . GT . XMAXB )  X h A X B■ X ( ] , 2 )
1 F <|X ( ! , 7 » .t. T . XM I JO » Xh I N B * X ( | , 7 )

S C A L F B . 7 . P « / ( X UAX«- XM1NB)
f  O 5 T A a I . ( ) « — SCALE I ' 1 M « I A  
C ONS T B .  I , D " - S C  A l t B * X M A * B

00 ? ? 0P J a J , N
X* ( I , I ) a CONST A« SCAL Fa *X ( J , I )
XX(  I , 2  ) a C0*. ' STb * s C a L f 8 a X ( I , ? )
T T ( I , | ) . S C A L E * * ( Y ( I t l ) - X ( | » i n
YY(  I , ? ) . S C A L E B » ( T (  I , 2 ) -  X ( I , 2»  »
A ( I , 1 ) A I . PO 
* « I . ? I a | , oc

77 '  -  > l * , * « , * l  » . * M I . 2 ) . Y Y ( | . |  ) . Y T ( i #7 )

j F . N P P . C T . n A P I T C O . ^ Z )  SC ALE A . SCALE B.  CONST A.  CONST b 

GO To SOC

30« f c o  P r w * ^ D* *  XX- COS ( SC ALEO* X * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C°  F I N 0 TXMAX , X M ! n .  .

XMA X A * X ( 1 , 1 )
x m j n a a x m a x a  
x m a x b a x ( 1 . 2 )
XMI NB a x MAXR
0 0  3 l O n  I - 2 . N
I F ( X ( r , 1 ) . GT . XMAX A » X M A X A A X ( I . l )
1 E ( X ( I , I ) , L T  . | H  INA » X M l N A - X ( I . l )
I E ( X ( J , ? ) .  GT . XMAXB)  Xm Ax B a X ( I , 2 )
! F ( X (  I , 7 )  . L T . X M I N B »  Xh | N 0 a X « I , 7 )

C S C A L F 1 X^VECTORS TO I NTERVAL 0 - P I
SCALF A . P  I /  ( XMAXA—X M| N a )
S C A L E 8 « P I / ( X M a X R - X M | N 8 )
C ON S T A . - S C A I E A ^ X M J N a 
C0NSTBa - S C A L E B * X M I N 8

c
DO 3 2 0 0  I •  I , N
XX(  I , |  ) a c o n s t a * s c a L f a * * i I »I  »
XX(  I , 7 ) a c 0 N S T B * s C a L f B a x ( | . 2 )
* * (  I . I ) AOCOS( x X ( I , 1 ) ) 
x X ( I , 7 ) A 0 C O 8 ( x x ( r , 2 ) )
T T ( I , I I . y I I ,  I I « X ( I ,  j )
FT ( I , 2 ) a y  I I ,  2 >- X ( I » ?»
*  ( I t I  ) a I . n o
*  * I * 2 * • i . o n

j r i N * n . e r . i ) « R l T r o , i ; 2 i  S C » t . t * . s C » L t » 1c o N S T » , c o > . 5 » 8  

c ö » T I o n I l l » " s u i i t i s  c o i P A Ä i s o ^ !  ...................... .. ....................................................................
SO« | F ( NOPT  ( 9 )  . N E . 9 )  GO T 0 700
c r u b p a r « .  : •
A 0 O RETURN



D .11

c SU« s e r i e s  
70 0  P M | a O * 0 0  

P H » « 0 . 0 0  
E R * m * * • o

72 0

c

8 I 0
82 0

83«

90 0
C

9 I 0

C 8 L L UCO* S o u 5. «c! « o !  l i . X X ^ P . A L P r f l ,  US.  J T , J 6 ,  JO,  J L .  J * A .  J®6>

00 7 1 0  T ■ 1 . N 
CALC S r B I C S .
m « 0 * 0 0
T Y 8 « 0 * 0 0  
0 0  7 2 0  J » 0 . *
J  J » J
I F I J . C Q . O )  J J a KO 
Y Y A a Y Y A * C ! j J . l  I * 7 (  I • J J • I )
V V R » Y Y 0 * C t J J . ? > * P < l . J J . 2 >

T R ANSPORN* Yy * RACK * * 0 ' Y FOR ON- SKY NUROLl  NG .
60  TO »8 1 0 . 8 2 0 . 8 3 0 » , H f T h
c o n t i n u e
c o n t i n u e
Y A a W A / S C  ALCA* X ( I • 1 I 
Y B » Y V B / S C A L E 8 * X !  I » Z )
GO TO 90 0  
CONTI NUE 
T » r Y r » M l  I , |  I 
YB»Y Y0* X C I • 2 >

• NON HAVE Y A G A I N ............ • • • • • • • • • • • • . . • • • ................... ..

1 0 .  I ? ? L K« * 7 0 M? T0 R ! ( e 0 ? ! G T X 2 > 0 GT0 E T 0 ! N 2 L D 0 ^ C>0 0 T 0 I 9 0 e P V * L R ° * , G *
8 I N T -A  I NTy STCP

i r ( v » * 9 . G T , 0 > 8 8 l T E { 3 . 1 l 0 0 ) A l N T , B | N T  
l i n n  r O » * A T ( *  I NTERVAL EXPANDED TO LENGTH S T E P . . A , 8« » , 2 0 1 8 . 6 )

GO TO 30 0
C

c E X I T  WI TH LESSER OE F 1 . F 2
9f l n  a L»*Ma »X1

p w v . r  l
I M r i u T . r u  GO TO 92 0  
A L P H A " * ?
P H T « r 2

9 2 n 00 9 1 0  J • 1 , Y
9 1 0  8 ( J ) " Ö ( J ) * ALPh A * T ( J )
c ( n . b .  s c a l e d  p a r « v e c t o r  r e t u r n e d »

CALL EC TN <N .M ,K . n s . X # 8 , F N »K 1 »
K 1 ■<1 -  1
r e t u r n
ENO

GRAD2
CONTI NUE 
PRI NT SUNS.
I E ( N R R , G T . 0 ) R R ! T E ( 3 . 9 | 0 » I . Y A . Y 8
e o r n a t i * s e r i f s  s u n  a t  * , 1 3 , * y h  p t , 2 d i s . • »

P M I » P M f * l  ! Y V ! t • 1 I « Y y A 1 • • (  1 * 1 » ) •  •  2 
PHI a PM I ♦ (  ( Y Y ! I # 2 ) - Y y 8 ) * 4 I  1 • 2  > ) • • ?

s t o r e  SUNS TN YY 
Y Y f I * I 1 •  Y A 
YYI  I , 2 ) • Y R

F I  NO ERRHAX•
E R R - ( Y ( I . I ) - Y A 1 < Y ( I . 2 » - Y 8 ) * O C . S ( X ( I . 1 ) » » • • 2
P HY. PHY. E R®
I F ! ERR• GT . FRRMAX) ERRn AX- ERR
CONT I NIIF

ASSESNF n T OF F I T  

ERRNAX« OSORT( FRRHa X|

93 0  

9 9 0

95 «

C

A B L E S » » , 0 1 5 . 8 , *  S U S O - '  , 0 1 5 . 8 )  

• RNS CARCSEC) • • . D 1 S . 8 .

9 0 D "
c

L

•SEC
5 ! G S 0 - P H ! / ( 2 . O 0 * 1 n - k - 1 ) )
R N S - DS OR T ( P h Y / n ) * S E c

• R 1 T E 1 3 . 9 3 0 )  P M | , S l G S Q  
FORMAT! »  P h J OF Xf Or He O VARt  

8 R ! T E ( 3 . 9 R 0 »  PHY , R h S. ERRHAX 
_ F 0 R N A T I • ON — S K Y P M Y a * » D | 5 . 8 ,
I *  NAXI HUN ON- SKY F R » , a * , O l S ,

NU1» 2 «  C N - N F 1T )
S I G 1 - ( P H Y - P m 1 F I T ) / N u l  
FRAT I 0 - S 1 G I  / S I G 2
PROB» f 1 . 0 0 - F I  S h ( F R A T I 0 . N U 1  t N U f )  ) •  1 00  * 00 
•  R I T F I 3 . 9 S 0 ) P h Y . P h I f I T  ■ S I G 1 » S j G 2 » F R A T l O » N U l , N U 2 . P R ®8  
F O R M A T ! / *  PHI  . P m I F I t . S I G I  . 2 -  • » 8 0 1 3 . 5 . ’  F . NU 1 • 2 , P»Ob -  » . F 7 . R ,

. 2 1 8  *F n  * 5 / I

PLOT * AND/ OR L I S T  RESI DUALS 
I F ( NOPT< I 1 . L T . 6  ) GO TO 8 0 0 0
00  80 J p 1- 1 ,N
o c c 1 i ) - Y y ( T , i >/ p i  n
M A O C S - Y Y l 1 . 2»
CALL Sm ! F T ? ( MAOC S )
HA I I ) • h a OF S• l 7 • 0 0 / P  1
0 0 1 | ) p l Y ( ! . | i - Y Y ( I . | ) ) * S C C
O H f I ) R ( Y ( I  , 2 » - Y Y (  T . 2 » ) * O C O S ( T * I  , 1 1 ) »SCC
0®< I ) »SQR T 1 0 0 !  l  1 ) •  •  2 >
I F < N P R , g T . 0 1 * R T  T C ( 3 , 8 q 2 0 )  1 »DEC!  1 ) »M A ( | ) , 0 0 1  I ) »OH 1 1 » , 0 R (  I ) 

_ F 0 R h a T ( *  F I T T E D  POI NT N O . - * ,  1 8 . *  OEC• •  »F 1 0 • 8 •  * H A a v ar i O « R t  
d e c  e r r - »  ,F I 0 . 8  , • H I  E R R - * » F 1 0 . 8  , • RESL NT-  * , F l 0 . 9 )

CONT I Nt lF

CALL AP L OT ( N . DEC . * DEC » . D O . »  Oo E C » » l >
CALL A - L O T I N  , OEC , * DEC ♦ »OH, »OH- COS*  , 2 )
CALL A P L O T ( N , h a  , *  HA * , 0 0 » * 0 D C C  * . 3 )
CALL A P L O T l N . H A  . *  HA • , 0 H , * 0 h * C 0 5 * , 8 )
CALL AP L OT<N. DEC . * OCC » . OR , » ORE S  * , 5 )
CALL A P L OT f N. MA  , *  HA * » D R , * D R c S  * • A )

: : s * ! :
RETURN

RE A 0 F a i l * .

FORHa T ? / / '  A f a O* ROUTI NE f a i l u r e . n o ,  o r  VARI ABL ES r e a d  « a s  • , 1 4 1
RETURN
END

GMIN
E L T « G N | n GOLDEN SFCT10N L I NE N | N | N | 2 A T f O N . MOO I I
s u b r o u t i n e  g h i n i n , n , y . n s , x , y , » , p m Tj, f n , b , t , b n £ R . s c a l e . a i p h a . c t o l

1 STEP . S T E P « . ! T . n PR , K l  )

ETOL- ACCURACT
F T C ....................................................

C L T . P R 0 6 - G R A 0 7  MOD I F I C A T I ON  N 0 . - I 8 B
s u b r o u t i n e  g R a 0 2 < n , m . k . n s . n o p t , x #y , P a r n , f n , o f , « , g . g t e h p #t , s c a i c , 

I HASK )
PROGRAM I 1
M O D I F I E D  STEEPEST Of Sc CNT  ALGORI THM FOR p a r n ,  s e s t i m a t i o n ,  
OP T I HU n GRADI ENT v e r s i o n

- - - - - - « • - - - - - • - - - - - • - - - - - - - - - - - - - - - - - - - • - - - - - - - • - - • - o p t i o n s
I F  NOP T f 1 I «* 0 RF AOS PARm . NASK FRON K CAROS.

N 0 P T ( 2 >  GE I ENABLES PR I N T » «

I M P L I C I T  R C A L * 8 ( A - H . O - Z )
D I MENSI ON O A T A l ? )  , N q P T ( 8 )
OI MFNSI ON X ( N , M ) . y ( N , N S )  , F N ( N , n S)  , 4 I N . N S )  , 0 F ( N , K  » N 5 )
D I MENSI ON P A R M t K ) . T ( K ) , G l K l , G T E N P l r ) , N A S K ( K ) , S C A L E < K )
RE A L • 8  NEG

i n i t i a l  I ZE 
P I « 3 . 1 8 I S 9 2 6 S 3 6 D 0  
P l O « P ! / l f l O . O O  
S E C - P 1 O / 3 4 0 0 . D 0

' l l : : !
BEE •  1 
D E L - 5

S a- l
• 5 • D- S 
■ 1 * 0 - 1 5TAU» 1 

EPS» 1 
KOUNT1mO 
KOUNT 2» 0  
NPR»NOPT! 2>
s e t  l i n e  h j n .  o p t i o n .  i - p o « c l l . ? » g o l De n  s e c t i o n .
M I N » N OP T 1 3 »

t u e
( 3 . 7 )
T ( « •  «

DO 10 J ■ I . K
CALL Re AD 1N V A R , O A T A , N c RR ) 
1 FT n v A R . N F . ? . 0 R . N E R R . F 0 . 1 )  
P A R H I J I o  DATA < 1 )
H A 5 K ( J ) a  DATA» ?)
CONTI NUE

DATA I NPUT

GO TO 8 0 1 0

! i

C CALC CURRENT PM!
( A L L  f c t n i n . n . y , n s . x , p a r m , F N , K O U n T I )
CALL R T I N ,M , NS . X , » )
CALL Pm T < N , n S . Y . F N , R . P H ! 0 , R 0 R S T , | R 0 " 5 T )  
r n ERR»OSORT( Pm I O / n )
R N S » R N f « R/ SFC

c p r i n t
R R I T C 1 3 . 5 0 )  P h I O. RHS

SO . F O R M A T ! / / *  OP T I MI S E D  STCCPST OCSCNT R O U T I N E .  
I . n 1 5 . 8  , F 1 ? . 6 / •  I N I T I A L  PARn S ( N ASK S)  A R E . . * )  

00  &0 J » 1 .K
40 R R I T E I 3 . 7 0 )  PARM I j ) , Na S K ( J )

7 *  FORMAT( 2 X . 0 t S . A , • < * * I 2 . *  ) * )
PMVapHI  0

I N I T I A L  P h i , R hs  I S . .

120 CALL OFRV! N , M , Y , N S . X , P A R M , 0 F , K 0 U n T 2 »
g h a g s » o . oo

C C AL C.  GRADI ENT | N G *
00  3 0 0  J * I , K 
Gl  J> » 0 . 0 0  
00 11 0  I ■ 1 , N 
0 0  I I 0 L ■ I » NS

1 1 0  G ! j ) “ G | J ) * * (  I , L »• • 2 • ( Y ( I , L » - F N (  I , L ) ) •  OF I I , J , L »
G ( J ) » - 2 • 0 0 * G ( J )
GHAGS»GHA G S * G ( J ) * » 2  

30 0  CONTI NUE

RE

GMAG»OSQRT( GMAGS)

) • I • 0 0 ) / 2 • 0 0

DI MENSI ON X ( N . M )  . M N . N S )  . F N ' N . N S )  , Y ( N , N S )  , B ( K >  , T ( K  > , B N £ * ( K )
o i m c n s i o n  s c a l e i k )
I M P L I C I T  DOUBLE P R E C I S I O N ! A - H , 0 - 2 )

c
I T •  I
T A U » ! OSORT! S. DO 
GOL O» I . D O - T A U  

C

B 1 NT» STCP* TAU 
A I N T » B I N T - S T E P  
BOR I G » 8 1 NT

C | F ! n P R . G T . 0 ) * R | T C ! 3 . 8 o » C T 0 L . S T E P , S T E P M , A I N T , B I N T , P M y
90 . F OR MA T ! »  GOLDEN SFCT N . L I  NCN f N « C , S T £ P . * AX■ • , 3 0 1 0 • 3 . *  A . b . F V I » * ,  

« 3 0 1 3 . 4 1  
C

X 1» 0 . 0 0
r i » p my  
GO TO 120 

C

300 CONTI NUE
B O R ! G » 8 ! NT 

C GC T X I , F  I
l  | » B I N T - T A U » ( 8 I N T - A | N T )
DO 100 J  a I , K

100 B N f R ( J ) » « t ! j ) * X l * T l j ) l » S C A L E ( J )
CALL F C T N ! N , M , y . N S . X . 8 N E R . F N . K 1  )
CALL Rm ! I N . N S . y . F n . p . F ! , W 2 . 182»

C 6ET I  2 * F 2
1 2D X2»A ! NT* T  i l l *  ( 8 I NT - A 1 NT )

8 N c i i 3 ) » " i i j » * X 2 « T < j ) ) « 5 C A L C ( J »
CALL P f T N I N . H . k , M S , I , 8 N C R . F N , K I )
CALL ®m ! I N . N S , T , F N , R , r ? , * Z , I ® 7 )

c PLOT PMY FOR L I N E S
I F I M I N . L T . 3)  GO TO 32 0  

S T E P " « , 0 - S  
NSTEP- S

c T ( I ) » P a r m ( I ) - . 0 0 0 1 5
T ( 2 ) » P A R M | 2 ) » . 0 0 0 S  
T ( 3  j  »PÄRM! 3 ) * 2 . 0 0 0 5
T ( 9 ) a P a r m ( 9 > - . 0 0 0 2  
T ! S ) » P A R M | S ) - . O O O S  
GO»O. Oo 
DO 3 6 0  J » I »K 

34 0  G 0 » G 0 * T ! J ) * * 2
0 0  3 7 0  J»  I * K

3 7 0  T ! J ) » - T ( J ) / O S O R T I G O )

C T » 0 • 0 0
00 391 J»  I . K

1 39 I C T - C T - T ! J ) « G ! J l / G M A f t  
D C T a 0 A C 0 S ( C T ) / P 1 0  
R R I T E < 3 , 3 9 ? ) C T , 0 C T

39 ?  F ORMAT! *  * • • • COS , T H f T a  * , 2 0 1 5 , 8 »

C 00  3 3 0  I • 1  . 300
A L P H A « S T E P » !
00  3 9 0  J » ) ,K

38 0  g TEm P < J > " P A R m ( j ) - A L P H A * G ( J » / G H A 6
CALL F C T N ( N . M , K  , N S , x , r . T E M P , F N , K O U N T l  ) 
CALL Pm ! ( N , N S , Y , F N . R , f Y 1 . WOR S T , t P OR S T )  
00  3 8 0  J ■ 1 , K

38 0  g T E H P ! j ) a P i R M ! j ) - A L P H A * T i J )
CALL F C T N l N . M . K . M S . X . c Y e H P . F N . K O U N T l )  
CALL Ph i  I N .  NS,  Y , F N , R . f Y 2 , GORST,  I p ORST)  

3 3 0  R R I T E ( 3 , 3 9 0 ) T . F Y ! , f Y?
39 0  F O R M A T ! ! * . *  I . F Y 1 , F Y 2 a • , j S , 2 0 2 0 • 1 0  I

I 20

i i n  

c

i o n

M J Na 2
320 CONTI NUE
C ® •  •  •  •  .................. .. .............................. .................* ......................... .. .............. ..

C C AL C.  SCAL E. DESCENT VECTOR T AND SCALE PARNS
T MA G» 0 . 0 0

! J )  I

L E !  J»
| F i r 2 . 6 T . F | ) 60  TO 4 0 0

L 4 Ha 2 
A I NTa X I 
X I •  X 2
X 2 » B | N T - G 0 L 0 * ! B I N T - A I N T )
F 1 »F 2 
00  51
B N C » ( J | a C 8 I J ) p X 2 * T l j l ) * S C A L C < R *  
CALL F c T N I N . H . K  , N S . X , 8 N C R , F N , K 1  ) 
CALL ® M | I N . N S , Y . F N , P , f 2 , R Z , I R Z )

C

L

L A M.  J
8 I N T a  *  2 
X2 » X I 

■ A I NT 
»F 1

00  4 10 J » l  ,K
R N f A ( U ) » ( B ! J ) * X  1 • T I j ) ) • SC AL E * J » 
c a l l  f c t n i n . m . k . n s . x . r n c » , f n , k i  ) 
CALL Pn I ( N , N S , V  , F N , « , F l , R 2 , ! ® 2 )

TFST FOR L I N E  HJN CONVERGENCE

| F | O A 0 8 ( X ? - * M , L T . C T O L *  GO TO 10QO 

GO " A Ts i o

90 0

c

00  31 0  J » I , K  
S C A L E I j ) » 0 A 8 S ! 6 M A 6 / 6  
T ( J ) » » 6 « J ) » S C A L E ( J )  

T H A G » T H A G » T ( J ) * * 2  
P A R H ! J ) . P A R M ( J ) /SC A 
CONTINUE

N 0 R H AL I5 E T 
T H AG » 0S 0R T ( TMAG)
00  90 0  J » 1 , X
T ( J ) » T ! j  J / TMAG

r A L C .  ETOL STEP m A x - S T e p
, s t e p » p h y / me g
* C T O L » S T E P / 1 . 0 5  

5 T F P m o s t e p * l o o , 00

51 F 0 P H A T * ? C !Y E R 9 S ^ E P 3 , A l 0 E , M EG*BEEP , 5 I l ' P H , C 30 L ‘ Mt<' ' l' Cl:

C H I N I M I 2 F  p my  ALONG L I N E  T

GO TO < 40 I . 4 0 2 )  , MI N
401 . C A L L  L M I N I N ,  m . k . n s , x . y . r , p m y , f n . p a r m . t . g t c h p . s c a l e . A L P m A,  

« E T O L , S T E P , S T E P M , i t , n P R . K O U N T I )
GO TO 41 0

6 0 ?  CONTI NUE
- CALL  G M t N l N , M , K , N S . X , Y , R , P M Y . f M . P A B M . T , G T C M P . S C A L C , A L P M A ,  
1 E 7 0 L , S T C P . 5 T E P m , | T , n P R . K 0 U N T 1 )

6 1 0  CONTI NUE

C TEST FOR CONVERGENCE ^
9 0 n  I T E 5 T » 0

0 0  9 10 J a  I ,K
Y r S T a O A 8 S < A L P H A * T ( J ) ) / ' O A B S | P A R M | U ) ) * T A U )
I F ( T E S T . G T . FPS ) | T E 5 t » i



D .12

• I C  COn T ! NUC
! f ( I T E S T . f Q. O) GO TO 1000

e l
C PR I NT H O "
1 1 v» CONTf  N u f  H i n

C DESCALE p * R m S
00 i 2 on  j  •  i , k i i 2 "

! ? " "  * A R " ( j , « p 1 9 H ( j »» s c a l E , J ,
c i i s ^

» “ f B « « f ) S O * T | P M r / N )  c
9 MS a R " F R R / S F C  c
■ * I  * E  ( 3 . 1 1  I 0 » I TER , I T . k OUNTI  , «COUNT 2 ,  ALPHA , P mT , R mS l 2 ^

""• ;:°z :;:i:''::::LsToiy0;:;2,s’ ' «»«-»».*— .............. .. s
W R | T £ ( 3 . 1  | ?0 • P * #M 

! I ? "  F O R " a T ( / 2 X . 5 0 ( 5 . 8 )
I F ( n p r . ge  •  1 ) WR I TE ( 3 , 1  I 3 0 1 T

» 1 3 -  r o » N A T ( «  vo  * , s o i 5 . § >
1 t e r *  i t e r * i
P N i 0 * P mt

.................... .. ..................................................................................................... ................  S
| F  ( KOUn T i  . G T . 3 0 C1 R E T U RN  c

GO TO | 2 C  1 0 1 "

C I o ? "

1 0 " -  CONTI NUE
r " S r d s q r t ( p m y / h j / s f e  1 0 3 "
• R j T E ( 3 . i n 2 0 M T E R . I  T , < O u n TI  . K OUN T 2 , A I  PH A , PM Y , «HS 

1 0 2 "  r O * M A T ( / / «  CR * 0 2  CONVERGED • T J T f  R /  I T -  * , 2 I H , • K OuN T 1 , > •  • . 2 ! H .
»*  ALPH*  , p n t  , R n S« * , 3 0 1 5 . 8 , *  P* RM$ f O L L O « . . * )  C

00 1 OHO J *  ! , K *»0 I O
C < OESC »LE p A R M 5)  * 0 1  »

OB« P« Pm ( j ) / P I 0 
S B . P a Rn ( j  >/ SEC

10**"  * R ! T E » 3 . 1 0 3 0 > J , P A R H ( j ) t 0 B . 5 B
1 0 S-  F 0 » J * * T ( * PAPH * , ! * * , 0 1 5 . 8 ,  * R A 0 * » F | 2 • 0 , * DEG ' , F | 2 * 6 , *  S F C I

C READ F a ! L
* * 0 i r  A R ! FE < 3 , RO 1 1 I NV AH
140,1 RETuRM, / / / f  * r * °  , 0 u T t Ne F A I L * . I S . »  VARI ABL ES * e *E RCa O . * »  C

END C

GRADNT
C ELT PR0 G«GRa On T m o d i f i c a t i o n  N O . * 7

. SUBROUTI NE G R A O N T I N . M . F . n S . N O R T . x . y . R a R M . F N . O F . A . G . G T E mP . T . S C a L E ,
1 MAS*  )

c PROGRAM 4
c M O D I F I E D  S T f E P r S T  DESCENT ALGORI THM FOR f a r m .  5 E S T I MA T I O N ,  5
c MOO.  1

C -------------------------------------------------. - - . - . - - - - - . . . • • - - - . . . . . - . - . - - - O P T I O N S
c I F NOP T ( 1 I »0  R1 A 0 5 P A R " , M A S *  FROm K CAROS.

c N 0 P T I 7 ) GF I F V A « t F *  PR I N T « «

I M P L I C I T  * F » L . » I a - h , 0 - Z (
0 I mF N 5 I 0 N  D a T A ( 2 » , NOPT( R»  C
0 l " E  n SI  0* * I * i , " ) . y I n , N S ) . F N { N , n S ) . » ( N , N S I , 0 F ( N , F . n 5)
D I - E n S i DS P . R - I K  ) , * ( k , , G ( K I  , GTEMP1K ) , MASK I K » , $C AL E ( K 1

C I n i t i a l i z e  c
p I •  3 • I H I 5 9 2 4 5 3 6 0 0  C
P I 0 * P  I / 1 8 0 . DU C
S E C - P I O / S A OO. MO C
1 T E R ■ I
A L PH A » I . 0 « ?
0 I » 0 . 5 * 0  
D ? » 1 . 0 0
GAm m a * 8 0 . 0 0 » P | / I 8 0 , 0 0  C
T A" •  I . 0 - 1 5
F p S» I  . 0 - 5  C
K OUNT I ■0
K 0 U N T 2 - 0  HO
COSGAM»OCOSI GA" MA»
n p r . n Op t j  2)
N A L »0

f  # * # * * * # * # • * * * • * * * • * * * * * * * * • * • • • • * • * * • • * • • • * • • • • • * • • • • • *  DATA I NPUT 50

C I F t MORTC I » . E 0 . 0 1  GO To 6
4 COST j NUE C

•  R I TE«  3 . 7 1 *  C
7 f o r m a t ».  • me Y M' GGERLUGS ENTER » , I 3 . »  PA » MS. » J  l OO

00 10 J • 1  • *
C* L L  RF AD( NVAR , OATA , N r » R »
I F ( K y AR.NE • 2 • DR . KERR * FQ • I ) GO TO R01 0  300
P A R MI J  J•  0 A T A ( 1 ) 310
" A S *  ( J ) ■ DATA » 2 1

10 CONTI NUE ^

C ............................................................................. .. ....................................... .. ................ .. ................  START*  C
c c a l c  Cu r r e n t  p w i  3 s n

c a i . l  F C T N | N , M , K , N S , X , P A R M . F N , K O U n T|  )
CALL R T CN . m . N S . X  . * »  _  ___
CALL Pm ! ( N . N S . Y . F N , r , p m 1 0 . R 0 R 5 T , 1 » 0 R 5 T )
R " 5 » d S 0 R T ( P m I d / < ) / S e C

c PR 1 NT »

SO FORM a T ? / / / / •  P ? U r P F ? T  DESCENT ROu T I N £ , | N | T | A L  P N J . R mS j S . . » ,
» 0 1 5 . 0 , F 1 2 . A / *  1 »11 T i  A l  PARMSl MASKSl  ARE • • * 1

0 0  40 J » I . K f
g t e n p « j ) - p a r m f j  )

40 R R I T E 1 3 . 7 0 »  PARM1 j >. MASK 1J )  f
7 -  F O R " A T ( 2X , 0 1 5 . 0  , * ( » , 1 2 , »  ) »>  c n n

PHY• P M J 0 
GO To 120

c Re '
1 0 "  CONTI NUE f
C DESCALE PARMS 5 oc,

| 3C G?EMP? j l a o l * * »  ( J  1 «SC ALE 1 J > JJfJ
1 2 "  CALL O F R V I N , M , k ,NS . X , g TCmP , 0 F  . K 0 U N T 2 > 76 0

C CAL C.  GRA01FNT i n  GTEMP
00 30 0  J m 1 . K 5
OTC*»P c J ) « 0 . 0 0  \
0 0  1 10 1- 1 , N C

1 I n g ? e i p ? » GT f h r ( j  ) ♦ R ( I , L 1 • • 2 • ( Y < I • L 1- F N ( 1 , L 1 I * 0 F ( I I J  , L ) 00 0
G T E M p f j i « - 2 . 0 D » G T E MP l j )

? L3 0 "  CONTI NUE

C CAL C.  S C AL E.  CORRECTI ON VECTOR T AND SCALE PARMS 0 3 0

RSnR - 0 5 0 R T ( 1 . DO/ RI
00 31 0  J •  I * K
SC ALE 1J 1» R / G T F M P I j I
T 1 J 1 - - R  l mry
PARM«J ) « P A R " < j ) / S C * L E ( J» ® ; o

31 0  CONTI NUE 81 0
GO TO HOC 

C

l o o  a l p h a « a l p h a / h . do  C

c CPEATEL TEMPORY OESCa LEO PARM VECTOR i n  G T E M P . , . ,  0 2 0

H° L  g T E M P ( j ? r ? P a ^ m I J ) » A l P h A » T 1 J ) » « S C A L C t J »

'cttt KTTi:i3:::?::s:«5::853^?ss5ii. \
R M5 » D S QR T( P m Y / K ) / SEC J

c c  TCST PMY J 00

5 0 0  | M  P mTÜl T • P m I 0 I GO TQ TOO c
GO To 40C 

C

C CAL C,  a n g l e  b f t r e e n  s u c c e s s i v e  CORR.  v e c t o r s  a i o
7 0 0  CONTI NUE r

l F I I T E R . E O . i l  GOTO 90 0  
C T mE T A . 0 . 0 0  
0 0  7 I 0 JR I . K

7 1 "  CTMETAr C T H E T A ^ T I J 1 * G < J» c

C I F a n g l e  t m f T a GT Ga mma  REDUCE A L ^ ma  \
0 0 0  I F I C T M E T A . G T . C O S G A M ) GO TO 9 0 0  ^

c c a l c  n e *  a l p h a
A L PH A » AL PHA/ H . 0 0  
00 0 5 0  JR I , K

•  5 "  G T C " P < J 1 RPARMI  J 1 RAL PH* * T  1 J > c
9 0 0  CONTI Nu F  r

00 0 1 0  J R I . K  C
•  I »  PARM» J ) ■ P A R N ( J I ♦ H l P m A . T ( J )  c
C

C T C 5 T FOR CONVERGEs CF r
I T C S T - O  C
T f S ^ i o A R s !  Al P m A R T I J |  ) / » O A B S ( P A R M | J l  ) ♦ T AU I
I r  ( TEST , GT . F P S > I T C s Tr I ^

9 10 CONTI  Ni jF

I F ( 1 TEST . F O . O ) GO To I 0 0 0

FORMAT{ / 2 X . 5 0  I 5 . 0 )
I F ( N p r . g e . I )  * P  I Te « 3 , I 1 3 0 1 T
FOR" A T ( / •  T» * . 50 I 5 . 6 )

PPFPARE FOR NFXT U e R.
I TERr ! T F R p 1

n a l r o ° L °  USTT V t c T ° R T l N  G* AN0 C*»-C '  a l p h a  4 PARm S.
00 12 1 0  J ■ I , K
PAR" » J ) » G T f M P  » j ) « S C a L F ( J )
G( J > R t  » j )
PHI O. PMY
GO To 100

n i T . | , » | , t . t , t . t R « , > R l . | R « R | , | , | , | , | , f , t , | . | | „ | , | | | ( | . | |  t  (  ,
00  10 10  J ■ ] , K 

p A R " » J ) ■ G T F H P < J )
J 0 ? 0)  I T E R ,  PHv . C T mETA,  a l p h a , KOUNTI  , K 0 U N T 2 , N a L

CONVERGED I TFR N0 . » , I A . *  F I N AL  p h 1r * • 0 t S • 8 /  *

F 0 R " A t ( / 2 x . 0 1 5 . 8 »
RETURN

r e a d  f a i l
• P  ! Te f  3 . HO I 1 ) NVAR 
F O R M A T » / / / »  R f a o »
RETURN 
END

IBD
E L Y . 8 100 . . . . . . M O O  1
I NTEGER FUNCTI ON I 0 O M . K . J I
TAKES k B I T S  f r o m  * 0 * 0  j  STARTI NG a t  t h e  I - T h f 
( COUNTI NG 0 . 1 . 2 . . 1  a n d  CONVERTS SCO TO DECI MAL .
I NTEGER FLO 
m •  3 4
m m . m- f - !
J J " F L O  < m m , k , j  j 
L L «  U -  I ) / H 
I BO- O
00 5 L * O . L L  
m h r m - m , ( l ♦1 I 
KKr F l O( Mm , H , j j )
1 0 0 « IB DRK K•1  Or R l  
CONTI NUE 
RETURN 
END

Ou Tf NE F A I L » .  I S . *  VARI ABL ES ft f  R E REAQ. »1

FROM RI GHT

LM1N
E L t RLMI N ROf t ELL L I N E  M I N I M I Z A T I O N .  MOO 10 
SUBROUTI NE L M ! N ( N , " , K , N S , X , r , R , P M T , F N , 8 , T , B N E  

I STEP . STEMM , I T , N P R , K I )

ETOl r ACCü RACT
E T C ....................................................

P . S c  ALE »Al p h a  . e t o l  .

0 I "E NS I ON X ( N . m ) , K ( N , N S I , F N » N , N S1  , T I N , N S I  , B ( K 1 , T ( K )  , 8 N f  * (  
OI MCNSI ON SC A L F ( K )
OI HENSf ON D ( 3 )  , F y ( 3 ) . T E 5 T ( 3 ) , C O m r ( 3 » , I ( 3 >
1 h p L I C I T  ODuBl  f  PREC ! S 1 ON( A- H , 0 - Z »

I Tr |

•  R I T e C.T. h d I FTOL . STEP . STCPM
FORMAT»*  POf tEt  L L "  ! N , ETO l , S T E P . Ma X■•  , 3 DI  5 , 0 1  
0 (  1 I r O. DO
F V ( 1 ) r RMY
0 ( 2 ) r STEP
00 5 0  J R I . K
B N E <M J » R 0 ( J ) 4 O ( 2 ) # T ( J |
CALL F C T N l N . M . r . N S . X . B M E f t . F N . K l 1 
CALL Pm | ( N , N S . Y . F N , f t , f M 2 » . * Z , ! » Z )

g c t  THI RD PNT ON L I NE 
CONTI NuC 
0 ( 3 ( ■ • S T E P
1 F ( F Y ( I J , G T . r * m  » D ( 3 1 r 2 . 0 0 » 5 T e P
00  3 10 JR I , K
RNF*  1J ! R 0 ( J 1 * 0 ( 3  » r T ( J »
CALL F f T N ( N , "  .K , NS . X , RNEft  , F n , K I 1

CALI  P H M N . N S . Y , F N . f t , F T ( 3 »  , « Z  , I «Z >

c a l c  t u r n i n g  p n t  
c o n t 1NUE 
BCr O( 2 1 - 0 ( 3 1  
C * " 0 ( 3 ) - 0 ( 1)
Af l RO( 1 1 - 0 ( 2 )  
0C 5 * 0 ( 2» * 0 ( 3
ABS* 0  M  » ♦ 0 ( 2 »
C A S « 0 # 3 1 * 0 ( 1)
« C P . P C . r Y I 1)
C A P R C A . f r ( 2 )
A B P . A 6 . f Y ( 3 )
O M I N « O . 5 O O . ( 0 C S » B C P r C a S r CAPr ABSr a B P ) / ( B C P R C A P R A B p I
c a l c  s e c o n d  d f Rv as c h e c k
D 2 r ( R C R R C A P . A B P ) / ( A § R 0 C » C A )

I F ( 0 2 . L T . 0 . n o ) GO TO 4 0 0
L AM* 2
GO TO 7 S 0

TURNI NG PNT I S A mA x I h UM OR REOUl REO STEP | S TOO LARGE.
RHI CH OF 0 ( 1 »  0 ( 3 1  0<?1 I S FURTHEST FROM d m i n
L A Mr j
00  74 0  JR 1 . 3
T E S T ( J ) r O A R S ( D M I N - O ( J I  1
c a l l  s o r t ( t e s t  , c o " p . 1 , 3 1
1 NOE X•  I ( 3  )

STEPp I N ^ O ^ R N . o r  OEc PEASI NG Pm Y ANO d i s c a r d  OLO POI NT FURTHEST 

ESTEPr STEPM
I F ( O M I n . l T . O D O ) E S T E P R - S T e P h

ENSURE ESTEP DOES NOT OUPL ! C* T E  ANy E x I S T 1NGPOI n T 

I J ( O A B S U S T e p -OC J l  » . L T . C T O L » !  . 0 - 2 )  GO TO 050

GO To 8 H0 
C S T E P RC S TE P . S T f T
J F ( 0 " | n . L T  . 0 . O 0 ) E S T e P r E S T E P - 2 . 0 0 r STEP 
GO TO 0 0 5

0 0  § 1 8  J R I . K  
B N E f t ( J ) R B ( J l » C S T E P « T ( J )
CALL F c T N ( N , m , x , n s . x , b n e « , e n , k i 1 
CALL Ph i ( B , N 5 . y . F N . f t , P H l N . « Z , ! » Z »
0(  l NOC x1RESTEP 
F T ( I NDEX ) «PH IN

R R J T E £ 3 . 8 ? 0 ) ! T . l A M , F V f 0 , D N l N , l N 0 E X  
. FORMAT»*  L M J N / J T , L A m» * , 2 I H . * P m Y , 0 r . , 4 0 i S . 0  , / •  O H | N , REPL ACFD » • . 
» , O l S . R , ! H )

GO TO 9 5 0

CHECK THAT ST f P Dm I n i S  NOT t o o  LARGE 
I F ( O A B S ( O H I N ) . G T . S T c P h JGO To 70 0

CHFCK I F  BHIN 7 I Th I N ETOL OF 0 C I I 0 ( 2 )  OR 0 ( 3 1

00 6 10 J r I .  3 
E R R» 0 ARS( OH I N - D ( J 1 1 
| F ( E R R . l T . F T O l 1 GO TO 02 0  
CONTI NUE 

' •GO TO 9 0 0

A L P H A » 0 ( J 1 
P H Y . F Y I J )
GO To 6 5 0

USE 0M1N AS NEW POI NT
00  9 I 0 J r 1 ,K
0 N E W ( J J « b ( J ) * 0 M ! N # T ( J l
CALL F C T N ( N , M, K  , N S , X , R N E W , F N , K !  )
CALL P h i ( N , n 5 . y . F N » r , p h I N . W z , I W Z )

CALL S 0 R T ( F V , T E S T , I , 31
1 NOE X• I ( 31

CALL s o r t  I O . T C S T , I , 3 1
l F ( B H l N . G T . t C S T , l ) . A N 0 . 0 M I N . L T . T e S T ( 2 )  I I N O E X - I  ( 3 )  
1 F ( D H I n . G T . T C S T ( 2 1 . a Nd . 0 M I N . l t . T f S T ( 3 ) 1  I N D E X - ! ( »1



D.13
9 ? «  r  v c i N or  a I » pm 1*  GO to  t s o o

0 ( t * o e 1 1 » o « i n c
r  C L A MO A •  ONE

* R l T C I  3 . *  30> 1T , L * M , E Y , D,O M IN  , 1 N o t  X o 100«  J f  ( P M T • G T • P M ! 0 I GO TO 170
93 «  r O » H »T(  • L*< 1 N / I  T , L AP» • » 1 R • 1 2 . * E Y »0 « * • * 0 l 2 • S • *  0 *  I ** » *  € P t  A f  C 0«  » AL AMO A» A ». A * 0  A /  A NU

* . 0  I 2 . 5 ,  1R> GO TO ?1C0

r  C L * p DA •  T«ro
« S r  I T ■ T T♦ I 2 0 0«  ! F l p H » . L F . p M lO l  GO TO 2 100

GO TO 3 5 0 C
C C IA « 0 A  •  Th r e e
C E X IT  L * P 0 A » 3
& 5 D DO 4 t O  J * I  | l  S T E F « 1 » 00
A«« M  J » « 8 | J U A l F m m TI  J |  32 0«  * L * ' *0 » *A L A « r )A « A N U
f  DL** *OA«AL AMOA

CALL f CTN « N ,H ,n  ,N5  » X . 0  .EN . *  1 » 0 0 3 2 1 0  J a | t N*tfM
C «C 1 » r  1 — 1 I N O t X » J » ( J - 1 ) »"SUP

» . 2 0 1 S . 8 , ? 2 o c J i 3 F c 5 r i n 5 S ; u "
* £ J U* N l E ( J . N E . H F )  ATfP«C IN O f X ) « A (  I N D E X 1
tN D  32 1«  CONTINUE

C C SOLVE AON (A ♦ LAN« 1)  T ■ G
C A L L 0 G r L G f G T C « * . A T E M R , N S u M , l , E R 5 L 0 , .  • I E *  1

.  /  A «V n  r  - IE ( IE F . N E  . 0  ) GO TO HOOO

l l  A R Ö  D  ]  C A N U N * 0 ^ 0 0 ^ * M"  C0SfNC a N 6 l E  GANNA FRO* T •  . G» •

C ELT«C MARQUARDT ALGOR I .HM  WITH PARAMETER HASHING*  MOOR 2 3 A .  0 0 ^ 3 2 2 0  * 5 » 1 • "SUN
s u b r o u t i n e  h a r g r t ( N , m , ic . n S . n o r t  , X , Y , P a R H , E N , 0 E . a , a . a Tc h p . g . g t e m p .T  a n u p « a n j m « g t c r p ( J 1 * 6 1J )

1 . S c  A L t  ,HAS«r ) _ l E ( N P R . G E . l )  AR I TC I 3 . 3 2 2  1 1 J . G T E n P < J ) , G ( J 1
f  32 2  1 f O R N A l C *  m a RORT 3 2 2 l  J . T • . G• ■ •  • I 4 • 2 0 1 5  . •>
C MARQUARDT a LGo R I T m H f o R  NON L I N .  P a «H .  E S T IM A T IO N .  00  3 2 2 0  K K - l . M S U P
C D C N 0 P » 0 C N 0 P » ( G T C M P I j ) » G ( K K ) » S C A L C ( r K > / S C A L C ( J ) > * » 2
C „  3 2 2 «  CONTINUE
c . . . . . . . . . . — - - - - - - - * - - - O P T I O N S  C 0 S 6 a p « A N U M /0 S 0 R T ( 0 E N 0 P )
C ! E N Q P T f l ) « 0  R E A 0 S P ARP ( J  11* N ASK C J  1 ( »0 IE  R*RM E R O Z tN l  EROH K CARO ,E (N P R .C .£ .1 >  «R I T £ < 3 # 3 2 2 2 > ANUN.OCNOM,  COSg AN
C 3 2 2 7 EORNATl • MARORT 3 ? 22  • *  3 0 1 5 . 8 »
C NO» T < 21 GE 1 ENABLES P R I N T . .  C
c • C CALC.  T FROM T»
C n OPTI  3 1 «0  E* » S « 1 . 0 - S  CUT0EE AFTER 1TCN0 IT E R A T I O N S .  00  3 2 3 0  J « t ,M S U N
C ■ 1 E PS» 1 # 0 - 3  NO C U T 0 E E .« 2  E P S » 1 . D - S  NO CUTOFF*  3 2 1«  T ( J  1 »6  T C **R < .1 > /  SC A L t  ( J  >

c ................ .. ................................................................................................................................................... c EKPANO T IE  PARHS Na Sk EO.
I M P L I C I T  R EA L »8 ( A - H . 0 - 7 » 1E 1NPR. 4 f • 3 1 « R I T C ( 3 , 1 R3 > T
DIMEN SION  0 A T A ( 2 >  ,N 0 P T (R 1  CALL C X R A N O IK .P A S K .T .N S U M I
OIP EN SI ON  X ( N . M) * Y ( N » N S ) . E N { N | N S )  • • ( N j N S1 10 E ( N , K | N S )  { E f N P R , 6 e . 3 > « R I T E ( 3 , 1 ? R ) T
DIM ENS ION  P a R P <E » , T IR  J , G( « ) , G T fH R ( A ) , SC ALE 1 R ) .M AS K( K j  £
OI P EN SI ON  A ( E , E ) , ATEp P ( E » E > . R 8 ( 2 » C CAL C.  «TEMR TEPRORARY RARP VECTOR*
REAL ERSLO W.ER a T . e I s h  3 3 0«  00  3 3 1 0  J » l , t C

C I N I T I A L I Z E .  3 3 1 «  GTENP CJ» «R a R P ( J ) * S T e P * T ( J l
•  I « 3 . 1R 1 5 R 24 % 3S 8R 7* 3  C
P I 0 » P I / 1B 0 . 0 0  C A L I  E C T N < N . P , K , N S . X . G TC N R , E N , A 0 U N T 1 )
A S E C » R I / I  I 8 0 . O C * 3 A 0 0 * 9 0 ) CALL Rm 1 ( N , NS , V , E N . A . RMT, RORST. t BORST »
IT  E• •  1 S I GS O» R MY /N UU .
h SUPp R Rn S«OSO RT(R n T / N ) / a Sc C
a L a “ 0 a • I . 0 * 2  RORSTPOSORT( WORST I / A S r C
A N U * 1 0 . 0 0  C
T A U - l . O - l S  l E f R M Y . L E . R M l D >  GO TO 2 1 00

^ E ? N 0 P T ( 3 > . E O . 1 >ER S» 1. 0 - 3  £ |E  GAMMA GE.  GAMMa Q * C t P  M U L T IP L Y IN G  UP LAMOA
I T E N 0 - 2 S  C IE  GAMMA L T .  c AMMa O REOUCt STEP S I Z E *
C O SG PO » O C O S( P l /N .O O )  IF fC OS GA M .L E. C OS GM O l  «0  TO 3 2 0 0
FOU NT »»0 3RD« STEPr STE P/ANU
k OUNT2»0 GO TO 3 3 0 0
h P R » n O R T ( ? )  C
EP SL ON »1 . £ —IS C PREPARE EOR NEXT ITE R A TIO N

c 2 1 0 «  RMIOp Rm Y

f  ...................................... ................ ...................................................................................................DATA INRUT 2 1 1 «  PARp !  J? »GTEMP(  J )

IE  ( NORT I 1 > . € 0 . 0  ) r»0 To A c RR(NT
A CONTINUE . R R | T E C 3 , 1 2 1 0 >  I T E R . Pm I 0 • A L A «0 A . L A P O A . AOUNTI  , X 0 U N T 2 . P H S , | R 0 R S T ,

I I  rORPAT J j  1 ENTER • . ! * , •  RARHS 6 MASKS f I PA IR  PCR L I NE > • > ’ " ?  T n P ^ ^ c.E ??  > I TE C 3 ,1 2S0 1 PARM
oo i o  j p i . x i 2 s «  e o r p a T c * c u r r e n t  R a Rp s » ' . s i o i s . b ) i
CALL R E A D fNVA» , d a t a  . N r ; * »  I E fL A M O A . E O .3 »  » R T T f C 3 . »22 0> STEP
JE (NVAR.NE • ? . o R . N f  R R .E Q .  n  GO TO *«010 1TER«1T ER* 1
P A R P ( J ) »  « 1 T A I I ) 6 0 TO 100
PAS» < J ) « 0 A T A | 2 >  C

i n  c o n t i n u e  c

C ......................................... .. ....................................................................................  START*  CONTINUE

c c a l r  c u r r e n t  r m i  . . . . .  c s a v e  n . n u u . r m y . s i g So i n  •  e o r  t e s t s
CALL EC TN ( N , p  , r  . N S . X . r a r m , e n , K 0UN TI  1 c
CALL A T fN  ,P  ,NS , X . * 1  R ( | , | > » N
CALL Pm I  f N . N S . Y  , E N . A i R M I O .R O R S T ,1 » 0 P S T > R ( 2 . 1 > « N U U
r p s « o So r t i r m I o / n ) / a s E c r ( 3 , 1 ) » rm y
RO*ST»OSQRT(WORST > / a Se C R » R . 1 > p S1GS0

7 E O R P A T C / / !  p A R O U A R O ^ n On I l I n ? P A R P .  E S T I M A T I ON ROUT I NE , | N 1 T I AL PHI  i s , «  P ARM^J ?»GTEMP ( J >
T l S ' . o l S . « . *  Rp S ERRS«*  . 2 E 1 2 . R ,  I S / *  I N I T I A L  RARp S ARC *> PMID-RMY

oo  •  j « i , r  C
9 EORPAT? * 8 * 0 *15*8*  Y 1 1 *• ( J > C PRINT ....................... .. ................... .. .................................................................
§ F O R P A T I 2 X .0 1  . P .  6 _ R R | T E I 3 . 12 10 1  I T E R . P m IO .A LA MO A,L AMD A»K 0UN T1 , X 0 U N T 2 . R m S ,  JRORST,
c „  1R0R ST. 5TG SQ. NI IU
c ..................... .. .................................................................................................. * ................... RE-ENTRY IE  ( L APOA .C Q .  3 > RR I T f  1 3 , J 22 0  | STEP
i o n  CONTINUE 12 1«  EORPAT( / / / *  ITER . P R , 0 , ALAM. LA M. XOUNT1 . 2 • *  . I 4 . 2 ( 3 X • 0 i S . • | , j j 4 ,

CALL O f R V l N . H . K . N S i X . P A R M . O E . K 0 U N T 2 ) | / .  RMS ERROR ARCSEC• *  . E 1 2 . A . •  ROr ST OB S V N G ERROR «* . I A . 2 X , E 12 . A .
C GENERATE SCALEO PA TRICES A . G 2*  S I G S Q I N U 1 - *  , 0 1 4 . 4 . 1 8 )

S C AL E( 1 > « 0 . 0 0  1 2 2 "  FORMAT( * STEP S I Z E »  * . E 2 0 . l S >
CALL M A T E O N f N . P . X , N S , y , E N , R , 0 E , A , G . S C A L t > C

C C GET Y AVERAGE
C » .  .  .  RE 5 A v G»0 • DO
f  COMPRESS A. G. SCALE IE  P a R**S Ma Sr EO 4 SOME ARE TO 8 e E r OZEN.  DO 1 24 0  ! » 1 , N

CALL CPPRESlG .PASE . 1  .G . S C A L E .M S U P )  1 2 4«  R E S A V G « R E S A V G t Y l I , l > - X < l . l > « ‘ V ( | , 2 ) - X ( I , 2 > ) * 0 C 0 5 i X ( l , | | >
PSQ»MSUM**7  RESAv 6 » R C S A V G / ( 2 . 0 0 « N )
ENCODE( 1 9 2 . V > HSUP C

\ %?  FORMAT( • (  1 X . * . I 3 .  * E % . 3 > * > C PRI NT  A MATRIX
I E f  1 T E R .N E .  I . O R . N P R . L T . I  > GO TO | 9 4  I E ( NPR. GE• I >RR I T E I  3 , V > fA  I MS> , MS» | • MSQ>

•  R I T E ( 3 . V  1 I A ( p S)  , P S « I  »MSQ1 C
|AA NUU»2*N-MSUM C
C C GET SUp SQURE OUE REG »CSS,AN0 CORR EOR MEAN

^ ; A i ^ 7 j ? 0 ; i ; ^ E ; ' * T “ 7 i ,r s - 5 i s 3 4 TU 5 A i v l i ’* ? t i " . T c « . T . o . s . T H C. .  I i s i § : g l
T* REST ARE FROZEN AT START V A L U E S . •> R 8 f l ) » l , 0 0

C 00  12 70  I •  1 . N
C R 8 ! 2 » » 0 C 0 S ( X j l  . I 1 >«»2

^ ?«  I E f A L A mO A . I  T . I  . 0 - 1 3 )  GO TO 170  S ^ E » S S E * \ E N f f , L I • Y * I • L * * • • 2 • * • t L )
L A PD A• I SSR»5 5 R » ( E N ( l , L > - X ( T » L > - R E S A V G > * * 2 » R 8 ( l >
D L A P O A - a l a n OA/ANU SSm - S S m * ( Y C ! . L > - X ( ! , L > - R e S A VG 1 «» 2* R B <L >
GO TO 180  12 7«  CONTINUE

| 7 0  L A MO A■2 C CALC MULT REGRESS C O t f E - R S Q , ME AN Sf lR R A T IO - S Q R a T
DLA MO A .A LA “ OA N U U l - M S U P -1

C SOLVE EON.  I A ♦ L l H .  I 1 T » G EOR T NU7 ■ NUU
18« DO 181 J » 1 . M S u p  R 5 0 » S 5R »t O O .O O /S S M

? K s : i j i 7 5 i f i . - s u .  ,  ? s : ? : ^ : r ,?sS8,,,ouM
ATEMP( I NOEx 1 • a ( IN OE X) *0LAMO a c « * * * « * E | S h PRANGS E A S I t T

00  181 E X - l . M S U P  I E ( E R A T . L T . 1 0 . 0 1 PR O § »I 0 0 . 0 0 » ( I . 0 0 " E I  S H ( ER A T . NUUl  , N U 2> )
l N O E X » j » f  KK -1  ) »MSiiM c
l E f J . N f . l c r i  ATEMP ( I NOE* > «8 * 1 ’«OCX 1 c

18 1 CONTINUE R R l T f l 3 . 1 2 9 0 >RCSAVG
C _ , r . r i  f r o , 1 28 «  FORMAT ( / /  • • • • • • • • • • • • • C O N V E R G E M C C » «  R ESI O A V GE ■ 1 . 0 1 3 . % ,

CALL 0 G E L 6 ( GTE HP , a Te m r .HSUP , 1 .C PS LON ,  !ER> c
l E U E R . N E . O )  GO To ROOD R R IT e I 3 . 1 ? 8 0 > S S C . S S r ,S S M ,S Q R A T , N u U | .N U 2 .P R 0 B . R S G

C 1 2 8 "  . FORMA T ( / / *  PHI .S S R .S S M » '  , 3 0 1 8 . 6 , *  MEANSQRAT•  • • E I 3 • S • 2 ! S .
DO 18?  J » I • HSU* I *  p r o b . m u l t r e g c o e e e »*  , e »o * 5 , e b . r i

| 8 7  T f J > » G T E M P ( J l / S C A L t f J >  C

C EXPAND P A R» S IE m ASAEO CACL 5 m IFV  33 >
! E f NPR.GE . 3 ) AR I T f  ( 3 , 1  93 > T 1 • *

I ■ * « ’'  . r o i l * !  ? / / ? " ?  i .  » « m ‘  i  j ' i i  ! o . • gv  ' . r i i . « , .  o t K f r S  n .
I  1 E 1 2 * R * * ARCSEC**»
f  CAL C.  GTEMP »TEMP«R a Rt PAR** VECTOR RETURN
7 2 "  0 0  23 0  J»1  ,K  £
7 3 r  G T r P P f  J ) » P A R M ( J ) * T (  J )

C C A L L ' P C T N f N ^ M ^ K ’ N S . » . GTEMP .EN .EO UN t I > C ^ f ^ ] l

C C A L L * P h M N . N S . Y  . E n . R . p m y  .WORST » IRORST ) ROOD r R i Ve T s . R O O I I  ICR
5 1 GSQp PMT /NUU ‘, 0 P ’ EORMa T ( / / / T  m a t R i x EÖN SOL** • ROUTINE E A 1 L . I E R ‘  OGE L G > ■ • , I R )
RMS»OSQRT( P m Y / k »/ ASCC RETURN
R O »S T »D SQ RT IR 0 R5 T 1 / ASfC C

C TEST FOR CONVERGENCE.» E X IT  IE NO* OF ITERS E X C E SS IV E ,  ROlO R R | T f 1 3 ! 90  I I > NVAR
l T f S T » 0  4,011 P O j P A T f / / / •  R f  A D * O u T | N e  F A I L * , I S . *  VA RIA BL ES  A { R C R f A O * * >
T ST p a X . 0 . 0 0
DO 2 9 0  J»  1 « K T **0

T E S T i o l A s m  S n / f O A B S f P A R M f  J 11 »TAU»
1E ( T E S T . GT.EPS 1 I T E S T . l
1E ( T ST m A X• GT• TEST 1 GO TO 2 * 0
t s t p a x . t e s t
m a x t s t . j

I E I N O P T ( 3 * ? r 0 ) C ? AHO?I T ER. Gf • I T E N O * A N D * P M Y * L E * P M ID >GO To ROD
C

GO TO I I POO. 7 n « 0 1 .LAMO*
C

j 5 i : rA » ? ; V ? j A T i : ; ; 5 { ? ; i ; 7 ? 5 I ? T ; TARGRT AXED AT I T C R - . 1 R . *  T E S T . . .
To 2 0 * I O , *  on P awn » . I R . ^ '  CURRENT T ■ * . % ( D2 0 . 1 0 >  >
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MATEQN MXV
SUBROUTI NE - » T [ C N ( N , « , r , s S . ' r  i r i . t . o r  , a . 6 , 5 C * L E I  C E L Y » *  mx v  m q D»!

C GI VES 5 AT» .  r s  VAl UFS , DE R I V A t  j  V £ S #RT p * R n S S f TS  UP E O N . A » . T »  ■ SUBROUTI NE m Xv ( C . A . B )
C ALSO GJVFS SCALE v Ec T q R C M U L T I P L I E S  “ * T R | X By VECTOR ( J O)
c A. G ARE SCa l EO OSLr  l r  ON I s b 11T SCa L C < 1 > » 0 . 0  B E AL * «  A < 3 . 3 > . 8 { 3 I . C C 3 )
C DO S J»  1 . 3
r  C ( J ) * 0 . 00

! " * I I C | T  * r » L * I U * M, 0 - Z l  00 S I •  I . 3
0 ! **Ens  ! On * < n . n S > , e n ( n . N S ) . • »n . n s > , o E <n , k . n S ) S C I J ) »C J J  ) ♦ a ( J , !  ) «9 « I »
0 1 - E N S r OS  A J r  ,E > , G ( K  ) . SCALE <K ) RETURN

C END
NPR- 0
1 SC * L E » ’
)E ( SCALE ( 1 » , E 0 . 0 . 0 0  ) l S C A L C - 0  A | l  P ** ihhh;:. NUTA i E
A J J , « « ) » C . D 0 c E L T ■ j  NUTATE M 0 0 •  1
J E I J . L E . S S )  GO TO 3 J SUBROUTI NE NUTATE <RM . T J , R T . KSh OR T )
A ( J . SK ) « A ( <K . J ) c NUT AT I ON( R E C T A N G U L > ALGO’ I TNN .
GO TO 20 I L L I C I T  RE A L •  B ( A - m . O - Z )

c C A L C • A BV s u m m i n g  OVER OAT a RTS ANO EN.  SECT I ONS.  P ^ » 3 . ? * ' f S ’ ? i s 3 S 8 R 7 9 300
31 DC 30 L • 1  • N S p J 0 » P 1/ 1  BO• 0 0

00 3C I • l • N r » * « * « P A R A M E T E R S  * . R . T .  * E 6 N EQUI NOX OE OATE.
30 A I J t KK ) »A I J , * <  I ♦ *  ( I * L ) * * 2 * 0 E (  1 » J , L ) •  OE ( I . K K , L ) T » ( T j - 2 M l S r 2 0 . D 0 » / 3 6 S ? S . D 0

l E l j . N F . K S )  GO TO 20 .  0 N - 2 S’ . 18 3 2 7 S 0 0 0 - 1’ 3 ’ . I N 2 0 0 8 3 » T * o » 2 0 2 7 « 0 - 2 » T » T* 0 . 2 2 0 - S * T » « 3
C C * L C .  G BT Su m m i n g  0 V r  R D * T * PTS An O EN.  SECT I ONS.  0 SP7 7 9 . 6 9 6 6 7 8 0 p . 3 6 0 0 0 . ? 6 e 9 2 S » T » O . 3 o 2 S 0 - 3 » T »»2

00  32 L ■ l  . NS OM»270 • R 3** 1 A 3 ’ C O* 4* B j 26 7 . 8 8  3 1 N 1 T •  t - o • 1 I 3 3 3 0 - 2  •  T •  •  2» 0  . I • • ’ 0 - S »  T •  •  3
00  32 I • 1  . N G » ( A l 8 9 . 0 3 » T ♦ I . *  3 » T * T * 0 • 0 l 2 » T • T • T ) / 3 6 0 0 • 0 0

32 G ( J ) " & < J > » M ! . L > » » 2 « ( Y « l . L > - E N l | , L > > # D E ( ! , J . L >  G » ? 6 | . ? 2 C B 3 3 « G
?0 CONTI NUE GO» ( - 3 7  • 17 • T • T - O . O ’ S » T * T » T ) / 3 6 0 0 . 0 0
C C » L C • SCALE ( J )  »SORT OE A ( j , j |  G0 » G0 6 3 3 R .  3 ? 9 S S 6 * R 0 a 9 . 0 3 h 0 3 3 3 3 » T

S C » L E ( J ) » 0 SQR T ( A ( j »j  ) ) o N■0 n • p j  0
j r < N P R . E 0 . 1 ) * R j T E ( 3 , 6 2 t ) ( A I J . J J ) . J J » 1 » K ) . G < J > i SCAL E< J )  0 5 » O S * » | 0

6 ?» FORMAT( • 621 MATr ON • . SO l  3 • 6 . 0 2 2  • I 6 . 0 1 3 . 6 )  o m »Om « p j o
2;  CONTI NUE G *  G• PI  0
C G 0 » G 0 » P | 0
C l » OM- GO

l E J I S C A L E . N E . n l  GO TO MI  LO» 0 S- G
C SCALE A ANO G E • 0 M- 0  N

0 0  MO J» I . S 0» 0 * * - 0 S

00 mo KK* 1 . r  c • • • • *SE RI E S EOR o p m ! , O E P s I NCLUDES a l l  TERNS R J T m COEEES > o » 0 |  ARf SEC*
A l j , K S ) « A J J , K K ) / I S C A L f I J ) * S C A L C U K ) >  c

" °  | F ( NP^ ' ^ F O, j  ) » R I T F ( 3 . 6  22 ) ( I A ( J , J J ) , J J - 1  ,S ) , G J J )  . SCALE J j )  , J . J  , K ) C o ? M I U I ! 7 *  2 3 2 7 ? 0 I 0 ^ 7 3 7 • T? • OS I O N ) 1 0 ^ 2 0 8 8 • 0 S ? N t \ \ O o J O N  I -  1 . 2 7 2 9 • OS I *
6 2 ?  E 0 R M A T J • 6 2 2  m a Te Qn * . 7 0 l S . B )  c N ( r ♦ E - 0 - P » O n * O N ) * 0 • \ 2 6 I »OS I N »L 0 > - 0 • 0 M9 7 • 0 5  I N <L 0 » F ♦ F - 0 - o ♦ ON♦ ON»♦ 0  • U
Ml RETURN C2 1 m • OS 1N ( E» E - 0 - 0 - L 0 * 0 n » 0 N ) » 0 • 0 t 2 m» 0 S I N ( E * E - C - 0 * O N )

E * 0  C
i p M lJ » D P M ! - 0 . ? O 3 7 » o S ! N ( E * E » O N » O N ) * 0 . 0 6 7 S » o S ! N J L ) - O . 0 3 N 2 » D S ! N ( E » E » O N

IS c T - 0 . 0 2 6  I »OS I N ( L ♦ E * E * 0 N»0 N ) - 0  »0 I M9 * 0 S J N < L - O - 0  ) * 0 . 0  1 > M* 0S I N ( E » r - L ^ O N -

C O E P S » l 9 . 2 $ 0 * O . O O C 9 l « T l * O C O S ( O N ! - 0 * 0 9 0 l» M D C OSI ON* ON > * 0 * SS 2 2 * OC OS t E* E *
SUBROUTI NE MAT MPT J A, 8 , C , N , N , L )  r » 0 - 0 » 0 N * 0 N ) * 0 . 0 2 l 6 » r ) C o S J L 0 * F * E - O - D » 0 N » 0 N )

C c *  A• B WHERE a i s  N• H . 9 IS M»L An O C I S N »L • c  ̂ y

C I * * R L I C | T  RE AL«B ( A - H . O - ?  I 0 F P S »OE P S ♦ 0 • 0 A B M • n C 0 S ( E ♦ f  ♦ ON ♦ ON ) »0 • 0 1 8 3 •  OC OS ( E ♦ E ♦ ON | ♦ 0 • 0 I I 3 »0 C 0 S ( E •
D I MENSI ON A I N . M )  , S ( M , L >  , C ( N , L >  C * E * O n »ON* L>
0 0  20 I ■ j • n 2 C 0 NT I Nu E

C » I • « ) • ? . 0 0  E P S n » 2 3 . M 5 2 2 9 Mr'0 - 0 * 0 l 3 0 1 2 S0 0 * T - | . 6 M0 - 6 » T » » 2 » S » 0 3 0 - 2 » T * » 3
0 0  20 j» 1 . m o Pm I p D P H I » P J O / 3 6 C 0 . 0 0

7 r  C « I . S I »C « I . s ) ♦ A J I , J > »B ( J , S ) OEPS» OEPS* b 1 0 / 3 a CO«00
RFTCP».  EES0 »E PS0 » P | 0
E n ^  ERS»EPSO»OEPS

c CALCULATE NUTATI ON TO SECOND ORDER i n  OPHI  . OCRS.

K  A  P *  ^  l l i ' . i i l i S p S i . o c o s i c P S o )
| \ f |  I  I  L I !  S(  1 . 3 » » - 0 P M l » 0 S | N ( E P S 0 )
1 I I I  I  I  Tk I  S J 2 . 1  J . O P m i . OCOSJEES)
•  # W  l  c W  £  S J 2 . 2 ) - O C O S ( ^ O E P S ^

C E L T »T - OTEST moo n o .  •  9 .  ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ <  1 ( 3  ! ? ) »OPMJ » 0 ? I N ? f P $ »
SUSRO« J Tf \ f  N O T [ S T j N , M , r  . N b . N O P T . i  , T , r N , « , P » R 8 .**ASK ' S < 3 * 2 ) » - S ( 2 . 3 )

C . . . RR OGRA M E I Gm T , . . TESTS ACCURACY OE MOOELS F I T  q 5 ^ 2 * 2 )

r  N O P T J l l  GT 0 ENABLES P R I N T , »9 PLOTS RESI DUALSTES BOTH,  « r V u R N * Vt
c n OPT ( 1 1 . 9  SUPPRESSES f O h PARI  S O N . , O N L v SUM GENf RATFD.  p n 0

i l * € N . ! o i  . f n i n . n s i  , » i n , x s i  , M « $ r ' K >  A K  p  r v  A  Ic ISm (jRvPOL
p I »3  . I M I S9 2 A S3 S0 9 7 9 3 OO
p 1 0 » P I / I BO• 0 0  c E L T p f  ORGPOL MOO NO. «6
S E C - 3 6 0 0 . O O / R I O  _ S U B P O U T I N E O R gE O L < N , J , K , K D . N O P T , | P , X , * , P , A L E wA , J S . J T , J 6 , J O . J L .

| ; E( NORt I  ! ! ! c 0 . 9 | N P R » 0  c ' SEOENt I  ALLV COMPUTES 20 E0RSVTME POLTNOHI AL S TO ?D RAN00HLT OI STRJ»
1 0 A T * » N O P T J 3)  C OATA X WEI GHTS» *
n o a t i i ) « n p r  c t o  g e t  j » tm  o r d e r  o r g p o l  m u s t  b e  c a l l e d  j m  t i m e s  R | T m j» o . i . ? . . j
NO a T ( 2 ) »C r  RCOUI RCS»PSUBROu T| NC ANABEL . I R * 0  I E 6 ( I . 1 ) » • ( I . 2 1 . • . I • » I | E NOT
NO A T ( 3 ) »0 C RE TURNS»» I  NOE X CONSTANTS J L . J O . JG ANO A L ^ H A . P  FOR ALL I
no a t j m ) ■ o c n o t e  c a s e  j » o s t o r e o  w i t h  i n d e x  j « ko

c EXTRACT NE I T »NU2 , PH I E I T  , S I G 2 EROm R .  C I M P L I C I T  R f A L * 6 ( A- H , 0 - Z  )
c d i m e n s i o n  NOPT (N >.  JL <Kt>>. J Q < * 0 > . J C | « 0 > , M N . 2 > . « < N , 2 |  . p ( N . « n , 2 )

NE I ▼■• (  I .  1 ) OI MENSI ON AL P m a ( K O . K 0 , 2 )
N U 2 » W* 7 # l »  0 I M E N 5 I 0 N  J S ( K0 I • JT I K0 )  t J R  A IK 0 I , j R B ( K 0 »
PH IF J T»W( 3 . 1 I c
S I G 2 ■ *  ( M . I I C

C CI  ! • I ! ST ART ON P ( N . I . I )
c NPR»NOPTI  I )
C .  .  M *  I
c .......................... ................................................................ ........................................................ .. .................................. I E J j . N y . 0 )  GO TO l Oo
c r e a o i n  n e r  t e l e s c o p e  d a t a  e r o n  f i l e  i n .  M»2
2 0 ^ CONTI NUE CALL ANABFL J *  . K 0 • J *  • J T »J G • J Q • J L t J * A , J R B )
C DO So I M . N

REAOJ I MI NOBS PI  I »KO,  I ) » 1 . 0 0
, , n  O . T .  P , 5  «» S S . t N  . t SCT TO . . . . .  4 0  ^  J '  '  * ° 0

1 » EOR FOLLOWI NG E f T  T f S T S  • '  ) C
N •  N 0 B S C
00 22 0  j - l . N O B S  . . . . . . .  I 0O CONTI NUE

C « L t  5 m ? F T ? U ( j . 2 I  . JOO * K 0 ■ J 0 ( J I
^ r ' i N p l t ! G T . f ! w i i , T f { 3 , 2 3 0 ) J , * C J , I J . X | J . 2 ) , T I J , l » . T | J . 2 )  I E ( IQ . f  0 . 0 )  I O» K0

2 2 "  CONTI NUE # .......................... ....................................  L •  JL t J )

HC CALL ^ EC ^ N l N  . m , < . N S . I . P A R M . E n . I E F E F )  2 S 0 ( J R » J A , J B

: : i «ä : ; s : ; ^ ! . . p m t . e * r m a * . j m 6 , »
c ........................................................................................................................... ........................................................... c NO T F 1 0 . L ARE SP ECI AL  I NDI CES
c O P T I O n A U T  SUPRESS COMPARI SON.  j RC- J R
SO"  I E ( N ? P T ( M ) , \ E  . 9 ) GO TO 7 0 0  I E C J R . E O . O ) JRC- XD
c RUBB a Rb .  : DO 2 6 0  I *  1 * N
AO h ET. j RN A» A* X J  I . L ) » P (  I • I 0 . H ) •  p I I » J R C , M ) » R (  I , M ) •  • 2
c ................................................................................... .................................... ....................................... ......................  B »B ♦ ( P < J . J R C . M ) » r t {  I , H )  ) •  •  2

7 a ’  £ 2 ^ i « S T . » - T / N . . s c c I I I
N U U• 2 • N ZSn l u “ l | N U t
S I G S O » p m Y / n u u  c
F : : ^ ; ^ : r 2 - : ; : ; ? ^ R M A X . J N A X . S I G S 0 . N U U  c : : : : * c o m p u T e p o l y n .  v a l u e s  R ( I . J . H )

9 M’’ f o r m a t  I *  ON — S ^ v  P m Y * ' , 0 1 S . B » *  R M S ( A R C S E C ) » * . D I S . 8 . 30 0  00 31 0  ! » I . N
T • " A x ! mu m On - S ey  r R r • » • , 0 I S • B « '  AT O B S R ' . I S .  A » 0 . 0 0
? / '  S I GSQ ( NU ) ■ * . 0 I 6 . 6  , | H » j R C ^ R  J f i " J A ' J0

\  r "  i : i i ; L 5 S s ? j . j ! ? : 5 ? . . i i . j . c . H i
NU I ■ ? • I N - N E  I T ) 3 2 0  CONTI NUE
S I G I • I P m v - P m l r I T I / N u l  31 0  P(  I . J . M ) » X I  I . 1 J •  p C I , 1 0 . H ) - A

P R n R i ? " ^ n o - r ? S M 2 F R A T I 0 . N U 1  , N U 2 )  | R | 0 0 * 0 0  99 j EORMa T ? ? MAXXXJ • )

PR 1 T E ♦ 3 . 9 S 0 ) Rh Y , Pw I E I T , S I G I  . s I G 2 , e r AT I 0 . NU 1 . NU2 , PROB 99 3  FORMAT*« x * x 3 « )
« S "  FORMa T j / «  Ph T . pm I f I T . S I G I  #2» ' » l O l J * 5 . '  E » N U I » 2 . P R 0 B  « . E 7 . M .  99M f OB“ * T |  1 XXXM#)

I ? l M . E | j . S / )  ,  ;  99 S FORMAT( • XXXS«)

c  ? f ? n o w t ? i i ? n e ! r * a ' i o I n o p t !  1 i I n e . b j g o  t o  s o o  c : :  ?:  • i e- *  j i  .  i  ) . n f  . r  j i , ?  »r e p e a t  ? mo do wn  f o r  h »2
do B j O  J » I »N 0 B 5 I F ( I * . N E » 0 ) GO TO 60 0
D E C J J ) » X ( J . 1 ) / p I 0 SOO 0 0  S i o  I » I . n
m A0 CSp x ( J . 2 )  S I O PI  I .  J . ? )  » R U  t J ,  I »
CALL S m I F T ? ( NAHES) DO S | 1  J R » J A . j H
m A I J  ) » m A o f S » l ? . OC/ RI  J C p JR
00  I J ) ■ ( Y ( J . I ) - E M  .1. 1 ) ) »SEC 1 E J J R . E O . O  > J C » * D
Ow ( J > » ( T  j j , 2 ) - e n ( j . 7 )  ) • 0  C OS I X I J . I  I ) »SEC S 1 1 ALRm a ( j , j C . ? ) » A l Rh A j j , J C . I )

?F ( n p r ? g t ! o 111 I TE I 3 , 0?o ' /  J . DEC ( J » . HA I J ) . DO J J ) . O h J j  ) . OR C j  ) I E J n P R . n F .  0 ) *  R |  T E ( 3 , S 20  » %
•  2 FORm a T j • OFC. MA FOR P n T . . ♦ , I M , 2E j 0 • 9 1 8 * • • BES I DUA' .  S OD, OH» COSp « .  s ? 0  FORm a T j « R F I G m TS EOu Al P J I . J . I » p p  I T . J . 2 ) . • ) W

» 2E 1 0 . M .  • OR-  • . E l Q . M ) C
A I "  CONTJNUF C  ̂ . p 9 , NT

CALL A P I O T J N . D E C . *  Of C « . 0 0 . «  OOC C * » l >  6 O0 ' J J » J
CALL a P l O T ( N . o f C . •  O f f  * . O h . t OH»COS . 2 )  I F J J . F O . O )  J J » E 0
CALL ABL O T ( N , H A  , *  HA « . O O . ' O O E C  * . 3 ) I E JNPR. GE , I )RR J TE ( 3 . 6  I 0» J • M . J G ( J J I , J S ( J J ) , J T I J J ) , J Q ( J j  ) , JL  I J .1 ) .
CALL A » l O T ( N , " *  , *  HA * • £ M» ' * £ ° S I * ?  I J • A ( J J , , JRH | J J )
CALL a » L 0 t < N .OE C . * OFC « , O R , « O R e S * , S >  A i n  FOR**a *C ! m , * T h ORDER POLS.  I n X J « , | J , « )  C 0 mp  L E T E . G . S , T , 0 . L .
C a l l  APl O V J N . m A ha  « . D R . * O R f S  * . 6 )  . . . .  I j R A  , j R B » • . 7 I S )

r  ................................................. .. ............. .. ............................................................................................. ..  I F J NPR ,  CO.  0 ) GO TO ?0 0
BP-y RI TL' RN D 0 6 M 0 J R » J A , J B
C J J » JR
C J E I J R . E O . O )  J . I »ED

E N h AMO » ■ I T K 3 , 6 ? 0 )  I . J 8 . » L 8 m * I J . J J .  I I , A i PH*  I J ,  j j , 2  )
6 2 "  FORMAT ( . A L P H A ( « , | ? , l l , | 2 . «  '* I •  • , ? 0 I S • 8 )



D.15

f c '

I ü r

iri‘-M,i.r,?i f,o m ?oi C riNO phi »ms rrc,,
J J- J 0* A x »0 ,oo
jr(j.ro*C»jj*«co ph|«o»o°

DO 7 0 0 J» I , I ObS
, , TO,.*«-« DfLTA» ( Y ( j. j )-x ( j , I ) ) ••2 * » Y < J . 2 >-X ( J . 2 ) » ••2*DC0S ( X < J, 1 » ) •• 7

! HiVf SOTm v*9 I BfCN TRFATFD p H t • P H t AD F L T A
!ri-,[9 ,?t r,0 ro «oo I r ( 0M A x • &T • 0El T A » Go TO 2 0 0
mm2 O ^ A X . O r L T A
6 0 TO 7*• 0 jh a K ■ j

7 0 0 CONYINliF
OCT RM5»0SQRT ( Pm I / 1 OBS > / ASrc

NUU-2-N
SIGSQ-Pmt/NUU
0 MAX»DSQRT<0MAX)/a5 fC

Ä . t| A»!Tf ( 3 .2 1 0 ) lOBS.PMt ,«»̂S,OHAX ,jm*x,SIGS«,NUU
I B I 7 1 0 _fO»HAT(« P«| FOR*. IS.» OBS» * , 0 2 0 • 10 » • RMS FRRIA»CSEC)• • , F1 0.7 »

MU $ 1* PORST-CASF FRR f. OBS NO • ■ * . F l Q . 2 . *« X . I S ,
J j| I } / •  SIGSOCNu»» ' » 0 1 4 • 6 , I M )

flt»l pmi moo.i t̂oUPN
SUBROUT1NF PM!(N,nS,Y,Fn,R.PHY,«»o*ST.|*ORST)
PH» is so- OF RESIDUALS SÖUAREO TINES *£IGhT|N6 r* #
SU***»ED 0 v f R N DATa POINTS ♦ OVERnS SECTIONS OF Fn« ^ «4 . m
implicit rf*l.«ua-«,o.zi I llV
D̂-fNSfON V (N.NS) .rN«N,NS) »Rf N.NS) L# I w A  j L

•0 R5 T-0 .0O • » • • f \
PM»»n,«n

2 \ !»l.s C E L T ■ K R T P X mOD- 2
nr. Tt.n.[>n SUBROOTINF R T P X ( R A , D* C , * >
DO 2 0 1 —1 • N S C RECTANGULAR To POlAP TRANSFORM.

5 2X5 5̂ .7 5 7?

iSi??:|k?:-orLT*,Go TP 21 Sec2 5 |nJ!SIJjJS; " ' 1 ,/Q>

pm-.pmvIdfita return
I F (NPR .FO . MYR1TE I 3 .6 2 * ) PMT ,«0 RST , I BORST 
FOR-ATf» PHY ,*ORST . I PORST» »,2D1S.8 ,I4 )
RF TURN

SHIFToorrrc  “JM,i 4
K K f* 1 f* ^  c ELT.l SHIFTS ARG to INTERVAL 0 -2P! •MOD» 1
I I % y L 4 1  SUBROUTINE SHIFT(A)

I MPLICIT RFAL»e(A-H.O-Z)
E L T■m PRECFS m q 0 •I PI•3 . 1 M 1 S9 7 4S3SBRPC
SUBROUTINE pRfCE5 IRI ♦ TJI , TJ2 ,R2 ) I FtA . LT • C • 0 0 > GO TD 1
LUNISOlab PRECESSION CORRECTION ROUTINE <BfCTANGULAR). N»A»O.SOO/PI
IMPLICIT R F A L • « (A-M.O-Z) A•A-N•7.0 0 •PI
OIMFNSION SI 3 , 3  ) ,R1 (3 ) ,R2 (3 ) RETURN
P I » 3 . 1 RI S9 7 6S3S8 9 7 9 3 0 0 I N■-A•0 .S0 0 /PI
p I o»pi✓I bo,nu a ■ a ♦ i n ♦ j ) •2•on•pI
T0 »(TJ|-7R1S0 7 0 »3 1 3 0 0 1/3 4S7 m. 2 1 9 8 7 9 RETURN
T»(TJ2-TjI 1/3AS2R.2 1 9 « 7 9 END
IFITJ2 .GE•T j1 )GO TO I
T0»(TJ7-?»*IS0 2 0 .3 1 3 0 0 )/3 6S7*4 . 2 1 9 8 7 9

CU JTTOZFT*»(o.A‘toO4 9MM9 *3 .B7 7 7 7 7RO-9 -To)-T*8 .3 8BR0 8 8 8 9o-S»T»T»S.r>-A»T*»J 1 3  I g | A. .
ZE 0»ZET A»? • l 9 7 2 2 2"-N • T • T $ fe ©
AJAY»(0 »SSa8S4 1 1 1-?.3 6PN0-RaT0 )*T-1*1 8 3 3 3 0-M*T»T-1»1 6 4 4 4A7 0-S»T- » 3
2FTA•I f TA»P10 C ElT »H SMIFT2 .SHIFTS ARG INTO INTERVAL -PI.PI .HOD- 1
ZFD»7PD-PI 0 SUBROUTINE SHIFT2 |A)
*j»Y.»jAY.p|o implicit real»« ia-m.o-z)
1E (Tj2 ,GE.TjI »GO TO 2 PI■3. I MlS9 2AS3S8 9O0
2FTA»*7E0 IEIA.LT.-PM GO To I
ZED--7FTÄ I r(A.Gy.p( ) GO TO 2
AJ*»»-AJAY RETURN
CONTINUE 7 N»(A»PI)»O.S0O/PI
......................................................... A»A-N»2 .0 0-PI
C7»DCNS( 7FD ) 1 N»(PI»A1»0 .SDO/P1
SZ»0SIN(ZE0 ) A»A»N»7 .0 0 »PI
C7 0»0CnS(7ETA I RETURN
S7 0»0 SfVi7FTA ) EN0
C T »DCOS( A JAY )
ST»0 SIN(AJ1Y ) 9

SU . t »-CZO-r T»C7-SZ0 *SZ W 11 O TO l/K  I
S' 7 . 1 )»C7 0»rT.S7*SZo»CZ
SC7 .2 •»-SJo»CT»SZ*C7 0»CZ C FIT-SORT NOOlElfATION NO« 3
S ( 7 , 3 ) »-ST »«;7 SUBROUTINE S OR T ( A , B , I , N )
S < 3 . 1 I »C2 0»ST C
S* 3 .2 »»-S7P»ST C SORTS N R E AI »8 VARS A INTO « IN ASCENDING OROER AND RECORDS ORDER 1»
S<3 .3 )»CT C

IHPLICIT REAL»« IA-m.O-ZI
CALL “IylR ?iSip1 1 DIMENSION ACN) . 8 INI , I (N)
RETURN C
END C

PTRX i- -
DO 7 0 *•1 .NM

E L T■G PTRX HflP» 1 NK»N-K
SUBROUTINE pTr«<RA»0CC»R> D0 2 0 j»|,nk
POLAR TO RECTANGULAR TRANSEoRH. I E ( R(J ) ,LE.BIJ♦1 1 1 6 0 TO 20
DOUBLE PRECISION ROIjRa.OCC SAVE»»(J«|)
HI I )»0 cDS<Ra1»DC OS I 0 1 r * BIJ♦1 )■B(J)
RI7 )-DStN(BA)»nC0 S<0 Ef> 8 1Jl-SAVE
R( 3 1 »DSINI DEC ) ISAVE-I <J»I 1
RETURN I C J» 1 )•I (J1
END I I J)• I S A V E

2 0 CONTINUE

REFRAK
SUBROUTMlE REEBAK (Ma.DEC.BAR,TENP.MAO,DECO,PhI ) I Ä jj
AT-OSPHEPIC ReERacTiOn correction ROUTINE. V  K l  K  A  I
P IPJ 1 M 1 S9 ?AS3S8 9 7 9 3 6 o"Z * g j ft ̂  ff fc 9

' JuBj0UT̂iJp!̂ l;.N.K.<.NS.NOPT.̂?;pî Ŝ':0 ;̂.I.tTEHP.G.6TfMP.T. 

MO.o.ooustiop c PRoa«»i .
;:;5 {ir ISi.MO».TI-u«1.«HO-O..Dn.U.,».TI. . 1 C wr5 tlt0.1T»H ro« p..» t5Tt»»Tl0... .................................... ....... .......................  ; .................................. ..
oo!fi»/ns'2?i«M!̂ 'i,|iM*!*nCB??ÖEn-öcos'ipS*!iosi'<(Dtc.pnros.H»> I c if nopti i llo’Äf .os p.rh.h.sk prom « capos. ’ ♦ * ‘

orcö-oectoö.r < i.............................................................................................................
l * Z 2 * Z 9 IHPLkJt*RFAL*8 (A-H,0 -Z)
RFTl,RN OfHENSlON 0 ATA { 7 1 ,NOPT I H )
ENO DI HE NS I 0 N « I N , H 1 , YIN , NS) ,FNIN,nS) ,RIN , NS) ,OE (N ,K ,NS1

OIHENSJON P A R H(K ) , T (K ) ,G<R) .GTeHPIA) ,SCALEIR> ,HA5 kIK)
DIHENSION A ( K ,K 1 , aTEHP(K ,K )

D DAT I M C PIoI*«!i»i.S3S«»7»J
i \ l / n  I  l  l x  ;{?:s!i;iS2i8 ? « 0
ELT.t . »DAT!MlTELScOPE DATA INPUT ROUTINE) " 0 0 ■ *. ITER-I
SU R R OUT INf ROaTIN(N ,M ,K ,NS ,NOPT , « ,T I »L»HD»«!.0 - 2

R 0 A T1N READS NO. DE ORSVNS IN0R5 ) L AT OATA FROM FILE 13 (SEE TA) AMUẐo'.OO

NOPTlIfl .7 . 3  PRINT OPTIONS. llsupi«0'1*

NOPT.7 , - 0  REP, ACE N.NO Of PTS • ŶNOBS ̂RE I N. KOUNT?:o'J’

‘ * •Y *** ••»* * C IFINOPT.il.EO.O. SO to *
READ FILE 13 FOR NOBS * SrITEIiSi
REA0 I1 31 ndrs 7 format,! ::::: enter farms .»as«s please'I

rrnOBS,12,*N̂,P> 60 <0 20 CALL°ReaÖ’n»AR.OATA,NeRRI
ioSs”n.s 1 ’ 50 T° ‘,ol°
FORMAT { ̂ ̂ ̂QQNaNO. or data pts is reset to suit no. of dataset.. io continue r’*T*17’

1 r, 0P T 0 3D? ’* ? ........................................................................... ...
I E ( N . f,T . NOBS ) GO TO NO C

*T? » 1 SA.NAJ'°SIt * PTS.', I6 . 1 OATA SET OF'.U.' EnTPIES INPUT'I ^ 0 0 ' ̂  [  » n SIS’ Si* 1 ^ 5 i * * ' * '"  ' K° UN '̂ 1 ’
JOTO 3 0 PHI (N,NS,Y,fn.R,phI0 .R0R5 T,I«0RST)
FORHaTi» QCO OPTION CONFLICT NOBS<N. NOBS iS ASSUHEo»*) C print, ...

N*̂0RS 11 n format?)//•*jonfs spiral algorithm , initial ph i ■ •, o i s. b , • initial
T PARMS I MASKS ) a R F• « ' )

ro‘?i.s,L/.i:?o;r ,,v n,T“ . 3 0 p.r".j..hask.u,
?5J i 20 »̂m.t, ...

, , ,, 20 0 CALl'oeRV(N.m.e,NSii.parm.of.fount?)
1FINPR.RE.7.»RIEF1 3 .I I 0 IJ.»Ij.I>■«IJ.2 1 'Y1J•t 1 ,T 1 J ‘ 11 SCALE I I .-0 . 0 0

c STO*EMSR AÔE NT̂
DO 7 I 0 J» I .K
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c„ -c

g U * * p < j m g c  j > * s c a l E i j > 

s o l v e  f q n .  a » t » g .
CALL 0 6 FL G I G . A .K , I ,  1 • € - I S • ! € *  ) 
j r i i E R . N C . O )  GO To mOlO
I f  M A T p f x « S I NGULAR DO MARQUARDT*? TRJCK 
COHTI NUC

DESCALE T ,  & r r  T , G M a G N I T 0 0 E S •
G"  AG- O.  00
T - a g - C . OC
DC 2 2 0  J •  I . x
T < J ) » G ( J I / S C A l f I J )

* g * T ( J )  m*2
G « * g » G - a g * G t € * P i j | « » *
T m a g «DSQRT(  P * i G )
•  * i t f  «3 , s o o o »
GMAG- OSQRT J G M A G )
CAl C.  GA»*ma  . f O S . S l N .
C0 S6 A M . p ,  0 ?
00 2 3 0  J » | , r  
G CJ > p GT£ mP ( J )
C 0 S G A M « C 0 S G A " * T l j ) * G < j )
COSGAN«c OSGa m / ( T m a G»Gh AG)
S M G A M . o SQRY « I • D 0 - C ( ) S g Am « * 2 )  
GAMMa p d a COS i c o SGa m )
f F < C 0 S G A M M 0 ? 0 . 2 8 0 . 2 * 0
SO# MAv r  T a y LOV Vf CTOR T ,

CALL S M l F T I ß T r  
00  2 I 30 J *  1 .K 
O P A R H i c T E M P ( j ) / P  10
SPARm- G T E mp  ( J ) / SEC 
* » ! T E ( 3 , 2 1 2 0 ) J . GT e  

2 1 3 -  CONTI NUE 
2 1 2 -  E 0 R M A T ( * p a r s  SO.  • , I R , 0 1 6 • *  , * RAO 

r e t u r n

SR< J )  >

RI O
SEC
G T f M P ! j )  , D R A R S , S P a Rs

, F 12 . S ,  • DEG • % f 1 1 .  N

C *<OVE To N£ *  BASE P Oj N T .
2 0 0 0  00 2 0 1 0  J « I . K
20 I o  P A RS( j >« GT F H P( j )
C P R I N T .

RR I t £ ♦ 3 2 0 2 0 )  ! T C R , f 5 , l P , K 0 U N T l  , k Ou N T 2 , S 1 N G A N , P my 
2 0 2 n  _FORMa T ( *  CNO f TER N o . » ,  I S . ’  1 5 ,  J P , KOUNT 1 , 2 • *  , 2 I N , 2 J S , •  

« D 1 2 . S , *  p s I • •  , 0  1 S • *  . • PARRS FOLl O * ' )
•  R 1 T E ( 3 , 2 0 3 0 » PARS 

2 0 3 -  FORMAT( 3X . 0 1 S . 8 )
! S -  1
I t  t  I  t r  p  ♦ I
PH 1 0 • P M Y 
GO To 2 0 0

2 ***

C

300

A 0 O

7 0 n

GRADI ENT 6 , ANO S I N  ,  COS GAMMa .

C A l f .  TAYLOR P O I N T .  USE GTf MB AS TEMPORARY PARN VECTOR.
00 2 RO J « l  . *
5 T E « P I J ) « P * R N | j l . T l j l
CALL P f T N C N , M , K , N S t > , 6 T C M P , F N , K 0 U N T l )
CALL Rm H N . N S . Y . F N . R . P M Y , B O R S T , I R OR S T j

TEST F 0 R EPSI L ON CONVERGENCE,

1 t e s t - o
00  31 0  j  *  1 , K
T E S T - 0 A B 5 ( T ( J |  ) / ( 0 * 8 5 ( P A R M ( j ) >♦? AU )
1 E ( TFST .C,T . EPS ) ! T E S T •  1
c o n t i n u e
I F  I 1 T E S T . F O . O )  GO TO SOO 
t e s t  p m i  of  T a y l o r  p o i n t ,  
i f f P M Y . L T . P M 1 0 )  GO TO 2 0 0 0  
I S T OR I G I N A L  TAYLOR POI MT, *»
I F ( I S • F 0 • 1  > GO TO * 0 0  
I NTERPOLATE Ai ONG T *
I P <PHY. GE. P M T T ) GO TO * 0 0

TAYLOR OI R N .  I NT ERP.

c o o i n g .

I n t p r p • r e q u i r e d  Sp i r a l  N o . ' . m

c

C OGELG F A I L
ROrto RR I T f  f  3 , ROD I ) I E *
" OOi  f o r m a T i / / / »  m a t r i x  

•  R t TE I 3 , R002 ) AL AMf>A 
ROD? FORMAT( » • • • • * . *TRT

S C A L E « I >- o . o n  
CALL Ma T E O N I N . m . k , N . .
00  Rf)OS J •  1 , *
GTEMP( j ) «G f j I » S C A L E  « J 
A ( J , J I a A ( J , J ) ♦ A L A M 0 A

ROOS CONTI NUE
CALL Og E L G C G . A , R , I , 1 . F - I S . i r R ) 
I E « I E R . E Q . 0  IGO TO 2 r O 
BR I t E f 3 . ROD I ) I FR 
RETURN

EQN SOLN.  ROUTI NE FA I L , I E *  * 0 G r L G I • •  . I R ) 

AGAI N « I T h LAMOA-  • , 0 I S * 8 )

• M,K . N S , Y , F N , * , O f , A , G . S C A L E  )

c r e a d  f a i l
R0 IQ »R I T r t 3 • ROl  I > N V AR 
RO1 i FORMAT( / / / •  RpAo R 

RETURN
0 U T j  N E F A I L * . I S . *  VA RI A B L E S  Bp RE RE A D . * »

C Ga mma  F A I L .
R02O RR ! T E « 3 , R 0 2 I ) GAMm A , C0 * GA« , SI NGAM 
R 0 21 F O R M A T ! / / / »  ANGLE GAMMA &T P J / 2 ,  ANGLE*GLE »COS, S I N -

............ • • • • T E M P O R A R Y  C
* R I  TEI  3 . 2 2 1 0 )  IS 

1 -  FORMAT! ♦ TAYLOR
GO TO * 0 0  

GENFBATF S P I R A L .

* 3 -

•  00

»9 0
C

I on»'  
c

( • • *

AMU- AMUl  
I P« I
s a v e  o l d  t a s  a ! , * i , o l o  p h i  a s  p m y t .
OP BI  0 J P I  . r  
A « J , r ) «T « j  >
PHY T . P m V

ESCALf  g * 
a G - 0 . 0 0  
AG- O. OC 

00 8 2 0  J - l  . «
£ MAG- GMAG* 6 I J ) » * 2  
T p A 6 » T m a G » T ( J » » * 2  
G*»AG»0S0RT ( r,M AG >
TMAG- OSORT( T« A 5 )
DO * 3 0  J * I . K 
G ( J ) p G ( J ) « T m AG/GMAG 
CAL C.  SP I RAL  P O I N T .
BTT A - G a - H A / 2 . 0 3
T N p T A - A M u » 5 | N < ; A M / | | , D O - A M U * A H U » C O S 6 A H )  
T H F TA P D A T A N ! T m ETAI  
RON* I . T M f  T a /GA»»MA
R O N * ! P i . o O * T w r T A » D C O S l * E T A ) « « R O N X l - | . 0 0 ) - R
P 0 N X I » P 0 N X | « 0 S ! N ( T H f T A ) / ! A M u » S l N 6 AM)
OE F »RON I  I • A MU 
TECp ROn x I « !  I • DO -  A **U )
f O* M TpMPDRAkY PA»** V f CTOH g TEHPp PARMy S 
00 * I 0 J -  1 , «
6 T t H * « . j | p * » » H ! J | . ' ' f r . f , l  J | » T f E » T  ( J )
CALI .  F C T N ( N , M , K , N S . * . 6 T E N P . F N , K 0 U N T I I  
CALL * H I « N , N S , T  . f N * A • P H Y . BORST , I p Or ST)
SAwr  LAST T BO SPI RAL POI NTS ♦ P h i  VALUES.  
I F ( I P . F O . I  ) GD TO * § U 
J E ! I P . E 7 . 2 » GO TO * 7 0  
S A VM UI  p S A V Mu 2 
P M I M U I - P M I M U 2

SAVMU2- SAVMU3 
PM I H u l . P H I  mu 3 
S Av m u 3 p »«t j  
PH I MU 3 p P m Y 
TEST CURRENT P h i  
I E ( P m Y . l t . p m I OI  GO TO 2 0 0 0

T U * 0 » 0 9 2 R 0 0 * T U * T U

CHECK I F I N T E R P .  ALONG SP I R A L  REQUI RED.

S A V MU2 - S A V HU I » / « S A V MU 3 - S A V MU I I
GO t o  11 00

11 . OR. P h I Mu 2
, I NTFRPOLATE AI ONG

? 2 - "

I F « I P . L T .  3)  GO TO 1 100 
T r S T p P Mj M U ! * < P N l M u 3 - P u l M U l » * < S A  
I F 1P n I mi J2 . 6 E . T E S T  ) GO To 11 00
I F ! P m ! m u 2 . G E . p m I Mu | , 0 R . P h I Mu 2 . G C . P h I MU3 I  GO TO 1 | 0 0  

g s p i r a l

Ol P « S A V M U ? - S A V M U 3 ) * P H | M U |
G2 p ! S A v m u 3 - S A v mU1 I • P h j m u 2 
Q3p ( S » V - U I - S A V M U 2 I * a m i « u 3 
P 1 •  ( SAVMU2*SAV**U3 )
P 2 •  I SAyMUJ^ SA y MU 1 I 
P 3 * ( S A V M U l * S A v MU 2 )
CALC TURNI NG p n T OE OU* ORI C
OMU- O. SOC*  * 0 1 • P 1♦ 0 2 » P 2 * Q 3 * P 3 ) / «  Q I ♦ Q 2 * Q3 1
GET I N T f R P O L A T r O  ®Ol NT
« E T A - GA MMA / 2 . D O
T H f T  A«DMu* S I NGAM /  ( 1 . 0  D- OMU*  0 *<U •  C 0 SG A*  I
t h e t a p o a t a n i TMETA)
RONX J PTMf TA/ GAMMA
R O N X I p i . D O * T M F T A « d Co S | R E T A ) p «R0 Nx I . | . 0 0 > - R 0 N X 1 » « 2
R ON X I p R O N X I « O R I N { T H e T a ) / ( O M U * S ! N G A m )
OE E * R O n X I ROMU 
T E f p R O N X I « ( I . r > 0 - O M U )

G Y r M P l 3 » p P A R M < J » * 0 E E * G « J > * T E C * T ! j )  
c a l l  e c t n «n . m . k . n s . x . g t e m p . e n . k o u n t i )
CALL Rm I « N , N S , Y . E N , « , P W T , R O R S T , I » O R S T )

" • l T E ( 3  . 1201 >0Mu » PH Y

TEST CURRENT PM|
I E 1 P m T . l t « p m  I 0 )  GO TO 2 0 0 0

FORMAT!  • I N T f R POL AT  I ON ALONG S P I R A L .  MU. PMYp * , 2 0 l S , * |

STIME
C E L T px  ST I M f  HOD p 3

SUBROUTINE ST |M e ! T J , E l QNG»ST »e QUj N . m EAN)I iss« i;.s5r:?-Ä?:*!55;.üi!5"5Ji?j!C ALSO GIV ES CQUIN p e QUATION OF E O U jN O Xt S IN  R A D IA N .

I M P L I C I T  RE A L • 6 ( A »M , 0 - Z )
P f p 3 .  I H I S * 2 6 S 3 S 0 R 7 * 3 O D  
P I 0 » P I / 1  BO.DO 

C
! T p T J 
T U -  I T
T R EF «T u *O .S DO
TUp «TRc E - 2 ‘4 | S d 2 O . D 0 ) / 3 4 S 2 S . O 0  
5TGOp 2 3 R 2 S . 8 3 * D O * * 4 n 0 | B M . S R 2 0 0  
STG 0 p S T G O « P I / R 3 2 0 0 » 00 
OTh E TAp I . 0 0 2 ?  3 7 9 0 R 2 b So O * O . S 8 * 0 - 1 0 « T  
STGPSTr%0 * l T j - T R £ F ) * 0 T M F T A » M l « 2 * 0 0  
ST p 5TG *FL 0NGc
IF  «MEAN.EO.O» GO TO 10

C *R «» «C OM Pu Tr  EQUATION OF EQUINOXES,
( • • • » • P A R A M E T E R S  B . R . T .  m e a n  EQUINOX OF OATC.

T - ( T j * 2 M I  6 0  2 0 . 0 0 ) / 3 B S 2 S . 00
ON* 2 S T • I 8 3 2 7 S 0 0 0 * I * 3 * .  IN 2  0 0 8 3 » T * o * 2 0 2 7 8 o « 2 * T » T r O.
0S p 2 7 R . 4 9 B B 7 8 0 0 * 3 b 0 O 0 . 2 6 * R 2 5 * T * O . 3 0 2 6 0 * 3 * T » * 2  
O M p 2 7 0 » R 3 R | B 3 f 0 0 * R 4 | 2 4 7 . 8 B 3 l R l 7 P T - 0 . | i 3 3 3 D - 2  “  
Gp 2 * I * 2 2 0 8 3 T * ! , * * 3 * T * T * ^ * ^ 1 2 * T * T * T , / 3 6 0 0 * D0 
G O *«- 3 7 . 1 7 * T « T - 0 . 0 * S * T » T * T » / 3 4 0 0 . 0 0  
GOp G O « 3 3 R .3 2 9 S S 4 « R 0 a R . 0 3 * 0 3 3 3 3 * T  
ON«ON»P I 0 
OSp DSr PI  0 
0 M •  0 M •  P | o 
G » G * P 10 
GOp GO»P10 
L «OM-GO 
LO-O S-G  
F - O M - O n....................................

c
0 P H ? * 0 P M I r p I 0 / 3 4 0 0 * ° 0 301 2 S 0 0 * T " 1 * 4 S 0 - 4 « T R « 2 * 5 » 0 3 0 - 2 « T r «3 
EP SO-EPSORP! 0  6 # °
CQ UI N p D P H I r DCOSIE PS o )
ST-STAFQU I N 

10 Np S T rO . S O O / p I
5 T p 5 T - n r 2 . D 0 R P !

2 2 o - 5 r T » r 3 

• T » R j » 0 .  | * 8 » f ) - 5 R T R R J

TDATIN

' c ' ? '
1 3 N-

I s I -  

c

CNECK I F ALL POI NTS ON SP I R A L  ARE OONE.

1 F l a m u .  GC • AMU2 ) GO TO MOO 
I F NOT C * L C .  N£ *  MU.
I P «  I P RI
AMu p 7 . 0 0 r AMu / < | . D 0 * A M u >
GO TO BOO

CHECK I F ALL SP I RAL S DONE.

I E ( J S • £  0 • *  I GO TO 1400
I F NOT MALVf  TAYLOR V f C T O *  ♦ RETURN.
DO I S l o  J - t . K  
T « J  I - T ! j I / 2 . 0 0  
| S - I S * I  
GO TO 2 * 0

F I N A L L Y  SEARCH STEEPEST OESCENT OI RN»

00  1 4 1 0  J P | . K 
GT £MP< j M P A R M I  j )  RG< J )
CALL F C T N I N . m . x . n S . X , G T £ M P , F N , K 0 U N T I ) 
CALL Ph | I N . N S . Y  , F N #* . P H Y , B 0 R S T .  M O R S T )  
TEST Pm I .
I E «Pm T . l t . Pm I O)  GO TO 2 0 0 0
1 t f s t - d
DO 17 1 0  J p | , K
TEST p Oa b S « G ( J ) ) / « D A * S 1 P A R M « j » | r T a UI

Tc S T . G E . E P S )  ITC

SUBROUT I N F * T 0 Nt ! n Vn C!c* k 0 N 0 P T , NPUT  (,° U T , N C ’ * ° °  B 5 *

v i . t .  , t d , t *  f , ° "  f , l e  11 , s t t  t * '

NOBT ! I »PI  , 2 , 3  PRI NT OP TI ONS, P R p l ot  o e c / h a , 

n o p t i 2 »p O re  p i  a c f n . no o r  p t s  b t  n o b s  r e a o  i n .
■ I  USE N a s  NO» OE PTs  JE N< N0 BS.

I M P L I C I T  R f A L r B I A - H , 0 * 2 I
0 I m£N5 I ON NOPt M )  , X | N , 2 )  , Y ! n , 2)  
CAUTI ON TEMPORARI LY 0 l M £ N S I 0 N £ 0  
REAL XM!  1 4 0 )  , YM( 16 0)

P | * 3 . M l S * 2 4 S 3 S 8 9 7 * 3 0 o  
NPRp n OP T ! I )
READ P I L E  13 FOR NOBS 
R E A 0 I I 3 )  NOBS

1 F ( NOPT«2 ) • N E. 0 ) GO To 20  
N ■ N 0 B S
I OBS- NOBS 
BR I TE» 3 ,  1 I ) NOBS 

. FORMAT I • Q3 QN . N 0 .
I * ENTR J F S - • . 1 4 )

GO TO 30
I F ( N . g t . NOBS)  GO TO *»0
I OBS»N 

“  TCI  
MAT

GO TO 30 
» R I T E ( 3 , I 3)
FORMAT! *  QQQ

v a r i a b l e s  f o l l o b .

Of  o a T a PTS i s  Re s e t  To s u i t  n o . o f  d a t a s e t ».

T a P T S ■•  , 1 4 , •  OATA s e t  O F » , 1 4 . »  E n t r i e s  , n p u T»

I OBS- N 
NPNOBS

I E « T c S T . G E . E P S )
CONT I NUF 
I F !  I T F S T . F O . Q )
OP D I O  J » | , K  £

CJ0 , , T  
................. ............................................. • • • • • ...................... ..  R£AC« 1 3 ) X « J , I  ) , X ( j  , 2

n n s Q9g  ° P T l o N  Co n f l i c t  n o b s < n .  n o b s  i s  a s s u m e o » * )

F M T CONVERGENCE.

r

s t f c p e s t  ocs c
B R ! T E « 3 . I • I o )
FORMAT! / / / •  5
GO TO 7 1 0 0

EPSI L ON C ONV 
•  R 1 T £ ! 3 . s 1 n j
F O R M A T ! / / / »

E X I T  SEC T I f  
COMT J NU£
* R l T £ !  3 . 2 1  10 )  I T E R » p h y , | S , I p * KDUn T|  »K0UNT2 

. F O R M A T ! / »  i T r *  N O . * ,  I S , *  p H I •  • . D l S . 8 «* J S . I P ■ * , 2 1 N , • KOi l NT l ,
I , ?  M • * F I N A L  PXBM VFCTOH F OL LOBS* )

7 1 0 0

ERf .k Nf E .

5 p | R A l » . » F P S 1 L 0 n CONVERGENCE• * )  

T I  ON F 1 n AL t z E ♦ PR I N T .

I I P  FORMAT I • 
100 CONTI NUF
c

F l  NO Pm I RMS FTC , ,
OMAX. O. OO
PH I . 0 . 0 0
P M 3 . M l S ? A S 3 S 0 9 7 4 3 o O  
ASe C - P i / « I * O . D O * 3 b Oo . OO)  
00  20 0  J « 1 . JOBS 
X * J *  x I j , 2  )
CALL S m I F T 2 1 XXJ)  
X H ( J ) - x X J « 1 2 . DO/ P I
Ym ( J ) p x ( j , J ) « 1 B O . d O / P |
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OE I ▼ a p  I * < j , 1 ) . * < j , 1 ) I . . / ♦ ( v ( .1,2 I . I I J , ; ) ).«?.0CO5«xIj.l » I •• 7
p “ ! , o * ' !  » O f l  T a
| H ! ' “ « l , ( , T , ' ) f i  t n  5o  TO 23 0

« ‘• S * 0 S ' 5 9 T | P M l / t 0 8 S » / * S £ t  
r-A»«r)SQVT(rNMAX >/a S f C

• • f. 08S N O t -  ' . r i O t J . ^ X . I S )

l M K P 9 . r o , 9 | C U L  i » l OTI  I OS' !  , * h ,  • H* • , VM , »OEC• . 0 )

» f  TUPN
r  no

W T
SUPPOI ' TP. C AT J »j , M , N$ , t , *  ,

r  c * i c u l » m «; p f i g m t s  f o p  t e l e s c o p e  p o i n t i n g  e r r o r  f n .
C X »J . 1 »o r C  . t « j , 2  I # M | . . . R£TURNS * 1 J ,  1 » • ! # 0 . P ( J . ? ) * C O

I L L I C I T  B r * L # f l ( * - « , 0 - 7 )
0 I **r NS j ov 1 ( N , 2 ) . * c N . 2 )

SI NE O f C l J )

‘ I*

DA 20 T • l . n

! r (SPB.fc. I IAPITE<3,623) * M  I 1 I ilI I ,2) i*l I ) I
F 0 9 - A T  ( .  A ? 3 a t  • ,  « 0 1 5 . 8  )
C O n T j N'jr 
BfTUB'j

ZANGLE
C E l  T •  0 7 A n Gl E **0D •  I
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APPENDIX E; reprinted  from Proc. I.R.E.E. A ust. March 1973.

Summary: A method of converting a standard frequency 
(referred to either the mean solar or atomic second) to the 

equivalent frequency referred to the mean sidereal second is 
described. A voltage-controlled oscillator on the sidereal 

frequency is mixed with the standard and the difference 
frequency phase-locked to a signal derived by division of the 

standard. A long-term conversion accuracy of better than
50 ms per year is possible.

A Phase-Locked Solar to 
Sidereal Frequency Converter
G. R. H O V E Y *

T he p roduction  of sidereal tim e  for th e  use o f astronom ical 
observato ries an d  deep space tra ck in g  s ta tio n s usua lly  in ­
volves th e  g enera tion  o f frequencies referred  to  th e  m ean 
sidereal second from  s ta n d a rd  frequencies w hich are  referred  
to  e ith e r th e  a tom ic  second or th e  m ean  solar second. E x is t­
ing m ethods for converting  a “ so lar ” frequency  to  th e  sam e 
nom inal “ s id e re a l” frequency  usually  em ploy  in tegral 
d iv iders or m ix  th e  s ta n d a rd  w ith  a  sep a ra te  free-running  
oscilla to r an d  do n o t have a  conversion accu racy  com parab le  
to  th e  long-term  s ta b ility  o f th e  oscillator th e y  convert.

C onsider th e  difference frequency , f3 , ob ta ined  by m ixing 
the  s ta n d a rd  (solar) oscilla to r of frequency  f, w ith  a  voltage- 
con tro lled  c ry s ta l oscilla to r (VCXO) w hich is on th e  required 
sidereal frequency , f2 .

f, f, -  f, ( I )
A ssum ing th e  solar frequency , f, , is ex ac t, th e  fractional 

erro r o f f2 is g iven  b y  :

|Af2| | A(fi +  fs) I I Af'3 I ' A { \
'Af3! fa

U r i fi +  f2 i U + f . l  ! L 1 i f3 !' f.
T hus th e  frac tiona l e rro r of th e  requ ired  sidereal frequency  

is less th a n  th a t  o f th e  b e a t frequency , f3 , by th e  fac to r f3/ f 2
W ith  th e  ad op tion  in J a n u a ry  19721 of th e  a tom ic  second 

as th e  m ean  ra te  used to  genera te  so lar tim e th e  ra tio  of 
sidereal frequency  to  a tom ic  frequency  is g iven bv  :

f2/f ,  1.002 737 939 3 (3)
while th e  v a lu e  for th e  pre-1972 so lar ra te  is- 

1.002 737 909 3
T hus th e  fac to r f3/L  is independen t o f th e  ac tua l frequency  

f, and  is
f , / f i  - (f2 - f « ) / f i  Ä  --74 X 10 3 (4)

♦ D epa r tm en t  of  Engineering Physics,  The Australian National 
University ,  Canberra ,  A.O.T.

Manuscript received by The Ins t i tu t ion  Septem ber 29, 1972.
U.D.C. num ber  021.314.20.



E.2

C learly, if  we phase-look th e  beat frequency. . to  a  
reference frequency, f '3 , ob ta ined  by division from th e  
s ta n d a rd  f t , th e  ev en tua l e rro r in f2 (due to  tlx* fact tlm t 
we can  on ly  d iv ide f\ in tegrally) is less than  if we wore to 
o b ta in  f2 d irec tly . O p tim um  conversion accuracy is ob ta ined  
by  deriv ing  f '3 from  as h igh a  frequency, f, . as possible but 
em ploying  a  low frequency  a t  w hich to  m ix the  signals and 
therefo re  a  low difference frequency. T his is th e  basis of 
th e  system  show n in fig. 1 in w hich f\ is f>.() MHz. T he refer­
ence frequency , f '3 , is genera ted  w ith  a  fractional e rro r o f 
5.26 X 10-7 (5.33 x 10 7)+ and  th u s  from  equation  2 above, 
th e  frac tional e rro r in f., is 1.44 \  10 9 (1.47 x 10 ®) + .

vc xo

13 6896965 Hr l b  
( l3  6 6 9 5 4 6 5 ) ^ 2 * ^ .

Phos« 
DeUctor

ActiveX
Filter

13 6 8 9 7 0 1 7 0  Hz 
(1 3 -68955377)

Figure 1.— P haue-locked ,solar to .sidereal frequency converter. 
Frequencies shown for 5 M Hz atomic frequency standard with values 

for pre-1072 solar rate in parentheses.

F o r th e  frequencies show n (fig. 1) th e  system  has a  co n v er­
sion accuracy  b e tte r  th a n  1.5 p a r ts  in 10® or in te rm s of 
cum u la tive  e rro r app ro x im ate ly  45 ms p e r year. T h is is 
su b s tan tia lly  b e tte r  th a n  th e  ageing ra te  of th e  s tan d a rd , 
which is in our case a H P  105B oscilla to r (ageing ra te  5 p a rts  
m  1010 p e r day , app rox im ate ly  5 seconds p e r year).

In th e  p ro to ty p e  te s ted  th e  phase  d e tec to r is a  T T L  logic 
b is tab le  and  th e  in p u t to  th e  ac tive  filter is a  13.7 H z square- 
w ave w ith  a  m ark-space ra tio  d ep en d en t on th e  phase  d if­
ference betw een  f3 an d  f '3 . As well as defining th e  loop 
p erfo rm ance3 th is  filter serves to  in teg ra te  th e  square  w ave. 
W ith  th e  loop locked th e  contro l vo ltage  to  th e  VCXO has a 
13.7 H z com ponen t of ap p ro x im ate ly  140 m V  peak  to  peak 
am p litu d e  causing a  frequency  sw ing of 100 H z (peak to  
peak) in f2 . T his is n o t considered im p o rtan t since th e  
p ro jec ted  use dem ands only long-term  accuracy.

T he loop dam ping  w ith  th e  filte r tim e co n stan ts  used is 
qu ite  poor an d  an  im provem ent in dam ping  fac to r un fo r­
tu n a te ly  necessita tes an  increase in th e  am p litude  of th e  13.7 
Hz com ponen t in th e  o u tp u t. T his can  be avoided by  using a 
h igher frequency  for f3 , for exam ple,

f3 130.89 Hz,

in w hich case f, w ould be d iv ided  by  36524. T he com prom ise 
is reduced  long-term  conversion accuracy , since now

Af*1
If*

1.35 x  H r*

an d  th is  w ould rep resen t a cum u lative  conversion e rro r of 
app ro x im ate ly  400 m s p e r year.
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