
Publications of the Astronomical Society of the Pacific
105: 616-624, 1993 June

The Wyoming Infrared Observatory Telescope Software

System

Earl J. Spillar
University of Wyoming Infrared Observatory, Department of Physics and Astronomy, University of Wyoming, Box 3905

University Station, Laramie, Wyoming 82071
Electronic mail: spillar@corral.uwyo.edu

Daniel Dumbrill
IOTC Incorporated, 211 South Third Street, Laramie, Wyoming 82070

Electronic mail: dumbrill@corral.uwyo.edu

' G. L. Grasdalen
G-Star Enterprises, 286 North Pennsylvania, Denver, Colorado 80209

Electronic mail: garyg@corral.uwyo.edu

R. R. Howell
University of Wyoming Infrared Observatory, Department of Physics and Astronomy, University of Wyoming, Box 3905

University Station, Laramie, Wyoming 82071
Electronic mail: rhowell@corral.uwyo.edu

Received 1992 November 16; accepted 1993 February 26

ABSTRACT. We describe the University of Wyoming telescope control and data-acquisition software
system. The software was designed to be maintainable, portable, and inexpensive. Moreover, the
software was designed to allow rapid communication between the hardware, the data-acquisition
processes, and the tracking processes, while leaving each distinct. We show how the new real-time
features embodied in the POSIX.4 standard and implemented in the Unix compatible LynxOS operating
system allow us to perform all of our tasks on a single 80486 machine with a standard Unix-like
environment, with outstanding real-time performance. We discuss our telescope pointing model, which
allows us to point with a root-mean-square error of less than 5 arcsec over the sky with the 2.3-m
telescope. For more detailed investigation and use, we will make the software available through
anonymous FTP.

1. HISTORY AND INTRODUCTION

In 1986, the University of Wyoming Infrared Observa-
tory was faced with an aging PDP-11 computer system and
a floppy disk-based Forth operating system that were be-
coming difficult to maintain. New infrared array instru-
ments were difficult to control with such limited hardware,
and the Forth code appeared difficult to move from the
PDP-11 to other architectures. Since we guessed that com-
puter replacement every few years would become a way of
life, we elected to write new, portable telescope tracking
and data acquisition software in C on a real-time UNIX
system. The new system was first implemented on a Mass-
comp 5500 system.

In 1991, we found the Masscomp, in turn, becoming
obsolete and expensive to maintain. Moreover, the Mass-
comp had both a main processor and a data-acquisition
coprocessor, which we found difficult to coordinate for the
purposes of data acquisition. We ported the software to a
new platform, a single IBM compatible with a 33 MHz
80486 processor running the LynxOS operating system,
using the new POSIX.4 real-time software standards.

Through this migration process, we have developed a
relatively machine independent telescope software package
written in C. In this paper we describe our software and the

rationale for the choices that we made, emphasizing the
communication between processes and tasks abetted by the
POSIX standard, in the hope that our experiences will be of
use to others.

In Sec. 2 we list our desiderata, and explain our ratio-
nale for using a single machine to control both telescope
and instruments. In Sec. 3 we discuss the required real-
time features of the operating system. In Sec. 4 we describe
the system itself. In Sec. 5 we summarize our pointing
model. In Sec. 6 we discuss the ease of porting of the
system, and in Sec. 7 we discuss future directions.

2. DESIDERATA

Tight coupling between data-acquisition software, data-
analysis software, and telescope-tracking software is essen-
tial. For example, consider the acquisition of far-infrared
data with a single element detector (Grasdalen et al.
1984). The chopping secondary changes position many
times a second to sample a different portion of the sky. The
whole telescope is moved on the sky (“nodded”) between
beams, or scanned to take a raster image of the sky. The
data-acquisition hardware must be synchronized with both
motions, and the data tagged with telescope and secondary
status as they are acquired. Meanwhile, in order to make

616 © 1993. Astronomical Society of the Pacific

WIRO TELESCOPE SOFTWARE SYSTEM 617

the system truly “friendly” to the user, the data ought to be
demodulated and displayed as they are acquired, while the
user brings up old data and perhaps modifies the data ac-
quisition strategy in real time. Real-time data processing is
also required for real-time data strategies, such as algo-
rithms to center the telescope on bright sources based on
incoming data. For each of these of interacting tasks, rel-
ative time delays of more than a few milliseconds would be
undesirable, if not disastrous. It follows that the telescope
system needs to be built on a true real-time operating sys-
tem with strong interprocess communication.

Another important consideration is the need to add new
instruments and functions to existing software with a min-
imum of difficulty. This work is done by various academics
programming part-time, adding dollops of code to drive
instruments, fix problems, or improve functionality, at ran-
dom times. A simple and comprehensible system architec-
ture eases the addition of new instruments and features.

A key question is whether to use a net of computers, or
a single machine to accomplish as many tasks as possible.
Since instruments are frequently developed by diverse in-
vestigators on different platforms, integrating these plat-
forms is advantageous. Using several DOS machines also
allows us to use a wide range of cheap hardware without
writing device drivers. Simple operating systems, such as
DOS or OS/2, can also be used on such machines. Many
telescope systems are currently operated in this fashion.

Nevertheless, we chose to implement as many functions
as possible on a single machine; although not the only
solution, several arguments make such an approach attrac-
tive. Tight coupling between telescope control, data-
acquisition, and data-analysis processes is easiest when
they all reside on a single machine. Since there are very few
true network operating systems, shared memory, messag-
ing, or semaphores on a single machine are the simplest
and most direct means of interprocess communication.
One of the principle objections to using a single machine in
the past was that it could not be done without using un-
usual and expensive software and hardware. Today, inex-
pensive, Unix-compatible real-time operating systems
which run on inexpensive hardware are capable of per-
forming all the required tasks at once. Furthermore, main-
taining several machines is expensive. Each machine re-
quires its own separate version of the software, which must
be maintained, and all must be connected over a network,
which in turn needs to be maintained. Each new CPU adds
to system complexity and expense.

Our experience with the Masscomp strengthened our
conviction that a single CPU is the best solution when
practical. Masscomp 5500 had a 68020 main processor and
a tightly coupled custom data acquisition processor which
allowed very high data rates. Although presumably an ex-
cellent solution for some sort of data acquisition, we found
synchronization between the processors quite difficult and
cumbersome. Although the data-acquisition processor re-
sponded very quickly and reliably to interrupts, the com-
plexity and difficulty of chaining the interrupts to the main
processor and interactively changing the data acquisition

processor’s orders made complex coordinated operations
very difficult.

In practice, many of our instruments still use their own
host machines. Nevertheless, we feel emphasizing a central
machine has simplified our programming task, and re-
duced the clutter in our control room.

3. THE CHOICE OF OPERATING SYSTEM

After considerable reflection, we chose real-time Unix as
our operating system. The adoption of the POSIX.4 real-
time standard allowed us to create a real-time system on a
single machine in the comfortable and familiar Unix devel-
opment environment.

3.1 The Operating System

In light of the desiderata listed in the last section, five
requirements guided our choice of operating system. First,
we require real-time response, since the telescope and data-
acquisition system cannot wait while the system formats a
floppy disk. Second, we require the system support stan-
dards so that the system will be portable, and programmers
need not face a steep learning curve in approaching the
system. Third, we require robust support for multiple users
on multiple terminals. This allows terminals in the dome,
in the control room, and remotely over phone lines, and
simple serial line interfacing for new devices. Fourth, we
require robust multitasking, since a user may be browsing
a catalog, formatting a floppy disk, using kermit to access
a remote computer, and running a data-acquisition routine,
all while the telescope tracking software is running. Fi-
nally, we require quick and robust interprocess communi-
cation to coordinate data acquisition and telescope control.
True multitasking, standardization, and support for many
terminals strongly suggested that we choose a version of
Unix.

The most stringent requirement is real-time perfor-
mance. Most versions of the Unix kernel do not support
real-time applications. The principle obstacles are built
into the kernel itself. First, there are kernel routines which
cannot be interrupted (preempted) before completion, and
so have no guaranteed completion time. Second, the stan-
dard “fair” task scheduling algorithm will dynamically
lower the priority of high-priority tasks. The delay before a
high-priority interrupt is serviced or a high-priority task
runs may not be visible to a user typing at a keyboard, but
they may reach many milliseconds. Such delays are simply
unacceptable for real-time applications.

Several Unix-like operating systems with rewritten ker-
nels are available. We chose the LynxOS system (Singh
and Bunnell 1990), from Lynx Incorporated, for several
reasons. First, LynxOS is POSlX.l compatible and imple-
ments the latest draft of POSIX.4 (see below). Second, the
interrupt response time of the system is determinate under
any load. Third, the system is available for many architec-
tures, including the 80386, 80486, i860, 68030, 68040,
88110, Sparc, and PA-RISC. Sun Microsystems, Hewlett

618 SPILLAR ET AL.

Packard, and the Space Station Freedom, among others,
are all using or recommending LynxOS for real-time ap-
plications.

Despite the current popularity of LynxOS, it would still
be a risky choice were it not for the POSIX.4 standard.
Although various vendors have independently arrived at
similar solutions for real-time problems, most use different
interfaces. For example, the system calls for starting
threads vary widely from system to system. The POSIX.4
standard, now being adopted by many of these real-time
operating systems, creates a common interface for most
real-time programming tools, assuring their portability.

i

3.2 Real-Time Operating System Facilities

The fundamental goal of a real-time operating system is
to simulate the operation of several interacting tasks run-
ning concurrently, despite the necessity to share processor
cycles on a single CPU, and to facilitate speedy and reliable
communication between these processes and the physical
world. In order to fulfill these goals, the LynxOS kernel
(and other real-time kernels) differ from standard Unix in
several ways. In this section we describe several of these
features, in the next section we will illustrate their use in
the code itself. More detailed discussions of the features of
real-time operating systems can be found in Fugelso and
Michnovicz (1991) and Bunnell and Bunnell (1989).

One of the most important features of a system designed
to take data is fast and consistent response to interrupts
from hardware used to trigger data transfer. Maximum
interrupt response time can be defined as the maximum
time delay before the system will respond to the highest
priority interrupt pending. Most operating systems, includ-
ing standard Unix systems, do not place any upper bound
on interrupt response time. In Unix, this is because most
kernel service routines must run to completion once
started, and have no well-defined maximum execution
time. The LynxOS kernel is completely preemptable at any
time; hence a maximum interrupt response time to the
highest-priority interrupts can be defined. Of course, there
are still some limits to the responsiveness of the machine: if
there are too many interrupts of the highest priority, prob-
lems will occur. Nevertheless, we find LynxOS interrupt
responses more than adequate. On our 80486 tracking and
data-acquisition computer, we have reliably run data ac-
quisition routines with intervals less than 80 ¡is between
interrupts, while simultaneously running the tracking sys-
tem, and compiling code. While low-priority user tasks run
noticeably more slowly when the machine is under such a
load, no cycles of data acquisition or tracking are lost.

Three logical levels of functionality appear in our code.
At the lowest level, device drivers respond to interrupts
coming from the hardware. Since the data are fleeting, the
device driver must respond very quickly. Since other crit-
ical processes may be blocked while interrupts are being
serviced, our interrupt drivers do the minimum possible
work and then exit.

At a higher level, important data handling and storage
tasks are handled by high-priority tasks running in back-

ground. Specific tasks (discussed in the next section) drive
the telescope and control instruments.

At the highest level, user tasks set telescope and instru-
ment control structures, while gathering and analyzing
data. Since these tasks are not as time critical as control
tasks, they run at the lowest priority.

Once the hardware has been serviced by an interrupt
routine, lower-priority resident user processes handle the
data. Since this is often conveniently handled by several
closely communicating tasks running at various priorities,
many operating systems are capable of running several
threads of execution within one traditional program. Each
thread can be regarded as a complete running program,
separately scheduled by the kernel, except that several
threads can share the single address space of what would
be a single traditional process. Since all the threads share
the same address space, communication and synchroniza-
tion between the threads is more easily handled than if
each thread were a completely separate traditional process.
The same technology which enables user threads has been
added to the LynxOS kernel, allowing the fast interrupt
response times discussed in the last paragraph.

For synchronization between threads and processes,
mutexs (a contraction of mutual exclusion) are imple-
mented in the kernel. Their use can be illustrated by con-
sidering two tasks which, respectively, write and read from
a single memory array. If the writing thread were inter-
rupted by the reading thread in the midst of writing the
array, the reading thread might read a garbled copy of both
new and old data. The mutex is a memory “flag” which
can be claimed by the first process before manipulating the
array, and released upon completion. The second thread
will block (stop executing) when it tries to claim the flag
before reading the array, since only one thread can own the
flag. When the first process finishes and relinquishes the
flag, the second thread in turn claims the flag and reads the
array, certain that no other thread can change the data.
Since this type of control is intimately bound with the
scheduling, mutexs are best implemented in the kernel. In
cases where threads are implemented in “libraries,” as in
some versions of the Sun operating system, scheduling
among threads in different processes is compromised.

Communication between threads in separate tasks can
be accomplished in many cases by shared memory. In some
cases, however, as continuous stream of data must be
transferred, as through a traditional Unix pipe. Unfortu-
nately, standard Unix pipes must be connected to both
producer and consumer when both are started, making it
impossible to change the consuming task. Changing con-
sumers is extremely desirable, for example, when changing
data-acquisition strategies. POSlX.l adds FIFOs or “named
pipes.” These pipes can be created at any time, and are
given a name in the file system. Both producer and con-
sumer open the pipe by name and read and write from it as
if it were a standard file. Therefore the consumer process
can be dynamically attached at run time, and replaced as
needed.

A major shortcoming of traditional Unix systems for
real-time operation is the “fair” algorithm with which they

WIRO TELESCOPE SOFTWARE SYSTEM 619

allocate process or time to process. The algorithm (Bach
1986) guarantees that all tasks, including those of the low-
est priority, will receive a slice of processor time occasion-
ally. In order to achieve this, the kernel will dynamically
lower the priority of even the highest-priority tasks to free
processor time. While this is salutary to tasks running in
the background, a data-acquisition task cannot afford to be
interrupted. The LynxOS scheduler never changes priori-
ties: the highest priority task runs until it is blocked by the
need for a resource, or it puts itself to sleep. Thus the user
is assured that when the tracking code needs to point the
telescope, it will not be preempted by another task, such as
a user asking for a graphic analysis of his data. The draw-
back is that low-priority tasks, such as text editors, may
experience delays. We have found user delays to be accept-
able in all circumstances. An inconvenience is the new
ability to create uninterruptible high-priority rogue pro-
cesses running in an infinite loop, for which there is no
solution but rebooting the machine. In practice we have
found these arise only when debugging new code.

The greatest disadvantage of using a non-MSDOS sys-
tem on the PC platform is that the DOS bios routines and
handlers shipped with many cards will not run inside the
alien Lynx environment. This means that new device driv-
ers need to be written for some devices. We must confess
that writing device drivers is not one of our favorite pas-
times. However, most real-time systems, including
LynxOS, supply sample drivers (including source code)
for most standard devices, including displays, disk drives,
ethemet cards, serial port cards, and so on. Moreover, de-
vice drivers can be dynamically loaded into the system
while it is running. This means new versions of a driver can
be tested without rebuilding the kernel, as is necessary in
most Unix systems.

One difficulty is that the standard PC-AT architecture
does not provide enough slots, or enough hardware inter-
rupts (IRQ’s). This limits the number of data-acquisition
cards that can be conveniently added to the system.

Although we have discussed these features as present in
LynxOS, other systems share them. The C interfaces to
these features are defined in the posix.4 draft, so that we
expect to be able to transport our code to new operating
systems if the need arises.

3.3 The Language

For a real-time system, once the operating system is
chosen, the language is a foregone conclusion. For almost
any version of Unix, C is the language of choice for system
programming. C’s popularity has other advantages. A huge
collection of software is available bundled with most Unix
systems, on internet file servers, and on such services as
CompuServe. Some examples are the standard Unix math
library, the curses screen control routines, graphics pro-
grams such as GNUPLOT, and ephemeris programs such as
AA. Since the source is available, these easily available tools
can be integrated into the telescope software system.

Hardware
ifiSÏfUÜKflt
mmm-

Iñterface Hardware
IEEE 488 Interface

U Y
Data Acuisitinn Hoard
 Ä" ”

Clock I

y tK
IEEE Handler

À
Interrupt Handler

À

inals

 Y I r,Hk
Telescope Control Thread Display Terminals [> ' sTalus DTspTay Threadr’"
Backup Parameters Thread

_ A *■

V
Chopdaemon

Demodulation Thread Strip

Display Thread
TMM:

fr

¡ Shared Memory y ^ ^ y

y UNIX Shell Commands and Scripts ' ^y
Motion Commands - Follow Planets Follow Stars
Control Offsets

Control Parameters of Secondary Control Gain of Data Acquisitin System Take Data Control Demodulation
Shell Scripts which both take data and control positions

Fig. 1—The software architecture of the tracking system. Blocks indicate
independent programs or hardware; lines indicate control or information
transfer.

3.4 The Application Programming Interface: POSlX.l

C differs from some other languages in that early C left
most I/O and control statements completely unspecified.
Even statements to do things as simple as printing to the
screen were left deliberately undefined in order to make the
core language as portable as possible. The ad hoc defini-
tions in the “standard library” were all that was available,
and many run time systems differed in subtle ways. The
several flavors of Unix have introduced several incompat-
ible interfaces.

The ANSI POSIX.1 standard (not to be confused with the
POSIX.4 real-time standard) defines a set of standard inter-
faces. POSlX.l covers such system services as serial lines, file
systems, time and date, task priorities, and interprocess
communication. The standard has become a requirement
for fulfilling many federal government contracts; this
means that most major vendors are shipping POSlX.l com-
pliant systems. Not only will most Unix systems soon have
POSlX.l system calls available, but so will VMS, Windows
NT, and many IBM systems. Most of our system calls are
now POSlX.l calls.

4. THE SOFTWARE

In this section we survey the architecture of the soft-
ware. Figure 1 presents the overall architecture of the
tracking and data-acquisition system. On the left-hand
side, the structures for telescope control are presented. On
the right-hand side, chopped photometry is presented. The

620 SPILLAR ET AL.

logic of real-time operation dictates similar layers for both
systems, which are arranged vertically in the figure.

4.1 The Tracking System

The main tracking routine “Track,” compiles from ap-
proximately 1500 lines of C code. It tracks the telescope,
keeps the dome aligned, displays telescope status on dis-
play terminals, and archives parameters for later use.

The interface to the telescope hardware consists of sev-
eral parallel ports which read the position of the telescope
and dome via encoders, report on status switches and hand
paddles, and send rate commands to the telescope hard-
ware. Because of the huge inertia of the telescope, new
rates need only be commanded at a rate of roughly 10 Hz,
so that the encoders are read at a relatively slow rate. We
use commercial parallel interfaces controlled through an
IEEE 488 interface. The IEEE interface is controlled
through a fast serial port; higher data rates for instrument
control could be supported by a bus card. Currently the
IEEE handler is situated inside the tracking code.

“Track” itself runs three separate threads of execution
once started. The highest-priority thread monitors the en-
coders on the telescope, calculates the desired position, and
commands telescope rates. It puts itself to sleep for roughly
a tenth of a second until the next position check.

A second thread, running at lower priority, runs the
status display screens. These can be commanded to display
on an arbitrary set of terminals when the “Track” routine
is started.

The third thread, running at lower-priority still, records
a snapshot of shared memory to disk every few seconds.
This image is loaded when the system is restarted: thus all
important pointing constants are recovered, even after an
accidental power outage.

The POSIX threads facility makes this separation easy. In
Listing 1, we show a code fragment from the “Track”
routine which starts three threads. (Note that all listings
have been edited, leaving only the few lines of code relevant
to the discussion.) The first set of commands create struc-
tures which hold the attributes of the threads. After setting
their priorities, the threads are launched by specifying the
functions to be performed (trackloop(), do_screens(), and
do_store()) and calling pthread_create. The functions are
normal C functions. After each pthread_create(), the main
program proceeds to the next line while the launched
thread runs independently. When the thread finishes or
dies, it informs the kernel. The command
pthread_join() pauses until the thread referred to by its
first argument has finished running.

Because of the high priority we have assigned it, the
highest-priority task trackloop() will always execute at as-
signed intervals, regardless of other tasks on the system.
The deterministic scheduling of the LynxOS kernel means
no lower priority task can ever preempt it. Some even more
time critical data acquisition tasks are assigned similar or
higher priorities; if they require too many CPU cycles, the
lower-priority display threads will stop running completely
before tracking is affected at all.

Listing 1
Track, the Main Telescope Tracking Program

/* track.c - the main telescope tracking program */ mainO
/* Create thread attributes - handles by which threads are manipulated */ pthread_attr_create(fcthatScreen); pthread_attr_create(fcthatTrack);

pthread_attr_create(fethatStore);
/* Set priorities for the threads*/ pthread_attr_setprio(fethatScreen,SCREENPRIORITY);

pthread_attr_setprio(fethatTrack,TRACKPRIORITY);
/* Launch threads - each command returns immediately, while the named routine runs independently */ pthread_create(&thTrack, thatTrack,trackloop,&totask); pthread_create(&thScreen, thatScreen, do_screens, fttotask); pthread_create(&thStore, thatStore, do_store, fttotask);
/* Wait for the threads to exit before before quitting*/ pthread_join(ftthTrack, stat); pthread_join(fethScreen, stat); pthread_join(fethStore, stat);

/4t************************ Main tracking loop ***************************/

void trackloop(void)
/* Set a timer to restart the thread periodically */

setitimer(ITIMER_REAL,feinterval&oldinterval);
/* The loop itself */

while(tinfo->keep_tracking != TRACK_ST0P) { /* Wait for the timer to tick */
sigwait(mask, &v) ;
do_encoders(); do_times(); do_angles();
do_corrections() do_tracking(); do_rates();

/* read telescope encoders */
/* read and set time variables */ /* Calculate telescope Jingles */
/* Correct for flexure etc. */ /* Calculate object position */ /* calculate desired rates */

gpib_wr(drive_adr, (lpchar) ¿(drives.dome), 5); /* Write instructions to the IEEE488 interface */
> >

In order to make it easy for user supplied code to access
the system, “Track” communicates through shared mem-
ory (see Fig. 1). In Listing 2 we show a fragment of a
program which offsets the telescope. Once a user function
has opened shared memory, manipulating the telescope is
simply a matter of changing variables. As another example,
the code which directs the telescope to follow an object
gets the coordinates from a data file, processes and nutates
them, performs other corrections, and places the topocen-
tric coordinates in shared memory.

Accurate timekeeping is essential when tracking a tele-
scope. The LynxOS system clock ticks every millisecond,
as opposed to the roughly 57-ms period of the standard

Listing 2
User Commands and Manipulating Shared Memory

/* Telescope variables are spelled with capital letters. */ /* They are aliased to variables in the shared memory structure */ /* tinfo defined in wiro.h; e.g. »define OFFSET.HA tinfo->offset_ha */
struct wiro_memory *tinfo;
main(arge, argv)
/♦First, we open shared memory, so we can directly access tracking parameters */ tinfo = (struct wiro_memory *) smem_get("WIR0_MEM0RY",sizeof(*tinfo) ,

SM_READ I SM_WRITE))
if (stremp(argv[0],"zero") ==0) { /* User command: set offsets to zero */ OFFSET.DEC =0.0; OFFSET.HA =0.0; exit(0);
>
if (arge == 2) { sscanf(argvt 1], "’/.If", ¿val); if (strcmp(argv[0],"nn") == 0) { /* User command: move telescope north */ OFFSET.DEC += val; exit(0);
> >

WIRO TELESCOPE SOFTWARE SYSTEM 621

DOS clock. This is accurate enough for most astronomical
purposes, so we use the standard unix clock through sys-
tem calls in the tracking code. Since PC hardware clocks
can drift several seconds over a night, synchronization
with a time source such as WWV is crucial. To accomplish
this, a separate process monitors a hardware clock syn-
chronized to WWV, and in turn synchronizes the PC hard-
ware clock every few seconds.

4.2 Chopped Data Acquisition

Infrared photometry is difficult because the signal from
the object is superimposed on a much larger, variable, sky
background. In order to accurately subtract the sky back-
ground, a chopping secondary mirror switches the beam
between the object and sky several times a second. The flux
from the source is determined by demodulating the result-
ing alternating signal (Grasdalen et al. 1984). Meanwhile,
the telescope is periodically “wobbled” so that the source is
not always in the same beam. Doing all of this requires
coordination between the data-acquisition system, the tele-
scope system, and the chopping secondary controller.

Our software to accomplish this task is presented in the
right half of Fig. 1. The signal from the instrument is
conditioned by a preamplifier and filter which are not
shown in the figure. An inexpensive multifunction board
from Metrabyte digitizes data from the instrument, and
controls the secondary and the mechanical strip chart.
Timing is controlled through a periodic interrupt gener-
ated by timers on the board. The interrupt triggers three
actions by our software interrupt handler. First, the A/D
converter is read and the data are stored in a data buffer for
handling by the chop_daemon. Second, a new position for
the secondary chopping is read from an array and written
to one of the D/A converters. Third, a second value which
was stored by the chop_daemon is transferred to the sec-
ond D/A converter. This is normally a demodulated signal
for the strip chart.

Since we wrote the device driver, we were able to define
the read, write, ioctl, and other system calls in a somewhat
nonstandard way, which nonetheless fits the logic of the
situation better than some more traditional approaches
(see listing 3 for an example of these calls). Like any de-
vice driver, ours performs as few functions as possible very
quickly. In order to prevent the loss of any data, it is
normally run at the highest priority. All heavy calculations
are performed in due time by the background task
chop_daemon.

An important goal was to have a real-time data display
of demodulated data running continuously, even when
data were not being recorded, such as while peaking up on
a source. Therefore data demodulation and display are
handled by a background task named chop_daemon (see
listing 3). chop_daemon is launched at the beginning of an
evening, and in turn launches the device driver. Com-
mands for chop_daemon are placed in shared memory by
user commands. chop_daemon reads and writes data from
the interrupt handler through read and write commands,
which block when data are not yet available. The data are

Listing 3
The Data-Acquisition Daemon

/* chop_daemon.c */ main(arge, argv)
/* Install the dynamically loadable device driver to control the I/O card
*/ install_driver();
/* Open the I/O card for read and write access through the driver just installed
*/ ciofile=open("/dev/cio",0_RDWR);
/* Open a FIFO, or named pipe. This is a data stream which can be opened later by any data acquisition program on the system.
*/ chopFIFO = fopen("/usr/local/wiro/files/chopFIFO", "w");
/* Attach to the data ready semaphore. This is set by

the device driver when data has been stored in the data buffers.
*/

sem.num = sem_get("DATA.READY",0))
/* Configure the data acquisition card: Set the period of the chop cycle, load an array of offsets to define the waveform, and set the number of data channels to be read.

ioctl(ciofile, PERIOD, ftperiod); ioctl(ciofile,WAVEFORM, ftwaveform); ioctKciofile, CHANNELS, &CHOP_CHANNELS) ;
/* The data collection loop */ while (LOOP) { /* We are about to acquire and process data - lock out

reading processes
*/

pthread_mutex_lock(&data_ready_mutex); /* Read data to the array b */ read(ciofile, data, n_points); /* Demodulate the data here - code omitted */ /* Write a value to the strip chart */
write(ciofile, b, 1);

/* A data collection program acquires data by opening the FIFO for
reading, and setting CH0P_FIF0_LENGTH to the number of data desired.

*/ if (CH0P_FIF0_LENGTH > 0) {
fwrite(&STRIP_CHANNEL[0], sizeof(STRIP.CHANNEL[0]), \
CHOP.CHANNELS, chopFIFO); fflush(chopFIFO);
CHOP FIFO.LENGTH— ;

}
/* Unlock the mutex protecting the data structures */ pthread_mutex unlock(&data_ready_mutex);

> /* close the file representing the I/O card and remove its device driver */
close(ciofile); remove_driver();

>

demodulated, for example, by convolving it with a sine
function. The deconvolved signal is immediately written to
the strip chart and screen display, whether data are being
consumed by any other task.

When data are being used by a consumer task, or being
used by a task which implements an observing strategy, the
task places the number of samples it wants in shared mem-
ory and opens a FIFO. chop_daemon opens the FIFO and
writes the desired number of samples to it. Thus, data-
acquisition tasks are dynamically patched into the data
stream as needed. 11

User programs are available to set variables in shared
memory, such as the shape of the demodulating function
and the position of the secondary as a function of time. The
data structures are protected by a mutex when the program
is executing its main loop to prevent control tasks from
changing control variables while data are being processed.

4.3 Controlling Cameras

Infrared cameras (Spillar et al. 1990; LeVan 1990) were
run with the Masscomp system, and are currently being
ported to the LynxOS system. Although many instruments

622 SPILLAR ET AL.

are based on private host computers, we find it advanta-
geous to base instruments on the tracking system. Both
tracking and data-acquisition commands can be executed
from a single terminal, through a single shell script, with-
out needing to communicate between machines. A single
host can easily produce a single log of all system events,
and has easy access to the telescope positioning system.

5. THE FORMULAS USED IN TELESCOPE
TRACKING

Most of the formulas needed to track a telescope are
available in the literature, see, for example, the Astronom-
ical Almanac (1992), Montenbruck (1989), Meuus
(1982), and The Explanatory Supplement to the American
Ephemeris and Nautical Almanac (ed. Seidelman, 1992).
An overview of the process of driving telescopes may be
found in Trueblood and Genet (1985). Therefore, we only
briefly refer to the equations, stating the approximations
we have adopted, and list their order of application. We
discuss our pointing corrections in greater detail.

5.1 Applying the Formulas

When a new object is acquired, its topocentric position
is calculated by a user program run from the shell. The
topocentric position is the position of the object on the
celestial sphere as observed from the surface of the Earth in
the absence of an atmosphere. These coordinates are ob-
tained by applying steps 1 through 4 below. The coordi-
nates, including the time of calculation and any motion
against the sky (in the case of planets) are stored in shared
memory, and the program terminates.

Every 10th of a second, the main tracking loop wakes
up. It calculates the LST and the encoders for the telescope
position are read. Step 5 is applied to arrive at the topo-
centric coordinates at which the telescope is pointed. The
desired coordinates are calculated from the data stored in
shared memory by the user program, taking into account
elapsed time since the object was acquired. Step 6 calcu-
lates the desired telescope rates, which are sent to the tele-
scope, and the thread puts itself to sleep until the next
cycle.

The steps are:
(1) Calculate the local sidereal time and Julian date.

We use the Unix system time through a standard system
call to calculate the LST and JD. We neglect the correction
between TDB and TDT, which is under 2 ms, and the
difference between GMST and GAST, which may be up to
a second, but changes slowly. Such errors will be absorbed
in the pointing correction constants for the telescope (see
below). An excellent overview of astronomical time may
be found in the Explanatory Supplement to the American
Ephemeris and Nautical Almanac.

(2) Precess the coordinates. Although formulas for pre-
cession are given in many references, the conversion from
the B1950 system to the J2000 system is not often covered.
Smith et al. (1989) and Yallop et al. (1989) discuss the
theory and practice of converting between these systems, as
well as precession.

Table 1
The Terms in the Pointing Model

Term Name Value
(arcseconds)

Description

66.66 Refraction term, Hour Angle
39.81 Refraction term, Declination

120.72 Flexure term, Hour Angle
-2.31 Flexure term, Declination
9.68 Misalignment of the Polar Axis in Azimuth
9.68 Misalignment of the Polar Axis in Azimuth

143.15 Misalignment of the Polar Axis in Elevation
133.14 Misalignment of the Polar Axis in Elevation
-17.21 Non-perpendicularity of the Axes
-48.89 empirical term 1

-5.11 empirical term 2

(~<S ^Refraction

C6fu

C6M.Az.
Cff Rl

Cei
Ce2

(3) Calculate the constants of nutation, and apply the
correction. These are derived in the standard references
listed above.

(4) Compensate for annual aberration. We are fond of
the procedures presented in Trueblood and Genet (1985)
and Smart (1979).

(5) Apply the pointing corrections to the measured tele-
scope position. These are discussed in the next section.

(6) Calculate the desired telescope velocity. After all of
the above corrections, we have calculated where the tele-
scope is pointing, and where it should be pointing. The
WIRO telescope servo system works by reading position,
comparing it to a desired position, and commanding a new
telescope velocity. If T is the true coordinate value and D
is the desired value, the commanded rate R is given by

R=A(D-T)/ABS(D-T) + B. (1)

A and B are system-dependent constants. The same algo-
rithm is applied in both right ascension and declination. At
this point the dc motors which drive the telescope are com-
manded to turn at the desired rate, and the thread sleeps
until the next cycle.

5.2 The Pointing Model

Our pointing model includes terms to account for flex-
ure, refraction, misalignment of the polar axes, and the fact
that the right ascension and declination axes are not ex-
actly perpendicular. (The WIRO 2.3-m telescope uses an
equatorial mount.) To determine the coefficient of each
term, observations of approximately 100 stars are obtained
during a few hours one night. The errors in position are fit
using the pointing model, and used for future observations.
In this section we discuss the terms in our physical model.
We give the current coefficients in Table 1.

Note that whereas right ascension (a) increases to the
east on the sky, the hour angle (h) increases to the west.
Declination is denoted <5, altitude is denoted ALT, and the
latitude of the observatory LAT.

5.2.1 Refraction

First, consider refraction. Refraction moves an image of
a star higher in the sky. For typical pressure and temper-
ature conditions, deflection is 50" at an altitude of 45° (see,
for example, Explanatory Supplement to the American

WIRO TELESCOPE SOFTWARE SYSTEM 623

Ephemeris and Nautical Almanac, pp. 140-145). In fact,
we allow for differing constants in right ascension and dec-
lination, which are fit empirically (we would like to in-
clude a temperature dependent term as well). Elementary
calculations show an image of the star moves by

A/z = CRcfraction (sin h cos LAT)/sin ALT cos <5,

A<5 = C$
(sin LAT—sin ALT sin <5)

cos Ô sin ALT

(2)

5.2.2 Tube Flexure

5.2.6 User Definable Terms

Four other terms with user definable parameters are
included. Collimation errors,

A h=Ka
ci

A S=g,
(8)

account for the fact that the detector may not be centered
in the focal plane. Encoder errors,

Ah=K“/cos <5,
(9)

For a rotationally symmetric telescope tube, flexure
would also displace an image purely in altitude. However,
because the tube is not symmetric, the actual equations use
different coefficients for H and for 8. The sign of the alti-
tude correction must be determined empirically, since it is
not obvious whether the end of the tube or the mirror cell
will flex more, displacing the image up or down. The cor-
rections are given by

A/z = C^exure sin h cos LAT/cos <5,
(3)

A<5= — Cplexure(sin LAT—sin ALT sin <5)/cos 8.

5.2.3 Misalignment of the Polar Axis

Next, we correct for slight misalignments of the polar
axis of the telescope. First, there are two terms due to the
misalignment of the telescope in azimuth

Ah = — Cm ai cos h sin <5/cos <5, MM. (4)

^=Cmm. sin h.

Next, there are two terms due to the misalignment of the
polar axis in elevation

Ah = Cm.el sin h sin <5/cos <5,

A8 = Cm el cos h.

5.2.4 Skewness of the Axes

There is a term due to the fact that the two axes are not
exactly perpendicular to each other

A/z= —C^psin <5/cos 8. (6)

We also include two empirical terms whose physical origin
is uncertain

A h = — Ce\ cos h — Cei cos 4/z. (7)

Both terms might be due to irregularities in the gear which
drives the telescope in right ascension.

5.2.5 Worm Gear Errors

Since there are small errors in our worm gears, we in-
clude an empirical correction Ah depending only on the
current rotation angle of the worm gear that drives the
spur gear which rotates the telescope in HA. The values
are obtained from a look-up table in the software.

account for small errors in the time base and the zero
points of the encoders. Typically, these four constants will
be set the first night of a run and remain relatively un-
changed until a new instrument is mounted. Small adjust-
ments to these parameters may be made to optimize the
pointing over a small section of the sky.

6. EFFORT REQUIRED FOR PORTING

In order to judge how well we have succeeded in creat-
ing a portable system, consider the latest move of the soft-
ware from the Masscomp 5500 to the 486/33. The main
tracking routines were moved to the 486 in a month during
the fall of 1991 by one of us working roughly 2/3 time. At
the same time, most of the current posix system calls were
installed. In the next two months, the chopped data-
acquisition system was implemented, the greatest effort go-
ing toward writing new device drivers for new data-
acquisition boards and additional serial ports. Over the
next few months, 2-6 h a week were spent fixing bugs,
writing documentation, and installing new instruments. At
the beginning of the project, the programmer was familiar
with C and Unix at a user level, but fairly unfamiliar with
most system calls, and totally unfamiliar with writing de-
vice drivers.

Moving to new hardware should be easier. First, many
unportable parts of the first version of the code written on
the Masscomp, which was not POSIX compliant, have been
rewritten. Second, perhaps 1/3 of the effort was devoted to
learning to write and writing device drivers; however driv-
ers for many usable devices are now available directly from
Lynx. Therefore, we expect that most of the system can be
moved to a POSIX compliant system with suitable device
drivers in two months.

7. FUTURE DIRECTIONS '

The WIRO software will never be complete; new instru-
ments and capabilities will continue to be added far into
the future. Two improvements are especially important.

First, we wish to improve the maintainability of the
current code. The major difficulty in adding new features
or repairing the existing code is understanding which
pieces of existing code will be affected, and how to interact
with that code. These problems are addressed by the tech-
nique of object-oriented programming (OOP). The goals
of object-oriented design are to improve the portability,
maintainability, reusability, comprehensibility, and exten-

624 SPILLAR ET AL.

sibility of software. This is accomplished by breaking the
code into “objects” which encapsulate the software’s data
and functions, isolating changes in different modules from
each other. New object-oriented languages, while not
strictly necessary for object-oriented programming, en-
courage and abet the isolation of factors within the objects
(Cox and Novobilski 1991).

The logical object oriented route from C is to C + + or
Objective-C. Among the attractive features of C++ are
the availability of good freely available compilers such as
the GNU C+ + compiler from the Free Software Foun-
dation, which can compile the existing C code directly, and
the fact that its current popularity in the programming
community is approaching that of C. We expect we will
slowly migrate the current system software to C + +.

A second difficulty is the nonintuitive nature of the Unix
shell. It is too easy for an occasional user to forget the
exact syntax for a command. Graphical user interfaces
have gained prominence because they are easy to compre-
hend, remember, and manipulate. Our principle consider-
ations in choosing a GUI are the ability to work over a
network (for remote observing), portability, and ease of
use. X windows was designed for network operation, and
has been ported to many operating systems. Although the
raw programmer’s interface is complex, “widget sets” are
available which encapsulate much of the difficulty. We are
currently installing an X-windows interface to the system.

8. CONCLUSIONS

In the past, writing telescope systems required the use of
arcane real-time operating systems. In order to address the
hardware and run quickly enough, much of the code was
often written in assembly language. The results were likely
to be tied to a single machine’s architecture. Adding new
instruments often meant adding a new computer to the
control room. The code was not portable, and was difficult
to maintain and debug. Telescope systems were rarely re-
used; they were rewritten.

The development of real-time Unix kernels and the pro-
mulgation of the POSIX.4 real-time standard provide stable,
machine-independent standards on which to build tele-
scope systems. The arrival of very fast IBM compatible
systems provide an inexpensive hardware platform power-
ful enough to track a telescope and take data at the same
time, even when programmed in a high level language. In

the near future, object-oriented programming techniques
will make it easier to add new software modules without
needing to extensively change existing code.

We have developed a portable telescope control system
built on these standards. The tracking module has already
proven itself to be easily portable between machines. In the
coming years, as new hardware systems replace current
ones, we will be able to spend our time improving the
system and adding features, rather than rewriting the ex-
isting system.

REFERENCES

Astronomical Almanac, 1984 (Washington, U.S. Government
Printing Office, and London, Her Majesty’s Stationary Office)

Bach, M. J. 1986, The Design of the Unix Operating System
(Englewood Cliffs, NJ, Prentice-Hall)

Bunnell, M., and Bunnell, M. 1989, Dr. Dobbs Journal, 152, 36
Cox, B. J., and Novobilski, A. J. 1991, Object-Oriented

Programming—An Evolutionary Approach (Reading,
Addison-Wesley)

Fugelso, D., and Michnovicz, M. 1991, The C Users Journal,
May, 48

Grasdalen, G. L., Hackwell, J. A., and Gehrz, R. D. 1984, PASP,
96, 1017

LeVan, P. D. 1990, PASP, 102, 190
Meuss, J. 1982, Astronomical Formulas for Calculators (Rich-

mond, Willmann-Bell)
Montenbruck, O. 1989, Practical Ephemeris Calculations (New

York, Springer)
Seidelmann, P. K., ed. 1992, Explanatory Supplement to the

American Ephemeris and Nautical Almanac (Washington,
U.S. Government Printing Office, and London, Her Majesty’s
Stationary Office)

Singh, I. M., and Bunnell, M. 1990, Seventh IEEE Workshop on
Real-time Operating Systems and Software

Smart, W. M. 1979, Textbook on Spherical Astronomy (Cam-
bridge, Cambridge University Press)

Smith, C. A., Kaplan, G. H., Hughes, J. A., Seidelmann, P. K.,
Yallop, B. D., and Hohenkerk, C. Y. 1989, AJ, 97, 265

Spillar, E., Johnson, P. E., Wenz, M., and Warren, D. 1990, in
Instrumentation in Astronomy VII, Soc. Photo-Opt. Instrum.
Eng., 1233, 63

Trueblood, M., and Genet, R. 1985, Microcomputer Control of
Telescopes (Richmond, Willmann-Bell)

Yallop, B. D., Hohenkerk, C. Y., Smith, C. A., Kaplan, G. H.,
Hughes, J. A., and Seidelmann, P. K. 1989, AJ, 97, 274

