Fruitful returns from cadenced RV observations with SDSS

Carles Badenes University of Pittsburgh / PITT PACC

SDSS-V + ZTF OCIW, May 3-4 2019

- Goal: find as many short-period binaries as possible, in order to
 - Constrain multiplicity statistics in the field.
 - Identify interesting systems for follow-up.
- Radial Velocities from SDSS-IV and SDSS-V: cadences, errors, and challenges.
- Main results so far: multiplicity statistics for binary WDs and field stars, discovery of a detached BH binary.
- Synergies with other data sets: Gaia, ASASS-SN, ZTF, ...

• **Multiplicity Statistics** only known at all P in the MS and in the Solar Neighborhood [Duchene & Kraus 13, Moe & DiStefano 17].

• Studies in stellar clusters (small samples) [Carney+ 03; Geller+ 08; Matijevic+ 11; Sana+ 12; Merle+ 17], but **no panoramic view of the interplay between multiplicity, stellar evolution, and stellar properties in the field.** Open questions:

- Are our ideas about RLOF basically correct?
- Stellar multiplicity vs. stellar properties and environment: Mass, age, metallicity, disk/halo... ⇔ SF theory [Machida+ 09, Bate 14], dynamics [Kroupa & Petr-Gotzens 11].
- Rate of CE events in the MW? Rate of stellar mergers?
 Formation rate of short P systems? Can we help constrain BPS models for SNe, GW sources, etc.?

What are we looking for?

Carles Badenes SDSSV+ZTF

• Stellar Multiplicity Statistics (well measured for Sun-like MS stars, D<25 pc) [Raghavan+ 10, Duchene & Kraus 13, Moe & DiStefano 17 (MD17)]:

- Multiplicity frequency (f_m): dominated by M₁.
- Period (P): ~lognormal.
- Mass Ratio (q): ~flat, F_{twin}.
- Eccentricity (e): tidal circularization, ~uniform.
- These statistics are not independent of each other!!!! [Sana+ 12, MD17].

What are we looking for?

What are we looking for?

Multiplicity and Stellar Evolution

• Critical P for RLOF (q=1):

$P_{crit} = 0.76(R^3/(GM))^{1/2}$

• Core H exhaustion $\Rightarrow R\uparrow (RGB)$ $\Rightarrow P_{crit}\uparrow . \log P_{crit} : -0.35 (MS) \Rightarrow 2.9$ (TRGB) $\Rightarrow 3.4$ (TAGB).

Case A (MS), B (RGB) and C (AGB) mass transfer. RGB (Case B) ⇒ Unstable [Pavloskii & Ivanova 15] ⇒ Common Envelope ⇒ merger or short P system.

• P_{crit} translates to maximum peakto-peak RV: $\Delta RV_{PP} = 2(\pi GM/(2P))^{1/3}$

Multiplicity and Stellar Evolution

RVs in Large Spectroscopic Surveys

Carles Badenes SDSSV+ZTF

- **RVs**: most efficient probe of multiplicity for log P<4 ⇒ spectra.
- Large spectroscopic surveys: SDSS/SEGUE [Yanni+ 09], SDSS/APOGEE [Majewski+ 17], RAVE [Steinmetz+ 06], WEAVE [Dalton+ 14], MSE [Szeto+ 18].
- Well characterized
 (pipelines) ⇒ stellar
 parameters.
- Caveat: Orbital fitting requires ~10 RVs, good phase sampling ⇒ not for most targets.

We don't need to fit the orbits to answer many of the open questions about stellar multiplicity!

RVs in Large Spectroscopic Surveys

Carles Badenes SDSSV+ZTF

• Few epochs (4 or less) $\Rightarrow \Delta RV_{max} =$ Max(RV_i) - Min(RV_i)

• RV errors \Rightarrow core of ΔRV_{max} distribution. Binaries \Rightarrow tail.

 Shape and height of tail ⇒ multiplicity statistics.

 Searches for RV variability ⇒ clear transition between core and tail.

Pre-merger WDs ⇒ P~hrs, RV~500 km/s, detectable at SDSS resolution (70 km/s/pixel) [Badenes+ 09, Mullally+ 09].

• ~4000 WDs in DR7 \Rightarrow ΔRV_{max} distribution $\Rightarrow f_{bin}$, $f(P) \Rightarrow$ WD merger rate.

Complement w/ SPY survey (fewer WDs, higher R) [Maoz & Hallakoun 17].

• Enough WD mergers to explain SN Ia [Badenes & Maoz 12, Maoz+ 18]. LISA foreground!

WD binary 'caught' by SDSS [Badenes+ 09]

Carles Badenes SDSSV+ZTF

WD Binaries

WD Binaries

Carles Badenes SDSSV+ZTF

Galactic evolution: Multi-epoch IR spectra R~20,000, ~10⁵ stars, high S/N [Majewski+ 17].

• MS, RG and RC stars, M~1 M_{Sun}, most of MW disk [Zasowski+ 13].

 ASPCAP [Perez+ 16] ⇒ T_{eff}, log(g),
 [Fe/H], RVs. RC catalog [Bovy+ 14].
 The Cannon [Ness+ 15,16].

λ (nm)

APOGEE

Carles Badenes SDSSV+ZTF

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

Carles Badenes SDSSV+ZTF

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

Few RVs/star
 (median is 3) ⇒
 no orbits! [but
 Troup+ 16]

• Figure of merit: ΔRV_{max} . Multiple systems \Rightarrow $\Delta RV_{max} > 10$ km/s (> 2,000).

 Clear trend of ΔRV_{max} with log(g): stellar multiplicity meets stellar evolution.

APOGEE: Models for ΔRV_{max}

Carles Badenes SDSSV+ZTF

Fraction of systems with ΔRV_{max}
 > 10 km/s.

• MC models work well in the RGB, but not at high log(g).

Support for lognormal P dist, truncated at P_{crit}.

• Best-fit MC model in the RGB has f_m=0.35. Caveats: log P < 3.3, simple models, WD+RGB [MD 17].

APOGEE: ΔRV_{max} vs. [Fe/H]

Carles Badenes NYU 4/16/19

• APOGEE view of MW disk \Rightarrow [Fe/H].

ΔRV_{max} distribution
 in [Fe/H] terciles: low
 ~ -0.5; high ~0.0.

ΔRV_{max} in low
 [Fe/H] clearly above
 high [Fe/H] in all
 non-RC samples.

Consistent with f_m
 a factor 2-3 higher
 at low [Fe/H] for
 close (log P < 3.3)
 binaries.

APOGEE: ΔRV_{max} vs. [Fe/H]

• Previous RV surveys did not find this effect!!!!

Moe, Kratter & CB
18: explained by uncorrected biases.

• Bias-corrected meta-analysis: consistent picture: f_m increase by a factor 6 across [Fe/H] range.

Moe, Kratter & CB 18

Carles Badenes SDSSV+ZTF

• Use APOGEE RVs to select systems with high mass function.

- TAT-1: photometric variable, P=83 days. Starspots. K = 45 km/s SB1.
- GAIA parallax: D>2.5 kpc, L>200 $L_{sun} \Rightarrow M_1 > 2 M_{sun} \Rightarrow M_2 > 2.5 M_{sun}$.
- Probably a BH!

Thompson+ 19

Carles Badenes SDSSV+ZTF

• Use APOGEE RVs to select systems with high mass function.

- TAT-1: photometric variable, P=83 days. Starspots. K = 45 km/s SB1.
- GAIA parallax: D>2.5 kpc, L>200 $L_{sun} \Rightarrow M_1 > 2 M_{sun} \Rightarrow M_2 > 2.5 M_{sun}$.
- Probably a BH!

Thompson+ 19

• Use APOGEE RVs to select systems with high mass function.

• TAT-1: photometric variable, P=83 days. Starspots. K = 45 km/s SB1.

• GAIA parallax: D>2.5 kpc, L>200 $L_{sun} \Rightarrow M_1 > 2 M_{sun} \Rightarrow M_2 > 2.5 M_{sun}$.

• Probably a BH!

Carles Badenes SDSSV+ZTF

• Use APOGEE RVs to select systems with high mass function.

- TAT-1: photometric variable, P=83 days. Starspots. K = 45 km/s SB1.
- GAIA parallax: D>2.5 kpc, L>200 $L_{sun} \Rightarrow M_1 > 2 M_{sun} \Rightarrow M_2 > 2.5 M_{sun}$.
- Probably a BH!

Thompson+ 19

$2 M_{Sun} \Rightarrow$

• Use APOGEE RVs to select systems with high mass function.

• TAT-1: photometric variable, P=83 days. Starspots. K = 45 km/s SB1.

• GAIA parallax: D>2.5 kpc, L>200 $L_{sun} \Rightarrow M_1 > 2 M_{sun} \Rightarrow M_2 > 2.5 M_{sun}$.

Probably a BH!

Implications

Case B mass transfer rate ⇒
 CE events, stellar mergers
 (LRNe), birth rate of short P
 systems? [Tylenda+ 13,
 Kochanek+ 14].

- More close binaries at low
 [Fe/H] ⇔ SF theory [Machida+
 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?
- Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17, Guo+ 17].

V1309 Sco [Tylenda+ 13] 10 11 12 (magnitude) 13 14 **V838 Mon** 15 16 17 2000 2500 3000 4000 4500 5000 3500 5500 JD 2450000+

Implications

Carles Badenes SDSSV+ZTF

 Case B mass transfer rate ⇒ CE events, stellar mergers (LRNe), birth rate of short P systems? [Tylenda+ 13, Kochanek+ 14].

More close binaries at low
[Fe/H] ⇔ SF theory [Machida+
09, Bate 14].

• What about BPS models in different environments, redshift evolution? [de Mink & Belczynski 15]?

Planet host metallicities ⇒
 habitability [Johnson 10, Howard+
 12, Thompson+ 17, Guo+ 17].

Machida+ 09

Summary

- APOGEE: high resolution, multi-epoch IR spectra of ~100,000 stars (Galactic archeology).
- Unique view of stellar multiplicity in the field, from the MS to the RC. Few-epoch spectra: no orbits $\Rightarrow \Delta RV_{max}$.
- Attrition of high ΔRV_{max} (short P) systems as stars climb the RGB, consistent with lognormal P dist., truncated at P_{crit} \Rightarrow Case B mass transfer. ΔRV_{max} in RC stars ~ TRGB.
- Clear trend with [Fe/H]: lower [Fe/H] stars have higher ΔRV_{max} distributions \Rightarrow higher f_m at lower [Fe/H].
- Discovery of the first stellar mass non-accretting BH.
- Future work: Hierarchical Bayesian models, multiplicity statistics w/ age & Galactic location, GAIA, BPS, follow-up of interesting systems.

Hierarchical Bayesian Models

GAIA

Additional Plots

