Fruitful returns from cadenced RV observations with SDSS

Carles Badenes University of Pittsburgh / PITT PACC

SDSS-V + ZTF
OCIW, May 3-4 2019

Framework

- Goal: find as many short-period binaries as possible, in order to
- Constrain multiplicity statistics in the field.
- Identify interesting systems for follow-up.
- Radial Velocities from SDSS-IV and SDSS-V: cadences, errors, and challenges.
- Main results so far: multiplicity statistics for binary WDs and field stars, discovery of a detached BH binary.
- Synergies with other data sets: Gaia, ASASS-SN, ZTF, ...

Open Questions

- Multiplicity Statistics only known at all P in the MS and in the Solar Neighborhood [Duchene \& Kraus 13, Moe \& DiStefano 17].
- Studies in stellar clusters (small samples) [Carney+ 03; Geller+ 08; Matijevic+ 11; Sana+ 12; Merle+ 17], but no panoramic view of the interplay between multiplicity, stellar evolution, and stellar properties in the field. Open questions:
- Are our ideas about RLOF basically correct?
- Stellar multiplicity vs. stellar properties and environment: Mass, age, metallicity, disk/halo... \Leftrightarrow SF theory [Machida+ 09, Bate 14], dynamics [Kroupa \& Petr-Gotzens 11].
- Rate of CE events in the MW? Rate of stellar mergers? Formation rate of short P systems? Can we help constrain BPS models for SNe, GW sources, etc.?

What are we looking for?

- Stellar Multiplicity Statistics (well measured for Sun-like MS stars, $\mathrm{D}<25 \mathrm{pc}$) [Raghavan+ 10, Duchene \& Kraus 13, Moe \& DiStefano 17 (MD17)]:
- Multiplicity frequency $\left(\mathrm{f}_{\mathrm{m}}\right)$: dominated by M_{1}.
- Period (P): ~lognormal.
- Mass Ratio (q): ~flat, $F_{\text {twin }}$.
- Eccentricity (e): tidal circularization, ~uniform.
- These statistics are not independent of each other!!!!! [Sana+ 12, MD17].

$$
f_{m}=\int f(P) d P
$$

$$
\text { MD } 17
$$

Primary Mass $M_{1}\left(M_{\odot}\right)$

What are we looking for?

What are we looking for?

Carles Badenes SDSSV+ZTF

$f_{m}=\int f(P) d P$

Multiplicity and Stellar Evolution

- Critical P for RLOF (q=1):

$$
P_{\text {crit }}=0.76\left(\mathrm{R}^{3} /(\mathrm{GM})\right)^{1 / 2}
$$

- Core H exhaustion $\Rightarrow \mathrm{R} \uparrow$ (RGB)
$\Rightarrow P_{\text {crit }} \uparrow \cdot \log P_{\text {crit }}:-0.35(M S) \Rightarrow 2.9$
$(T R G B) \Rightarrow 3.4$ (TAGB).
- Case A (MS), B (RGB) and C (AGB) mass transfer. RGB (Case B) \Rightarrow Unstable [Pavloskii \& Ivanova 15] \Rightarrow Common Envelope \Rightarrow merger or short P system.
- $\mathrm{P}_{\text {crit }}$ translates to maximum peak-to-peak RV: $\Delta R V_{P P}=2(\pi G M /(2 P))^{1 / 3}$

Multiplicity and Stellar Evolution

Carles Badenes SDSSV+ZTF

- Critical P for RLOF (q=1):

$$
P_{\text {crit }}=0.76\left(\mathrm{R}^{3} /(\mathrm{GM})\right)^{1 / 2}
$$

- Core H exhaustion $\Rightarrow \mathrm{R} \uparrow(\mathrm{RGB})^{\text {g }}$ $\Rightarrow P_{\text {crit }} \uparrow \cdot \log P_{\text {crit }}:-0.35(M S) \Rightarrow 2.9$ $(T R G B) \Rightarrow 3.4$ (TAGB).
- Case A (MS), B (RGB) and C (AGB) mass transfer. RGB (Case B) \Rightarrow Unstable [Pavloskii \& Ivanova 15] \Rightarrow Common Envelope \Rightarrow merger or short P system.
- $\mathrm{P}_{\text {crit }}$ translates to maximum peak-to-peak $R V: \Delta R V_{P P}=2(\pi G M /(2 P))^{1 / 3}$

RVs in Large Spectroscopic Surveys

- RVs: most efficient probe of multiplicity for $\log \mathrm{P}<4 \Rightarrow$ spectra.
- Large spectroscopic surveys: SDSS/SEGUE [Yanni+ 09], SDSS/APOGEE [Majewski+ 17], RAVE [Steinmetz+ 06], WEAVE [Dalton+ 14], MSE [Szeto+ 18].
- Well characterized
(pipelines) \Rightarrow stellar parameters.
- Caveat: Orbital fitting requires ~10 RVs, good phase sampling \Rightarrow not for most targets.

We don't need to fit the orbits to answer many of the open questions about stellar multiplicity!

RVs in Large Spectroscopic Surveys

Carles Badenes SDSSV+ZTF

- Few epochs (4 or less) $\Rightarrow \Delta R V_{\text {max }}=$ $\operatorname{Max}\left(R V_{i}\right)-\operatorname{Min}\left(R V_{i}\right)$
- RV errors \Rightarrow core of $\Delta R V_{\text {max }}$ distribution. Binaries \Rightarrow tail.
[Maoz, CB \& Bickerton 12 - WD binaries]

- Shape and height of tail \Rightarrow multiplicity statistics.
- Searches for RV variability \Rightarrow clear transition between core and tail.

WD Binaries

Carles Badenes SDSSV+ZTF

- Pre-merger WDs \Rightarrow P~hrs, RV~500 km/s, detectable at SDSS resolution ($70 \mathrm{~km} / \mathrm{s} /$ pixel) [Badenes+ 09, Mullally+ 09].
- ~4000 WDs in DR7 \Rightarrow $\Delta R V_{\max }$ distribution $\Rightarrow \mathrm{f}_{\text {bin }}$, $f(P) \Rightarrow$ WD merger rate.
- Complement w/ SPY survey (fewer WDs, higher R) [Maoz \& Hallakoun 17].
- Enough WD mergers to

WD binary 'caught' by SDSS [Badenes+ 09]
 explain SN la [Badenes \& Maoz 12, Maoz+ 18]. LISA foreground!

WD Binaries

Carles Badenes SDSSV+ZTF
[Badenes \& Maoz 12]

APOGEE

- Galactic evolution: Multi-epoch IR spectra R~20,000, $\sim 10^{5}$ stars, high S / N [Majewski+ 17].
- MS, RG and RC stars, $M \sim 1 \mathrm{M}_{\text {sun }}$, most of MW disk [Zasowski+ 13].
- ASPCAP [Perez+ $16] \Rightarrow T_{\text {eff }} \log (\mathrm{g})$, [Fe/H], RVs. RC catalog [Bovy+ 14]. The Cannon [Ness+

Teff $=4467 \quad \operatorname{logg}=2.5[\mathrm{M} / \mathrm{H}]=+0.15[\mathrm{C} / \mathrm{M}]=+0.01[\mathrm{~N} / \mathrm{M}]=+0.03[\alpha / \mathrm{M}]=+0.06 \quad \xi=1.10$

APOGEE: $\Delta R V_{\max }$ vs. $\log (g)$

- Few RVs/star (median is 3) \Rightarrow no orbits! [but Troup+ 16]
- Figure of merit: $\Delta \mathrm{RV}_{\text {max }}$. Multiple systems \Rightarrow
$\Delta R V_{\text {max }}>10 \mathrm{~km} / \mathrm{s}$ (> 2,000).
- Clear trend of $\Delta R V_{\text {max }}$ with $\log (\mathrm{g}):$ stellar multiplicity meets stellar evolution.

APOGEE: $\Delta R V_{\max }$ vs. $\log (g)$

Carles Badenes SDSSV+ZTF

- Few RVs/star (median is 3) \Rightarrow no orbits! [but Troup+ 16]
- Figure of merit: $\Delta R V_{\text {max }}$. Multiple systems \Rightarrow $\Delta R V_{\text {max }}>10 \mathrm{~km} / \mathrm{s}$ (> 2,000).
- Clear trend of $\Delta R V_{\text {max }}$ with $\log (\mathrm{g}):$ stellar multiplicity meets stellar evolution.

APOGEE: $\Delta R V_{\max }$ vs. $\log (g)$

- Few RVs/star (median is 3) \Rightarrow no orbits! [but Troup+ 16]
- Figure of merit: $\Delta R V_{\text {max }}$. Multiple systems \Rightarrow
$\Delta R V_{\text {max }}>10 \mathrm{~km} / \mathrm{s}$ (> 2,000).
- Clear trend of $\Delta R V_{\text {max }}$ with $\log (\mathrm{g}):$ stellar multiplicity meets stellar evolution.

MS \& subgiants: higher $\Delta R V_{\text {max }}$

TRGB \& RC: similar $\Delta R V_{\max }$ distributions

APOGEE: Models for $\triangle R V$

Carles Badenes SDSSV+ZTF

APOGEE: $\Delta R V_{\max }$ vs. $\log (\mathrm{g})$

- Fraction of systems with $\Delta R V_{\text {max }}$ $>10 \mathrm{~km} / \mathrm{s}$.
- MC models work well in the RGB, but not at high $\log (\mathrm{g})$.
- Support for lognormal P dist, truncated at $P_{\text {crit }}$.
- Best-fit MC model in the RGB has $f_{m}=0.35$. Caveats: $\log P<3.3$, simple models, WD+RGB [MD 17].

APOGEE: $\Delta R V_{\max }$ vs. [Fe/H]

- APOGEE view of MW disk $\Rightarrow[\mathrm{Fe} / \mathrm{H}]$.
- $\Delta R V_{\text {max }}$ distribution in [Fe/H] terciles: low
~-0.5; high ~ 0.0.
- $\Delta R V_{\text {max }}$ in low [Fe/H] clearly above high [Fe/H] in all non-RC samples.
- Consistent with \mathbf{f}_{m} a factor 2-3 higher at low [Fe/H] for close ($\log \mathrm{P}$ < 3.3) binaries.

APOGEE: $\Delta R V_{\max }$ vs. [Fe/H]

Carles Badenes SDSSV+ZTF

- Previous RV surveys did not find this effect!!!!
- Moe, Kratter \& CB 18: explained by uncorrected biases.
- Bias-corrected meta-analysis: consistent picture: f_{m} increase by a factor 6 across [Fe / H] range.

Moe, Kratter \& CB 18

Discovery of TAT-1

- Use APOGEE RVs to select systems with high mass function.
- TAT-1: photometric variable, $\mathrm{P}=83$ days. Starspots. K = 45 km/s SB1.
- GAIA parallax: D>2.5 kpc, L>200 $\mathrm{L}_{\text {Sun }} \Rightarrow \mathrm{M}_{1}>2 \mathrm{M}_{\text {sun }} \Rightarrow$ $\mathrm{M}_{2}>2.5 \mathrm{M}_{\text {sun }}$.
- Probably a BH!

Discovery of TAT-1

Carles Badenes SDSSV+ZTF

- Use APOGEE RVs to select systems with high mass function.
- TAT-1: photometric variable, $\mathrm{P}=83$ days. Starspots. K = 45 km/s SB1.
- GAIA parallax:

D>2.5 kpc, L>200
$\mathrm{L}_{\text {Sun }} \Rightarrow \mathrm{M}_{1}>2 \mathrm{M}_{\text {sun }} \Rightarrow$ $\mathrm{M}_{2}>2.5 \mathrm{M}_{\text {Sun }}$.

- Probably a BH!

Thompson+ 19

Discovery of TAT-1

Carles Badenes SDSSV+ZTF

- Use APOGEE RVs to select systems with high mass function.
- TAT-1: photometric variable, $\mathrm{P}=83$ days.
Starspots. K = 45 km/s SB1.
- GAIA parallax: D>2.5 kpc, L>200
$\mathrm{L}_{\text {sun }} \Rightarrow \mathrm{M}_{1}>2 \mathrm{M}_{\text {sun }} \Rightarrow$ $\mathrm{M}_{2}>2.5 \mathrm{M}_{\text {sun }}$.

- Probably a BH!

Discovery of TAT-1

Carles Badenes SDSSV+ZTF

- Use APOGEE RVs to select systems with high mass function.
- TAT-1: photometric variable, $\mathrm{P}=83$ days. Starspots. K = 45 km/s SB1.
- GAIA parallax:

D>2.5 kpc, L>200
$\mathrm{L}_{\text {sun }} \Rightarrow \mathrm{M}_{1}>2 \mathrm{M}_{\text {sun }} \Rightarrow$ $\mathrm{M}_{2}>2.5 \mathrm{M}_{\text {sun }}$.

- Probably a BH!

Thompson+ 19

Discovery of TAT-1

Carles Badenes SDSSV+ZTF

- Use APOGEE RVs to select systems with high mass function.
- TAT-1: photometric variable, $\mathrm{P}=83$ days. Starspots. K = 45 km/s SB1.
- GAIA parallax:

D>2.5 kpc, L>200
$\mathrm{L}_{\text {sun }} \Rightarrow \mathrm{M}_{1}>2 \mathrm{M}_{\text {sun }} \Rightarrow$ $\mathrm{M}_{2}>2.5 \mathrm{M}_{\text {sun }}$.

$\mathrm{M}\left[\mathrm{M}_{\odot}\right.$]

- Probably a BH!

Implications

- Case B mass transfer rate \Rightarrow CE events, stellar mergers (LRNe), birth rate of short P systems? [Tylenda+ 13, Kochanek+ 14].
- More close binaries at low $[\mathrm{Fe} / \mathrm{H}] \Leftrightarrow$ SF theory [Machida+ 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink \& Belczynski 15]?
- Planet host metallicities \Rightarrow habitability [Johnson 10, Howard+
 12, Thompson+ 17, Guo+ 17].

Implications

- Case B mass transfer rate \Rightarrow CE events, stellar mergers (LRNe), birth rate of short P systems? [Tylenda+ 13, Kochanek+ 14].
- More close binaries at low $[\mathrm{Fe} / \mathrm{H}] \Leftrightarrow$ SF theory [Machida+ 09, Bate 14].
- What about BPS models in different environments, redshift evolution? [de Mink \& Belczynski 15]?
- Planet host metallicities \Rightarrow habitability [Johnson 10, Howard+ 12, Thompson+ 17, Guo+ 17].

Summary

- APOGEE: high resolution, multi-epoch IR spectra of $\sim 100,000$ stars (Galactic archeology).
- Unique view of stellar multiplicity in the field, from the MS to the $R C$. Few-epoch spectra: no orbits $\Rightarrow \Delta R V_{\max }$.
- Attrition of high $\Delta R V_{\max }$ (short P) systems as stars climb the RGB, consistent with lognormal P dist., truncated at $P_{\text {crit }} \Rightarrow$ Case B mass transfer. $\Delta R V_{\text {max }}$ in RC stars \sim TRGB.
- Clear trend with $[\mathrm{Fe} / \mathrm{H}]$: lower $[\mathrm{Fe} / \mathrm{H}]$ stars have higher $\Delta \mathrm{RV}_{\text {max }}$ distributions \Rightarrow higher f_{m} at lower $[\mathrm{Fe} / \mathrm{H}]$.
- Discovery of the first stellar mass non-accretting BH.
- Future work: Hierarchical Bayesian models, multiplicity statistics w/ age \& Galactic location, GAIA, BPS, follow-up of interesting systems.

Hierarchical Bayesian Models

w/ S. Koposov \& M. Walker

$\sigma\left[\log _{10} \frac{\text { Period }}{\text { 1year }}\right]$

GAIA

Carles Badenes SDSSV+ZTF

Additional Plots

