SDSS-V UPDATE

SDSS-V's 3 "Mappers"

Program	Science Targets	N _{Objects} and/or Sky Area	Primary Spectral Range and Hardware	Primary Science Goals
Milky Way Mapper (MWM)	Stars across the Milky Way	>6M stars; all- sky	IR; APOGEE ($R \sim 22,000$) with fiber-positioning system	Understanding the for- mation of the Milky Way and the physics of its stars
Black Hole Mapper (BHM)	Primarily supermassive black holes	>400,000 sources; all-sky	Optical; e.g., BOSS (<i>R</i> ~ 2000) with fiber-positioning system	Probing black hole growth and mapping the X-ray sky
Local Volume Mapper (LVM)	ISM & stellar populations in the MW, Local Group, and nearby galaxies	>25M contigu- ous spectra over 3,000 deg ²	Optical; new integral field spectrographs covering 3600-10000Å at <i>R</i> ~ 4000	Exploring galaxy for- mation and regulation by star formation; feed- back, enrichment, & ISM physics

Spectroscopic Surveys

Spectroscopic Survey Facilities around the Year 2020								
Survey (facility)	Ntarget	R _{spec}	Nres	$\overline{\lambda}[\mu m]$	Ω_{sky}	Nepoch	Timeframe	m _{primary}
SDSS-V	7×10^{6}	22,000	500	1.51-1.7	4π	4-60	2020-2024	$m_H \leq 12$
		2,000		0.37-1				$m_G \leq 18$
Gaia (RVS)	2×10^{6}	8000	270	0.85-0.87	4π	~ 60	2013-2020	$m_G \leq 12$
Gaia-ESO	0.1×10^{6}	17,000	140	0.55&	0.02π	~ 1	2013-2018	$m_G \leq 17$
				0.85				
GALAH	0.8×10^{6}	28,000	400	0.40- 0.85	π	~ 1	2015-2020	$m_G \leq 13$
					$ b \ge 10$			
WEAVE	0.8×10^{6}	5,000&	1000	0.37-0.9	$\sim \pi$	$\sim 1-2$	2018-2023	$m_G \leq 19$
		20,000						
DESI	8×10^{6}	3,000	5000	0.36-0.98	$\sim \pi$	$\sim 1-2$	2019-2024	$m_G \leq 19$
					$ b \ge 25$			
LAMOST	8×10^{6}	1,800	4000	0.4-0.9	0.5π	~ 1	2010-2020	$m_G \leq 16$
4MOST	10×10^{6}	5,000&	1600&	0.4-0.9	1.5π	1 - 2	2023-2028	$m_g \leq 21$
		20,000	800					$m_V \leq 16$
APOGEE-1& -2	5×10^{5}	22,000	300	1.51-1.7	0.5π	~ 4	2011-2019	$m_H \leq 12$
PFS	1×10^{6}	3,000	2400	0.4-1.6	0.05π	1	2018-2021	$m_g \leq 22$
MOONS	2×10^{6}	5,000&	1000	0.6-1.8	0.05π	1	2020-2025	$m_g \leq 22$
		20,000						$m_H \leq 17$

O + IR ; ALL SKY ; TIME DOMAIN!

SDSS-V PROTOTYPEO!

Courtesy J-P Kneib & EPFL Team

Kaiju: A Highly Efficient Collision Avoidance Algorithm for SDSS-V Robotic Fiber Positioners — Conor Sayres (U. Washington)

PLATES —> ROBOTS

ALL Sky Dust-Penetrating Multi-epoch (I-60) High-quality sþectroscoþy

ROBOTIC FIBER POSITIONERS TO FEED SPECTROGRAPHS

SDSS-V PROTOTYPE!!

- •New prototypes tested in December/ January
- Fiber Positioning System successful PDR in November 2018
- Call of Tender for the robots has gone out (today!)

Final design review at the end of Q2!

Ready for "Robot Ridge" in mid-2020 will commission as soon as SDSS-IV completes

BLACK HOLE MAPPER: BHM

BLACK HOLE MAPPER: UNDERSTANDING BLACK HOLE GROWTH

BHM Time-Domain Survey Outline

Spectral time-domain astrophysics of quasars: BH masses, binarity, accretion and events, BLR dynamics, outflows, etc. Broad range of time-sampling/cadence, days to decades.

- For >20,000 quasars, 2-3 epochs during AS4 plus earlier-epoch SDSS spectra, sampling ~1-10 year timescales, e.g., transition times of changing look quasars, BAL disappearance and emergence, etc. (wide/ low-cadence tier; ~3000 deg²).
- For >2000 quasars, 12 epochs during ~2 years of AS4, probing down to ~1-month to 1-year timescales, adding unfolding BLR structural and dynamical changes (medium tier; ~300 deg²).
- Reverberation mapping (RM) for ~1000 quasars in 5 fields, >10² epochs, sampling down to days to weeks; lags between continuum and BLR emission yield BH masses; premier RM sample at high L, z. (highcadence tier; ~30 deg²)

Milky Way Mapper: MWM

Milky Way Mapper APOGEE + BOSS Spectrographs

SCIENCE GOALS (GENERAL)

- I) How did the Milky Way's disk form?
- 2) How do stars live, evolve, and die (and affect transient/GW universe)?
- 3) What stars host planets?
- 4) What IS the stellar multiplicity across the HR diagram? Role of binaries in Stellar Evolution
- 5) Origin of Supernovae and the heavy elements

From D. Lang

InstrumentSelection $N_{Targets}$ N_{Epochs} CommentsGalactic Genesis Survey: mapping the dusty diskAPOGEE $H < 11, G - H > 3.5$ 4,800,0001dust-extinguished diskAPOGEE $ z < 200 \text{ pc}, H < 11, d < 5 \text{ kpc}$ 125,0001dust-extinguished diskBinaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variability30,0003binaries with WDs, NSs, and BHsBOSSPTF, ZTF, Gaia variability30,0001wide WD+MS/RGB binariesBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSSd<100 pc, $G < 20, H < 12$ 400,00021000× increase in volume & starsAPOGEE, BOSSd<20300,000315× increase in sample sizeTESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEE $H \le 13.3$ 300,0001-8Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsAPOGEE $H < 13.4, N_{Epoch} \ge 6$ by the start of SDSS-V60,0006-18gives orbits with 24-40 epochs for all targets with long APOGEE baselinesGaia Astrometric Binaries: characterizing rare environmental dependence or binary fraction in the disk, bulge, halo, and stellar clusters; baselines characterizing rare environmen								
Galactic Genesis Survey: mapping the dusty diskAPOGEE $H < 11, G - H > 3.5$ 4,800,0001dust-extinguished diskAPOGEE $ z < 200 \text{ pc}, H < 11, d < 5 \text{ kpc}$ 125,0001dust-extinguished diskBinaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variability30,0003binaries with WDs, NSs, and BHsBOSSPTF, ZTF, Gaia variability30,0001wide WD+MS/RGB binariesBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systems4<00,000								
APOGEE $H < 11, G - H > 3.5$ 4,800,0001dust-extinguished disk to complete high-res ISM mapBinaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variability30,0003BOSSPTF, ZTF, Gaia variability30,0001wide WD+MS/RGB binariesBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSSd<100 pc, $G < 20, H < 12$ 400,00021000× increase in volume & starsWhite Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relation BOSS $G < 20$ $300,000$ 3 BOSS $G < 20$ $300,000$ $1 = 8$ all short-cadence targets in the CVZsAPOGEE $H \le 13.3$ $300,000$ $1 = 8$ all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsgives orbits with 24-40 epochs for all targets with long APOGEE baselinesAPOGEE $H < 13.4$, NEpoch ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits but limited other information, for a 0 diversement of $\infty = 10^{-1}$ are systems that have good astrometric orbits but limited other information, with long APOGEE baselines								
APOGEE $ z < 200 \text{ pc}, H < 11, d < 5 \text{ kpc}$ 125,0001to complete high-res ISM mapBinaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variabilityBOSSPTF, ZTF, Gaia variability30,0003binaries with WDs, NSs, and BHsBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE,d<100 pc, G < 20, H < 12								
Binaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variabilityBOSSPTF, ZTF, Gaia variability30,0003binaries with WDs, NSs, and BHsBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSSd<100 pc, G < 20, H < 12								
selected by variabilityBOSSPTF, ZTF, Gaia variability30,0003binaries with WDs, NSs, and BHsBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSSd<100 pc, G < 20, H < 12400,00021000× increase in volume & starsMite Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSSG < 20300,000315× increase in sample sizeTESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEEH ≤ 13.3300,0001-8all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsgives orbits with 24-40 epochs for all targets with long APOGEE baselinesAPOGEEH<13.4, N _{Epoch} ≥ 6 by the start of SDSS-V60,0006-18gives orbits with 24-40 epochs for all targets with long APOGEE baselines								
BOSSPTF, ZTF, Gaia variability30,0003binaries with WDs, NSs, and BHsBOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSS $d < 100 \text{ pc}, G < 20, H < 12$ $400,000$ 2 $1000 \times$ increase in volume & starsWhite Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSS $G < 20$ $300,000$ 3 $15 \times$ increase in sample sizeTESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEE $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsgives orbits with 24-40 epochs for all targets with long APOGEE baselinesAPOGEE $H < 13.4$, N _{Epoch} ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselinesGaia A strometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, fram C-ic is meaning of $\diamond 10$ million demeter								
BOSSGaia parallaxes30,0001wide WD+MS/RGB binariesSolar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systemsAPOGEE, BOSS $d < 100$ pc, $G < 20$, $H < 12$ $400,000$ 2 $1000 \times$ increase in volume & starsWhite Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSS $G < 20$ $300,000$ 3 $15 \times$ increase in sample sizeTESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEE $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsgives orbits with 24-40 epochs for all targets with long APOGEE baselinesAPOGEE $H < 13.4$, N _{Epoch} ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselinesGaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, fraction in formation, $6 > 10$ million dure								
Solar Neighborhood Census: observing all stars within 100 pc, giving the best probe of low-mass stars, whether in single or binary systems APOGEE, BOSS $d < 100 \text{ pc}, G < 20, H < 12$ $400,000$ 2 $1000 \times \text{ increase in volume & stars}$ White Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relation BOSS $G < 20$ $300,000$ 3 $15 \times \text{ increase in sample size}$ TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZs APOGEE $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hosts Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars gives orbits with 24–40 epochs for all targets with long APOGEE baselines APOGEE $H < 13.4$, N _{Epoch} ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24–40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, fraction in the orbits but limited other information, fraction in the start of SDSS-V								
binary systemsAPOGEE, BOSS $d < 100 \text{ pc}, G < 20, H < 12$ $400,000$ 2 $1000 \times \text{ increase in volume & stars}$ White Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSS $G < 20$ $300,000$ 3 $15 \times \text{ increase in sample size}$ TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEE $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsAPOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselinesGaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, frame G_{rel} is a sample as $b = 0$ million stare.								
APOGEE, BOSSd<100 pc, G < 20, H < 12400,00021000× increase in volume & starsWhite Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSSG < 20								
BOSS I < 100 pc, 0 < 20, 11 < 12 100,000 2 10000x meterate in volume of stars White Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relation BOSS $G < 20$ 300,000 3 15× increase in sample size TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZs APOGEE $H \le 13.3$ 300,000 1–8 all short-cadence targets & planet hosts Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars APOGEE $H < 13.4$, N _{Epoch} ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24–40 epochs for all targets with long APOGEE baselines <i>Gaia</i> Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from <i>Culute</i> of > 10 million cterm								
White Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relationBOSS $G < 20$ $300,000$ 3 $15 \times$ increase in sample sizeTESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZsAPOGEE $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hostsBinaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type starsAPOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselinesGaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information,								
BOSS $G < 20$ $300,000$ 3 $15 \times$ increase in sample size TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZs $APOGEE$ $H \le 13.3$ $300,000$ $1-8$ all short-cadence targets & planet hosts Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars $all + 13.4$ $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from $G = 10$ million stern								
TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZs APOGEE $H \le 13.3$ 300,000 1–8 all short-cadence targets & planet hosts Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars gives orbits with 24–40 epochs for all targets APOGEE $H < 13.4$, N _{Epoch} ≥ 6 by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24–40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from C_{ric} 's sumple of > 10 million start. $Binaries characterizing rare start of SDSS-V Binaries characterizing rare systems that have good astrometric orbits but limited other information, from C_{ric}'s sumple of > 10 million start. $								
APOGEE $H \le 13.3$ 300,000 1–8 all short-cadence targets & planet hosts Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars Image: stars of SDSS-V Image: stars of SDSS-V APOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24–40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from Code is sample of > 10 million stars								
Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars APOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24–40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from $C = i a's$ sample of ≥ 10 million stars								
clusters; probing the brown-dwarf desert beyond solar-type stars APOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from Coicies cample of ≥ 10 million stars								
APOGEE $H < 13.4$, $N_{Epoch} \ge 6$ by the start of SDSS-V $60,000$ $6-18$ gives orbits with 24-40 epochs for all targets with long APOGEE baselines Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, $6-18$ gives orbits with 24-40 epochs for all targets								
Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information,								
Gaia Astrometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information,								
from Calala complete for 10 million store								
from Gata's sample of > 10 million stars								
APOGEE, $d < 3 \text{ kpc}$ 200,000 1 rare types of systems								
BOSS								
TESS Red Giant Variability: measuring spectroscopic properties for red giants in TESS that have seismic and/or granulation								
lightcurve signatures								
APOGEE $H < 12.5$ 250,000 I stars with at least 80 days of TESS observation								
Massive, Convective Core Stars: combining dynamic and asteroseismic measurements of binary OBAF stars in the TESS CVZs								
APOGEE $H < 12$ 200,000 2 detection of single vs. binary systems								
APOGEE 500 25 >10× increase in current sample size								
roung Stellar Objects: quantifying the stellar populations in star-forming regions, including identifying sources of ionizing								
A DOCUTE V (12 / 11 here 20000 12								
APOGEE $H < 12, a < 1$ kpc 20,000 12 nearby star-formation regions								
APOGEE $H < 12$ 5,500 8 nign-mass star-formation regions ADOGEE $H < 12$ $ h < 22$ 10.000 2 massing young stars in the Calastic Diana								
APOGEE $H \le 12$, $ b \le 2^{-1}$ ADOGEE $H \le 13$ 10,000 2 Inassive young stars in the Galactic Plane								

TRANSIENTS!

Wouldn't it be nice to settle BASIC questions like: What are Type I a SNe (and what are they NOT)?

B. Penpraese

Local Volume Mapper: LVM

- Using different telescope sizes of and an array of IFU-coupled spectrographs at *R*~4000 and 3600-10000Å, we survey
- 2800 sq. deg. in the MW @ 0.1-1 pc resolution,
- 300 sq. deg. in the MW 10x deeper,
- LMC & SMC @ 10 pc resolution,
- M31 & M33 @ 20 pc resolution, and
- 12 nearby galaxies (D≤5 Mpc) @ 50 pc resolution

LVM hardware

IFU design

- ✤ 3 x 547 hexagonal non-abutted lenslet coupled IFUs arrays.
- ✤ 309 calibration fibres.
- Based on highly-successful MaNGA design.
- * 490 arcmin2 @ 0.16 m
- ★ 12 arcmin2 @ 1 m

OBSERVING GALAXIES AT THE "ENERGY INJECTION SCALE"

LVM MW Wide Survey: 2800 deg²

LVM MW Deep Survey: 300 deg²

Cosmological Zoom-In Observations!

Juna Kollmeier, Carnegie Observatories

Orion

- M42 0.07 pc / spaxel
- APOGEE stars (yellow)
- Combine information from gas and stars to map the interaction between stars and ISM
- Have Teff, L, Z, [X/H], f_{uv}, (age) for each star
- Gas: temperature, density, kinematics, abundances

INSTITUTIONAL PARTNERSHIP

GROWTH OF COLLABORATION

Growth of Collaboration (2017/2018)

SDSS Collaboration Matrix	MOU Signed/Out for Signature	MOU in Draft/Iteration	Prospective Institutions			
FULL MEMBERS	CU Boulder Harvard MPE MPIA NMSU OSU NAOC Yale CNTAC	Carnegie Wisconsin STSCI UofA JHU UNAM U of Toronto SAO	NOAOINAF			
3 Slot Members	AIP PSU Flatiron UIUC	UVA	Caltech MIT			
Individual (1/2) slot Members	University of Washington (2) TCU, TAU (2) Vanderbilt, KIAA, U. Warwick, NYU, KU Leuven, Columbia, U. Penn,York University, University of Victoria, U. Pittsburgh, Georgia State	Monash University EPFL ANU	Oxford St. Andrews Nanjing U. SHAO			

				SD9	SS-V						
ARC Board of Gobernors				020						Technical Advisory Group	
Chair: Mike Crenshaw (GSU)	Central Project Office								Chair: Douglas Finkbeiner (Harvard)		
	Director: Juna Kollmeier (OCIS)							Davis Hogg (NYU)			
		Broid	et Scientist: H	anc_Wol	tor Div					Jim Gunn (Princeton)	
Advisory Council		Proje	ci Scientisi. Ha	ans-wa		(MPIA)				David Weinberg (OSU)	
Advisory Council	Spokeperson: Gail Zasowski (UU) Project Manager: Solange Ramirez (OCIS)						—	Connie Rockosi (UCSC)			
Chair: Keivan Stassun (Vand, SAPG)								Mike Blanton (NYU)			
Ani Seth (UU)		ead Systems Engineer: Stefanie Wachter (OCIS)				Matt Johns (MJI)					
Charlie Conroy (Harvard)								-		max ourns (may	
Eva Schinerer (MPIA)											
Sujian Wu (NAOC)	Instrument Dev	elopment									
Jon Holtzman (NMSU)	Focal Plane System	ocal Volum	e Mapper				Ohee	nustony Operations			
Meg Urry (Yale)	rocarriane system Le			\neg			Obse	ervatory operations			
David Weinberg (OSU)	P. Pogge, C. Brandon, T. N.	Konidaris (DCIS), C.			Las C	ampanas	Observatory: J. Crane, D. Osip			
Julie Comerfeld (CU)	O'Brien (USU)	oning (UT)				(OCI	5)				
Mike Erakleous (PSU)						Apach	e Point O	Observatory: M. Klaene, J.			
Mathias Steinmetz (AIP)		_				Down	iney (APC	2)			
Mike Blanton (NYU, GPG)	Data Processing Tean		Team		I L	Ops. S	Software:	J. Sanchez-Gallego, C. Sayres			
Tony Wong (UIUC)			(11)			(UW)					
John Mulchaey (OCIS)		istenig (00)									
Xiaoui Fan (UofA)	CAS: A. Thakar (JHU)										
Christy Tremonti (Wisc)											
						-					
			Su	Irvey E	Execut	ion					
	Milky Way Mapper (MWM) Black			Black Hole Mapper (BHM) Local Volume Mapper (LVM)				cal Volume Mapper (LVM)			
	Prog. Lead: Jennifer Johnson	Prog. Lead: Scott Anderson (UW) Prog. A) Survey Scientists: A. Merloni (MPE) & Y. Survey Blance			Prog. Lo	ead: Niv Drory (UT)					
	GG Survey Scientists: M. Nes & J. Bird (Vand)				(MPE) & Y.	Survey Blanc (0	Scientists: K. Kreckel (MPIA), G. OCIS), E. Pelegrini (UH)				
	SA & SSA Survey Scientists: Lee (NKU) & A. Tkacheno (Le	N. De euven)									
	Scientific Working Groups										
	White Dwarfs: B. Gaensicke		XRB/Compact Binaries: A. Schwope Ma			Machine	e Learning: B. Bovy, A. Casey				
	Stellar Models: C. Conroy		Reverberation Mapping: K. Horne LV		LVM Mi	lky Way:TBD					
	Dust Mapping: E. Schlafly		X-ray Clusters: N. Clerc LV QSO Physics: M. Eracleous LV			LVM IS	M: M. Seibert				
	TESS/Planet Host: J. Teske					LVM Stellar Populations: K. McQuinn		ellar Populations: K. McQuinn			
	TESS/PLATO: S. Hekker	TESS/PLATO: S. Hekker Machine L			ng: B. Bovy, A. Casey LVM Cold Gas: E. Schinnerer			old Gas: E. Schinnerer			
	TESS/Astero: J. van Saders										

