SDSS-V UPDATE

SDSS-V

SDSS-V's 3 "Mappers"

Program	Science Targets	Nobjects and/or Sky Area	Primary Spectral Range and Hardware	Primary Science Goals
Milky Way Mapper (MWM)	Stars across the Milky Way	$>6 \mathrm{M}$ stars; allsky	IR; APOGEE ($R \sim 22,000$) with fiber-positioning system	Understanding the formation of the Milky Way and the physics of its stars
Black Hole Mapper (BHM)	Primarily supermassive black holes	$\begin{aligned} & >400,000 \\ & \text { sources; all-sky } \end{aligned}$	Optical; e.g., BOSS ($R \sim 2000$) with fiber-positioning system	Probing black hole growth and mapping the X-ray sky
Local Volume Mapper (LVM)	ISM \& stellar populations in the MW, Local Group, and nearby galaxies	$>25 \mathrm{M}$ contiguous spectra over $3,000 \mathrm{deg}^{2}$	Optical; new integral field spectrographs covering 3600-10000 at $R \sim 4000$	Exploring galaxy formation and regulation by star formation; feedback, enrichment, \& ISM physics

Spectroscopic Survevs

Spectroscopic Survey Facilities around the Year 2020
$\left.\begin{array}{|l||l|l|l|l|l|l|l|l|}\hline \text { Survey (facility) } & N_{\text {target }} & R_{\text {spec }} & N_{\text {res }} & \bar{\lambda}[\mu m] & \Omega_{\text {sky }} & N_{\text {epoch }} & \text { Timeframe } & m_{\text {primary }} \\ \hline \hline \text { SDSS-V } & 7 \times 10^{6} & 22,000 & 500 & \begin{array}{l}1.51-1.7 \\ 0.37-1\end{array} & 4 \pi & 4-60 & 2020-2024 & m_{H} \leq 12 \\ m_{G} \leq 18\end{array}\right]$

> O + IR ; ALL SKY ; TIME DOMAIN!

SDSS-V PROTOTYPEO

Courtesy J-P Kneib \& EPFLTeam

Kaiju: A Highly Efficient Collision Avoidance Algorithm for SDSS-V Robotic Fiber Positioners - Conor Sayres (U. Washington)

PLATES $->$ ROBOTS

ALL Sky

Dust-Penetrating
 Multi-epoch (I-60)
 High-quality
 spectroscopy

ROBOTIC FIBER POSITIONERS TO FEED SPECTROGRAPHS

SDSS-V PROTOTYPEI!

- New prototypes tested in December/ January
- Fiber Positioning System successful PDR in November 2018
- Call of Tender for the robots has gone out (today!)

Final design review at the end of Q2!
Ready for "Robot Ridge" in mid-2020 will commission as soon as SDSS-IV completes

BLACK HOLE MAPPER: BHM

BLACK HOLE MAPPER: UNDERSTANDING BLACK HOLE GROWTH

Reverberation Mapping Measuring BLR sizes and BH masses

Broad-line region (BLR) clouds

eROSITA
Probing the hot X -ray

UV-optical continuum

Hot corona

Multi-epoch Spectroscopy
Probing dynamical changes in the
BLR

Broad emission lines

,
0.11

10
Light-crossing time (days)
100
10000

BHM Time-Domain Survey Outline

Spectral time-domain astrophysics of quasars: BH masses, binarity, accretion and events, BLR dynamics, outflows, etc. Broad range of timesampling/cadence, days to decades.

- For $>20,000$ quasars, 2-3 epochs during AS4 plus earlier-epoch SDSS spectra, sampling ~I-I0 year timescales, e.g., transition times of changing look quasars, BAL disappearance and emergence, etc. (wide/ low-cadence tier; $3000 \mathrm{deg}^{2}$).
- For >2000 quasars, 12 epochs during ~2 years of AS4, probing down to ~ 1-month to I-year timescales, adding unfolding BLR structural and dynamical changes (medium tier; $\sim 300 \mathrm{deg}^{2}$).
- Reverberation mapping (RM) for ~ 1000 quasars in 5 fields, $>10^{2}$ epochs, sampling down to days to weeks; lags between continuum and BLR emission yield BH masses; premier RM sample at high L, z. (highcadence tier; $\sim 30 \mathrm{deg}^{2}$)

Milky Way Mapper: MWM

SCIENCE

- I) How did the Milky Way's disk form?
- 2) How do stars live, evolve, and die (and affect transient/GW universe)?
- 3) What stars host planets?
- 4) What IS the stellar multiplicity across the HR diagram? Role of binaries in Stellar Evolution
- 5) Origin of Supernovae and the heavy elements

Galactic Genesis \& Stellar Astrophysics Targeting Classes				
Instrument	Selection	$\mathbf{N}_{\text {Targets }}$	$\mathbf{N}_{\text {Epochs }}$	Comments
Galactic Genesis Survey: mapping the dusty disk				
APOGEE	$H<11, G-H>3.5$	4,800,0	1	dust-extingui
APOGEE	$\|z\|<200 \mathrm{pc}, H<11, \mathrm{~d}<5 \mathrm{kpc}$	125,000	1	to complete high-res ISM map
Binaries with Compact Objects: enumerating the populations of binaries with white dwarfs, neutron stars, or black holes, selected by variability				
BOSS	PTF, ZTF, Gaia variability	30,000	3	binaries with WDs, NSs, and BHs
BOSS	Gaia parallaxes	30,000	1	wide WD+MS/RGB binaries
Solar Neighborhood Census: observing all stars within 100 pc , giving the best probe of low-mass stars, whether in single or binary systems				
APOGEE, BOSS	$\mathrm{d}<100 \mathrm{pc}, G<20, H<12$	400,000	2	$1000 \times$ increase in volume \& stars
White Dwarf Chronicle: using white dwarfs and their evolved companions to measure the SFH and age-metallicity relation				
BOSS	G<20	300,000	3	$15 \times$ increase in sample size
TESS Exoplanet Host Candidates: observing all TESS short-cadence targets in the CVZs				
APOGEE	$H \leq 13.3$	300,000	1-8	all short-cadence targets \& planet hosts
Binaries Across the Galaxy: measuring environmental dependence of binary fraction in the disk, bulge, halo, and stellar clusters; probing the brown-dwarf desert beyond solar-type stars				
APOGEE	$H<13.4, \mathrm{~N}_{\text {Epoch }} \geq 6$ by the start of SDSS-V	60,000	6-18	gives orbits with $24-40$ epochs for all targets with long APOGEE baselines
Gaia A strometric Binaries: characterizing rare systems that have good astrometric orbits but limited other information, from Gaia's sample of >10 million stars				
APOGEE, BOSS	$d<3 \mathrm{kpc}$	200,000	1	rare types of systems
TESS Red Giant Variability: measuring spectroscopic properties for red giants in TESS that have seismic and/or granulation lightcurve signatures				
APOGEE	$H<12.5$	250,000	1	stars with at least 80 days of TESS observation
Massive, Convective Core Stars: combining dynamic and asteroseismic measurements of binary OBAF stars in the TESS CVZs and characterizing their multiplicity				
$\begin{aligned} & \text { APOGEE } \\ & \text { APOGEE } \end{aligned}$	$H<12$	$\begin{array}{\|l\|} \hline 200,000 \\ 500 \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 25 \end{array}$	detection of single vs. binary systems $>10 \times$ increase in current sample size
Young Stellar Objects: quantifying the stellar populations in star-forming regions, including identifying sources of ionizing radiation and characterizing the binary frequency				
APOGEE	$H<12, d<1 \mathrm{kpc}$	20,000	12	nearby star-formation regions
APOGEE	$H<12$	3,500	8	high-mass star-formation regions
APOGEE	$H<12,\|b\|<2^{\circ}$	10,000	2	massive young stars in the Galactic Plane
APOGEE	$H<13$	10,000	2	Central Molecular Zone

TRANSIENTS!

Wouldn't it be
nice to settle
BASIC questions like: What are Type Ia SNe (and what are they NOT)?
B. Penpraese

Local Volume Mapper: LVM

Using different telescope sizes of and an array of IFU-coupled spectrographs at $R \sim 4000$ and 3600-10000A, we survey

- 2800 sq. deg. in the MW @ 0.1-1 pc resolution,
- 300 sq. deg. in the MW 10x deeper,
- LMC \& SMC @ 10 pc resolution,
- M31 \& M33 @ 20 pc resolution, and
- 12 nearby galaxies (D $\leq 5 \mathrm{Mpc}$) @ 50 pc resolution

LVM hardware

* 3×547 hexagonal non-abutted lenslet coupled IFUs arrays.
* 309 calibration fibres.
* Based on highly-successful MaNGA design.
* 490 arcmin2 @ 0.16 m
* 12 arcmin2 @ 1 m

OBSERVING GALAXIES AT THE "ENERGY INJECTION SCALE"

LVM MW Wide Survey: 2800 deg² 2

LVM MW Deep Survey: 300 deg² 2

Cosmological Zoom-In Observations!

- M42 0.07 pc / spaxel
- APOGEE stars (yellow)
- Combine information from gas and stars to map the interaction between stars and ISM
- Have Teff, L, Z, [X/H], fuv, (age) for each star
- Gas: temperature, density, kinematics, abundances

INSTITUTIONAL PARTNERSHIP

GROWTH OF COLLABORATION

Growth of Collaboration (2017/2018)

$\begin{gathered} \text { SDSS } \\ \substack{\text { Collaboration } \\ \text { Matrix }} \\ \hline \end{gathered}$	$\begin{aligned} & \text { MOU } \\ & \text { Signed/Out for } \\ & \text { Signature } \end{aligned}$	MoU in Draftliteration	Prospective
FULL MEMBERS	CU Boulder Harvard MPE MPIA NMSU OSU NAOC Yale CNTAC	Carnegie Wisconsin STSCI UofA JHU UNAM U of Toronto SAO	NOAO INAF
3 Slot Members	AIP PSU Flatiron UIUC	UVA	Caltech MIT
Individual (1/2) slot Members	University of Washington (2) TCU, TAU (2) Vanderbilt, KIAA, U. Warwick NYU, KU Leuven, Columbia, U. Penn, York University, University of Victoria, U. Pittsburgh, Georgia State	Monash University EPFL ANU	Oxford St. Andrews Nanjing U. SHAO

Technical Advisory Group
Chair. Douglas Finkbeiner (Harvard)
Davis Hogg (NYU)
Jim Gunn (Princeton)
David Weinberg (OSU)
Connie Rockosi (UCSC)
Mike Blanton (NYU) David Schlegel (LBL) Matt Johns (MJ)

SDSS-V

