

Why Survey the Sky?

- Because we can.
 - In the past 10 years silicon technology capacity and capability has exceeded the information content available from the sky! OMG!
- Unknown unknowns.
 - Pure discovery of weird phenomena that enrich our appreciation of what goes on in nature. E.g. QSOs, gravitational lensing, SS433, exoplanets, LIGO optical counterparts, etc.
 - Do stars ever disappear? What flashes in the sky at m~8?
- Known unknowns.
 - Greater understanding of rare things. E.g. GRBs, weird- hyper- kilonovae, gravitational lenses, etc.
- Known knowns (that are useful).
 - Standard candles such as RR Lyrae, Cepheid, M giants, SNIa for mapping dust, cosmology, etc.

ATLAS in a Nutshell

- Domes (Ash) on HKO, MLO
- German mounts (APM)
- 0.5m telescopes (DFM)
 - f/2 Schmidt
 - 8 filters (co, uvgri, BVRI, H α ,[OIII])
- 10k cameras (IFA/STA)
 - 1.86" pixels, 5.4°x5.4° field of view
- 50Mb/s ethernet

- 50,000 deg²/nt (4xsky/2) to m~19.5 in c (g+r) or o (r+i)
- Computers totaling >1PB, 2TB, 500 core
- Portable (?!) software

Autonomous operation, reduction, and analysis

- 2 x 1,000 image = 0.5 TB per night
- 700,000 images to date
- Fully robotic system
- Gaia astrometry, Pan-STARRS photometry

ATLAS DETAILS

Lots of details about hardware and software

Enclosures and Mounts

Filters

- ATLAS c, o, t
- SDSS/Pan-STARRS/SkyMapper u,v,g,r,i,z
- Johnson/Cousins B,V,R,I
- Narrow band Hα,[OIII]

Telescopes and Cameras

DFM telescopes

- 0.5m f/2 Schmidt telescope gives
 1.86" per pixel over 8° field without vignetting
- PSF is ~2 pixels; m_{lim}~19.5 in 30 sec exposure
- Acam
 - STA-1600: 110 Mpixel, 10e- read noise, ~8 sec readout, good QE, good cosmetics
 - TEC cooling to <-50°C, negligible dark current
 - Permanent vacuum
 - Sub-um positioning of detector in piston, tip, tilt (necessary for an f/2 system)
 - >1,000,000 images so far...

Acam

- All metal: no pumping required
- Buffer PCBs: no interference
- TEC cooling
- Picomotors
- Large area to volume ratio

Five More Cryostats Ready for a Home...

Survey Strategy

Sky coverage to date (red=500 visits)

16 Chile 190325

Auxiliary Camera #1

- Each telescope also has a Canon 5DII with 135mm f/2 lens taking simultaneous exposures.
 - 300,000 deg²/nt at $m_{lim} \sim 14$, $m_{sat} \sim 6$
 - Fully reduced and quantified (WCS good to ~1" and photometry good to ~0.03 mag)
 - RGB color retained but not currently reduced

Auxiliary Camera #2

- Each site has a Canon 5DIII with 10mm f/4 lens taking continous exposures
 - All sky every 40 sec at m_{lim} ~7, m_{sat} ~0
 - Fully reduced and quantified (WCS good to ~30" and photometry good to <0.1 mag)
 - RGB color retained but not currently reduced

18 Chile 190325

Photometric all-sky measurement

19 Chile 190325

Processing Time and Latency

- Latency from shutter open to final results ~30 minutes
- Latency from start of quad exposure to asteroid warning ~90 minutes

CPU	Elapsed	Stage
40	40	take exposure, save to disk as a raw image
40	80	flatten image
500	250	measure the brightest $\sim 60,000$ stars (dophot)
20	270	find initial astrometric solution (Lang et al. 2010)
10	280	determine final astrometric and photometric solution
20	300	perform cloud detection and correction
10	310	calculate auxiliary metadata, compress and save image
250	560	produce wallpaper template matching image
600	1160	subtract wallpaper from image (hotpants)
750	1410	detect sources in difference image to 3σ , trim to 5σ (tphot)
180	1590	classify sources, write final detection table
120	1710	run primary science client MOPS to detect moving objects
900	610	measure $\sim 10^5$ to $\sim 2\times 10^6$ stars (depending on galactic latitude) to 5σ (dophot)

2012 DA 14: 2013-Feb-15

Chelyabinsk: 2013-Feb-15

2018 LA

- Discovered by Rich Kowalski (Catalina Sky Survey: G96)
 - 02 JUN 2018 08:22 UTC
 - Observed by ATLAS 12:00 UTC
 - Impact over Namibia 16:44 UTC
 - 2 m diameter (H=30.6), 0.4 kT

2018 LA seen before impact in NE South Africa UTC 16:44 (Courtesy Barend Swanepoel) https://www.youtube.com/watch?v=rnBvSNYy-EY

Orbital configuration 02 May 2018

Asteroid Gault (6478)

- Discovered by ATLAS collaborator Ken Smith while inspecting images for supernova transients (would have been spotted by the asteroid team 6 hours later)
- 6–10km size, 2.3 AU, inner MB
- Previously inactive, episodic outbursts suggest ongoing rotational disruption.

ATLAS and NEOs

- ATLAS should have 2—9 NEOs of
- J~30m in view at the depending on poorly known mutual depending on asteroids that come within Most 30m asteroids that come within distance should be detected •

ATLAS Impactor Discovery Probability

- ATLAS discovery probability depends on size and survey duration
 - Small (<10m) only seen on last day or two.
 - Medium (10–140m) seen for days to weeks before impact.
 - Large (>140m) are often seen on orbits prior to impact.

Non-gravitational Forces Create Fresh Hazard

- Yarkovsky
 - Slowly changes orbits
 - At resonance orbits change chaotically
- YORP (tangential Yarkovsky) and "Spin-barrier"
 - YORP can spin up asteroids and cause them to fission, changing orbit

Asteroid light curves

- Asteroid observed magnitudes
 - Images and difference images

Phasing light curves

- Asteroid observed magnitudes
 - Images and difference images
- Correct to "H"
 - Light travel time, distance, and phase function

Phasing light curves

- Asteroid observed magnitudes
 - Images and difference images
- Correct to "H"
 - Light travel time, distance, and phase function

Phasing light curves

- Asteroid observed magnitudes
 - Images and difference images
- Correct to "H"

.05

Time [day (mod 3.9452 hr)]

-.5

mag

- Light travel time, distance, and phase function
- Search for periodicity
 - Lomb-Scargle, color fits, outlier rejection, Fourier fits, choose best

Phased

.15

Asteroid Properties from ATLAS

- ATLAS provides more than astrometry and orbits
 - 8.7 million detections of 271,919 numbered asteroids as of May 2017 (numbers have doubled since)
 - Photometry: size, color, taxonomy, phase function...
 - Light curves: rotation, shape, spin axis
- >100,000 asteroids will be measured as observations accumulate; change in properties may emerge...

Useful Byproducts

- ATLAS is putting in the extra work to make things that can be useful to others.
- Software (with man pages!)
 - Fisheye pipeline
 - Sort library
 - colmerge = merge two files by matching column entries
 - xclist = pattern match two files of x,y and x',y'
 - puma = get a 3D location for points on an asteroid or satellite tracklet
- Refcat2
 - All sky griz to m~19 with Gaia DR2, available from STScI and arXiv
- Data products (in addition to asteroids to MPC, maybe)
 - ATLAS has better time sampling than any other survey (4x per night)
 - Ongoing updates for all variables with m < 19
 - Light curves of everything with m < 19
 - Outburst alerts for AGN, unhappy stars, etc.

Refcat2 – arXiv 1809.09157

(green=-0.005, red=+0.005) Gaia+2MASS subset Pan-STARRS SkyMapper SkyMapper DR1.1 All-sky g,r,i,z from: ATLAS Gaia DR2 and 2MASS **ATPASS** Pan-STARRS, Dec>-30° ATLAS gri, Dec>-50° APASS/ATLAS gri, Dec<+20° APASS SkyMapper griz, Dec<+0° 991M stars, G|B|R<19 AP DR9 210M stars g|r|i<17Ζ g

43 Chile 190325

ATLAS-Gaia HR diagram

- 40M stars have ATLAS light curves and Gaia parallax with error smaller than 10%.
- Every star has a ~1000 epoch light curve behind it

M107 globular cluster RA 248.132 Dec -13.054 47 Chile 190325

M107 globular cluster RA 248.132 Dec -13.054 48 Chile 190325

Variable Stars

- ATLAS has ~500 point light curves for ~250M stars.
 - All (nearly) stars with -45<Dec<+90 and 11<m<19 examined
 - SNR ~10 at m~18, per detection
 - Sampling ~4/night over ~1 hour, revisit every ~2 days
 - c~(g+r) and o~(r+i) colors
 - Lomb-Scargle and variability statistics computed for all light curves
- ~5M light curves with ~1M variables from DR1 140M stars are now available from STScl (Heinze et al. arXiv:1804.02132)

49 Chile 190325

Classifying Stars

- Machine learning classification of 140 million light curves
 - Morphological classes such as "sinusoidal", "pulsating" (sawtooth), "close binary", "distant binary", "mira", etc.
 - Good but not perfect correspondence with physical classes: work to be done
 - ~0.5M are "certain" (low false alarm rate)
 - ~5M are "dubious" (10:1 false alarm rate)
- Counts ("certain" only)
 - Eclipsing 100,000 (70% new)
 - Pulsating 50,000 (40% new)
 - Long period variable 50,000 (60% new)
 - Sine 100,000 (90% new)

Red = non-variable stars Blue = variable stars

Interesting Light Curves

Heinze et al. arXiv:1804.02132

Asteroseismology

 ATLAS light curves reveal giant star oscillation frequency, providing luminosity for a given temperature and mass.

 $\frac{\nu_{max}}{\nu_{max,\odot}} \approx \frac{M}{M_{\odot}} \left(\frac{T_{eff}}{T_{eff,\odot}}\right)^{3.5} \left(\frac{L}{L_{\odot}}\right)^{-1}$

 60,000 stars in Milky Way available (more than Kepler or TESS) for studies of dust extinction and stellar properties (Huber & Auge).

Transients and Cosmic Variables

- ATLAS sees ~5,000 supernovae per year to V~19
- There are ~200,000 AGN brighter than V~19 that ATLAS monitors daily.
- ATLAS depth and SNR at m~19 depends on averaging time:
 - ~1 hour (1 exposure), m_{lim} ~19.5, SNR > 7 at m~19
 - ~1 day (4 exposures), m_{lim} ~20.2, SNR > 14 at m~19
 - ~1 week (20 exposures), m_{lim} ~21, SNR > 30 at m~19
 - ~1 month (50 exposures), m_{lim} ~21.5, SNR > 50 at m~19

ATLAS SNIa Discoveries

- ATLAS can find (nearly) all SNIa that explode within z<0.1
 - ~5000 per year
 - SNR sufficient to establish decline rate
 - Follow-up IR photometry at peak and spectrum can get ~7-10% distance.

Most nearby SN detected within first ~24hrs

<u>Example :</u>

ATLAS18ebh = SN2018gv NGC2525, 20 Mpc Normal Type Ia ATLAS early detections and limits constrain explosion to ~12hrs

Automated forced photometry run on all / ATLAS transients, reliable photometry and limits instantly (*forced using tphot*)

Hubble Flow, Large Scale Flows

- Use SNIa as standardizable candles:
 - ~10% distance accuracy per SNIa
 - ~ 1 SNIa each year per (30Mpc)³.
 - Therefore measure the distance of a shell of thickness 1,000 km/s with an accuracy of 100 km/s per year <u>independent of distance</u>, limited when systematics dominate (z~0.1?)
 - Measure Dark Matter distribution:
 - Monopole (Hubble bubble)
 - Multipole (large scale flows)
 - Also require follow-up of each SN
 - 2-3 epochs IR photometry
 - spectrum for typing and z

- Pilot project now underway with Shappee and Tully...

Large Scale Flows and Dark Matter

- Constrained N-body simulations can predict dark matter distribution from observations of large scale flows (e.g. Tully et al. Cosmic Flows).
- These can be directly tested (and improved) in 1 year of ATLAS SNIa observations.

Detections of very young supernova : shock breakout

- SN2016gkg : type IIb with progenitor detection AND very early lightcurve (shock breakout)
- Progenitor in HST pre-explosion image gives luminosity and mass
- ATLAS constrained explosion epoch (about 8hrs after explosion)
- Can use both to test progenitor mass, luminosity and radius and shock physics

Arcavi et al. 2017, Tartaglia et al. 2017, Kilpatrick et al. 2017

ATLAS17gqa : very unusual super-luminous SN

- ATLAS + PESSTO paper in prep (Chen et al.)
- Stunning x-shooter spectra, showing host of narrow <u>absorption</u> !
- Spectra + bolometric lightcurve : suggest pulsational pair instability supernova

Follow-up of LIGO-Virgo GW sources

- We showed in O1 and O2 : Powerful facility for finding bright, fast sources in LIGO-Virgo maps
- Discovered ATLAS17aeu (GW170104) fast transient within 24hrs of GW source
- Turned out to be the afterglow of a GRB but only 3rd time a GRB afterglow was detected without a high energy trigger
 63 Chile 190325

GW170817 : ATLAS limits pre-discovery, closest deep limits on the kilonova AT2017gfo

- ATLAS would easily have detected AT2017gfo, except our survey schedule had shifted away from the sun
- Kilonovae are detectable on ATLAS within ~100 Mpc
- Scolnic et al (2018): LIGO-Virgo rates of NS-NS mergers imply ATLAS should find 2 – 10 kilonovae per year, irrespective of GW trigger. ATLAS is the best survey for detecting kilonovae with no GW trigger
- McBrien et al. (in prep) : several candidates from 18 months survey, all foreground CVs, reliable volumetric rate estimate coming. Will provide independent constraint on NS-NS merger rates.

ATLAS Local Universe SN rates

- Lick Observatory SN Search (LOSS)
 - 10 year results (Leaman et al 2011, Li et al 2011)
 - 180 SNe within ~80 Mpc, volume limited sample
 - But targeted galaxy survey creates bias
- ATLAS initial results
 - 1.7 year period (mostly 1 telescope). No galaxy (metallicity) bias full volume: all SNe regardless of dwarf host (or no host evident)
 - 77 SNe within ~60 Mpc, volume limited sample
 - Each year we will equal LOSS statistics within ~80 Mpc (but no bias), good light curves and spectra for all
- Preliminary results
 - Agreement with LOSS rates, e.g. $Rcc = 0.48 \pm 0.07 \times 10^{-4} Mpc^{-3} yr^{-1}$

Quasars and ATLAS

- The "Milliquas 5.2" sample
 - ~0.6 million confirmed QSOs
 - ~1.3 million suspected QSOs
- ATLAS DR1 (Dec>-30)
 - Light curves for ~10⁵ brighter than R~18 $\frac{1}{2}$
 - $\sim 1/3$ at m<15.5 are clearly variable
- ATLAS DR2 (Dec>-45)
 - Light curves for $\sim 2 \times 10^5$, better SNR, better time sampling, longer duration

More Opportunities

The data from ATLAS carries lots and lots of other science...

Gravitational Lensing

Microlensing

- Lots of generic microlensing events
- Near-field events: lensing star close enough to see lens and source separate (after a while)
 - m=18 expect ~40 mas/yr proper motion
 - Total expected is ~23 events per year at m<18, 58 events per year at m<19
- ATLAS will see ~30/yr total, and ~10/yr at high SNR and time coverage

• Strong lensing

- Expect ~40 AGN lensed at x3 or more, and ~7 AGN lensed at x10 or more.
- These are likely to have multiple images and accessible time delay

Results

Nobody has yet looked in our 500,000,000 detections...

70 Chile 190325

Galaxies

Low surface brightness

- ATLAS does very well for building up SNR at low surface brightness.
- Ongoing project to determine all-sky surface brightness to high accuracy in order to remove atmospheric glow and scattered light...

• Low metallicity

- ATLAS can search for H α and [OIII] at z<0.004
 - all-sky survey to $m_{AB} \sim 17$ (point source) in one night
 - $f \sim 2x 10^{-14} \text{ erg/s/cm}^2$ or $L \sim 10^5 L_{\odot}/\text{s}$ at 17 Mpc.
- Outbursts comparable to galaxy luminosity will be seen in substantial numbers
 - ~20 BH stellar accretion events (MV ~ -18) per year at 0.1 mag photometric accuracy

Results

Nobody has yet made a case for the observations...

72 Chile 190325

Unknown Unknowns from Fisheyes

Fisheyes monitor all sky continuously

 100mi separation disambiguates flashes that occur in the atmosphere

nth

- $m_{lim} \sim 7$ for $\Delta t < 1$ min
- m_{lim} ~9 for Δt <1 hour
- $m_{lim} \sim 10$ for $\Delta t < 1$ day
- m_{lim}~12 <mark>/</mark>

ATLAS expansion (late 2020)

Heather Flewelling, Planetary Defense Researcher

John Tonry, ATLAS Pl

Larry Denneau, Co-Pl

Brian Stalder, Postdoc (now with LSST)

Ken Smith

Ari Heinze, Postdoc

Stephen Smartt

Henry Weiland, Observatory Tech

The ATLAS Team

• IFA Manoa

- John Tonry
- Larry Denneau
- Andrei Sherstyuk RIP
- Brian Stalder
- Ari Heinze
- Henry Weiland
- Jessica Young
- Karl Uyehara
- Amy Miyashiro
- Richard Wainscoat

• IFA Maui

- Mike Maberry
- Joey Perreira
- Tom McCall
- Garry Nitta

- IFA Hilo
 - Klaus Hodapp
- External
 - Armin Rest
 - Stephen Smartt
 - Ken Smith
 - Alan Fitzsimmons
 - Chris Stubbs
- Friends
 - Phil Whitney
 - Gareth Wynn-Williams
 - Chris Oliver
 - The STAC

Static Sky

- ATLAS observes most of the sky ~500 times per year
 - m~23.4 from one year stacked sensitivity at 5σ
 - ~3 mag fainter than POSS
 - ~1 mag fainter than SDSS
 - similar to PS1 3pi 3 year (but only 2 bandpasses)
- <u>But note</u> highly confused for static sources, although excellent for differencing
- <u>Unconfused</u> for variable sources: ATLAS has a sliding sensitivity into variability structure function:
 - m~20.6 at 1 day,
 - m~21.7 at 10 day,
 - m~22.9 at 100 day.

ATLAS-POSS-SDSS Comparison

79 Chile 190325

ATLAS: one year observation

SDSS

81 Chile 190325

Schmidt corrector saga: 150601 — 170419

- PSF ~ 3.7 pixels ~ 7.0 arcsec
- m_{lim} ~ 19

(All results in this talk are from the first telescope on HKO with blurry images. From now on we gain ~1 mag at fixed uncertainty or 2.5x smaller uncertainty at fixed mag.)

Schmidt corrector saga: 170420 -

- PSF ~ 2.0 pixels
 ~ 3.7 arcsec
- m_{lim} ~ 20
- PSF < 2 pixels?
 - Collimation
 - Detector tilt
 - Focus
 - Tracking
 - Dome seeing

(All results in this talk are from the first telescope on HKO with blurry images. From now on we gain ~1 mag at fixed uncertainty or 2.5x smaller uncertainty at fixed mag.)

Survey Speed

Tonry 2011, PASP 123, 58 84 Chile 190325

Survey Speed

Tonry 2011 PASP 123, 58

- M = "survey speed"
 A = aperture area
- $\Omega_0 = solid$ angle per exposure ٠
- ω = PSF area = "effective noise" footprint ٠
- ϵ = throughput efficiency •
- $\delta = duty cycle$ •
- μ = sky brightness ٠
- $S_1 = SNR$ per exposure
- Ω = total solid angle covered in t_{cad} m = detection magnitude ٠
- ٠
- t_{cad} = cadence for covering Ω

