（Microlensing Observation in Astrophysics）
（ New Zealand／Mt．John Observatory，Latitude：44＊S，Alt：1029m ）

MOA (until ~1500)

(the world largest bird in NZ)

O heighte 3.5 m
weight:250kg
Ocan not fly
Extinct 500 years ago
Maori ate them)

MOA-II 1.8m

(10 times as all moon)

Prime focus camera

Gravitational Microlensing ${ }^{\circ}$

planetary microlensing

Sensitivity of various methods

-RV
otransit

- Direct image
-MMicrolensing:
not rely on flux firorn host

-1-6 AU : beyond snow line -small planet: down to Earth -Faint star :M-dwarf, brown dwarf - No host : free floating planet -Far system: galactic distribution

Survey towards the Galactic Bulge

Probability:
\diamond why? $\quad \rightarrow$ Microlensing : $\sim 10^{-6}$ events/yr/star Planetary event: : $\sim 10^{-2}$

\Rightarrow need Wide Field for Many stars

Observational fields by MOLAA

An Exposure toward GB

Difference Image Analysis (DIA)

Observed
subtracted

Study the galactic structure \&

Optimize WFIRST microlensing survey fields by mapping the event rate

Event rate vary by a factor of 2 (peak is at $\mathrm{l}=1^{\circ}$)

1.7 Earth-mass planet in a binary system

 OGLE-2013-BLG-0341/MOA-2013-$$
\begin{aligned}
& \mathrm{D}_{\mathrm{l}}=911.00 \pm 0.07 \mathrm{kpc} \\
& \mathrm{M}_{\mathrm{c}}=0.121 \pm 0.009 \mathrm{M}_{\odot} \\
& \mathrm{M}_{\mathrm{h}}=0.113 \pm 0.009 \mathrm{M}_{\odot} \\
& \mathrm{M}_{\mathrm{p}}=1.66 \pm 0.18 \quad \mathrm{M}_{\mathrm{E}} \\
& \mathrm{a}=0.70 \pm 0.02 \mathrm{AU}
\end{aligned}
$$

Linear approximation of orbit

$\alpha(\mathrm{t})=\alpha_{0}+d \alpha / d t\left(t-t_{f i x}\right)$
$\mathrm{s}(\mathrm{t})=\mathrm{s}_{0}+\mathrm{ds} / \mathrm{dt}\left(\mathrm{t}-\mathrm{t}_{\mathrm{fix}}\right)$

$$
\left(\frac{\mathrm{KE}}{\mathrm{PE}}\right)_{\perp}=\frac{\left(r_{\perp} / \mathrm{AU}\right)^{3}}{8 \pi^{2}\left(M / M_{\odot}\right)}\left[\left(\frac{1}{s} \frac{d s}{d t}\right)^{2}+\left(\frac{d \alpha}{d t}\right)^{2}\right] \leq 1 \text { to be bound }
$$

MOA-2013-BLG-605: the Neptune analog planet $\mathrm{q}=3 \times 10^{-4}, \mathrm{~s}=2.3$,
Neptune or super Earth around Brown-dwarf

Short Binary Events

Wide-binaries ($d=2.2,1.2$) with planetary and brown dwarf mass ratios of $q=0.013$ and 0.047

Background: CV or moving objects

a CV gives a poor microlensing fit, often with low magnification and an unphysically bright source

Moving object $t_{1-11993}{ }^{\mathrm{m}_{-}-13,163536} \mathrm{t}_{\mathrm{k}}=0.000$

Moving object gives symmetric but unphysical microlensing fit, often with low magnification and an unphysically bright source

