Classification Spectroscopy

Nick Konidaris 9-Feb-2019 npk@carnegiescience.edu

The Carnegie Observatories

What is the US plan for spectroscopic classification in era of LSST?

"We'd all like more spectrographs, but I don't think we're going to get them."

Is Single-object Spectroscopy Necessary?

Science themes that require rapid classification

- Distribution of Matter at low redshift via velocity flows (Ia SNe) catalogs
 - => Are light curves sufficient for classifying?
- Local Death of Stars rate (Luminosity function of core-collapse SNe)
 - => Light curves sufficient?
- Clues to progenitors of supernovae (by routine, robotic and rapid spectroscopy)
- => Gut indicates that MOS is required
- TDE/AGN studies with TDA+MMS+SRG ("leave no nucleus behind")
 - => Rapid response spectroscopy?
- Flux-limited SNe sample: explore phase space, redshift completeness of galaxy
 - => Rapid response spectroscopy required
- A dedicated TDA+MMS facility? perhaps a TDA+MMS facility along with a stable of SEDM equipped telescopes?

Peter Nugent

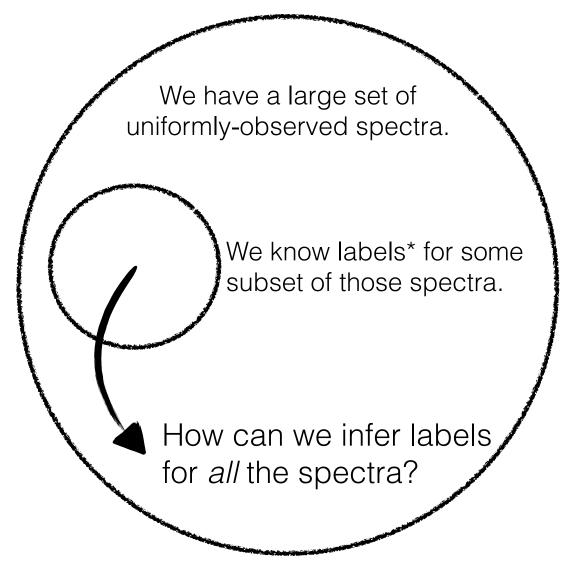
 Provide some history of early days of classification and how that weaves into the future

	Rapid response spectroscopy	MMS spectroscopy	Photometry
Velocity flows	Key science case?		
Galactic black holes		Seems required	AO?
CCSN Lum function			
Progenitor stars	Likely too inefficient	Seems required	
TDE/AGN studies			
Flux limited SNe	Key science case		
Flux limited galaxy sample		Seems required	Narrow band filters?

So how do we do better? What's special now?

- SED Machine is highly sought after and successful.
 Remember, before SED Machine existed the notion that a 1.5-m telescope would be a relevant rapid classification facility was suspect.
- There is a key technological improvement
- New business models
- Machine learning

Spectral Resolution

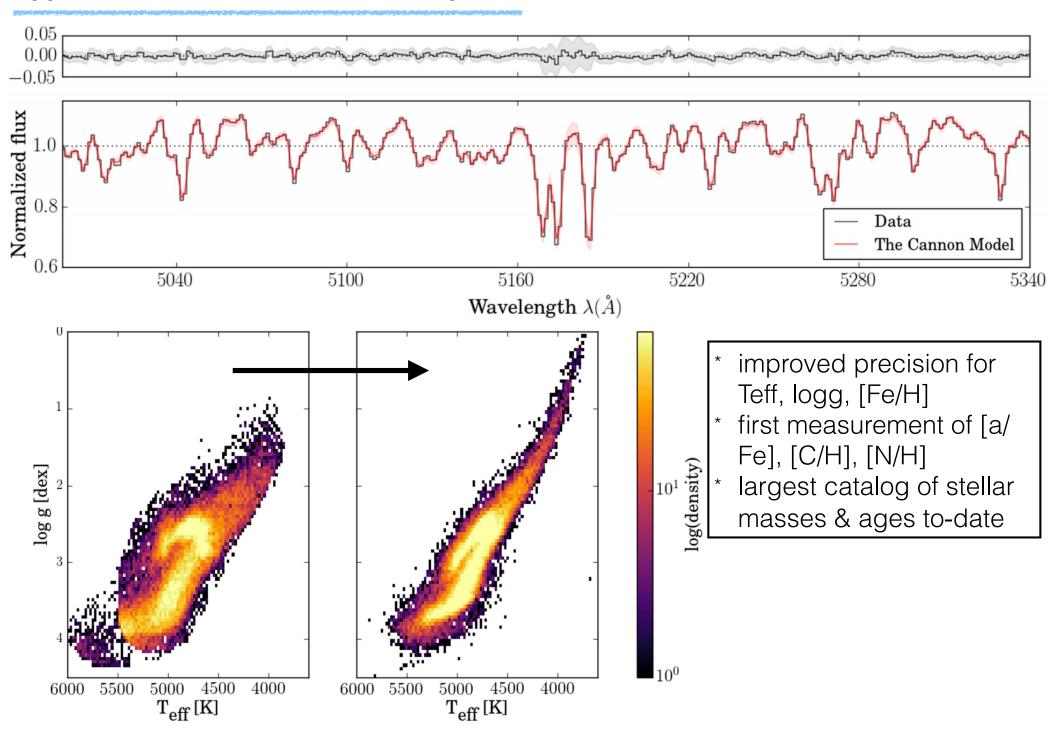

- When SED Machine started we picked spectral resolution by convolving various templates and running through various automatic classifiers.
- Robert Quimby (SDSU) showed that R~50 was probably OK but we picked R~100 to be safe.
- Anna Ho is an expert on the problem of "label transfer" and so I asked her to comment on how more modern techniques might be used.

Data-driven modeling in the era of large spectroscopic surveys

Ho et al. (2017a), Ho et al. (2017b)

with The Cannon team: Hans-Walter Rix, David Hogg, Melissa Ness, and Andy Casey

*physical parameters: temperature, logg, mass, individual element abundances...

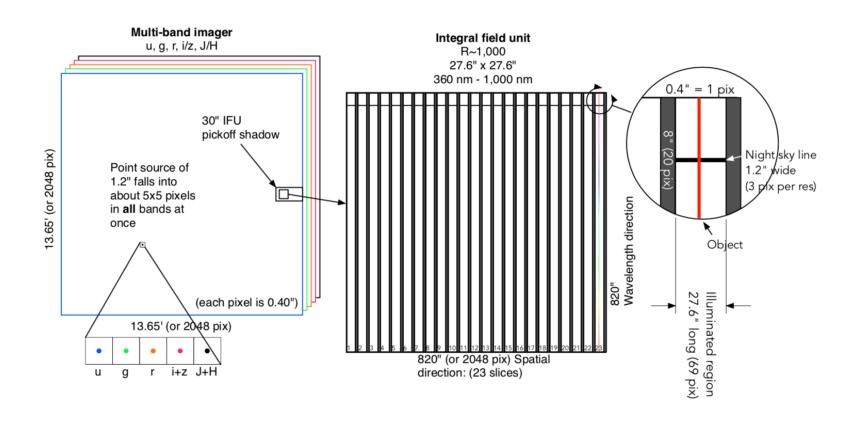

Motivation

- massively multiplexed stellar surveys are delivering spectra for millions of stars (LAMOST, APOGEE, GALAH, RAVE, Gaia, ...)
- quality of spectra cannot be captured by physical models
- labels should be a property of the object, not the spectrograph
- need to be fast
- high-resolution & high SNR —> demands on instrumentation & exposure time

Principles


- by simultaneously fitting all labels, can achieve comparably high precision at low resolution (Ho et al. 2017a&b, Ting et al. 2017, 2018, ...)
- by modeling noise, can achieve high precision at low SNR (Ness et al. 2015, Casey et al. 2016, Ho et al. 2017a, ...)
- at some lower bound (R ~ 100) estimates for labels become more correlated and estimates become less precise (Ting et al. 2017)
- can let the data improve our physical models (Ness et al. 2016, Casey et al. 2016)

Applications to R ~ 1800 LAMOST spectra


New Technology

- Despite SED Machine's success throughput is terrible. Many problems likely have to do with lenslet array.
- Carnegie Postdoc Rosalie McGurk is developing low cost slicer.

R²S²I

- Swope Telescope Rapid Response Spectrograph and Imager
- R~1,000 SED Machine + u through H imager

New Technology 2 — Low cost telescopes

- The cost of a telescope scales at least as D²
- The cost of N telescopes scales as N
- A 1-meter Planewave and SED Machine cost about \$1.3
 M in parts + labor (but no AIT or commissioning).
- If you buy enough Planewaves to have the same aperture aperture as a Magellan (6.5 m) the total cost is \$45 M USD.
- This is less than half the cost of a Magellan!
- This argument is old, likely as old as the photographic plate, but I think the science case is different today.

Business model

- Fund NRE through a single investment (partially funded via SED Machine NSF ATI and R²S²I).
- Institutions buy a telescope and instrument at \$1.5 M.

