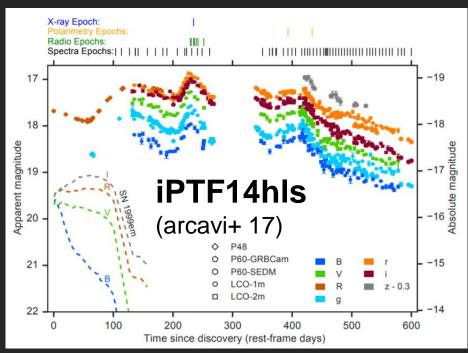

Exploring the phase space of extra-galactic explosions

Keiichi Maeda, Takashi Moriya, Kishalay De, Christoffer Fremling, Jian Jiang, Sang-Chul Kim, Takashi Nagao, Ryoma Ouchi, Masaomi Tanaka, Nozomu Tominaga, Xiaofeng Wang, Shotaro Yamasaki, Lin Yan

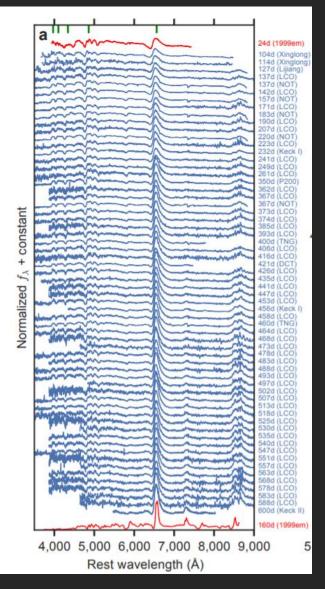
Phase Space

A Big Picture

- Census of energetic phenomena in stellar evolution.
- Toward Physics Understanding.

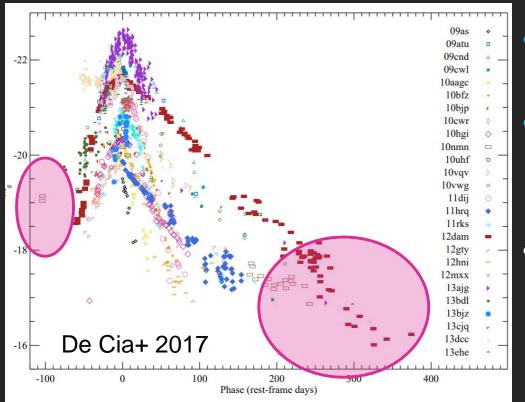

The SN rate in the local Universe

Some numbers


* Numbers for all sky

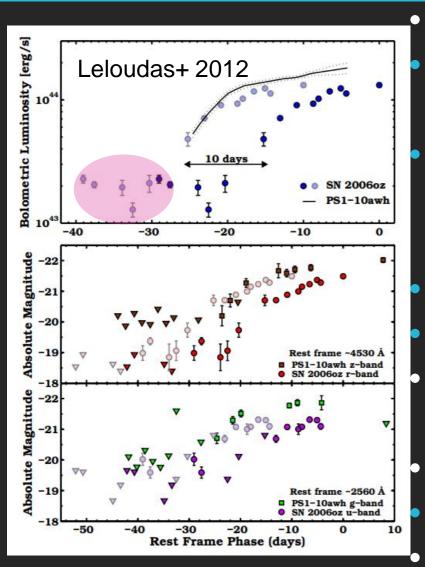
Distance (Mpc)	Volume (Mpc³)	# of galaxies	# of SNe (yr ⁻¹)	mag (abs mag -15 mag)	mag (abs mag -13 mag)
10	4 x 10 ³	40	0.4	15.0	17.0
30	1 x 10 ⁵	10 ³	10	17.4	19.4
50	5 x 10 ⁵	5 x 10 ³	50	18.5	20.5
70	1 x 10 ⁶	1 x 10 ⁴	100	19.2	21.2
100	4 x 10 ⁶	4 x 10 ⁴	400	20.0	22.0
200	3 x 10 ⁷	3 x 10 ⁵	3,000	21.5	23.5
500	5 x 10 ⁸	5 x 10 ⁶	50,000	23.5	25.5

Super/Ultra-long (14hls, IIn, ...)


- "Impossible supernova".
- What are they?
- How common?
- Even longer duration?
- ⇒ Still limited by the sample size.

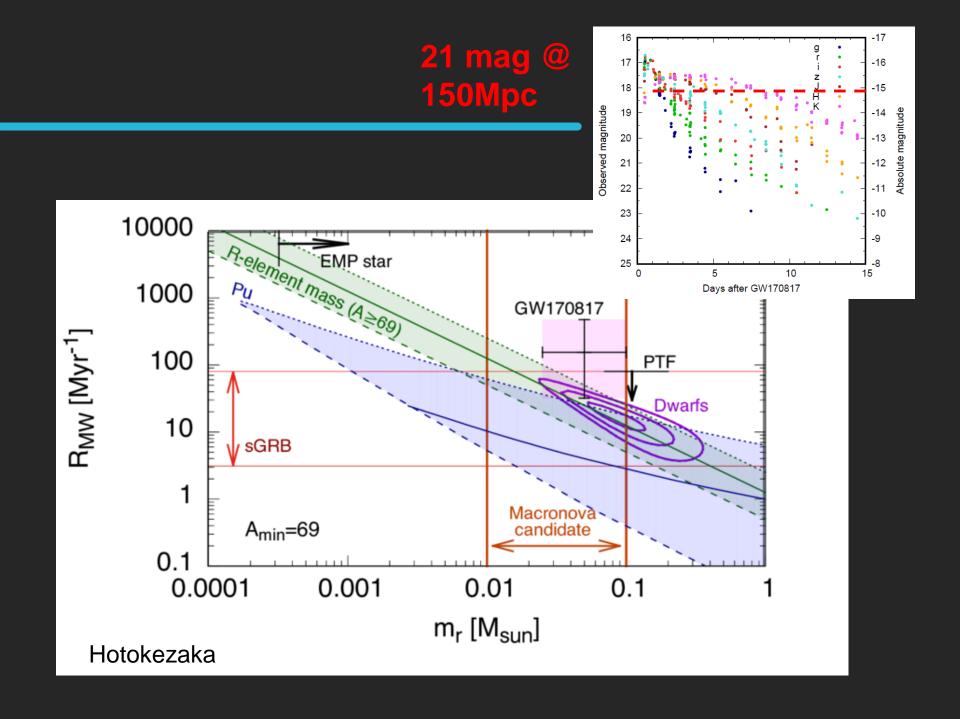
Super/Ultra-long (14hls, IIn, ...)

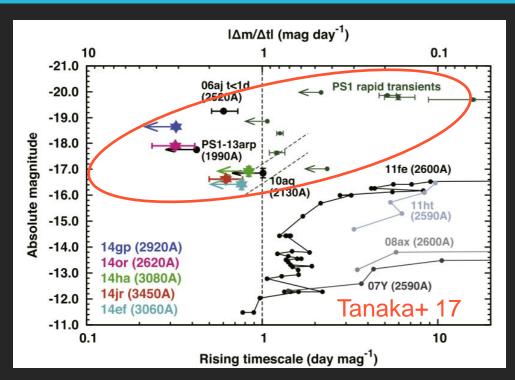
- More sample needed. ZTF (HSC =>LSST but too deep?)
- If -17 mag, then up to \sim 300 Mpc for m_{lim} =21 mag.
- If 0.1% of CCSNe, then ~ 5 / year expected by ZTF/public?
- Co-add survey data? 1 mag deeper⇒ x4 efficiency.
 - Exercise with archival long-baseline data (OGLE, Catalina)?
- Need a good strategy for identification.
 - Iln's are trivial if spectrum is taken.
 - 14hls-like. Simply rely on long-baseline light curve?
 - It might look like boring initially unbiased classification important (but ~ 21-22 mag). Is low-resolution classification sufficient? (also for nuclear transients?)


Super-luminous SNe, especially of type-l

- What are they?
- ⇒ Central engine(s)?
 - Magnetar, BH, or anything?

- Light curve:
 - Any model can do it.
- (Maximum) Spectra:
 - No really robust model.
- Go for data quality, not quantity (just LSST).
 - Nebular (direct physics).
 - Non-optical (radio, X).
 - Follow-up.
 - –Precursor.
 - Survey + follow-up.

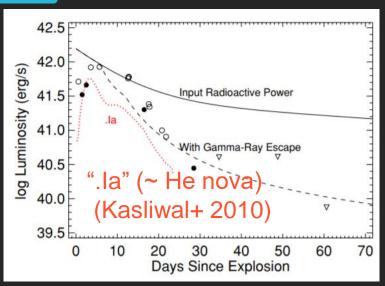

Precursors in SLSNe-I (and IIn/SN imposter)

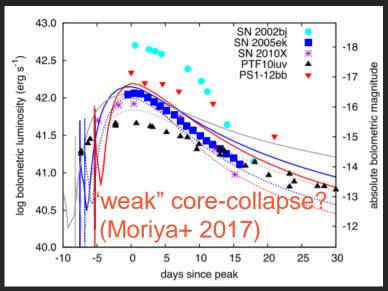

- ~50% of SLSNe-I (and most IIn?).
- Origin unclarified (pre-SN activity for IIn?).
- Unexplored may contain key information.
 - -19 mag for 10 days (~ SNe Ia). SLSN-I rate/SN Ia ~ 0.1-1%.
 - ZTF-public will likely be able to detect a few / year.
 - Confusion with "boring" SNe Ia? Spectra unknown. Blue.
 - **Unbiased classification or color?**

Kilonovae/Macronovae (NS-NS/BH mergers)

- Diversity, with a goal to identify if this is enough for the r-process. NS-BH?
- Trivial direction: Get more samples.
- Identify a robust candidate(s) without GW.
 - Even the ZTF-public survey is not enough?
 - Need (less-than) one-day cadence.
 - ZTF-private 21 mag, 6000 deg. Up to 150 Mpc?
 - Tomo-e (18 mag / 2 hrs, 19 mag / one day).
 - \sim 1000 SNe / year $\Rightarrow \sim$ a few / year???
 - Identification and follow-up? Must be quick (and NIR).

Rapid Transients (faint to luminos)

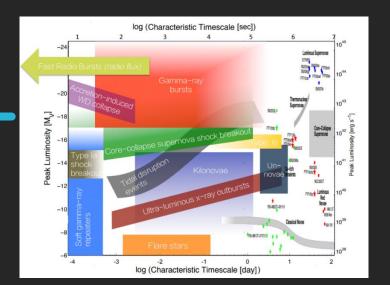



Origin(s)?

Multiple population?

Survey sufficient.

Quick follow-up key.


Rapid Transients

- (Unbiased?) Spectroscopy in the discovery night.
- A strategy NOT to miss these objects in rapid spectroscopic follow-up.
 - Unbiased classification.
 - Use of galaxy catalog?

- + Multi-phase + Multi-wavelength:
 - Deeper follow-up in the later phase? 8m KECK/Subaru
 (⇒Thermonuclear vs. CC).
 - UV, Radio and X-rays (⇒2018cow!).

Super-short duration

- If 2 hr, $R < ^{\sim}10^{14}$ cm.
- If 1 min, $R < ^10^{12}$ cm.
- New phase space.
 - ZTF: 21 mag / 2hr.
 - Tomo-e (CMOS): 18 mag / 2hr.
 - Tsinghua (CMOS, simulataneous 4 bands): 16 mag / 2hr.
- Once "repeating" objects are identified, go deeper.
 - Kyoto-Seimei: 3-band simultaneous CMOS to come.
 - CMOS on 8m?
 - Example: FRB (even simultaneous radio/optical).

Further unknowns for unexplored space

- Long and faint as another direction (weak, SN imposters, ...).
- Non-optical yet another direction (?).

- ZTF-like surveys should work, but we may further want dedicated surveys.
 - Failed-SN survey-like discovery strategy (deep and local)? LSST should in principle be able to do it.
 - NIR/IR wide-field survey (probably they are cool, may form dust)? WFIRST, PRIME, ULTIMATE-Subaru Etc.

Projects/Strategies (as a Summary)

	mag	Survey	Follow-up	Non-optical	Note
Ultra-long (e.g., 14hls-like)	21 22	ZTF-pub, 5 / yr Co-add 20 / yr	Unbiased 8m-class		"Boring" IIp
SLSNe, precursor	21	ZTF-pub, a few / yr	Unbiased or color	If possible	"Boring" la
SLSNe, main-late			8m	yes	Rare nearby
Kilo/Maclonovae	21	ZTF-private, a few / yr?	Unbiased or color	If possible	+GW trigger
Rapid transients	19		Unbiased or galaxy	yes	Deeper for Later-phase
Shortest	?	ZTF-private 2hr Tomoe even shorter	To see? CMOS	?	To see
Faint (and long)	>21	ZTF LSST	8m TMT/GMT		To see
Non-optical (NIR)	?	PRIME WFIRST, UltSubaru	8m, JWST TMT/GMT	Radio?	To see