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1 X-ray spectroscopy with CCDs

Photon counting CCDs can be used for X-ray spectroscopy in the absence of any dispersive
elements such as a grism or grating. When a high energy (keV) photon is incident on a
semiconductor device with a small bandgap (≈eV), a high energy “primary” photoelectron
is ejected. This primary electron ejects multiple other secondary photoelectrons through
branching processes such as collisions and lattice-interactions. The number of photoelectrons
generated (“yield”) can be used as a proxy for the energy of the incident photon. As the
branching processes involved are probabilistic, the yield follows a distribution. The variance
of the yield sets the energy-resolution of the detector. It is worth noting that lower energy
(∼eV) optical photons produce only a single photoelectron.

2 Simplified statistical model

This model was originally worked out by Fano (1947). Assume a photon of energy V0 is
incident on a semiconductor. This liberates a photoelectron with energy V0 (approximately).
The problem at hand is to compute the distribution of the number of ionisations this particle
generates while losing the fixed amount of energy V0. The mean number of ionisations
generated in this process is J0 = V0/ε, where ε is defined as the average energy lost in
generating a single ionisation pair.

Assume this particle loses energy V generating J ionisations in the process as it travels
a distance l. Then, in the next ∆l distance, it generates ∆J = (V0 − V )/ε ionisations. The
total fluctuations in J are given by J + ∆J − J0 = J − V/ε.

We can assume that the photoelectrons are produced in a group of N successive impacts
(collisions). If np and Ep are the number of ionizations and the energy loss at the p-th impact,
we can write J = ΣN

p=1np, V = ΣN
p=1Ep. Assuming all impacts are independent of each other,

np and Ep are random independent variables with mean values n̄ and Ē respectively. The
average ionisation energy is then ε = Ē/n̄.

The variance in J is given by 〈(J − V/ε)2〉 = N〈(n − E/ε)2〉. The number of impacts
N = V0/Ē = J0/n̄. This gives

〈(J − J0)2〉 = 〈(J − V/ε)2〉 = FJ0 (1)
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where

F =
〈(n− E/ε)2〉

n̄
(2)

is the Fano factor. If the number of ionisations at each impact were governed by a Poisson
distribution, then 〈(n − E/ε)2〉 = n̄ i.e F = 1 and 〈(J − J0)

2〉 = J0. However, collision
processes that give rise to each ionisation are not purely independent. For example, a single
collision could excite an electron into a higher atomic energy level rather than ionising it.
This can be followed by a different collision of lower energy that is now capable of generating
an ionised pair. This makes the variance lower than what we would expect in the purely
Poisson case.

Eq. 2 does not make any assumptions about the processes that occur on molecular
scales. Actual physical constants such as the relevant collisional cross-sections are required
to calculate the Fano factor using Eq. 2.

3 The Fano factor in semiconductors

Three important physical processses are modeled to calculate the Fano factor in semicon-
ductors

• Photon absorption - The probability that the incident photon is absorbed by an atom
depends on its energy. For instance, in Silicon there is a 92% probability of absorption
of radiation > 1.84 keV by K-shell electrons.

• Atomic relaxation - The excited atom loses its energy through a series of Auger and
fluorescence “cascade” processes.

• Electron energy loss - The ejected photoelectrons (primary and secondary) can lose
their energy by one or more of the following mechanisms

– Electron-phonon interaction

– Valence band ionisation

– Excitation of plasmons

– core L-shell ionisation

– core K-shell ionisation

These processes are probabilistic and best modeled using a Monte Carlo simulation such as
in Fraser et al. (1994). This enables the calculation of the Fano factor (F) and the average
ionisation energy (ε). Figure 1, taken from Fraser et al. (1994) shows the theoretically
calculated values for ε and F. Both these quantities depend on the incident photon energy,
ε ranges from 3.6-4.3 eV and F ranges from 0.14-0.18. These quantities also depend on the
detector temperature. Experimentally measured values of ε range from 3.6 - 3.8 eV and
those of F range from 0.08-0.17.
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Figure 1: Variation of ionisation energy ε (W) and the Fano factor (F) as a function of
energy. The breaks in the ionisation energy are caused due to resonant transitions of K and
L band electrons. Image taken from (Fraser et al., 1994)

Alternatively, we can estimate the Fano factor by using the following approximate argu-
ment 1. Given an incident energy is E0, assume there are Nx lattice interactions (producing
phonons) and Ni ionisations (producing electrons). On average,

E0 = EiNi + ExNx (3)

where Ei is the energy required for a single ionisation and Ex is the energy required for
a single lattice-phonon excitation. Assuming Ex << Ei, we can treat the phonon energy
levels almost as a “continuum” compared to the electronic/atomic energy levels. The lattice
excitations will obey an approximately Poisson distribution. The variance on Nx, σx =

√
Nx.

As the total available energy is constant, Ex∆Nx+Ei∆Ni = 0. This means any fluctuations
in energy deposition in one of the processes is balanced out by the fluctuations in the other.
Thus, the variance in the energy allocated to the two processes on average will be equal i.e

σiEi = σxEx (4)

Substituting from Eq. 3, we obtain

σi =

√
E0

ε

√
Ex
Ei

(
ε

Ei
− 1) (5)

where ε is the average total energy loss required to produce a single charge pair. It is
important to understand the difference between ε and Ei. Ei is the energy required to create

1Helmuth Spieler’s lecture on Introduction to Radiation Detectors and Electronics, 18-Mar-1999
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a single electron-hole pair, and is equal to the semiconductor bandgap. ε is the total energy
lost in the creation of a single charge pair, and can exceed Ei as some energy is also lost to
lattice vibrations. As the total energy available is E0, the number of ionisations Ni = E0/ε.
This gives

σi =
√
FNi (6)

where the Fano factor is

F =
Ex
Ei

(
ε

Ei
− 1) (7)

For Silicon, using Ex = 0.037 eV, Ei = 1.1 eV and ε = 3.6 eV, we get F = 0.08. The Fano
factor for Germanium is also ≈ 0.1.

4 Spectral Energy resolution of CCDs2

If an X-ray photon of energy Eγ is incident on a detector, the average number of photoelec-

trons generated is N = Eγ/ε. The variance is σ2 = F.N = F Eγ

ε
. If the detector readout

noise is σr, the total number of photoelectrons generated has a variance of
√
σ2
r + F Eγ

ε
. As

the average energy per photoionisation is ε, the energy resolution is

∆E = 2.35ε

√
σ2
r + F

Eγ
ε

(8)

The spectral resolution of the X-ray CCD is then E/∆E. The Fano-factor term depends
solely on the detector material and temperature. The other term is the system readout noise.
The readout noise depends on the readout frequency. Typical X-ray detectors have σr = 3−5
electrons (eg. 4.5 electrons RMS for XMM Newton). Figure 2 shows the dependence of
the spectral resolution on incident photon energy, assuming a Si detector with F = 0.115
and ε = 3.65eV. These numbers are consistent with that of moderate spectral resolution
instruments on missions like NICER, eROSITA and EPIC-MOS on XMM Newton. It is
evident that the spectral resolution of photon counting CCDs is limited to R< 100. This
resolution is enough to resolve elemental lines of Oxygen, Mg, Ti, Fe, etc. CCDs in the
X-ray photon counting mode can thus be used as moderate resolution spectrographs.

In order to reach higher resolutions, the “dispersed X-ray spectroscopy” method is used.
In this method, an energy-dispersive medium such as a diffraction grating is used. The
resolution is then set by this grating, and the dispersed light is read out by an array of
CCDs. Examples include the RGS instrument on XMM Newton (R200-800), HETG and
LETG (R 30-2000) on Chandra.
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Figure 2: Spectral resolution of photon counting CCDs, for 3 different values of readout
noise. This figure indicates that CCDs can be good moderate resolution spectrographs.
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