neee

'l

) 5 u
a2

Timing Neutron Stars

Edited by

H. Ogelman and E. P. J. van den Heuvel

NATO ASI Series

Series C: Mathematical and Physical Sciences - Vol. 262



Timing Neutron Stars



NATO ASI Series

Advanced Science Institutes Series

A Series presenting the results of activities sponsored by the NATO Science Committee,
which aims at the dissemination of advanced scientific and technological knowledge,
with a view to strengthening links between scientific communities.

The Series is published by an international board of publishers in conjunction with the
NATO Scientific Affairs Division

A Life Sclences Plenum Publishing Corporation
B Physics London and New York
C Mathematical Kluwer Academic Publishers
and Physical Sciences Dordrecht, Boston and London
D Behavioural and Soclal Sciences
E Applied Sciences
F Computer and Systems Sciences Springer-Verlag
G Ecological Sciences Berlin, Heidelberg, New York, London,
H Cell Biology Paris and Tokyo

i

Series C: Mathematical and Physical Sciences - Vol. 262



Timing Neutron Stars

edited by

H. Ogelman

Max-Planck Institute for Extraterrestrial Physics,
Garching, F.R.G.

and

E.P.J.van den Heuvel

Astronomical Institute and Center for High-Energy Astrophysics,
University of Amsterdam, Amsterdam, The Netherlands

Kluwer Academic Publishers
Dordrecht / Boston / London

Published in cooperation with NATO Scientific Affairs Division



Proceedings of the NATO Advanced Study Institute on
Timing Neutron Stars

Gesme, Izmir, Turkey

4-15 April 1988

Library of Congress Cataloging In Publication Data
Timing neutron stars : proceedings of the NATO Advanced Study
Institute held in Cesme, Izmir, Turkey, 4-15 April 19888 / edited by
H. Ogelman and E.P.J. van den Heuvel.
p. sm. -- (NATO ASI series. Series C, Mathematical and
physical sciences ; vol. 262)
Includes index.
1. Neutron stars--Congresses. I. Ogelman, H. II. Heuvel, Edward
Peter Jacobus van den, 1940- . III. Series: NATO ASI series.
Series C, Mathematical and physical sciences ; no. 262.

QBB843.N4TH5 1989
523.8--dc19 88-34265

ISBN-13: 978-94-010-7519-0 e-ISBN-13: 978-94-009-2273-0
DOI: 10.1007/978-94-009-2273-0

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Ali Rights Reserved

© 1989 by Kluwer Academic Publishers

Softcover reprint of the hardcover 1st edition 1989

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photo-
copying, recording or by any information storage and retrieval system, without written
permission from the copyright owner.



TABLE OF CONTENTS

0 0] X iz
LIST OF PARTICIPANTS . ctuttittintineeatanersesnrennsoncssnsensesassssonacns z
CONFERENCE PHOTOGRAPH . .. .tittitiiieiiianinnsesansnsssseasasncnnesns zv

I. TIMING NEUTRON STARS: GENERAL TECHNIQUES AND APPLICATIONS

D.C. Backer: Pulsar timing. .....oourneeeeiineeeenietenraceasesrasensassones 3
J.H. Taylor: Timing binary and millisecond pulsars ....................... 17
M. van der Klis: Fourier techniques sn Xeray timing ........ccoevvennnennn. 27

G.E. Morfill et al.: Deterministic chaos in accreting neutron star systems.. 71
R. Buccheri and O.C. de Jager: Detection and description of periodicities

tn sparse data. Suggested solutions to some basic problems .............. 95
R.W. Romani: Timing a millisecond pulsar array .........c.ccvevviuane.. 118
R.J. Dewey and J.M. Cordes: The scaling of radio pulsar timing nosse

WILR SPIN PATAMELErS .ottt ittt eieteetenueenrenssancenconcssneennns 119
R.S. Foster and J.M. Cordes: Simulation of interstellar scattering effects

On PUlSAr LIMING ...ttt ittt inateeatneannrancanesansanesancan 125

II. OBSERVING NEUTRON STARS: RADIO - X-RAYS - GAMMA-RAYS

II-1. RADIO
F.G. Smith: The radio emission from pulsars ...........cccoeeeiiinennnn 183
J. McKenna: A timing analysis of the Clifton and Lyne pulsars .......... 143
F.G. Smith: Slowdown rate and oscillations in the Crab pulsar ........... 158
J.D. Biggs et al.: A search for millisecond pulsars in globular clusters .... 157
A.S. Fruchter et al.: A millisecond pulsar in an eclipsing binary .......... 163
I1I-2. X-RAYS
H. Ogelman: X-ray observations of accreting neutron stars ............... 169
J. van Paradijs: Galactic populations of X-ray binaries ................... 191
J. McClintock: Transient X-ray sources with late type companions ........ 209
H. Atmanspacher et al.: Chaotic dynamics in the X-ray variability
L B ¢ 0. € 219
M. Auriére et al.: The X-ray source in the core of 47 Tucanae ............ 225

P.A. Caraveo et al.: A new 60-msec X-ray pulsar and its massive
Early-Type companion .........ocieeiiereeeineeseennenerensrosennsonss 248



vi

EM.F. Damen: Non-Planckian behaviour of burst spectra: dependence

of the blackbody radius on the duration of bursts ...........cccvvuenn... 251
M.R. Garcia: X-ray spectral variability of low-mass X-ray binaries ........ 257
S. Kitamoto and S. Miyamoto: Fractal and Chaotic time variation in

CYgnus X-q ... iiiiiiininntnereeseneenoresneessoscanasaosssnssnsssnnas 267
L.M. Kuiper: Analysis of the optical orbital lightcurve of the

black hole candidate LMC X-8 ........cuiuiiiiiiiiiaeinenrneananannns 277
A.N. Parmar et al.: The luminosity dependence of the pulse period and

profile of the transient X-ray pulsar EXO 2080+875 ..........ccc...... 283
N. Schulz et al.: Spectral classification of bright LMXB’s with

color-color diagrams ...............iveieiiiiiieiiiii i 295
A. Mastichiadis: X-rays from a possible pulsar in supernova 19874 ....... 305
J.J.M. in 't Zand et al.: X-ray observations of SN1987A with a coded mask

TMAGING BPECLIOMELETr ... vvee 'ttt eeieneerneesensseenssosssssncncsnsnss 817
T. Zwitter and M. Calvani: SS483: a black hole candidate? .............. 825

II-3. GAMMA-RAYS
M. Ruderman: Solitary neutron stars as gamma-ray sources .............. 829
B. Agrinier et al.: Balloon observation of the Crab pulsar in the energy

range 0.8-6 MeV ........ ... i ieiiiiiiiiiniiinerariraeneannnnnenss 848
W. Hermsen and I.A. Grenier: Production sites and mechanisms of

discrete gamma-ray components of the Vela and Crab light curves ...... 347
M.E. Ozel: New time signatures in neutron stars and pulse-height

varability in Crab ...........iiiiiiiiiiiiiiiii i e 857
G.F. Bignami et al.: Search for linear polarization in high energy

GOAMIMEB-TAY SOUFCES .o vvvssaretaasonsenaseeaseeoeososesneonsassosssnsnes 863

A. Carraminana et al.: VHE gamma ray emission from Centaurus X-8 ... 369
P.W. Kwok et al.: Observation of TeV gamma-rays from the Crab nebula

and PSR 0581 ........onniiniitiii ittt it 875
H.L Nel et al.: PSR 1509-58: a possible outer gap gamma ray source ..... 383
F.G. Smith: The origin of high-energy radiation from the Crab

PUIBAT o i i e i e e et 389

II-4. FUTURE PROGRAMS

H.V. Bradt and J.H. Swank: Future U.S. X-ray programs related to

UMING NEULTON SLaTS ..o ..veue ettt eeieeeieeerierieerneeneenannnn. 393
G. Hasinger and J. Trimper: Future European programs in X-ray
ABITONOMY oottt ettt ie e teeeaneienenraeasanann, 407

R. Buccheri and V. Schénfelder: Prospects for pulsar searches with
gamma ray observatory GRO .........coviiiiiiiininenrnenninenennannss 419



III. INTERNAL STRUCTURE OF NEUTRON STARS

M.A. Alpar: Instde neutron stars .........oeeviiieernernneineonueenasnnns
M.A. Alpar and D. Pines: Vortez creep dynamics: theory and
ODSErVALIONS .. ...oiii i et e
J. Sauls: Superfluidity in the interiors of neutron stars ...................
J. Ventura: Radiation from cooling neutron stars ............cocvvvvuvnnn.
K.S. Cheng et al.: A model of pulsar timing notse ........................
H.Y. Chiu: Soliton stars and the cosmic X-ray background ...............

1V. BIRTH AND EVOLUTION OF NEUTRON STARS

E.P.J. van den Heuvel: Stellar evolution and the formation of neutron

SLArs 1N DINArY SYSLEMS oottt rititen e ttieieieeneateneinennanaanas
R. Méonchmeyer and E. Miiller: Core collapse with rotation and

neutron star formation .............c..ciiiiiiiiieiia it
R.J. Dewey: Neutron star evolution and the birth properties of

TAAI0 PUISATS . vttt ittt iiiecatataneasatetioatetsaiianaanaes
F. Verbunt: X-ray binaries and radiopulsars in globular clusters ..........
D.G. Blair and B.N. Candy: The evolution of pulsars ....................

M. Bailes: The origin of pulsar velocities and the velocity magnetic

moment correlation ...........iiueieieeniiiiineaneneiaiaieiieeieenes
R. Canal et al.: The white dwarf - neutron star connection ...............
W. Kluzniak et al.: Pulsar turn-on and secondary evaporation

tn the pulsar 1957420 binary ........ovineiiieneiiiioensinrneinennnnns

V. MAGNETOSPHERES, ACCRETION PROCESSES AND COLUMNS

F.K. Lamb: Accretion by magnetic neutron stars .........................
H. Herold et al.: Self-consistent modelling of pulsar magnetospheres ......
N.D. Kylafis and E.S. Phinney: Smearing of X-ray oscillations by

electron SCattering .......covveiieeeneienreerenreneronssasennsensecnerns
T. Maile et al.: Iterative scattering approach to radiative transfer .........
A. Rebetzky et al.: Radiative transfer in optically thick plasmas

Of Gceretton colUmms ... cuuvueieiiiiieeereneeneeaceronsannsaneneenes
V. Demmel et al.: A model for spherically symmetric accretion

ONto NEULYON SLATS ... viniiitinniieseronssssoteeasessossssstsscnsanans

SUBJECT AND OBJECT INDEX ....ceiutiiernnranennerancsacennrensnnnecnncns

vii



PREFACE

The idea for organizing an Advanced Study Institute devoted largely to neutron
star timing arose independently in three places, at Istanbul, Garching and Amster-
dam; when we became aware of each other’s ideas we decided to join forces. The
choice of a place for the Institute, in Turkey, appealed much to us all, and it was
then quickly decided that Cegme would be an excellent spot.

When the preparations for the Institute started, early in 1987, we could not
have guessed how timely the subject actually was. Of course, the recently dis-
covered QPO phenomena in accreting neutron stars and half a dozen binary and
millisecond radio pulsars known at the time formed one of the basic motivations for
organizing this Institute. But none of us could have guessed that later in 1987 we
were to witness the wonderful discovery of the binary and millisecond radio pulsars
in globular clusters and, - as if Nature wished to give us a special present for this
Institute- the discovery in March 1988 of a millisecond pulsar in an eclipsing binary
system, the first eclipsing radio pulsar ever found, and the second fastest in the
sky! The discussion of this pulsar, its formation and fate was one of the highlights
of this meeting, especially since its discoverers were among the participants of the
Institute and could provide us with first-hand information.

In all wavelength domains, from radio waves to X- and gamma-rays, the time
structure of the signals from neutron stars contains a wealth of physical information
about these objects, their interiors and magnetospheres. Without exaggeration,
it can be said that timing is the most powerful and universal tool in the study
of neutron star physics; major advances in our understanding of neutron stars
including their discovery have come through the investigation of their temporal
structure. A few examples suffice to illustrate this:

- Measurement of radio pulsar spin-down rates yields the strength of neutron star
magnetic fields and, through the braking index, provides valuable information on
the magnetospheric processes that produce the pulsed radiation.

- Observation of the time structure of glitches from radio pulsars yields valuable
information about the superfluid neutron star core and about the coupling between
this core and the solid crust.

- Doppler tracking of binary X-ray pulsars and their companions and radio pulsars
is our only way to obtain quantitative information on neutron star masses, while
the spin-up of X-ray pulsars teaches us much about the mass transfer and accretion
processes.

- The extreme stability of the pulse periods of radio pulsars allows one to use
pulsars in binary systems as probes to testing general relativity to unprecedented
accuracy. The detection of gravitational-wave-induced decrease of the orbital period
of the Hulse-Taylor binary pulsar PSR 1913+16 is the prime example, convincingly
demonstrating the existence of gravitational radiation as predicted by Einstein’s
general relativity theory.

- A new dimension of accuracy was added to timing, by the discovery of the 1.55
millisecond pulsar in 1982. The few “standard” general and special relativistic
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corrections to pulse arrival times that always had to be applied to account for
the motion of the Earth in its elliptical orbit around the Sun, turned out to be
insufficient in this case. An entire series of additional relativistic solar system clock
correction terms had to be added, to do full justice to this pulsars’s intinsic clock
accuracy. This pulsar now has turned out to be the most stable clock available to
man!

- In the X-ray domain, timing of X-ray burst sources and of QPO has added new
dimensions to the study of the underlying objects and of the accretion processes
taking place close to the neutron star surface - eventhough, as yet, we do not have
a full understanding of QPO.

We have attempted to have good mix of theory and observation as well as
tutorial and current research aspect in the lectures, and thanks to the lecturers, we
feel that we have come close to achieving this goal.

This Institute could not have been possible without the grant of the NATO Ad-
vanced Study Institute Program; we thank the committe for their generous support.
We also thank the Turkish Scientific and Technical Council, TUBITAK, for being
cooperative and helpful in the extension of the grant to local participants. Two of
our collegues, Ali Alpar and Jan van Paradijs deserve special thanks for helping
us in all phases of the organisation as well as in editing of the proceedings. The
excellent support of the local organizing committee was crucial in the success of the
Institute. We thank Joachim Triimper for helping support the Institute by making
possible a sizeable participation from the Max-Planck Institute. The management
of the Altin Yunus Hotel provided several free rooms for some of the non-NATO
participants for which we are grateful. We thank Mrs. W. Frankenhuizen for tak-
ing care of a large fraction of the pre-conference organisation, Nedim Ogelman for
typing parts of the manuscript, and Andreas Langmeier for preparing the subject
and object index.

H. 6gelman, Garching
E.P.J van den Heuvel, Amsterdam
September 1988
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I. TIMING NEUTRON STARS:
GENERAL TECHNIQUES AND APPLICATIONS



PULSAR TIMING

D. C. Backer

Astronomy Department and
Radio Astronomy Laboratory

University of California

Berkeley, CA 94720

USA

ABSTRACT An introduction to the methods of measurement of radio pulse arrival times and some
recent results.

1. INTRODUCTION

Following the discovery of pulsars in 1967 a number of extensive pulse timing programs were initiated.
The first wave of timing included efforts at Arecibo Observatory, Jodrell Bank, Parkes, the University
of Massachusetts, and the Jet Propulsion Laboratory.

In the past several years a number of new programs have been initiated. In these proceedings
you will find reports about many of these programs. The excitement in the new efforts is divided
between deeper investigations of the neutron star structure in young pulsars, and the use of old, yet
short period pulsars as celestial clocks to conduct fundamental physics experiments.

My goal is to introduce the experimental methods of pulsar timing. I will conclude with a
few results from recent work. Taylor’s contribution in these proceedings continues this topic with
particular attention on the celestial clock topic.

2. TIME OF ARRIVAL MEASUREMENT
2.1. Signal Averaging

The primary data recorded in most timing observations is a series of average pulse profiles with the
averaging interval in the range between 1 and 20 minutes. Each profile is the result of folding the data
samples modulo the apparent pulse period. Time resolutions range from 0.0002 (e.g., Downs and
Reichley 1983) to 0.015 (e.g., Davis et al. 1985) periods. The data are often sampled synchronously
with the apparent period so that folding is simply modulo a fixed number of samples, e.g., 1024.
In other cases hardware constrains the sampling interval to asynchronous values. Folding this data
requires computation of the pulse phase with respect to the first sample, depositing the sample in
the correct pulse phase averaging ‘bin’, and incrementing a counter that keeps track of the additions
in each bin for subsequent normalization.

The apparent period is predicted from previous estimates of the pulsar parameters and an
ephemeris of the earth’s motion (see section 6). The precision required is such that the smearing
of the pulse during the multi-minute averaging interval is significantly less than the arrival-time
estimation error expected for each profile.

The reading of the observatory time standard at the time of the first sample of each profile
is recorded. The estimation of the arrival time of the first pulse following this time is discussed in

3
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section 2.4. In some observations each profile is started at a fixed phase within the apparent pulse
period. In other cases observations begin at a fixed time such as an even 10s, or even at a random
time.

2.2. Differential Dispersion Removal

Dispersion of pulsar signals by thermal electrons in the interstellar, and interplanetary, media must
be removed from the observed bandwidth of radio signals to obtain a desired resolution. Alternatively
the bandwidth could be reduced to limit dispersion, but this reduces sensitivity as discussed in the
next section. The time smearing that results from a given bandwidth b at a given radio frequency
v, for a given column density of electrons, or dispersion measure DM is

DM (pc cm™2)b(MHz)
3 v3(GHz)

For example, if DM = 35, b = 1, and v, = 1.4, then §t = 100us. If we want 128 bins per period,
then these parameters would limit observations to periods in excess of 12.8 ms. Hankins and Rickett
(1975) discuss signal processing techniques for improving resolution by dispersion removal.

An approach that allows high time resolution and wide total bandwidth uses a multi-bandwidth
receiver. Many narrow channels defined by a bank of filters are sampled and synchronously averaged
as described above. The relative dispersion between these channels is removed with respect to a
fiducial channel in post-observing analysis. The center frequency of the fiducial channel becomes the
effective frequency of the observation. The center of the band is recommended. Rawley (1986) con-
structed a bank of signal averagers that allow each filter bank output to be independently averaged
for precise removal of dispersion.

At Berkeley we have developed an alternative approach which uses a digital correlator for the
multichannel analyzer. The output of the correlator is synchronously averaged just as with the filter-
bank approach. In post-processing we fourier transform the pulse-phase resolved correlation functions
into the frequency domain before dispersion removal. The digital correlator has the advantages of
bandwidth agility and stability. Figure 1 illustrates the steps involved in this approach to pulsar
timing. The digital correlator technique has been implemented both in our digital signal processor
which is devoted to pulsar research, and at Arecibo in their general purpose, 40-MHz correlator.

At=83p

Alternatively the dispersion may be removed in real-time by a hardware device. Orsten (1970)
and Boriakoff (1973) describe devices that operate on a bucket-brigade principle. These devices are
limited by their individual filter response times; At cannot be reduced below 1/2b. Further effort at
reducing the effects of dispersion requires processing of pre-detection data. The differential dispersion
can be treated as a filter, and the inverse filter can be applied to the data. This is regularly done
in chirped radar systems for chirps that are considerably less than those imposed by the interstellar
medium. The inverse filter approach has been implemented both in software (Hankins 1971) and
more recently in hardware using a surface acoustic wave filter (Hall, Hamilton and McCulloch 1985)
and using a integrated circuit transversal filter (Hankins, Stinebring and Rawley 1987).

The dispersion can also be removed from a narrow band of signals by sweeping the local
oscillator synchronously with pulse path in the frequency-time domain. This technique converts
radio frequency into pulse phase. McCulloch, Taylor and Weisberg (1979) implemented this technique
using a digital correlator. Biraud (1987 personal communication) in France is developing a similar
system for millisecond pulsar timing.

2.3. Sensitivity

The sensitivity of a pulsar timing observation is dependent on both telescope and receiver parameters
as well as pulsar parameters. The standard equation for the radiometer sensitivity is:

(L+T+T) k

AS(Jy) = Fm(NPN,bT)O'S A—y;,
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Figure 1 Data analysis for pulsar timing of PSR 1933416 with the Berkeley correlator at NRAO
Green Bank 300ft: (a) phase-resolved, time-averaged correlation function; (b) data after delay-radio
frequency transform; (c) dispersion removed; (d) profile from average over radio frequency.

where F = clipping factor (1.2); T, = receiver temperature (1-50K); 7, = spillover and scattering
temperature(10-35K); T3 = background temperatures (1.7K sec(elev) + (1-10K) v=27 4 2.7K); N,
= number of polarizations (2); N, = number of spectral channels of width & (64); r = integration
time (250s); A, = geometric area of telescope (10*m?); 7 = aperture efficiency (0.5). The parameters
suggested above lead to values of AS in the range from 0.1 mJy to 1.0 mJy.

Pulsar flux densities are normally quoted in terms of the equivalent continuum flux density
< 8 >. The arrival-time error is roughly equal to the pulse width W divided by the signal-to-noise
ratio of the pulse peak detection when optimally sampled. The pulse peak is then < .S > P/W,
where P is the pulse period. The signal-to-noise ratio uses the radiometer equation above with the
integration time reduced by W/P. The resulting arrival-time error is:

_ W1.5 AS
T PO <S>
The strong dependence of 6t on W is reduced when the resolution of an observation is dispersion

limited owing to the dependence of 65 on the channel bandwidth which is determined by the reso-
lution.

At

2.4. Time-of-Arrival Estimation

The next step in the analysis of timing data is estimation of the pulse arrival time within the averaged
and dedispersed profile, typically an array of 64-1024 numbers. This step is usually accomplished by
cross-correlation of the observed profile with a template profile. Estimation of the maximum of the
cross-correlation function using a polynomial fitting algorithm gives the delay offset of the profile
with respect to the template. This procedure is equivalent to a Chi-squared minimization between
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the template model and the observation, and is an example of the matched filter approach to signal
estimation. The template is formed iteratively from the observations themselves. A delta function or
triangle template can be used to make the initial period estimates; then the period estimate can be
used to accurately phase individual observations to create a nearly noise-free template. Alternatively
the pulse waveform can be modeled by a set of components; this is particularly useful for profiles
that depend strongly on radio frequency owing to interstellar scattering (Rankin et al. 1970 and
section 5.1 below).

An equivalent approach is to work with phases of the fourier components of the pulse profile.
The phases, when corrected for the structure phase by subtracting the corresponding template phase,
can be weighted and averaged to estimate the arrival time. Although this approach is equivalent to
the cross-correlation technique (Backer 1985), there are some operational advantages (Rawley 1986).

The time offset determined in the analysis discussed above is then added to the start time of
the first sample to obtain the observatory, or topocentric, arrival time. The offset between the first
sample and some fiducial mark on the template profile must be added for accuracy and specificity.
It is advisable to add an offset of an integral number of periods equal to about half the integration
time to refer the observation to the midpoint just as the frequency was referred to the middle of the
band.

2.5. Pulse Profile Stability

The discussion in the preceeding sections ignores the fact that pulsar emission is very erratic from
one pulse to the next. Many time scales of variations exist (see summary in Manchester and Taylor
1977). The average pulse profile reaches a stable, reproducible form when the average extends over
hundreds of pulse periods. This stability is essential for measurement of the stellar rotation with
precisions reaching 0.001 periods or less. The reproducibility of the pulse profile patterns in each
pulsar require a stable system of currents that are responsible for the radio emission.

Several authors have investigated the how the individual pulses approach the stable profile
that is used in timing stellar rotations (Helfand, Manchester and Taylor 1975, Downs and Krause-
Polstorff 1986). Figure 2 demonstrates the rapid decrease with averaging time of the mean-square
deviation of pulse averages from the ensemble average.

3. ‘TIME’ CORRECTION
3.1. Atomic Time and Terrestrial Time

Our observatory arrival time are ultimately referred to a terrestrial standard atomic time. The
atomic time standard is defined by

“The second is the duration of 9,192,631,770 periods of the radiation corresponding to the
transition between two hyperfine levels of the ground state of the Cesium-133 atom.” (13th CGPM
1967).

Guinot (1988) has recently summarized the development of International Atomic time (TAI).
This standard is an ensemble average of the individual realizations of atomic time (AT) at standards
laboratories around the globe. The weights given to each vary according to an assessment of their
stabilities. Some laboratories operate a bank of commercial Cesium clocks and take the ensemble
average to define their local AT scale. Adjustments are made based on comparison with TAL Other
laboratories have in addition to a cesium clock bank a primary standard so that they can realize the
standard given in the above definition to within a measurable tolerance.

The comparison between the scales at various standards laboratories requires a correction for
relativistic effects (Ashby and Allan 1979). The reduction is to mean sea level of the equipotential
geoid. The proposed nomenclature for this scale is evolving from Terrestrial Dynamic Time (TDT)
to simply Terrestrial Time (TT) (Guinot and Seidelman 1988).

3.2. Time Transfer

The comparison of atomic time scales between standards laboratories and the use of an atomic time
at a remote site requires a system of time transfer. There are a number of systems for time transfer.
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Figure 2 Stabilization of profile with increasing integration time (from Helfand et al. 1975).

Each has a different accuracy or other limitation. These systems are discussed in NBS Monograph
140 (1974).

In the US millisecond-level time transfer is done using HF transmissions of WWYV from Ft.
Collins, CO, and WWVH from Hawaii at 2.5, 5, 10, 15 and 25 MHz. Signals propagate by line of
sight and by reflection off the ionosphere over distances of 1000’s of kilometers.

The US Navy maintains cesium standards at the transmission sites of the LOng RAnge Navi-
gation C system (LORAN C) around the globe. These signals at 100 kHz propagate up to 1500 km
as surface waves and provide microsecond level time transfer.

The most recent development in time transfer is the Global Positioning Satellite system (Allan
et al. 1985). These US DoD navigation satellites have cesium clocks on board. The orbital period
of the satellites is about 24 hours, and the plan is for a web of 18 satellites circling the globe. The
time information from these clocks is transmitted at frequencies near 1.5 GHz. The epochs and rates
of the individual cesium clocks are monitored at the standards laboratories so that a extrapolated
correction can be sent up to the satellites for transmission. Time is transferred at the level of 100
ns by this means. If a given satellite is observed by two parties simultaneously, then time can be
transferred from one site to the other at the level of 10 ns. This ‘common-view’ technique requires
precise application of relativistic principles (Allan, Weiss and Ashby 1985).

3.3. Barycentric Time

The time scale kept by an earth-based clock does not flow uniformly with respect to an external
observer owing to the combined effects of gravitational redshift and time dilation. The elliptical
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orbit of the earth leads to a variation of the epoch of an earth clock with respect to an external
observer with an amplitude of 1.6 ms and a period of one year. The corresponding variation that
results from the moon pulling the earth in and out of the solar potential has an amplitude of 0.5 us
and a period of about 29 days.

Barycentric Dynamical Time (TDB) is defined to remove these periodic variations that result
from relativity (USNO 1984, Chandler 1985, Backer and Hellings 1986). The time scale that results
is that of a clock in a circular orbit about the sun at one astronomical unit. This definition is chosen
so that TDB runs at nearly the same rate as TDT, and has only small deviations in epoch, i.e.,
much less than 1.6 ms. For the pulsar timing analysis a cleaner definition would be to define a time
scale that removes the solar system effects completely (Backer and Hellings 1986). TDB effectively
does this since the difference between TDB and a true clock at rest in the barycenter of the solar
system is a uniform rate which can be absorbed into the definition of the second.

Operationally the conversion from TDT to TDB is done by an ephemeris for time similar to
the ephemeris for position that will be discussed in the next section. There is no conceptual difficulty
is this process — it is a straightforward application of the equivalence principle and special relativity
that can be performed with adequate precision for pulsar observations. The differential rate that
includes the effects of all solar system masses and motions is first integrated to give the difference
between the true barycentric clock and TDT. Then a linear term that represents the mean rate is
removed to leave the periodic terms. The interval over which the linear term is removed is presently
a matter of choice: 100 years (Hellings 1985) or 59 years which is near twice Saturn’s period and
five times Jupiter’s (Chandler 1985). Fairhead (1987) has developed an analytic approach applicable
over a few thousand years.

3.4. Stability

Observations of PSR 1937+21 now rival the stability of atomic clocks over intervals of a year or more
— 107! or 0.3us over one year (Allan, Ashby and backer 1985; Rawley et al. 1987). This topic will
be discussed at further length in the lecture by Taylor. The stability of atomic time scales will not
limit the timing of an array of millisecond pulsars since they can be compared to each other. This
is discussed below in section 8.

4. ‘SPACE’ CORRECTION
4.1. Earth Ephemerides

After correcting the pulse arrival time to TDB we next want to correct it to an inertial frame,
the solar system barycenter. Two ingredients are required — the celestial coordinates of the source
and the instantaneous location of the telescope. The dot product between the unit vector to the
source and the telescope position is then added to the arrival time to obtain the barycentric arrival
time. Two groups, one at the Harvard-Smithsonian Center for Astrophysics and one at the Jet
Propulsion Laboratory, provide ephemerides of the earth’s position, and velocity that can be used
for this correction.

The correction from the earth’s center to the telescope requires the telescope’s geocentric coor-
dinates and a simple model of the earth’s motion. This correction is identical to the delay calculated
in VLBI observations although orders of magnitude less precision is required. If observations from
different observatories are to be compared at the microsecond level, then one must specify both the
fiducial point on the pulse and the reference point at the telescope. The telescope reference point
used in VLBI is the intersection of the axes (Thompson et al. 1986; p. 95).

4.2, Radio Astrometry

The space correction requires precise coordinates of the pulsar. These are derived in the parameter
fitting process discussed below. The coordinate frame is inertial since the ephemeris of the earth’s
motion is given in an inertial reference frame. The common reference frame of radio interferometry,
B1950.0-B for Besselian, is not inertial. The terms of elliptical aberration (USNO 1984) are required
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to transform between the two systems. The choice for future precision efforts is to work in the
J2000 system, J for Julian, which is allows a unified approach with both pulsar timing and radio
interferometry.

4.3. Stability

The accuracy of the earth ephemeris is difficult to estimate since one is interested in the extrapo-
lation of a many parameter fit to the earth’s motion. The Earth-Mars distance was measured with
a precision of 25 ns during the lifetime of the Viking mission. This data is fundamental to the
development of the Earth ephemeris, and residuals to fits to the data provide an estimate of the
accuracy of ephemeris. Reasenberg et al. (1979) show residuals that have a rms of about 75 ns over
a 14-month interval. The ephemeris correction stability is discussed by Hellings and by Chandler in
Allan, Ashby and Backer (1985).

5. ‘PROPAGATION’ CORRECTION
5.1. Plasma Dispersion and Turbulence

Pulsar signals are dispersed by the column density of electrons between the pulsar and the earth.

tg = 0.00415s ¥(GHz)"2DM (pc em™3)
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Figure 4 Space correction of telescope arrival time to the solar system barycenter (from Backer and
Hellings 1986).

Furthermore turbulence in this plasma leads to diffractive and refractive propagation effects.
Measurements over multiple radio frequencies, e.g., 400 MHz, 700 MHz and 1400 MHz, can be used
to determine the instantaneous column density of electrons so that the pulse arrival time can be
extrapolated to infinite frequency. The observing frequency is the observatory value corrected by
the doppler shift of the moving earth. Propagation delays in the solar wind can be significant; the
column density from 1 e em™3 over 1 AU leads to a delay of 0.5 ps at 1.4 GHz. Foster and Cordes
discuss the removal of the effects of propagation in a turbulent medium later in this proceedings.

5.2. Relativistic Delay

The photons from a pulsar also suffer a relativistic delay as they traverse the solar potential. The
additional delay is 135 us when the signal passes by the limb of the sun compared to an observation
six months later. The delay falls logarithmically with

cAt = GM

= In(1 4 cos #) !

where @ is the heliocentric angle between the pulsar and the earth. In a globular cluster there are
sizeable delays from passing the nearest stars, but the effects are small and monotonic, and cannot
be distinguished from a period derivative.

6. PULSAR PARAMETER ESTIMATION
6.1. Least-Squares Analysis of Residuals

A set of observations must be treated in stages of slowly increasing data length to determine the pulse
parameters. At each stage one uses the minimum number of parameters to model the arrival times
without period ambiguity and within the experimental errors. Fractional period phase residuals from
the model are analyzed in a least-squares fitting procedure to determine improved model parameters.
In some cases one must start with estimates of the period from separate observations.
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6.2. Rotation Model

The simplest model for a rotating neutron star consists of an initial phase, a period and a period
derivative. In a few cases a second derivative can be determined. The model for the phase residuals
is a simple power series:

$(t) = o+ Qt +Q12/24 0 13/6,

where (Q is the rotation frequency. The detection of a second derivative allows an estimate of the
‘braking index’ n, 2/Q€). The braking index is 2.5-2.8 for the three pulsar with measured values
of (3; the most recent determination is by Manchester, Durdin and Newton (1985). An index of 3.0
obtains if the decelaration torque is pure magnetic dipole radiation.

6.3. Astrometric Parameters

The celestial coordinates of a pulsar are required to do the space correction. The ‘lever arm’ of the
space correction is 1 AU, or 500 s. If microsecond precision is required, then the celestial coordinates
must be known or determined with a precision of 2 nanoradians, or 0.4 milliarcsec. This is sufficient
to measure a proper motion of 2 km s~! at a distance of 1 kpc in one year. Four parameters are then
required to specify the pulsar’s celestial position: an initial right ascension and declination, and a
proper motion in right ascension and declination.

The precision that is possible with millisecond pulsars can only be matched by the precision
in the solar system ephemerides that incorporate modern radar measurements of planetary orbits
(Rawley, Taylor and Davis 1988). Radio interferometry has only reached a precision of around 5
nanoradians, for a limited number of strong, compact quasars, although recently the resolution has
been pushed to 0.3 nanoradians with VLBI measurements at 100 GHz.

The comparison between positions derived from timing and interferometer measurements has
led to some puzzles (Fomalont et al. 1984; Backer et al. 1985; Bartel et al 1985). Part of
the problem is that the pulsar positions are corrupted by low-frequency timing noise. Part of the
problem may result from the use of the out-of-date B1950.0 conventions in radio interferometry that
include old constants for precession and nutation. Rawley, Taylor and Davis (1988) question the
inertial character of the CfA ephemeris. More work needs to be done within the modern J2000
system and using the most stable pulsars to clear up this issue.

6.4. Dispersion Measure

Observations with multiple frequencies allow a solution for the dispersion measure by fitting for a
quadratic arrival time with radio frequency. Care must be taken in obtaining the true dispersion
when the pulse shape changes with radio frequency.

7. ROTATION NOISE
7.1. Spectral Decomposition

The phase residuals after a model fit for the parameters discussed above are not always consistent
with white noise from measurement errors. In many cases the pulsar’s spin displays instabilities.
The deviations of phase from the model are often no more than 0.1 rotation periods. The spectrum
of these instabilities, 6t /¢, can be characterized by a power-law index (Thompson et al. 1986, section
9.4). If the torque on the star varied randomly on a short time scale, then the phase residual
spectrum would have a slope of -2. Other processes have been discussed with flatter slopes. Figure
5 displays timing residuals from Cordes and Downs (1985) for PSRs 1237425 and 1929410 that
are characterized by power spectrum indices of 2 (white phase noise) and 0 (white frequency noise),
respectively.

7.2. Activity Parameter

In cases such as PSR 1929410 mentioned above there is insufficient data to determine a reliable
spectrum. Cordes and Downs (1985) have introduced the concept of an activity parameter—-a single
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Figure 5 Timing residuals for two pulsars (from Cordes and Downs 1985).

variance statistic that takes the logarithm of the ratio between the intrinsic timing noise residual (o,
in seconds) for any object and the corresponding statistic, determined over the same time interval,
for the Crab pulsar.

Activity A =logy, [ orn(star,t) } ’

orn(Crab, t)
t
orn(Crab,t) = 6.8ms (m)

Cordes and Downs demonstrate a correlation between A and the period derivative P.
7.3. Glitches

The most dramatic discrepancies between the model and the observations occur when suden changes
in the period and period derivative—glitches—occur. These are now seen in 5 pulsars: 0355+54 (Lyne
1987; 0531+21, the Crab; 0833-45, Vela; 0525+21; 1951+32, CTB80 (below). McKenna also reports
several new pulsars with glitches in this proceedings. The magnitude of the changes range are
10=6t° =9 in §P/P and 101 * =3 in §P/P. Smaller less dramatic glitches also occur (see Fig. 5:
arrows in PSR 1929410 data indicate small discontinuities in phase). The analysis and interpretation
of these events in the life of some neutron stars is beyond the scope of this introductory lecture, but
is discussed elsewhere in these proceedings.

8. RECENT RESULTS
8.1. PSR 1951432 in CTBS80

We began timing the pulsar found in the radio nebula CTB80 shortly after its discovery, or uncovery,
in July 1987 (Kulkarni et al. 1988; Fruchter et al. 1988). Observations are continuing at the Arecibo
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Observatory with the time shared between 430 MHz and 1400 MHz. A new timing system with
the 40-MHz correlator was developed. The data were sparsely sampled in 1987 and more frequently
sampled in 1988. At the time of the NATO ASI we knew that the rotation of the CTB80 star was
not stable. Either it had one of the highest activity parameters of all pulsars, or it had undergone a
glitch. Figure 6 demonstrates now that there was a glitch with a magnitude of 4x 10~°in 6P/P. A
full account of this event and the recovery of the star will be presented elsewhere by Foster, Backer
and Wolszczan. The hopes that the star would be sufficiently stable to determine a proper motion
from timing have been dropped.
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Figure 6 Residuals from timing PSR 1951432 at Arecibo by Foster, Backer and Wolszczan. Fit

was performed on data up to 17 February 1988.

8.2. The Globular Cluster Pulsars

In late 1986 we learned about the strong polarization of the point source in the globular cluster M28
(Erickson et al. 1987). This set in motion an effort to combine data from one of the largest radio
telescopes, at Jodrell Bank, with the largest capacity data analysis procedure, that of Middleditch
at Los Alamos. A 3.1-ms second pulsar was found (Middleditch et al. 1987). In the year following
this uncovery, many globular cluster pulsar searches have been conducted. There are now a total of
5 pulsars in 4 globular clusters. These are: 0021-72A in 47TUC (P=4.479 ms)-Ables et al. 1988;
0021-72B in 47TUC (P=6.127 ms)~Ables et al. 1988; 1620-26 in M4 (P=11.076 ms)-Lyne et al.
1988; 1821-24 in M28 (P=3.054 ms)-Lyne et al. 1987; and 2127+11 in M15 (P=110.665)-Wolszczan
et al. 1988. These neutron stars are concentrated within one core radius of the cluster centers, which
is similar to the Xray objects (Grindlay et al. 1983). Verbunt discusses these pulsars in more detail
in these proceedings.
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The first period derivative of a globular cluster pulsar has been determined by Foster et al.
(1988). The value for PSR 1821-24 leads to a spindown age of only 30 My. This is surprisingly
short given the nominal age of clusters, and the likely age of the millisecond pulsars. The authors
dismiss the influence of a gravitational encounter as the dominant source of the period derivative;
an acceleration leads to a period derivative of aP/c.

8.3. The Pulsar Timing Array

The globular cluster millisecond pulsars have provided us with objects distributed across the sky. The
timing observations of this array of pulsars can be used to solve for the uncertainties in both atomic
time and in the location of the earth. The time term has a monopole signature on the sky-all timing
residuals are affected by a constant. The space term has a dipole signature-there is an instantaneous
vector error in the assumed earth position and therefore a dipole-like correlation in the barycentric
correction. Pulsar timing array data can be used to look for a stochastic background of gravitational
wave radiation (Detweiler 1979). This background will have a quadrupole correlation that can be
detected in the timing array data without the limitation of the time and space uncertainties. Romani
discusses this measurement further in these proceedings. We have started a Pulsar Timing Array
experiment using the fully steerable 140-ft telescope at NRAO Green Bank. The first results from
this are displayed in Figure 6. With improved hardware and longer time spans we expect the Pulsar
Timing Array data to reach a level of 1073 in the energy density of gravitational radiation relative
to the closure density.
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TIMING BINARY AND MILLISECOND PULSARS

J. H. Taylor
Joseph Henry Laboratories and Physics Department,
Princeton University,

Princeton, NJ 08544 USA

ABSTRACT. This tutorial lecture outlines the essentials of making and analyz-
ing timing observations of binary and millisecond pulsars. Many of the necessary
procedures are, of course, similar to those used for slow, single pulsars. However,
achieving the best attainable timing accuracy for millisecond pulsars requires much
tighter tolerances on observing and data-processing procedures, and the presence
of orbital motion qualitatively complicates both data acquisition and analysis. In
return for adequate diligence in these matters, an observer gains access to a much
richer set of measurables than are available for ordinary pulsars. Binary pulsars
provide the only experimental handles on the masses of non-accreting neutron stars,
and the parameters of their orbits and characteristics of their companion stars pro-
vide unique clues on the origin and evolution of the systems. In the most favorable
circumstances, significant tests of fundamental physical laws are even possible. Tim-
ing data on millisecond pulsars turns out to be valuable for other reasons as well:
because they are extremely stable clocks, these objects provide exquisite tools for
a wide range of studies in fundamental astrometry, cosmology, gravitation physics,
and metrology.

Don Backer has already given us a sound primer on radio pulsar timing techniques
(Backer 1989). To review briefly, I will remind you that a typical observing proce-
dure uses a setup like the one diagrammed in Figure 1, used by my colleagues and
me at Arecibo Observatory over the past several years (Rawley, Taylor, Davis, &
Allan 1987; Rawley, Taylor, & Davis 1988). Incoming signals from the telescope are
amplified, converted to intermediate frequency, and passed through a “filter bank”
spectrometer which analyzes the total accepted bandwidth into channels narrow
enough that the observed pulse widths are not dominated by dispersive smearing.
Synchronous signal averaging is used to accumulate estimates of a pulsar’s average
waveform in each of the spectral channels, using electronics under control of a small
computer and accurately synchronized with the Observatory’s time and frequency
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standard. A programmable synthesizer, whose output frequency is updated once
a second in a phase continuous manner, compensates for variable Doppler shifts
due to motions of the pulsar and the observatory. Integrated pulsar waveforms are
recorded once every few minutes, together with appropriate time tags.

Orbiting Satellites

Arecibo O
Telescope SN
1400 MHz
Aoaps N
Synthesizer . .
N
30 MHz Y /
32 x 025 MHz RCVR RCVR
Filter Bank
UTC(NBS)
Rubidium Boulder
Compare
4 3 Clock omp
32 x 1024
Clock L
Sig. Ave. ock Log
¢ N Programmable
P
ormputer Synthesizer
Average
Profiles

Figure 1: Block diagram of a pulsar timing system used for binary and millisecond pulsars
at Arecibo Observatory.

Analysis of recorded profiles usually follows a series of steps similar to those
listed in cookbook Recipe 1 on the next page. The first step after observing in-
volves “template matching” to determine the phase of each recorded profile relative
to the start of its integration. This process can be carried out by cross-correlation
in the time domain, or by an equivalent procedure in the Fourier transform domain.
There may be reasons of operational convenience to prefer one of these methods
over the other; more importantly, there are significant reasons to prefer the Fourier
transform approach when the signal-to-noise ratio is high and the achievable timing
uncertainty is much smaller than the interval at which the waveform has been sam-
pled (Rawley 1986). (These conditions are true, for example, in our observations
of the millisecond pulsar 1937+21 at Arecibo.) After a phase offset has been deter-
mined, the corresponding time delay is added to the start time of the integration
to yield a topocentric time of arrival, or TOA.



Recipe 1. Pulsar timing observations and analysis.

. Observe average profiles at known UTCs.

. Determine topocentric TOA’s by template matching.
. If necessary: remove dispersive delays, sum channels.
. Apply clock corrections to yield TDT.

Transform to TDB at solar system barycenter.

. Bootstrap a timing model (see Recipe 2 or 3).

. Repeat from step (1) as often as possible.

8. Output: a, é, ¢, P, 15; possibly also pq, s, }3, and
orbital parameters.

For a given pulsar, the optimum template or “standard profile” for use in the
matching procedure is a high signal-to-noise version of the profile, generally ob-
served with the same equipment but over a longer integration time. For pulsars too
weak to give adequate signal-to-noise ratio in a single filter bank channel, the data
in all channels can be summed (after shifting phases to account for the different
dispersion delays at each frequency) and a single equivalent TOA determined.

An accurate time transfer system, using signals from satellites in the Global Po-
sitioning System, allows us to express all TOA’s in terms of Coordinated Universal
Time as maintained and distributed by the US National Bureau of Standards, or
in terms of any of a number of other high-precision atomic time standards kept
at national timekeeping laboratories around the world. An appropriately weighted
average of these standards represents the best currently available approximation to
an ideal implementation of terrestrial dynamical time, or TDT, and is the reference
standard of choice for the most exacting observations.

A model capable of predicting pulse arrival times is most conveniently formu-
lated in an inertial reference frame, for which the solar system barycenter is an
adequate approximation. The necessary general relativistic transformation from
TDT to barycentric dynamical time, or TDB, must be done with care (see Backer
& Hellings 1986). The transformation depends on accurate knowledge of the pul-
sar’s celestial coordinates, a@ and é, and unambiguous numbering of the received
pulses requires good knowledge of the pulsar period P and spin-down rate, P.
Since these quantities may be poorly known at the beginning—they are, after all,
among the parameters one is trying to measure—the process necessarily requires
an iterative “bootstrap” approach like that outlined in Recipe 2.
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Recipe 2. Bootstrap procedure for timing single pulsars.

1. Collect data at various intervals—say 2m, 10m, 2h, 1d, 10d, 3 mo, ...
2. Obtain least-squares estimates of P, a, §, P (or a subset).
3. Inspect residuals for non-random appearance ( = evidence of
mis-numbering of pulses across gaps in data).
4. Repeat, possibly adding or subtracting integers in the pulse
numbering scheme, until you’ve got it!

One of the principal reasons that pulsar timing data can yield so much infor-
mation is that the rotation phase of a non-accreting neutron star can be measured
to within a small fraction of a turn, and predicted with similar accuracies over in-
tervals as long as years. Therefore phase-coherent solutions are possible, spanning
many years of observations and perhaps 108-10* rotations of the neutron star. In
such solutions the integer pulse number corresponding to each observed TOA is
determined unambiguously.

When timing observations are begun for a new pulsar, the bootstrap procedure
to reach the desirable phase-connected state of affairs is facilitated if data are col-
lected at various intervals in rough geometric progression, with increments no more
than a factor of 10 (see Recipe 2). The largest gaps between available TOA’s will
then be small enough that one should be able to extrapolate across them with-
out pulse numbering ambiguities, or at worst with only a small range of integer
values permitted. A least-squares solution can then be carried out to determine
improved values of P and, when enough data are available, also e, §, and P. A
plot of the post-fit residuals from the solution gives a clear indication of whether
the pulses have been numbered correctly. Some trial and error may be required,
but the correct solution is easily recognized when attained.

Three examples of post-fit residual plots are illustrated in Figure 2. These
observations, made with the NRAO 92 m telescope at Green Bank by Dewey et
al. (1988), were concentrated in nine observing sessions between January 1985 and
May 1987. Each observing session lasted several days, and each of about 75 pulsars
was observed for 5 to 10 two-minute integrations on one or more days in a session.
Thus the data set for a given pulsar generally consists of TOA’s with spacings of
2-20 minutes, 1-4 days, 15 days, and several months to 2.3 years. The residuals
in the examples amount to a few milliperiods or less, and appear to be essentially
random. Solutions like these typically determine P to 11 or 12 significant figures,
P to an uncertainty ~ 1078, and the pulsar coordinates to within about 0.1”.
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Figure 2: Plots of the post-fit residuals for timing observations of three pulsars (after
Dewey et al. 1988). For clarity only a single datum is plotted for each observing day.

For binary pulsars the procedure is similar in concept, but a number of addi-
tional parameters are involved, including five elements of a Keplerian orbit and
possibly observable general relativistic eflects as well. In formulating the timing
model an additional relativistic transformation is required, dependent on the or-
bital parameters, to convert from TDB to proper time at the pulsar. Since the
orbital parameters are not known (even approximately) at the outset, the boot-
strap procedure to attain a phase connected solution is usually much more difficult
than with single pulsars.

A workable scheme that my colleagues and I have used to obtain phase connected
solutions for 8 binary pulsars is summarized in Recipe 3. When initial timing
observations suggest that the period of a pulsar is variable, we proceed to collect as
many TOA’s as possible. The data are separated into blocks no longer than ~ 20 m
and periods are computed for each block, reduced to the solar system barycenter. In
principle a plot of these periods as a function of time should trace out the orbiting
pulsar’s velocity curve. In practice, however, the data are likely to be coarsely and
irregularly sampled, and recognizing the orbital period may be very difficult.

An algorithm for determining the orbital period in such circumstances is out-
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Recipe 3. Bootstrap procedure for timing binary pulsars.

1. Collect data: get TOA’s and pulsar periods P; at many epochs.

2. Determine approximate orbital period, P, (see Recipe 4).

3. Incoherent solution: use P;’s to obtain least-squares
estimates of P, a,sint, ¢, Ty, P, w.

4. Phase-connected solution: use TOA’s to obtain least-squares estimates
of P, aysint, e, Ty, Py, w, a, §, P, and possibly relativistic parameters.

lined in Recipe 4. Its equations contain nothing about Kepler’s laws or the ex-
pected shapes of orbital velocity curves; the procedure works simply by seeking
the smoothest possible dependence of observed period on computed orbital phase,
consistent with the observations. When an approximate orbital period has been
found, we use the (P;, ;) pairs to carry out a least-squares solution for the orbital
elements (step 3, Recipe 3). Since there is no attempt to “connect phase” between
the various independent measurements, pulse numbering ambiguities are not an
issue. The orbital elements determined from this solution are then used as input
values for a phase connected solution, which yields optimized estimates for all of
the interesting parameters.

Recipe 4. Algorithm for finding a binary pulsar’s orbital period, P,.

. Obtain solar-system barycentric periods P, at many epochs ¢;.
. Set trial P, to minimum reasonable value.
. Compute orbital phases, ¢; = mod(t;/P,,1.0).
. Sort list of (P;,1;, ¢;) triplets in order of increasing ¢.
. Compute s? = Y(P; — P;j_;)?, omitting any terms for
which ¢; — ¢;_1 > 0.1. (j is the index after sorting).
. Increment P, :=[1/P, — 0.1/(taz — tmin)] *-
. Repeat from (3) until maximum reasonable P is reached.
8. Choose the P, that yielded the smallest normalized s2.

Ot b W N =

-3 O

The most complete and well documented model for analyzing binary pulsar tim-
ing data is that of Damour & Deruelle (1986), based on a highly accurate solution
they developed for the general relativistic two-body problem. In addition to the
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usual parameters for single pulsars and five Keplerian orbital parameters, my im-
plementation of their model includes as many as six “post-Keplerian” parameters.
As an example of its use, Table 1 presents the latest list of measured orbital pa-
rameters of the PSR 1913+16 system. Further details may be found in Weisberg
& Taylor (1984) and references therein.

Table 1. Orbital parameters of PSR 1913+16.

Keplerian orbital elements

Projected semimajor axis apsini = 2.341769(24) light sec
Eccentricity e =0.6171311(14)
Orbital Period P, = 27906.981644(12) s
Longitude of periastron wo = 178.86372(29) deg
Julian ephemeris date of periastron,

and reference time for P, and wq To = 2442321.4332075(9)

Post-Keplerian parameters

Mean rate of periastron advance {wo) = 4.22660(10) deg y !
Gravitational redshift and time dilation v = 4.302(24) ms
Orbital period derivative P, = (—2.40 £ 0.04) x 10712 5571

Timing observations of binary pulsars have provided information that has been
extremely useful in delimiting the range of possible evolutionary schemes for pulsars
and neutron stars. I'll have no time in this lecture to discuss these matters further;
some of the important ideas have already been outlined for us by Ed van den Heuvel
(1989), and I have no doubt we’ll be hearing more about them over the next few

days. For a more detailed summary of results and some very recent work, see Taylor
(1987) and Taylor & Dewey (1988).

In the remainder of this talk I will deal with some special issues relevant to
timing millisecond pulsars. For these objects it is possible to measure TOA’s with
observational uncertainties well under a microsecond; consequently, to avoid con-
taminating good data by sloppy handling, and to extract the maximum possible
information content, one must take extraordinary care in the data analysis. As an
example of the quality of data obtainable, and to illustrate one particular type of
observational problem that must be dealt with, Figure 3 illustrates post-fit residuals
for the data on PSR 1937421 that we have been acquiring at Arecibo Observatory
since October 1984.

Both portions of Figure 3 are based on exactly the same data, analyzed in
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Figure 3: Post-fit arrival time residuals for PSR 1937+ 21 relative to UTC(NBS) (top) and
to the BIPM “World’s best clock” (bottom).

exactly the same way, except for using different time standards. For the upper
portion of the Figure we used UTC(NBS), the version of Coordinated Universal
Time distributed by the US National Bureau of Standards. This time scale, believed
to be stable to within a few parts in 10'* over timescales of a year or so, is apparently
not quite stable enough to serve as an adequate reference for this experiment.
Neither, incidentally, is any other of the independent time standards maintained at
timekeeping laboratories around the world. Some are a bit worse, and one or two
appear to us to be a bit better—especially the one maintained by the Physikalisch-
Technische Bundesanstalt in the Federal Republic of Germany—at least within
our limited experience since late 1984. Significantly, we think, most of the slow,
systematic wandering of the PSR 1937421 residuals in the top panel of Figure 3
disappears when we use a weighted mean of of the world’s best clocks (computed by
the Bureau International de Poids et Measures in Paris) as the reference standard.
Residuals from a such fit are shown in the lower panel of Figure 3.

People in the time-and-frequency business assure me that they have not been
not standing still, and that better reference standards will be available Real Soon
Now. In the meantime, we astronomers should not overlook the possibility of cre-
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ing our own time standard by comparing TOA’s from a number of millisecond
pulsars. At present the next best pulsar with a substantial quantity of accu-
mulated timing data is PSR 1855409, which shows random residuals of about
2 ps rms after 2.3 years. Unfortunately, timing measurements with uncertainties
in the sub-microsecond range have not yet been achieved for any pulsar besides
PSR 1937+21—except for the very recently discovered PSR 1957+20, which Andy
Fruchter will speak about shortly.
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Figure 4: Post-fit arrival time residuals for PSR 1937421, for a solution in which the
monthly changes in gravitational redshift of terrestrial clocks was intentionally ignored.
The smooth curve illustrates the omitted term in the time transformation.

I have already mentioned that in order to model the expected TOA’s of any
pulsar with the accuracies implicit in Figure 3, extraordinary care is required in
the analysis procedure. An example of what can go wrong when a small effect is
ignored is presented in Figure 4. For this solution we intentionally omitted the
monthly cycle in the relativistic transformation from TDT to TDB. (All clocks on
Earth run slightly slower when the Moon is full, because the Earth is deeper in
the solar gravitational potential; furthermore, the magnitude of the Earth’s total
velocity changes with lunar phase, causing changes in time dilation.) In Figure 4
the residuals resulting from this omission are plotted as a function of phase of the
moon, together with a curve corresponding to the omitted term. Interestingly, one
can use this effect to perform Einstein’s gravitational redshift test of the equivalence
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principle. For the ratio of observed to expected monthly redshift effect, we obtain
1.04 £ 0.06 (Gelfand 1988).

There is little doubt that further examples of binary and millisecond pulsars will
be found, and that timing observations of them—as well as continued timing obser-
vations of those already known—will continue to pay very worthwhile dividends.
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ABSTRACT. Basic principles of Fourier techniques often used in X-ray time series
analysis are reviewed. The relation between the discrete Fourier transform and the
continuous Fourier transform is discussed to introduce the concepts of windowing
and aliasing. The relation is derived between the power spectrum and the signal
variance, including corrections for binning and dead time. The statistical properties
of a noise power spectrum are discussed and related to the problems of detection
(and setting upper limits) of broad and narrow features in the power spectrum.
A ”dependent trial” method is discussed to search power spectra consistently for
many different types of signal simultaneously. Methods are compared to detect a
sinusoidal signal, a case that is relevant in the context of X-ray pulsars.

1. INTRODUCTION

Fourier techniques are widely used in science and engineering, but problems
of terminology and differing conventions hamper the flow of information between
the various branches. Even within the field of neutron-star timing, radio-, X-ray
and high-energy gamma-ray astronomers sometimes have difficulties to compare the
techniques they routinely apply.

In the present paper an attempt will be made to explore some of the techniques
that are commonly used in timing studies of neutron stars, and that refer to the
detection of signals against a background of noise, in the language of the X-ray
astronomer.

The regime that I will nearly exclusively be referring to is that of equidistantly
binned timing data, the background noise of which is dominated by counting statis-
tics. If there are gaps in the data, they are far apart, and the dita are not "sparse”

27

H. Ogelman and E. P. J. van den Heuvel (eds.), Timing Neutron Stars, 27-69.
© 1989 by Kluwer Academic Publishers.



28

in the sense that nearly all time bins are empty. This kind of data is eminently
suited to analysis with Fast Fourier Transform (FFT) techniques, and the discussed
methods will all be based on these techniques. Emphasis will be on the statistics of
the detection of weak signals rather than on the characterization of signal shapes,
with a special discussion of the basic problem of detecting a strictly periodic signal
with a sinusoidal shape. While the discussion is specially geared towards photon
counting data such as produced by, for example, an X-ray proportional counter,
many of the techniques discussed are also applicable in other regimes.

Section 2 contains a genecral introduction to the Fourier transform and intro-
duces the power spectrum. Section 3 deals with the problem of detecting a signal
in the presence of noise. In Section 4 it is discussed how to quantify the power of
the signal and how to estimate its variance using the power spectrum. Section 5
discusses how to search a power spectrum by making use of the basic properties of
power spectral statistics only, using ”independent trials”. At the end of this section
there is a summary in "recipe” form of how to simply search a power spectrum
for a weak signal. In Section 6, a detailed discussion is given of the specific case
of detecting a sinusoidal signal. The subject of Section 7, finally, is a method of
searching power spectra for various types of signal simultaneously. The methods
discussed in Sections 6 and 7 have in common that because higher demands are
made on the tests performed on the power spectrum than in Section 5, the test
statistics are no longer simple (in particular, "dependent trials” are considered)
and have to be evaluated by simulations.

The present exposition owes much to the paper by Leahy et al. (1983). Some
of the material discussed is also contained in Chapter 2 of the review about quasi-
periodic oscillations by Lewin, van Paradijs and van der Klis (1988), hereafter
Paper 1.

2. THE FOURIER TRANSFORM
2.1. Introduction

In this section (2.1) the Fourler transform is introduced in very general terms.
We do not yet worry about summation indices and the like; such details are filled
in in the following sections.

A Fourier transform gives a decomposition of a signal, say, z(%), into sine waves.
At any given frequency w, one can find a set of values (a, ) or (A4, B) such that
the sinusoid a cos(wt — ¢) = A coswt + B sinwt best fits the data z(¢)!. Do this for
a sufficient number of different frequencies wj, then the signal can be written as

! (a,¢) and (A4, B) are, of course, related by a = /A2 + B? and tan¢ = B/A



1 1 .
z(t) = v Za]- cos(wjt — ¢j) = N Z (A;jcosw;t + Bjsinw;t). (2.1)
J J

The Fourier coefficients 4; and B; can be straightforwardly computed as

Aj = E a;kcoswjtk
k

B]' = Z.’L‘k sinw]-tk,
k

where = = z(fx). It can be seen from Eq. 2.2 that A; and B; are simply the
correlation of the signal x; with a sine or cosine wave of frequency w;: if there
is a good correlation then the corresponding Fourier coefficient is high and gives a
large contribution to the sum in Eq. 2.1 which reconstructs the signal out of sine
waves.

For easier handling of the two munbers ((A, B) or (a, ¢)) which one obtains at
each frequency, it is possible to represent the Fourier transform in terms of complex
numbers:

aj= Y et (2.3a)
k
o= — 3" azem it (2.3b)
N £ J ’
j
where ¢ = —1, The complex numbers «; are called the (complex) Fourier

amplitudes; together they form the Fourier transform of the zp. Inversely, the
zi form the inverse Fourier transform of the a;. Writing a; as |aj|e’®, we

see (Eq. 2.3b) that the signal zp is now decomposed into functions of the form
—twjty

aje lajle™" it =9) = | |(cos(w;ty — @;) — i sin(wjtr — ¢;)), having a non-
zero imaginary component. This is nothing to worry about: in this representation
both positive and negative frequencies are considered, withw_; = —wj, and if the zj

are real numbers then one sees from Eq. 2.3a that a_; = a} (the asterisk indicating
the complex conjugate), so that the imaginary terms at j and —j (i.e., at w; and
w_;) cancel out and the end result in the summation (2.3b) is (2/N)|a;| cos(w;tx —
@;), strictly real.
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2.2. The Discrete Fourier Transform

We now get a bit more specific and define our signal as a series of N numbers
2y (k=0,...,N —1); in the applications discussed in this article, z will always
stand for the number of photons detected in bin k. The discrete Fourier transform
aj(j =—-N/2,...,N/2-1) decomposes this signal into N sine waves. The following
expressions describe the signal-transform pair:

N-1

a; = Z:lfkehijk/N j:—iv‘;-,...,-]-;—-—l (24q)
k=0 -
N/2-1
1 —omiik
wk:?\f—‘z aje kN =0, N -1, (2.4b)
Jj=-N/2

If, as before, the signal is an equidistant time series of length T, so that zj
refers to a time t; = kT /N, then the transform is an equidistant "frequency series”,
and a; refers to a frequency wj = 2xv; = 2xj/T. The time step is 6t = T/N; the
frequency step is v = 1/T, and substituting 2njk/N = w;t;, we find back Eq. 2.3.

It is a matter of taste where one puts the factor 1/N in Eq. 2.4; definitions
where this factor appears in Eq. 2.4a, or where both sums are preceded by a factor
1/ VN are also possible and do, in fact, occur in literature.

Note that the number (N) of input values z; equals the number of output
values a;; if the z; are uncorrelated, then the a; are as well. The discrete Fourier
transform gives a complete description of the discrete signal; the highest frequency
needed for this complete description is vy/; = -%N /T. This frequency, equal to half
the ”"sampling” frequency defined by the spacing of the zy, is called the Nyquist
frequency. An oscillation at vy, corresponds to an alternating "up-down” signal
in the 2. Note that a_n;; = ), rpe” Tk = Yrak(~DF = apnyz; it does not
matter whether one puts the Nyquist frequency at the positive end or the negative
end of the Fourier transform. At zero frequency, the result of Eq. 2.4a is just the
total number of photons detected; ag = 3, zx = Npy.

2.2.1. The Fast Fourier Transform. The fast Fourier transform (FFT) is a
computer algorithm to efficiently compute the discrete Fourier transform. Often,
but not always, the data is constrained by these algorithms to have a number of
bins N equal to a power of 2. See, e.g., Press et al. (1986) for an exposition of the
functioning and sample computer codes of FFT algorithms.
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2.3. The Continuous Fourier Transform

The continuous Fourier transform decomposes an infinitely extended continuous
function z(t) (—oo < t < o0) into an infinite number of sine waves:

o<

a(v) = / a(t)e ™t dt —00 < v <o (2.5a)
-~ |

z(t) = / a(v)e ™ dy —00 < t < o0. (2.5b)
~0oo

When doing analytical calculations, the continuous Fourier transform has a
number of pleasing properties (for example, the continuous Fourier transform of a
sine wave is a delta function; this is not in general true for the discrete Fourier trans-
form, see Fig. 6.1a). Thercfore, theoretical predictions of the shape of the Fourier
transform of a signal are usually in terms of the continuous Fourier transform.

Unfortunately, in the real world the data are not infinitely extended nor con-
tinuous, and one might well ask what is the relation of Eq. 2.5 with the discrete
Fourier transform of a discretely sampled section of z(¢). This question will be
adressed in Section 2.5.

2.4. The Power Spectrum

A result known as Parseval’s theorein states:

N-1 1 N/f2-1
Sialf=w S lolt (26)
k=0 T j==NJ2

This implies that there is a relation between the summed squared modulus of the
Fourier amplitudes and the total vaxiance of the data: Var(zx) = Y 1 (zx —7)% =

Ekxﬁ—”}v‘(zkmk)z = NZ laj)% — ao,so that
1 N/2-1
Var(zi) = 5 > lasl (2.7)
s

Adopting the normalization used by Leahy et al. (1983), we will define the power
spectrum as

2
P._N |aj)? j=0,...

where N, is again the total number of photons ) z; = ao and a; is given by
Eq. 2.4a. Using once more the result that for real data |a;| = |a—;| and taking

(2.8)
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account of the fact that the term at the Nyquist frequency occurs only once in
Eq. 2.7, we find for the expression for the total variance in terms of the P;:

N/2-1
-NJ h
\'72\‘1“(;17;;) = —]{_TL Z Pj -+ %PN/‘Z . (29)
Jj=1

Note the differences in the indexing of «; and P;. Computer implementations of
the FFT usually employ a storage scheme that is different again (Fig. 2.1).

aj [ % | %1 [ -~ ] -1 [0 1] -] &2 ] #-1 |

P; foT 1 - [T &8s 5] %]

FFT Lol 1] | 52 [ &1 [ &
—Z41 | [ -1 ]

Fig. 2.1. Storage schemes. The FFT scheme may differ between implementations
— 1n this ezample bin —% + 1 follows bin %

Often the variance is expressed in terms of the fractional root-mean-square
(rms) variation in the zj:

VEVas) | EN2p 4 1Py,

T N, ph

ﬁ
I

(2.10)

Sometimes r is expressed in terms of a percentage, and is then also called the
"percentage rms variation”. A sinusoidal signal at the Fourier frequency v; (see
Section 4 for the more general case) a = Asin(27nv;t;) will cause a spike at v; in
the power spectrum with

(V2
Pj gine = EN;I-: A® (2.11)
The reason for choosing this apparently rather awkward normalization for the pow-
ers lies in the statistical properties of the noise power spectrum, to be described in
Section 3.
If the data consist of the sum of a number of independent signals: =i = y + 2%,
then the so-called superposition theorem (”the transform of the sum is the sum of

the transforms”) says that if b; and ¢; are the Fourier transforms of y; and z,
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respectively, then the Fowrier transform of zy is a; = b; + ¢;. This means, that a
similar superposition principle does not apply to power spectra:

la;|* = 1b; + ¢;|* = |b;]1* + |¢;]* + cross terms. (2.12)

However, if one of the two signals summed consists of random uncorrelated noise,
then the cross-terms will tend to average out to zero.

2.5. The Relation between the Discrete and the Continuous Fourier
Transform

The answer to the question posed in Section 2.3 about the relation between
the discrete and the continuous Fourier transform can be obtained by making use
of one of the powerful theorems of Fourier analysis, the convolution theorem. This
theorem states, that the Fourier transform of the product of two functions is the
convolution of the Fourier transforms of these two functions. So, if a(v) is the
continuous Fourier transform of z(t) and 0(v) that of y(¢) then the continuous
Fourier transform of z(t)y(t) is a(v)*b(v) = f:x;o a(v'")b(v — v")dv': "the transform
of the product is the convolution of the transforms”. The inverse is also true ("the
transform of the convolution is the product of the transforms”), and in the case of
the discrete Fourier transform analogous theorems apply.

Now suppose that a(v) (—oco < v < o0) is the continuous Fourier transform
of the infinitely extended continuous function z(t) (—oco < ¢t < o). Suppose,
furthermore, that zx (K = 0,...,N — 1) is a finite discrete time series defined as
zy = x(ty), where tp = RT/N, ie., x} is a discretely sampled section of z(t).
Then we see (Fig. 2.2a) that the relation of z(¢) with x4 is given by a double
multiplication: z(¢) has been multiplied with a "window function”

w(t) = { L, 0=t<T (2.13)

0, otherwise,

and with a "sampling function”

: = kKT
i(t) = §lt——=—1, 2.14
0= 5(e-5) (219)
where 6(t) is the Dirac delta function.

Consequently, the relation of a(r) with a; is given by a double convolu-
tion(Fig. 2.2b): a(r) must be convolved with the Fourier transforms of both the
window function and the sampling function.

Because (to be consistent with Eq. 2.4) we have chosen the window function
to be asymmetric around ¢t = 0, the "window transform” W(v) turns out to be
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TIME SERIES

w(t) ' WINDOW FUNCTION
2(Hw(t) WINDOWED TIME SERIES

INTENSITY

1HHHHHlHH\H\HHHUU\l\llIl I

(Hw(t)i( WINDOWED AND SAMPLED TIME SERIES

il

TIME

Fig. 2.2. a) Obtaining the discrete time series vy as e discretely sampled section
of z(t) imvolves o double multiplication.

complex. To understand what is going on, it is sufficient to consider the power
spectrum of W(r):

. 2
sinwvT

[o%) 2
|W(u)|25| / w(t)e?™ it dt| =

(2.15)

TV

For a symmetric w(t) we would have W(v) = sin{wvT)/nv. The Fourier transform
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TRANSFORM

S SRS

W(v) WINDOW TRANSFORM

a{v) * W(v) WINDOWED TRANSFORM

!
e i
= !
z :
- |
1.
I(v) SAMPLING TRANSFORM
a(v) « W(v) * I{v) WINDOWED AND SAMPLED TRANSFORM
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Fig. 2.2. b) The discrete Fourier transform a; of x. is obtained out of the contin-
uous Fourier transform a(v) by a double convolution. The figure shows the power
spectra corresponding to the various Fourier transforms. Vertical deshed lines in-
dicate the Nyquist frequency.

of an infinitely extended periodic series of delta functions such as the sampling
function i(¢) is again an infinite periodic series of delta functions:

I(v) = /00 i(t)e? it dt = % 2 ) (u —-6%) . (2.16)
f=—c0

-0
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The functions w(t) and () and the power spectra corresponding to W(v) and I(v)
are plotted in Fig. 2.2.

The convolution of a{r) with (/) causes all features in a(v) to become wider;
in particular, a delta function can be seen in Fig. 2.2 to change into shifted version
of W(v); a peak of finite widtl: with side lobes. The convolution of an arbitrary
function with a delta function at vy is a shifted version of the original function:
fw)*8(v —vy) = f(v — vg). Therefore, the convolution of a(v) with I(v), which
is a series of delta functions with spacing N/T results in a convolved function
a(v) * I(v) that repeats every N/T frequency units.

For a real signal z(t) we have, as before, a(—v) = a(v)*, so that |a(v)|? =
|a(=v)|%: the power spectrum is symmetric around v = 0. The final result is that
the power spectrum of the convolved function |a(v) * I(v)|? is reflected around the
Nyquist frequency v/, = %N/ T. This causes features with a frequency exceeding
the Nyquist frequency by v, (so, located at v = vy/3 + v2) to also appear at a
frequency vy — vz, & phenomenon known as aliasing; the reflected feature is
called the alias of the original one.

Using Egs. 2.13 and 2.14 it is straightforward to show that the discrete Fourier
amplitudes a; are the values at the Fourier frequencies v; = j/T of the windowed
and aliased continuous Fourier transform aywy(v)

aWI(V) = a(v) * W‘(y) * ](:,,) = / w(t)w(t)i(t)e21riut dt
F N-1 N-1
. kT ; kT ,
— 5 2 ) p2mivt — fdat 2nivkT/N
/:v(t)kz::o(<t N)e dt k}__;x<N>e ,

so that aw;(j/T) = a;. Explicitly performing the convolution of a(v) with I(v) we
finally have:

o
a; = au/](j/T) = aW(j/T) * I(J/T) = % Z aw (Uj —Z%) 5 (2.17)
{=~o0
where we have used Eq. 2.16 and where vj = j/T and aw(v) = a(v) * W(v).

To summarize, the transition from the continuous Fourier transform to the
discrete Fourier transform involves two operations: windowing, a convolution with
the function W(v), which is essentially a peak with a width év = 1/T plus sidelobes,
and aliasing, a reflection of features above the Nyquist frequency back into the
range (0, vny2). Windowing is caused by the finite extent, aliasing by the discrete
sampling of the data.
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In practice, aliasing is not so much of a problem as one might fear, as the data
are not really discretely sampled at intervals 6t = T/N, but rather binned into time
bins with a width ét. This is equivalent to convolving the data with the ”binning
window”

N _.I T

pty=4 VT —iw<t<zy (2.18)
0, otherwise

before the discrete sampling. Applying the "inverse” convolution theorem, we see

that the effect of this on the Fourier transform will be that a(v) is multiplied with

the transform of b(t):

sinwvT /N

B) = =5

(2.19)
This function drops from a value of 1 at v = 0 to 0 at v = N/T; halfway, at the
Nyquist frequency it has a value of 2/7, so that the effect of this multiplication
is a considerable repression of the high-frequency features that could be aliased
back into the frequency range (0, vy/2). This is understandable; the effect of the
binning is nothing else than averaging the time series over the bin width T/N so
that variations with a frequency close to N/T are largely averaged out.

The problems caused by the windowing can be more serious; the "leakage”
caused by the finite width of the central peak of W(v) and by its side lobes can
strongly distort steep power spectra (they become less steep, e.g., Deeter, 1983)
and, as we will see later on, it can spread out delta functions over the entire power
spectrum.

2.6. Literature

The "handy cookbook” of time series analysis has yet to be written. A good
standard reference that covers a large amount of information but is not always easy
to follow is Jenkins and Watts (1968). Much easier are the texts by Bloomfield
(1976) and Bracewell (1965). A very clear exposition of some basic principles of
Fourier analysis stressing intuition rather than mathematics can be found in Press

et al. (1986).
3. POWER SPECTRAL STATISTICS

3.1. Introduction

The process of detecting something in a power spectrum against a background
of noise has several steps. The first thing we need to know is the probability
distribution of the "noise powers” P;oice in a power spectrum of data consisting
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only of noise. If one or more of the powers P; in the observed power spectrum differ
significantly from the values expected from noise, then we may conclude that we
have detected a "source signal”, which is the term I shall use to indicate intrinsic
variability in the zp other than due to background noise.

To quantify the power of the source signal, i.e., to determine what the "signal
powers” Pjgignal Of the source signal would have been in the absence of noise (or
to determine their upper limit), we must consider the interaction between the
noise and the signal powers.

This quantitative knowledge about the Pjsignal can be directly converted into
a statement about the variance (or the rms variation) of the source signal. To
say something about other properties of the source signal we need to consider the
expected shape of the signal power spectrum. The optimal way to detect a given
signal will also depend on this expected shape.

In this section, we will consider the first of these steps, signal detection, and
consequently we must consider the probability distribution of the noise powers.
The problem of quantifying the signal power will be discussed in Section 4. For
the interaction between the noise and signal powers, we will follow convention by
making the following very simple assumption

Pj - Pj,l\oise + Pj,signal‘ (31)

Note that this is an approximation; as we have seen (Section 2.4), if it would be
true that a; = ¢ noise + @} signal. and if the noise is random uncorrelated noise, then
Eq. 3.1 is probably valid. However, for a photon counting signal, the properties
of the (e.g., Poissonian) counting noise will in general change with the count rate.
As long as the amplitudes of the source signal are small with respect to those of
the noise, so that the source signal can he seen as a small disturbance of the noise,
Eq. 3.1 will be approximately correct.

3.2. The Probability Distribution of the Noise Powers

For a wide range of types of noise, the noise powers P;j yoise follow? the x?
(chi-squared) distribution with 2 degrees of freedom (dof). The proof of this x?
property of the noise powers proceeds approximately as follows (see e.g., Jenkins
and Watts, 1968):

The noise power P poise = ;—1‘]‘?“0“6 + Biuoise, where A; and B; are given by
Eq. 2.2; A; and B; are both linear combinations of the @. Therefore, if the z
follow the normal distribution, then the A; and B; do as well, so that P;, by

2 With the exception of the power at the Nyquist frequency which follows the
x? distribution with 1 dof.
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definition, is distributed according to the y? distribution with 2 dof. If the z;
follow some other probability distribution, for example the Poisson distribution,
then it follows from the central limit theorem that for ”certain” conditions on this
other distribution the A; and B; will still be approximately normally distributed
(for large N), so that the \* property for the P; still approximately holds.

While this "proof” may seem somewhat unsatisfactory, the conditions for the
central limit theorem to be applicable not being spelled out, in practice one finds
that noise powers are nearly always y?2 distributed, not only for Poisson noise, but
also for many other types of noise. We shall see examples of this later on in this
section.

The normalization of the power spectrum defined by Eq. 2.8 is chosen such,
that if the noise in the photon counting data a is pure Poissonian counting noise,
then the distribution of the Pj s 1s exactly given by the y? distribution with 2
dof, so that the probability to exceed a certain threshold power level Pyjreshold 18
given by

PrOb(Pj,noise > Pthreshold) - Q(Pthres]mldig) (] = 11 N/2 - 1) ) (32)

where the integral probability of the x? distribution is defined as

[Zv/'zr (%)} o /:ot%"le‘% dt, (3:3)

]

Q(x*v)

< -2

where v is the number of dof.

Because the Pjqoise follow this distribution, the power spectrum is very noisy;
the standard deviation of the noise powers is equal to their mean value: op =
(Pj) = 2. This noisy character of the power spectrum can not be improved by
increasing the length T of the data or taking a coarser time step 6t; this just
changes the number of powers.

Two more or less equivalent methods are often used to decrease the large vari-
ance of the P; oise. One is to rebin the power spectrum, averaging W consecutive
frequency bins; the other to divide the data up into M equal segments, transform
these segments each individually and then average the resulting M power spectra,
each normalized according to Eq. 2.8, where Npy, is now the number of photons in
one transform. Both methods of power spectrum compression, of course, degrade
the frequency resolution.

As the time required to calculate the Fourier transform of N data points using
an FFT algorithm is proportional to N log N, there is a computational advantage in
the second method; the time saving factor is about 1+log M/log N. In many cases,
considerable additional time savings result from the smaller array sizes that need
to be handled by the computer. For a variable source, a further advantage of the
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second method is that cutting up the data into smaller segments allows one to study
variations in the power spectra as a function of, e.g., source intensity by selectively
averaging power spectra obtained within certain source intensity intervals and that
it allows the construction of two-dimensional images showing the time evolution
of the power spectrum. These techniques have proven particularly useful in the
detection of transient QPO phenomena. The first method, on the other hand, has
the advantage of producing a power spectrum that extends to lower frequencies (the
lowest measurable frequency being 1/T). It is possible to combine both methods;
each power in the final spectrum will then be the average of MW original powers.

4.0 T T T T T

PROBABILITY DENSITY

T

4 5 6

3
POWER

Fig. 3.1. The probability distribution of uverage noise powers for different values
of the number of powers MW averaged.

Because of the additive properties of the y? distribution, the sum of MW
powers is distributed according to the y? distribution with 2MW dof, so that the
powers in the averaged spectrum will be distributed according to a x? distribution
with 2MW dof scaled by a factor 1/MW. The mean of this distribution is 2, its
variance is 4/M W, and its standard deviation 2/ MW so that for large MW the
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spectrum becomes much less noisy. The probability for a given power P; noise in
the averaged spectrum to exceed a Py eshold 15 given by

PrOb(Pj,noise > Pthreshold) = Q(A:[I/thhreshold!2]\[[/‘/), (34)

where Q(x?2|v) is again given by Eq. 3.3. For large MW, this distribution tends
asymptotically to a normal distribution (see Fig. 3.1) with a mean of 2 and standard

deviation 2/v/MW:

. Pthresho]d -2
ol j,noise hresho - auss \ T ., ——7x | .
Al%‘%/rgoo Pro )(Pjy > Pires 1d) QG ( 2/\/]\4_W ) (3 5)

where the integral probability of the normal distribution is

b 2
QGauss(?) = \/il)—/ C‘t /zdt. (36)
o0r J;

So, a considerable simplification can be obtained by averaging large numbers
of powers, empirically determining mean and standard deviation of the averaged
power spectrum to account for non-Poissonian noise in the z (see Section 3.4), and
then using Gaussian statistics. In the following, we will, unless otherwise stated,
assume the more general case described by Eq. 3.4.

3.3. The Detection Level - the Number of Trials

Assuming the y? property for the noise powers (Eq. 3.4), we can now determine
how large a power must be to constitute a significant excess above the noise.

Define the (1 — €) confidence detection level Pyegecy as the power level that has
only the small probability € to be exceeded by a noise power. So, if there is a power
P; that exceeds Pyetect then there is a large probability (1 —¢€) that P; is not purely
due to noise, but also contains signal power (Eq. 3.1).

A crucial consideration, occasionally overlooked, is the number of different P;
values, known as the number of trials Ny, that one wishes to compare with
Pyetect- Nirial can be equal to the total number of powers in the power spectrum, or
less than that if only a certain frequency range in the spectrum is considered. The
probability to exceed Pjerect by noise should have the small value € for all powers
in the frequency range of interest together, so that the chance per trial should
have the much smaller value of about® €/Nyia1. So, the detection level Pietect is
given by

3 The exact expression can be obtained by setting the joint probability for Nya
values of P; not to exceed Pyeiect €qual to 1 — ¢, which gives a chance to exceed
Pyetect per trial of 1 — (1 — €)1/ Newiad) nearly cqual to €/Nyyq for € < 1.



42
€

N trial

= Q(MW Paerect|2MTV) (3.7)

In Fig. 3.2, Pjetect is plotted as a function of Nyia) for various values of MW
and for confidence levels of 90% (e = 0.1) and 99% (e = 0.01). Note that although

Pjetect increases with the number of trials Nya, the increase is relatively slow.
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LOG(DETECTION LEVEL-2)
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0 1 2 3 4 5 ] 7 8

LOG(NUMBER OF TRIALS)

Fig. 3.2. 90% (drawn) and 99% (dashed) confidence detection levels (minus 2)
as a function of the number of trials. The number of independent powers, MW,
averaged together due to rebinning of the power spectra by a factor W and averaging
M different power spectra increases by a factor of 2 in consecutive curves. The
trials are assumed to be independent, so no overlaps between the W-bin averages

are allowed. As an example, for a power spectrum produced by averaging together
2 Praw” power spectra of 4096 bins each and binning up the resulting spectrum by
a factor of 4 to produce « 1024-bin average spectrum the 90% confidence detection
level can be read from the curve MW = 8 at Nyyja = 1024 to be 5.8.
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3.4. Non-Poissonian Noise

For various reasons the noise in the x; can differ from purely Poissonian count-
ing noise. The consequence of this is that the Pj ise are no longer distributed ac-
cording to Eq. 3.4; in general, correlations introduced by the noise process between
the z; will introduce correlations between the Pj noise, so that the noise power spec-
trum will not even be flat any more. However, as we have seen in Section 3.2, under
?certain” conditions omne still expects the noise powers to follow a x? distribution
with 2 dof. Even if this is the case, the normalization will be different from that
implied by Eq. 3.4 and will in general depend on j.

3.4.1. Dead Time

One reason why noise in the 2y can be non-Poissonian is the occurrence of
various instrumental effects summarized under the name "dead time”. Various
types of dead time exist, all of which considered here have in common that the
instrument is unable to detect a photon for a given short interval of time 7ycaq after
a photon has been detected; Tqead may be constant, or depend itself on various
instrumental parameters.

The case where 7qeaq is constant is typical for an X-ray proportional-counter
dead time. If the incident count rate is A and the detected count rate g, then during
an observation of length 7' the total dead time will be pT'Tgead, so that (”incident
= detected + missed”} AT = uT + T 7gead A, OT

A

- 1+ Tdead)\ . (38)

7
This type of dead time introduces a correlation between the z;: if a photon
has been detected in bin k&, then there is a certain probability that the dead time
interval associated with this photon extends into the next bin k 4 1, and therefore
the average chance to detect a photon in bin k& + 1 will be diminuished. This then
means that the average chance in bin & + 2 will be slightly higher, etc., so that
the final result is that a quasi-periodic oscillation is introduced into the z; with a
frequency equal to the Nyquist frequency. Consequently, the noise power spectrum
will rise towards /5. This constant 7qc.q process has been simulated by Weisskopf
(1985). The result of these simulations is that the expectation value of the noise
power spectrum (normalized according to Eq. 2.8, where Npn = pT') becomes:

P; noise) = 2(1 — uTgea 2149 HTdead Tdead . 2211' ‘ '
{Pjnoise) (1 — p7acaa) [ + (1_#”%{1 T/N sin” - (3.9)
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Fig. 8.3. The complicated dead time process of the EXOSAT ME (see Andrews
and Stella 1985, Tennant 1987) strongly modifies the probability distribution of the
noise powers (drawn) with respect to that expected for a Poisson noise process.
After scaling the distribution with the mean noise power, however, the match with
the ezpected x? distribution (dashed) is good. (Simulated QPO data; sum of 20
power spectra.)

The amplitude of the frequency-dependent component in the noise power spectrum
is seen to be proportional to both the ratio of total dead time to total live time and
the ratio of Tgeaa to the duration of a time bin T/N.

Another simple type of dead-time process is that where the instrument can only
detect at most one photon per instrumental "sample” cycle, which has a duration
Tsample- S0, in this case Tqeqq 15 variable and lasts from the time a photon is detected
until the end of the sample. If the arrival times of the incident photons are Poisson
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distributed, then the chance that no photon arrives during Tsample 18 e~ Teempled 5o
that the chance that a photon is detected is 1 — e~ Tsmple} 50
1-— e“Tsample/\
= — (3.10)

Tsample

If each bin @ contains Neumple samples, then the number of counts in zj is
the number of "successes” among Neymple trials, where the chance of success is
p = 1 — e~ Tesmpier. This means that the z; follow (by definition) the binomial
rather than the Poisson distribution, with mean Ngumple and standard deviation

P(1 ~ p)Neample- Note that in this case no correlations are introduced between
the zj. With Eq. 2.9 for the total variance in the z; and noting that Npp = )z =
PN Ngample it can be derived that the average noise power will be
A

(Pj,noise) = 2€Tsample = 2(1 - ,U'Tsample), (311)

as compared to 2 in the case of Polsson noise.

In practice, dead-time processes are often much more complex than in the two
examples above. In particular, there may be an interaction between dead-time
processes in different instrumental channels (see Paper 1). However, usually one

finds that the y? property of the noise powers is at least approximately preserved
(Fig. 3.3).

3.4.2. Intrinsic Noise

It is very common for the source signal itself to consist (partly) of noise. Such
intrinsic noise signals can contain very useful information about the source and are
worthwhile to try and detect over the background noise caused by, e.g., counting
statistics; examples are red noise and QPO. However, in many cases one wishes to
consider such an intrinsic noise component as be ckground against which to detect
another source signal component. In such cases it is of particular importance to
test empirically the probability distribution of the noise powers.

For example, a theoretical description of red noise as the integral of white noise
(e.g., Deeter and Boynton 1982) suggests that the x? property of the noise powers
will apply for red noise. However, although any observed power spectrum that rises
towards lower frequencies is often called a red noise spectrum, the underlying source
variability is not specified by thLis power spectral property (it is not even necessarily
a noise process) and the \? property can not be guaranteed.

Again, in practice one usually finds that also for noise in the source signal
the noise power distribution closely matches a \? distribution scaled to the local
average power (Figs. 3.4, 3.5).
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Fig. 3.4. a) An average of 6166 power spectra of EXOSAT ME data on the source
GX 5-1 showing red noise and QPO (quasi-periodic oscillations). b) The standard
deviation of the 6166 power values averaged in each frequency bin. Inset: the ratio
of b) to a). Standard deviation equals mean power as expected for x?* distributed
powers.

It is stressed that it is essential when looking for weak source signals to take
into account the (likely) prescnce of intrinsic noise. In particular it is completely
wrong to use the normalization of the noise power distribution valid for Poisson
statistics (Eq. 3.4) when trying to detect something against a background of red
noise. Note that red noise can be present even if the quality of the data is not
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Fig. 3.5. a) Integral distribution of all individual powers in the 6166 power spectra
of Fig. 3.4a (crosses). Strong deviations from a x? distribution (drawn line) due
to QPO and red noise are visible. b) Distribution of the same powers as in a),
after dividing each individual power spectrum by the average spectrum of Fig. 8.4a.
The match to the x? distribution is very close now. Small residual wiggles are due
to the intrinsic variations of the shape of the QPO /red noise power spectrum as a
function of source intensity.

sufficient to clearly see the slope in the power spectrum *.

If the x> property is expected to apply then a correct procedure would for

4 ”Scrambling” techniques where the time order of the z; is randomized are
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example be to divide the power spectrum by some average red noise shape (e.g.,
a best-fit power law) in order to bring all noise powers back to one x? distribution
and then evaluate the significance of any excess. Obviously, the uncertainties in the
description of the shape of the noise spectrum itself should also be taken in into
account in such an analysis.

4. THE SIGNAL POWER
4.1. Introduction

Any quantitative statement one can make about the signal power Pjsignal will
be a statement of a probability based on the probability distribution of the noise
powers Pj noise, because the only thing one knows for sure is the total power P; which
is (Eq. 3.1) equal to the signal power contaminated with an unknown amount of
noise power. In Section 4.2 we will consider this process of quantifying the signal
power. In Section 4.3 it will be discussed how to convert a statement about Pj signal
into a statement about the rms variation in the source signal. It is reiterated at this
point that to say anything else about the source signal, e.g., about the amplitude of
a sine wave, is an entirely different problem for which we need to model the shape
of the signal power spectrum. For a sinusoid signal, this problem will be touched
upon in Section 6.

4.2. Quantifying the Signal Power

4.2.1. Detected Signal Power. Supposing that we have a detection, i.e., for
given j it is true that P; > Pqcrect, then we ask what is the probable value of the
signal power P; signal at J.

Determine a "limiting noise power level” Pygigelimit that has only a small prob-
ability €' to be exceeded in one trial:

el = Q(]\’/[I/VPnoiselimitI?‘J\JW/)' (41)

Then, with confidence (1 — ¢') we can say that for given j Pjoise < Proiselimit-
Because according to Eq. 3.1 Pjsignal = Pj — Pj noise, this implies that

P;j signal > Pj — Pyoiselimit (1 —€') confidence. (4.2)

sometimes used to evaluate the probability to produce a certain feature in the
power spectrum by chance given the distribution of the zx. These techniques are
incorrect when red noise is present, as the scrambling destroys the correlations in
the z; underlying the red noise and artificially converts the red noise into white
noise.



49

Note that a slightly misleading statement about this case occurs in Paper 1 (in the
text after Eq. 2.13).

4.2.2. Upper Limit to the Signal Power. If no significant power level has been
attained by any of the P;, then it is useful to determine an upper limit to the signal
power. The (1 —6) conﬁdem e upper limit Pyy, to the signal power is defined as the
power level for which with (1 — ¢) confidence Pjggna < Puyr irrespective of where
(at which j) in the frequency range of interest this signal power may have occured.
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Fig. 4.1. Relations between the detection level Pyegece, the "usually ezceeded” level

Pexceea, the mazimum observed power Py,,y, the upper limit Pyy, and the sensitivity
level Pyensitive (Sce text).

To determine Pyp, we define a power level Pegceed that has the large probability
(1 —9) to be exceeded by a given individual Pj yjse:

1-0= Q(:\[IV exceed

2MW). (4.3)

So, a fraction of approximately (1 — §) of all powers considered will exceed Peoxceed
in the absence of a source signal. We now find the largest actually observed power
P .x in the frequency range of interest, and write

PUL = Pmax ™ Lexceed- (44)

If for some j there would have been a signal power in the power spectrum with
Pj signal > Py, then for that j with (1 — §) confidence P; would have exceeded
Prax = PuL + Pexceea (Eq. 3.1). As we know that for all j it is true that P; < Phax,
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we can say with (1 — é) confidence that indeed for all j Pjsignal < Pur. Note that
the number of trials Ny, does not enter into the calculation of Py, as one reasons
in terms of one hypothetical undetected signal power Pjggnal at given j.

4.2.3. Sensitivity to Signal Power. It is sometimes useful to predict the ca-
pabilities of a planned experiment in terms of its sensitivity to signal power. The
sensitivity level Psepsitive can be calculated on the basis of the (expected) probability
distribution of the noise power as

Psensitive - Pdetect - Pexceeda (4'5)

where Pyetect and Pexceed are defined in Eqs. 3.7 and 4.3, respectively. If there
occurs a Pjsignat somewhere in the power spectrum that exceeds Piensitive then
with (1 — 6) confidence it will be detected (at the (1 — ¢) confidence level associated
with Pgetect). Note that Pseysitive 18 10t the same as Pyr; in fact, Peepsitive 18 in 2
sense the upper limit to Pyy, (see Fig. 4.1).

4.3. The rins Variation in the Source Signal

Assuming that the signal power spectrum has been properly separated out
from the total power spectrum using the methods described in Section 4.2, we can
convert the signal power into the rms variation r of the source signal in the z; using

the expression
/W’E_ P; ional
3 ,signa
=y 4.6
Nph ( )

(¢.f. Eq. 2.10), where P; is an MW times averaged power and where Npy is the
number of photons per transform.

We shall consider two effects that may cause a difference between the value of r
obtained in this way and the actual value R applicable to the signal z(¢) as emitted
by the source. As we have seen in Section 2.5, the binning of the data causes the
power spectrum to be suppressed preferably towards the higher frequencies. The
correction factor by which » should be multiplied is

It 7vT /N
(T> binning =f= sintvT/N’ (4.7)

(c.f. Eq. 2.19), where ¥ is some appropriate average over the signal feature in the
power spectrum.

The second effect is our old friend dead time (see also Section 3.4.1). Provided
that the variations in the signal of interest are slow with respect to the dead time
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process, the way in which dead time changes the signal is completely described
by the instrument-dependent relation between A and u, the incident and detected
count rates. Examples of such relations are given in Eqs. 3.8 and 3.10; any relation,
either theoretical or empirical, can be used.

Expressing the relation as the dead time attenuation factor f(A) = u/A, one
finds that a small change éA in the incident rate causes a change ép in the observed

rate given by
Syt Adf\ 8A
A i I ATCIN Iddn 4.8
It ( + fdx/) A (48)
From this expression we can derive the dead time correction factor

i _ ,_|6,\|/,\:(’ iﬁyl
(7' >c1ead time B [6e]/ e 1+ ) . (4.9)

See Paper 1 for a discussion of the case of dead-time interaction between several
instrumental channels.

One minor pitfall remains to be considered, being the practice of describing
the signal power spectrum Pjggnal i terms of a function Psigm;(u) defined such
that Pignai(#;) = Pjsignal. When integrating this function one should note that
f Pyignal(v)dv = 17{:/ > Pj signal- Defining the excess power in the power spectrum
due to the signal as Peccess = W Y Pjsignal = T [ Paignal(v) dv, we finally have for

the fractional rms variation in the signal corrected for binning and dead time

Pexcess Ndf|TY nmst [ Pogua(v) dv
= - — =11 —_—— o g .
R=aby= I tFan| smavetV T ) (4.10)

where I = N, /T is the count rate, ¥ the average frequency of the signal feature
in the power spectruny, 6t = T/N the duration of a time bin, and the sum and the
integral run over all frequencies where the signal causes a non-negligible power (a
power at the the Nyquist frequency should enter with a factor -12;, see Eq. 2.10).

5. OPTIMAL DETECTION - INDEPENDENT TRIALS
5.1. Introduction

When deriving the detection level from the noise power distribution in Sec-
tion 3.3, we implicitely assumed that the trials (i.e., the powers to be tested against
the detection level) would all have the same statistical properties, and that they
would be statistically independent. In particular, MW was assumed to be equal
for all trials and no overlaps were allowed between the averages of W bins. This
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approach is not necessarily optimal for all signal shapes, but it has the enormous
advantage that the statistical properties of any power excess that is found can easily
be evaluated analytically from the known distribution of the noise powers. In this
section, we develop the possibilities of this method to its limit by considering the
optimal value of the number of bins to average, given the expected signal. In Sec-
tion 5.4 the method as it has been developed in the previous sections is summarized
in a step-by-step style. In Sections 6 and 7, we shall abandon the constraints that
the trials should be equal and independent.

5.2. Detecting a Narrow Feature

The detection of a narrow feature in the power spectrum (defined as a feature
in which all power is concentrated in one frequency bin) is a fundamental problem
because the continuous Fourier transform of a strictly periodic signal consists of one
or more delta functions (see, however, Section 4.5 for the case of the discrete Fourier
transform). If the signal power of a narrow feature in a full frequency-resolution
power spectrum is Pyjgnal, then it will drop to Pegnal/(MW) after the frequency
resolution has been degraded by a factor MW by one of the methods described in
Section 3. For the method of averaging W adjacent bins this is immediately obvious;
for the method involving division of the data into 3 equal segments, this can be
seen by using Eq. 2.9 (and assuming that the signal remains the same through the
observation).

The detection level also drops when the frequency resolution is degraded, both
because the probability distribution of the noise powers in the average power spec-
trum becomes narrower and because the number of trials decreases by a factor
MW. In addition, the narrower noise distribution causes Peyceeq to increase. How-
ever, in the final analysis the sensitivity level Peensitive (Eq. 4.5) always drops more
slowly than 1/MW (Fig. 5.1), so that the conclusion is that for detecting a narrow
feature in the power spectrum the highest sensitivity is reached for the maximum
possible frequency resolution, i.e., by choosing MW = 1. Note that we have not
specified what the source signal should be in order for the signal power spectrum to
be narrow; as we shall see, the discrete Fourier transform of even a strictly periodic
sinusoidal signal does not approximate a delta function very well.

5.3. Detecting a Broad Feature

Similar reasoning as in Section 5.2 shows that also for a feature of finite width
Av the signal power summed over all frequency bins in the feature will drop
proportionally to 1/MW when the frequency resolution of the power spectrum is
degraded. However, as long as the width of the feature exceeds the frequency resolu-
tion: Av > MW/T,s, where Tops = MT is the total length of the observation, the
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Fig. 5.1. The sensitivity level as a function of the number of powers averaged
(MW ) for various numbers of trials. The sensitivity level always decreases more

slowly than 1/MW.

signal power in one frequency bin within the feature will remain constant (strictly
speaking, for a feature with a rectangular profile, and ignoring edge effects), because
the number of bins in the feature Av /(MW /Tys) is also inversely proportional to
MW. Because Picpsitive drops as a function of AW, this implies that the sensitivity
to the feature increases with MW, When (MW/Tops) > Av, we recover the case
of Section 5.2, and the sensitivity begins to drop. So, the optimal value of MW is
that which just concentrates all power in one bin: TypsAv.

The above argument ignores the alignment between the feature and the fre-
quency bins; for MW = TopsAr one is lucky when all power is in one bin; more
likely is a situation where the power is distributed over 2 bins. It is possible to devise
tests which take into account various possible alignments and which are optimized
for specific shapes of the broad feature; some examples of this will be considered in
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Sections 6 and 7.

5.4. Summary: Power Spectral Searches Made Easy

In this section we collect all previous results into a "how to” recipe of testing

the power spectrum for a wealk signal using equal statistically independent trials.

o

10.

Determine the M and W (Section 3.2). The optimal choice for MW is that
which approximately matches the expected width of the power spectral feature
one desires to detect, Tops Av (Sections 5.2 and 5.3), but gaps in the data or
the desire to see the time evolution of the power spectrum may dictate M.

. Calculate the M power spectra normalized according to Egs. 2.8 and 2.44. Note

that g is the number of photons in bin k and N, the number of photons in
one power spectrum, ., T.

Average the M power spectra.

Think about the noise power distribution (Sections 3.2 and 3.4). Does the
noise power spectrum seem to be flat? Is its mean level 2.0? If so, the noise is
probably dominated by Poissonian counting statistics - go to step 5. If not, find
out why not. Try to determine whether the y? property applies (Section 3.4). If
you are satisfied that it does, you can divide the power spectrum by some mean
noise power spectral shape and go on step 5. Otherwise, find out what is the
distribution of the noise powers and determine the detection level accordingly.
Determine the detection level (Eq. 3.7, Fig. 3.1).

Check the average spectrum for powers exceeding the detection level.
Quantify the signal power in terms of a detection (Section 4.2.1) or an upper
limit (Section 4.2.2).

If necessary, multiply back in the noise power shape you may have divided out
in step 4.

Convert the signal power into the relative rms variation of the source signal,
correcting for the effects of binning and dead time (Section 4.3).

To say more about the signal, you need to model its power spectrum. For a
sinusoidal signal, see Section G.

6. DETECTING A SINUSOIDAL SOURCE SIGNAL

6.1. Introduction

When searching for an X-ray pulsar, the first assumption that is made is often

that the pulse shape is sinusoidal — and for many X-ray pulsars, of course, this is not
a bad assumption. In this section, we first derive the shape of the discrete power
spectrum of a sinusoidal signal of arbitrary frequency and phase, and then consider
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in some detail how to optimize a power spectral search towards detecting a weak
sinusoidal signal. We allow the possibility of dependent trials, which means that
detection levels have to be determined by simulations. Throughout this section, we
ignore the binning and dead time corrections {Section 4.3).

6.2. The Power Spectrum of a Sinusoidal Signal

The continuous Fourier transform of a sinusoidal signal is a delta function.
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Fig. 6.1. a) The discrete power spectrum of a sinusoid with an arbitrary frequency.
b) Same, with frequency equal to a Fourier frequency.
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However, if one calculates the FFT of some arbitrary sinusoid the result, more
likely than not, will be something similar to Fig. 6.1a. The reason that this power
spectrum does not look very much like a delta function is of course that is was
calculated from a discrete Fourier transform. As discussed in Section 2.5, windowing
causes a strong distortion of the Fourier transform. (The reason that the spectrum
in Fig. 6.1a does not look very much like the window transform W (v) of Section 2.5
either is that the frequency resolution of a discrete Fourier transform is equal to
the width of the side lobes of W(v), namely, 1/T"). Only when the frequency vgine
of the sinusoid is equal to one of the Fourier frequencies v; = j /T will all power be
concentrated in one bin of the discrete Fourier transform (Fig. 6.1b).
The discrete power spectrum of a sinusoidal signal

r=A COS(wsinetk + d’) (61)

can be calculated directly from Eq. 2.4a¢ by making use of the result

N-1 o I
Y etk = 3N —1)ia n 211\ @ (6.2)
k=0 Sin ia

(e.g., Bloomfield 1976). The result of this calculation is

. 2 2 2
12 _ 1 42p2 [ SIDTX ra /N rz /N
lasl” = AN ( T ) [(Sil’lﬂ;l)/N) + (sin [*(2j + z)/N] +

5 ( nz /N ) (Sin [W(;/j’w)/m) cos[(N —1)(2n(j +z)/N) + 2¢]} (6.3)

sinwa /N

where ¢ = (vsine — vj)T, the frequency offset of the sinusoid frequency from fre-
quency bin j in units of the Fourier frequency step 1/T. The dependence of this
expression on the phase ¢ of the sinusoid is small except for j close to 0 or N/2
(Fig. 6.2). The function describing the signal power at v; as a function of « is of
course closely related to |[W(v)|? (Eq. 2.15). For ¢/N <« 1 and 0 < j/N < 3,
i.e., for frequency bins close to v, and not too close to either zero or the Nyquist
frequency, expression (6.3) reduces to

|(zj]2 ~ 1AZN

4

(6.4)

[}
N
2.
=}
3
2
N
[ %)

T

This function, normalized to 1 at © = 0 is shown as the drawn curve in in Fig. 6.25.
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Fig. 6.2. Response power at v; to a sinusoidul signal as a function of vgne — v;
in units of the independent Fourier frequency step (IFS). Calculations are for N =
1024. a) j = 2. Curves are for various phases of the sinusoid. b) Phase-averaged
curves. Drawn: j = 200; dashed: j = 2; dotted: j = 510.

6.3. Single-Power Response

The highest power in the signal power spectrum will be obtained at the Fourier
frequency v; closest to vsine. Normalized to a power of 1 for vgine = v; (2 = 0), this
power varies between 0.405 and 1, with an average value of 0.773 (Fig. 6.5, drawn
curve). In the following we will use the term "input power” for the power that
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Fig. 6.3. Discrete power spectra of a sinusoidal signal with frequency offsets from
the nearest Fourier frequency as indicated. Nearly all power is in all cases concen-
trated in the two bins closest to vejpe.

would have been caused by the sinusoidal signal if v; = vgye; the "response power”
is the power that is actually produced in the signal power spectrum. The "response
function” is the response power divided by the input power as a function of z, and
the "response” is the highest response power in the power spectrum divided by
the input power. So, the drawn curve in Fig. 6.2b is a response function. For this
curve, the input power is 1, the response power depends on z and is between 1 and
0 and the response depends on @ and is between 1 and 0.405. This "ripple” in the
response to a sinusoidal signal implies that we can not exactly predict the highest
response power for a sinusoidal signal of given input power and arbitrary frequency:
the best we can do is calculate the probability distribution of the response.

This fact should in principle be taken into account when interpreting a power
spectrum in terms of the properties of a sinusoidal source signal. For example,
to set an upper limit to the amplitude A of the signal when no significant power
has been detected, one should take into account that A depends not only on P;,
but also on , ¢ and, mostly via the binning factor, on j. The canonical method
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Fig. 6.4. Averaged responsec power in two adjacent bins j and j + 1 as a function
of the frequency offset x of the sinusoidal signal from bin j.

is to first determine an upper limit to Pjgignal using the noise power distribution
(Section 4.2.2), and then convert this into an upper limit to A by using the average
value (0.773) of the response. However, a signal with an amplitude considerably
larger than the upper limit Ay obtained in this way can easily be hidden in the
data if its frequency happens to be close to halfway two Fourier frequencies. If
there is a Pjqgnal somewhere in the spectrum that actually reaches the limiting
level Pyy,, then there is a probability of ~44% that 4 > Aygp. The factor by which
A can exceed Ayp is at most 1.4, which would in most circumstances probably not
be considered a large error. A better way of obtaining Ay, would be to consider
the bivariate probability function of 4 in its dependence on Pj,oise and , (the
dependence on ¢ is weak, and that on j is usually kept).

6.4. Optimal Detection of a Sinusoidal Signal

The ripple in the single-power response to a sinusoidal signal will cause one to
preferably miss signals with a frequency halfway between two Fourier frequencies.

Inspection of Fig. 6.3 shows that in this case (z = 0.3) nearly all power in
the signal is divided between the two adjacent bins — power loss to frequency bins
further out is relatively small. This suggests taking two-bin averages as a method
to diminuish the ripple. Note that degrading the frequency resolution by dividing
the data into A segments (Section 3.2) will not diminuish the ripple at all, but will
instead lead to a loss of sensitivity similar to that discussed in Section 5.2.
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Fig. 6.5. Comparison of the responses of the single-bin (drawn), two-bin running
average (dashed) and two-bin no-overlup (dashed and dotted) schemes.

Fig. 6.4 shows the average power in two adjacent bins as a function of z. To
take full advantage of the flat part (C-E) of the two-bin response, it is necessary
to consider overlapping averages (1(la;|? + |aj+11%); $(laj+1|? + laj+2|?); ...),
otherwise in 50% of the cases the signal would still be in between bins (section B-C
of the response). This means that the number of trials will nearly be equal to the
single-bin case. In Fig. 6.5 the response of this 2-bin average, 1-bin overlap scheme
(to be indicated henceforth as (2,1)) is compared to the single-bin (1,0) approach.
The (2,0) response is also indicated. The (2,1) response is a factor 2 lower than the
(1,0) one at & = 0, but the corresponding detection level is also much lower, the
noise having been averaged over two bins. The (2,1) response varies between 0.5
and 0.405 with an average of 0.451.

Because of the overlap between the (2,1) trials, the chance to exceed a certain
power level by noise can not be straightforwardly estimated analytically. One can
perform simulations of many noise power spectra to determine the chance to exceed
a certain power level by noise somewhere in the power spectrum as a function of
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Fig. 6.6. 90% confidence detection levels as a function of the number of frequency
bins in the power spectrum for the (1,0) (drauwn) and (2,0) (dashed) schemes as de-
termined from Eq. 3.7 (MW = 1), and the (2,1) (filled circles) and B&IB (crosses)
schemes as determined from simulations of noise power spectra. Each point corre-
sponds to 10* simulated power spectra; error bars are smaller than the points.

the number of bins in the power spectrum. Results of simulations of this type are
given in Fig. 6.6 in terms of the 90% confidence detection level (filled circles). It
can be seen that the detection level is scarcely higher than for (2,0) sampling of
the power spectrum (dashed curve), despite the twice higher number of trials. The
reason for this is the large dependence of the extra trials in the (2,1) scheme with
those already in the (2,0) scheme.

Another method of decreasing the ripple, used in pulsar radio astronomy
(Backer 1988, priv. comm.) is "interbinning”. In this method (Cullers et al. 1984),
an extra frequency bin is created in between cach two Fourier frequencies by cal-
culating the difference of the adjacent complex Fourier amplitudes. One calculates
the ”interbin amplitude”
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Fig. 6.7. Interbin response power at j+}3 for an input power of 1 (drawn) compared
to response power at j (dashed) as function of the frequency offset x. The interbin
reponse has its mazimum at @ = .

™
iy = 7(aj = ajr). (6.5)

The response function of this "filter” is

(gcos(w(x - %)))2 (6.6)

4 mz(l-—2z)

This function is plotted in Fig. 6.7 together with the response function of
one of the adjacent bins. The interbin response function is seen to be wider; its
normalization is such that the response is 1 when v, is exactly in between Fourier
frequencies. The ripple in the response of bins and interbins (henceforth B&IB)
together is even less than that in the (2,1) scheme: it varies between 1 and 0.857
with an average of 0.951. The number of trials in the B&IB scheme is twice that
in the (1,0) or (2,1) schemes. Again the detection levels of the B&IB scheme must
be determined with the help of simulations. In Fig. 6.6 some preliminary results
are given (crosses). Note that the choice of one single detection level for bins and
interbins together is not necessarily optimal, as the noise distributions of bins and
interbins are different. In fact, the reason that the detection levels of the B&IB
system are seen to be considerably higher than those corresponding to single-bin
trials (1,0), is not so much the twice higher number of trials but the fact that the
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Fig. 6.8. Comparison of the probability to detect (at the 90% confidence level) a si-
nusoidal signal of arbitrary frequency as a function of its input power for the single-
power (drawn), 2-bin running average (dashed) and bin/interbin (dotted) methods.
In this ezample, N = 8192 ({095 bins in the power spectrum). For input powers
between 19.1 and 47.2, the average chance to detect the signal is 78, 80 and 77%,
respectively.

average noise level in the interbins is higher than in the bins by a factor ~1.23.
Knowing the detection levels (Fig. 6.6) and the probability distributions of
the response to a sinusoidal signal that can be derived from the response functions
(Figs. 6.5 and 6.7), one can estimate the probability to detect a sinusoidal signal
of given amplitude in the various schemes ((1,0),(2,1),B&IB) as a function of the
number of bins in the power spectrum. Fig. 6.8 displays the probability to detect the
signal as a function of the input power for a power spectrum containing 4095 bins
(the Nyquist frequency was excluded), where the phase-averaged response functions
were used, and where the approximation was made that P; = Pjgignal + 2 rather
than folding in the noise power distribution; given the large signal powers considered
this is probably not a serious approximation. It is seen that the curves of the (2,1)
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Fig. 6.9. Power spectrum of e sinusoidal signal with a constant frequency
derivative. The sinusoid frequency changes by 100 Fourier frequency steps during
the observation.

(dashed) and B&IB (dotted) schemes are quite similar and much steeper than that
of the (1,0) scheme (drawn). The latter method has some probability to detect weak
signals which are always missed by the former two, but signals always detected by
the (2,1) and B&IB schemes will sometimes be missed by the (1,0) scheme.

When the input power is arbitrary, the methods can be compared by deter-
mining the average chance to detect a signal over the entire range of input powers
where the three methods give different chances to detect the signal (for very high
input powers the chance to detect is 1 for all methods, for very low ones, 0). The
results of the preliminary simulations presented here seem to indicate that the dif-
ferences between the methods are small, that the (2,1) method is best and the (1,0)
method worst, with the B&IB method intermediate. However, the differences are
sufficiently small for the approximations of the simulations to become relevant.

In any case it seems clear, that even for strictly periodic sinusoidal signals the
single-bin approach is not always optimal. If there is any intrinsic broadening of
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Fig. 6.10. Highest power in a power spectrum of a sinusoidal signal with
constant v as a function of vT2,

the signal, then the frequency resolution should certainly be degraded to optimize
the search.

6.5. Sinusoidal Signal with Varying Frequency

The shape of the power spectrum in the case of a sinusoidal signal with a
constant frequency derivative » is mainly determined by the number of bins in
the power spectrum that the frequency changes during the observation (¢7?). In
general, the power spectral peak will have a width equal to this; the power will be
more or less equally spread out over the peak (Fig. 6.9).

Averaging over all possible phases of the sinusoid and the over the initial fre-
quency offset & one finds that the highest power in the power spectrum drops rapidly
for ¥T? > 2 (Fig. 6.10). As we have scen in Section 5.3, the frequency resolution of
the power spectrum should be degraded to match the width of the peak for optimal
sensitivity.
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Another type of frequency variations that is encountered in practice is that
caused by orbital motion. In this case, the frequency will change periodically with
an amplitude voX/c (where vy is the rest frequency, I the velocity amplitude of
the orbital motion and ¢ light speed) and a period equal to the orbital period
Porp. If the observation is much shorter than the orbital period: T « Py, then
we approximately recover the previous case with 7 & vy(I/c)(27/ Porp) cos ®orp,
where ®,,, is the orbital phase.

If on the other hand T' 2 P, then the power spectrum gets quite complicated,
a central peak at v being accompanied by many side lobes with a separation 1/Pyp,.
Often, one tries to deal with the complexities of this situation by cutting up the
observation into M segments and demanding that the change of frequency caused by
the orbital motion is less than one frequency bin in any individual power spectrum.

This implies
CPorb
T<\ sz (6.7)

However, this condition does not prevent the power spectral peak from moving from
one bin to the next in successive power spectra, so that a broad peak in the average
spectrum in any case results.

An in principle very powerful method to deal with variable-frequency signals
is "precorrecting”: correcting the arrival times of the data for different assumed
binary orbital parameters or frequency derivatives in the hope to recover a constant-
frequency signal. A large gain in sensitivity can in principle be attained with this
method. However, often the number of different sets of parameters one needs to
try is prohibitive.

7. COMPREHENSIVE POWER SPECTRAL SEARCHES

In the previous sections we have considered how to optimize power spectral
searches to finding specific features of known width. Often, the signal(s) one is
looking for are not sufficiently closely constrained to predict the width of the feature
in the power spectrum, or one wishes to look for source variability in general. In
that case, one needs to perform a search of the power spectrum that is sensitive to
narrow as well as broad features.

A reasonable approach scems to scarch the power spectrum several times, us-
ing different values of W. The trials in these searches will obviously be strongly
interdependent, so that the detection levels will again have to be determined using
simulations, and should take into account the total number of trials in the entire
search. The degree of interdependence of the trials, and therefore the detection
levels, will depend on the particular search scheme that is employed, and in par-
ticular, on the values of W and on the overlap between the trials. As different
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values of W will occur in a search, the distribution of the noise powers will differ
between the trials. It seems rcasonable, therefore, to choose the detection level
different for each value of 1, in such a way that the a priori chance €scpeme in one
trial to exceed the detection level is equal for all trials in the entire search. Instead
of one detection level Pyetect, there will now be several different ones Pgetect,w cor-
responding to the different values of W that occur. These detection levels are given

by

€schiecme = Q(AII'VPdetect,[VIQJ\C["V). (71)

Note that the number of times the detection levels are actually exceeded in the
search of a pure noise spectrum is not equal to €schemeNtiial because of the strong
interdependence of the trials. Therefore, €scheme can not be simply related to the
required confidence level of detection, but has to be determined from simulations
of the search scheme. €cpheme is just a compact way of summarizing the different
detection levels Pyetect, w applicable to the particular search scheme employed.

In Fig. 7.1 €5cheme corresponding to a 90% confidence detection level is plotted
for two different search schemes vs. the number of independent powers in the power
spectrum. In both schemes the values chosen for W were (1,2,4,8,...,N/2). In one
scheme (indicated by filled circles) a 50% overlap between trials of the same width
was used; in this scheme Ny & 3N/2, (the number of powers in the spectrum, or
the number of trials in a (1,0) scheme is N/2). In the other scheme (crosses) no
overlap was allowed; in this scheme Ny, =~ N.

The values of escheme in Fig. 7.1 were determined from simulations of many
noise power spectra by assuming, for each power spectrum, a series of different
values of €scheme, calculating for each value of escieme the detection levels Paetect,w
corresponding to each value of W using Eq. 7.1, and then testing the power spectrum
for averaged powers exceeding these levels. The value of €scheme corresponding to a
90% confidence detection was then determined as that value for which only 10% of
the spectra showed an excess over a Pyegect,w -

The way in which one would employ in practice the results of such simulations
would be to use the escheme obtained by simulations of the appropriate search scheme
to calculate the various Pgetect,iv values with Eq. 7.1, and then test the spectrum,
following the search scheme, against these detection levels. An excess would have
well-defined statistical properties (it would constitute a detection at the required
confidence level), contrary to the method where likely-looking excesses are selected
by eye from plots of the power spectrum and tested a posteriori for significance
using rules-of-thumb. A method such as described here has the further advantage
that it is sensitive to "everything”. It is of course somewhat less sensitive to a
specific signal than a specialized test.

Once the simulation process has been set up, search schemes of this kind can
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Fig. 7.1. The a priori chance to exceced the detection level in one trial, from which
one must calculate the detection levels as o function of W to obtain an effective
90% confidence detection level. Two “dependent sample” schemes (symbols) and
the (1,0) scheme (curve) are tllustrated. See text for a description of the dependent
sample schemes. Each point corresponds to 10 simulated power specira. Error bars
are smaller than the points.

easily be extended to include searches where W itself depends on j (for example,
because the features searched for have a known Awv/v) or where searches are per-
formed of two-dimensional arrays of power spectra (for example when searching
dynamic power spectra for transient phenomena).

ACKNOWLEDGEMENTS

This paper benefitted from stimulating discussions with many of the partici-
pants of this ASI, notably Don Backer and Ocke de Jager, and with Luigi Stella.



69

REFERENCES

Andrews, D., Stella, L., 1985, EXOSAT Ezpress 10, 35.

Bloomfield, P., 1976, Fourier Analysis of Time Series: an Introduction, (John Wi-
ley & Sons — New York).

Bracewell, R., 1965, The Fourier Transform and its Applications, (McGraw-Hill).

Deeter, J.E., 1983, Astrophys. J. 281, 482.

Cullers, D.K., Oliver, B.M., Day, J.R. and Olsen, E.T., 1984, NASA Tech. Pa-
per 2244, 49.

Deeter, J.E., and Boynton, P.E., 1982, Astrophys. J. 261, 337.

Jenkins, G.M. and Watts, D.G., 1968, Spectral Analysis and its Applications,
(Holden-Day — Oakland).

Leahy, D.A., Darbro, W., Elsner, R.F., Weisskopf, M.C., Sutherland, P.G., Kahn,
S. and Grindlay, J.E., 1983, Astrophys. J. 266, 160.

Lewin, W.H.G., van Paradijs, J. and van der Klis, M., 1988, Space Science Re-
views, in press (Paper 1).

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., 1986, Numeri-
cal Recipes, (Cambridge University Press).

Tennant, AF.; 1987, MNRAS 226, 963.

Weisskopf, M.C., 1985, talk presented at Workshop Time Variability in X-Ray
and Gamma-Ray Sources, Taos NM, USA.



DETERMINISTIC CHAOS IN
ACCRETING NEUTRON STAR SYSTEMS

G.E. MORFILL, H. ATMANSPACHER, V. DEMMEL,
H. SCHEINGRABER, AND W. VOGES

Maz-Planck-Institut fir Physik und Astrophysik
Institut fir extraterrestrische Physik
D-8046 Garching, FRG

Abstract:

This review contains a brief introduction to the terminology of deterministic chaos,
and a summary of important properties and definitions of strange attractors. A me-
thod is described how to reconstruct the attractor from experimental data. Using
synthetic data, the specific problems associated with the reconstruction are exami-
ned. As an observational example, analysis of data from the accreting neutron
star system Her X-1 is described. Finally, we discuss the physical interpretation of
these observations, the possible implications for the description of the system from
a general point of view, the specific implication for the pulse shape and pulse to
pulse variations, and possible approaches towards a better understanding of both
accretion disc and accretion column.

Introduction to the theory of deterministic chaos:

A given physical system can be regular, e.g. it can be stationary, periodic, doubly
periodic etc., it can be stochastic which implies a description with probability
distributions, or it can be chaotic. Chaotic systems are described by a set of coupled
nonlinear differential or difference equations, which can be solved numerically, the
solution describing a trajectory in phase space. A general property of these systems
is the exponential divergence of initially nearby trajectories. This means that a
given trajectory may only be predicted for a finite time interval, corresponding
to the correlation time of the system. In this sense, chaotic systems occupy the
regime between regular (correlation time — oo) and stochastic (correlation time
— 0) systems, and it seems plausible that they will be difficult to differentiate from
the latter. Further information on these concepts can be found in Atmanspacher
and Scheingraber (1987).

The one clear distinguishing feature is that stochastic systems eventually occupy
all the available phase space as ¢ — co, whereas chaotic systems are confined to a
subregion of the available phase space. In order to distinguish between these two
situations in practice, which means limited data sets, new techniques have been
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developed. These techniques allow us to characterise chaotic systems, to quantify
their complexity, to differentiate them from other systems and to identify them.

In the present context we consider continuous systems which may be described by
a set of first order differential equations:

%(t) = F (x(t), 1) (1)

where the vector x is

x(t) = (21(8), 75 (8)5 s 2, (1)) (2)

The equations are autonomous (F is not explicitly a function of t) nonlinearly
coupled, and there exists at least one external control parameter, u. This implies
that the system is open to interactions with the surroundings; e.g. forcing and
dissipation.

The temporal evolution of the uncertainty in one variable, say éz,, is governed by

d " JF,
Et' (6.’1:'.) = ng EJ;&:CJ. (3)

and the Jacobian DF can be evaluated once (1) is specified. For a given x, the
object is to determine the eigenvalues of the matrix DF, A,(t). Note that by
choosing a local coordinate sytem, so that (6z,e;) x X(t) =0, A; = 0 in all cases.
Here e, is the unit vector in the direction of z;. This yields, provided the matrix
can be diagonalised

2 (62) = Az, 4)

i.e. the uncertainty grows or declines exponentially depending on the sign of A,.
If the uncertainty grows exponentially, then according to our earlier description,
neighbouring trajectories in phase space diverge and the system is chaotic. Since
A, is a function of ¢, and therefore a ”local” quantity, we have not adequately
described the evolution of the system on a temporal average (t — co0). This is done
by defining the Ljapunov exponent

t
A= lim [ A@)at! (5)

t—oo t JO

It has the dimension (time)"l, is a specific property of the system and, if positive
and finite, defines deterministic chaos.
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The local solution of (4) is
t
5z,(t) = 62,(0) ezp { /0 A, (t’)dt’} (6)

and using the Ljapunov exponent (5), the average evolution of the uncertainty éz;
is given by

§z,(t) = 6,(0) ezp {\;t} (1)

For a multidimensional vector x = (z,,...,z,), we may define an uncertainty vo-
lume as a measure of that subset of phase space ascribed to a solution of (1),

n
sv(0) = I1 é2,(0 (®
i=1
which becomes, using (7)

8§V (t) =V (0) ezp {Zn: /\‘(t)} 9)

1=1

For a non-diverging uncertainty volume (confinement), we have the two cases

n
A =0 (10)
1=1
(conservative system) and
n
> <0 (11)
1=1

which defines a dissipative system. In contrast, for a stochastic system in the sense
mentioned above we have

n
DA >0 (12)
i=1

If condition (11) is satisfied, the evolution of the corresponding dissipative system
in the limit ¢ — oo takes place on an attractor. We can now classify some types of
attractors, see table 1, remembering that by choice of the local coordinate system
we may always identify A, (|| x) = 0.
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Tab. 1 : Classification of attractors

n Ljapunov exponents Attractor
1 A <0 fixed point
2 A, =0, A, <0 limit cycle (1-torus)
3 A, =0, X,<0, A, <0 | limitcylce (1-torus)
A =0, A, =0, Ay <0 2-torus
A =0, A, >0, A <0 strange attractor

There is one more case, where the system develops towards a fixed point, for
n =3, all A; < 0. As a necessary condition for a strange attractor, it is required
that n > 3, i.e. at least three nonlinearly coupled differential equations.

Another quantity which is useful in this context is the Kolmogorov entropy. Under
certain preconditions (Pesin 1977) it is given by the sum of the positive Ljapunov
exponents

K=Y \HQ) (13)

1=1

where H is the Heavyside function.

It has the dimension (sec)‘l, K > 0implies at least one positive Ljapunov exponent
and therefore a chaotic system. From an information theoretical viewpoint, K can
be considered as the rate of production of information, and K~! is a measure of
the time for which the system is still predictable to a reasonable degree.

The Ljapunov exponent A; and the Kolmogorov entropy K are dynamical invariants
of the system. The geometrical structure of the attractor for the system in its
asymptotic limit ¢ — co (where initial transients have been damped out) are also
of interest. The relation between K and the correlation time suggests a simple
analysis of the clustering of points in phase space using spatial two ~ point or
multi — point correlation approaches.

The two - point correlation function for a quantity g(z) is

@ (r) =< o(z)a(z — 1) > (14)

where r is the running variable, and angular brackets denote averages. The integral
two — point correlation function is

clr) = [M () (15)
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for an n — dimensional array.

Motivated by a number of empirical examples, it has turned out that a simple
scaling assumption

c@ (r) « rD(z) (16)

gives a reasonable description of many systems. In general, the scaling index D2
is a non - integer number determined by:

D = umM (17)
r—0 logr

This correlation dimension alludes to the complexity of the attractor. It is a metric
invariant of the system and can be related to system properties as will be described
below. The variable r may be viewed as a geometrical length scale, defining the
resolution with which we are investigating the attractor.

If the attractor of the system is self ~ similar, i.e. geometrically reproduces itself
on increasingly finer levels ad infinitum, then relationship (16) yields non — integer
D(?) in most investigated cases.

Topologically, deterministic chaos and strange attractors are often associated with
self — similar structures and fractal dimensions. Regular processes have integral
dimensions (0 = fixed point, 1 = periodic, 2 = doubly periodic).

In addition to the correlation dimension D(2), the analysis can be generalised to
multi — point correlations C (9) and generalised dimensions Dl9). The dimension

D) is termed Hausdorfl, or fractal dimension, D(1) is the information dimension,
and generally

D) < ple-1) (18)

If an analysis of an experimental data set provides a non — integer correlation
dimension D(Z), then the following information has been extracted:

1) The system is chaotic (strange attractor)

2) A sufficient number, n, of differential equations needed to describe the system
is given by the next integral number greater than D). From our preceeding
discussion we had n > 3, which implies D(2) > 2.

3) The characteristic time scale K1 for the chaotic processes is At <« K~! < T,
where At is the minimum resolution of the data, T the total length of the record.

There may, of course, be some confusion from an overlap due to pure stochastic
effects (e.g. photon statistics), but this can in principle, be recognised in the
analysis.
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Reconstruction of the attractor from data: theory
The statement of the problem is the following:

We have a data record from our astrophysical object. This is generally a time series
of light intensities or photon counts. The experiment cannot be reproduced, the
data set is unique. So we have to assume that the data record is representative
of the system: it must truly define the extent and structure of the attractor. A
second and third data set of similar quality should therefore produce similar results,
unless the system undergoes significant evolutionary or topological changes (e.g.
outbursts, obscuration effects etc.).

The time signal we have received generally integrates over the object, which usually
is not spatially resolved. We may, however, identify major emission regions based
on timing analysis (e.g. pulsed emissions), spectral information (e.g. polar cap
emission as opposed to disc emission, doppler shift), correlated observations with
other complementary instruments etc.

The signal contains information about microscopic processes (e.g. photon produc-
tion, absorption, resonances) and macroscopic processes (e.g. radiation transfer,
matter flow, instabilities, torques, precession). In the case of accreting neutron
stars and pulsars, we suspect that the macroscopic processes might exhibit a chao-
tic component, if at all, and that the microscopic signatures probably will not.

It is our conviction that it is a valuable additional information to know whether
astrophysical systems are chaotic or not, and if they are, what the characteristic
time scale and the degree of complexity is. Otherwise we would be throwing away
information which goes beyond that which is obtained from Fourier analysis. In
addition, theorists might be guided into new approaches and even new phenomena
may be discovered as a result.

On the other hand, as will become apparent later, the reconstruction techniques
cannot be regarded as black boxes, a good deal of detailed analysis is necessary,
test runs with artificial data sets have to be performed in order to get confidence
in the results. Obtaining a dimension D@ isa very long way away from producing
a physically convincing model - it is, however, a constraint. Clearly only low order
systems are tractable and will, naturally, elicit most attention.

(Thus the solution of the Final Question, which apparently requires dimension
n = 42 (D. Adams, The Hitchhikers Guide to the Galazy) is securely beyond the
scope of present modelling.)

From a practical point of view, we now briefly describe the method, which we
have used to analyse data records with respect to their possible chaotic content
(Takens 1981, Grassberger and Procaccia, 1983a). The method is based on using
a given data set of equally spaced points to construct an artificial phase space of d
dimensions.

The data are represented as d shifted time series.
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z(t,), - z(ty)
z(t, + At), ..., z(ty + At)
z(t, + 2At),...,z(ty + 24t) (19)

z(t, + (d — 1)At)...,z(t,y + (d — 1)At)

Thus z; = {z(¢;), (¢, + At), ...z(¢t;+ (d—1) At)} is a d — dimensional vector, defining
a point in a d — dimensional space.

In this way, the attractor is "reconstructed” from a time series of data coming
from a single variable (e.g. X - ray flux). The real attractor, which gave rise to the
particular data sequence, is completely embedded in the artificial d — dimensional
phase space, if d — co. The procedure is then to determine |x; — xJ.| ford =1, and

to calculate the correlation 1ntegra.l C(q) 1(r). Next, the dimension of the artificial

phase space is incremented, and C () is calculated etc. until the artifical phase
space dimension is beheved to be suﬂgxmently large. Usually d =~ 2n + 1 is adequate
(Takens 1981). This can, in principle, be done for any multipoint correlation, ¢
(see Pawelzik and Schuster 1987, Atmanspacher et al. 1988).

For the mathematical proof of the embedding theorem the data were assumed to
be free of noise, the sampling interval is arbitrarily small, and the values of the
data are known to infinite precision (Takens 1981). These prerequisites clearly
cannot be fulfilled by real physical measurements, but for successfully reconstruc-
ting attractors one always has to try hard to come as close as possible to these
conditions. If the attractor is sufficiently embedded, the slopes of the correlation
integrals converge such that

(@)
D) = lim Jim 8% (1)

r—0 d—oo logr

(20)

Different orders ¢ of the correlations signify local substructure in phase space, i.e.
a different scaling of regions of different point densities.

In practice, the limits given in (20) cannot be obtained, of course. This is not
necessary, anyway. For practical applications very high dimensions, n, are not
tractable. We have found that an embedding dimension, d =~ 2n + 1 = 20 provides
reasonable results in many cases of low — dimensional chaos. The unavoidable

random noise present in the data shows up in the correlation integral C (q)( ) asa
gradient increasing with increasing embedding dimension. These random processes
are superimposed on any chaotic processes and occupy regions of small r. Hence

plotting the slope of C; (g )( ) for given d as a function of r helps in disentangling
these two components, prov1ded the stochastic part is not overwhelmingly large.
In this case it may mask the chaotic signature.
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In principle, the analysis can be carried further to obtain the Kolmogorov entropy
and the spectrum of scaling indices. We shall not describe this here, the reader is
referred to the original literature (Grassberger and Procaccia 1983b, Halsey et al.
1986, Pawelzik and Schuster 1987).

Reconstruction of the attractor from data: tests

We have already mentioned that a real system will certainly have stochastic fluc-
tuations superimposed on the chaotic signature. Stochastic effects could be due
to real random variations in flow patterns, due to integrating the system spatially
over many uncorrelated fluctuating emission centres because it cannot be resolved,
due to photon counting statistics etc. This should make the extraction of informa-
tion about the system even more complicated, since it is obviously hard, a priori,
to differentiate between two superimposed irregular signals. In practice, this only
works if either the power in the random signal is sufficiently low, or if the two can
be separated by different time {length) scales. These general considerations apply
also to the situation where regular signals are extracted from a ”noisy” data set —
the difference occurs in the meaning of ”sufficient” in both instances.

Next, we have drawn the analogy with the geometrical representation and the
presentation of the data in phase space (or the projection onto a given plane in
phase space — a so called Poincaré section). It is intuitively obvious, that the
projection of the data in phase space has to be important; e.g. a periodic signal is
represented by a closed curve in phase space, however, if the time resolution of our
measurements were by chance to coincide with the signal period, we would obtain
a fixed point based on the available information ~ and we would be wrong. The
same applies, in principle, to chaotic attractors. One may obtain better or poorer
representations of the system in phase space and an important part of the problem
is to optimise this.

We illustrate some of these points with a simple example: a sine — wave with

superimposed random fluctuations. We know that the dimension D2) of this
system is 1.

In Fig. 1 we plot the slope of log, Ct(f) as a function of logy r for dimensions of
the artificial phase space d = 1 to 10. (Notice that in common with standard
practice, with respect to underlying probability theoretical concepts and the re-
lation to information theory, the log to base 2 is plotted. For readers interested
in information theoretical discussions please consult Shannon and Weaver 1962,
Balatoni and Renyi 1976). As can be seen, d = 1 is not sufficient to encompass the
attractor, whereas for d > 1 a clear plateau at the expected value unit develops.
This plateau broadens as the value for d is increased, however, there are deviations
at small r’s associated with the fact that a finite data set with finite resolution is
used. The hump for large r’s is a geometric effect depending on the distance norm
used in the calculation of the correlation integral. This effect is most pronounced in
cases where the attractor is a circle (sphere, hypersphere and so on). This system
contained no random noise.
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Figure 1: Slope of the correlation integral (log, C't(iz)(r) /logar) vs. logy r for a simple sinusoidal
function without noise. The time resolution is about 430 points per period, the shift At is 10 times
the time resolution and the number of points is 2000. The dimension d of the artificial phase space
is varied from d = 1 to d = 10.

To illustrate projection effects and the optimisation of the phase space representa-
tion, we show Fig. 2. The left panel is a phase space representation of the signal
z(t) plotted vs. z(t + Ir) for a fixed ratio of the period and the time resolution 7.
The upper graph has [ = 3, i.e. is a fine resolution map, the middle one is a little
coarser, with / = 10, and the bottom one is coarser still, ! = 33. The right panel

gives the slope of logs C’g) (r) plotted as a function of logy r. The expected value
of unit is found in all cases, however, the upper graph shows that the projection

is not optimal as witnessed by the step in the slope of C%) at large r. The lower
graph (the one with the best projection) has a more pronounced hump than the
middle one.
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Figure 2: Two dimensional phase portraits z,(t) vs. z,(t + Alr) for { = 3, 10,33 (left column), and

corresponding slopes of the correlation integral C%)(r) vs. logy r (right column) of the sinusoidal
function from fig. 1.
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When noise is added to the signal, the data points become randomly scattered
around the original attractor. Since the noise is completely uncorrelated this

component tends to occupy the whole phase space. The slope of log, C}™ of this
random component increases with increasing dimension d of the embedtﬁng artifi-
cial phase space as already mentioned before. When the noise component is small,
we expect this effect to occur at small r, but depending on the noise level, it might
still blanket the underlying regular or chaotic signal. The effect of noise on the sine

- wave is shown in Figs. 3 and 4. In Fig. 3 we have plotted the slope of log2 (2) o (r)
as a function of logy r with 6% (compared with the wave amplitude) noxse We
clearly see the expected result. At small r, the slope increase rapidly trying to
approach the maximum dimension of d = 10. At large r we see the slope 1 from
the sine — wave plus the hump noted earlier. When the noise level is increased to
20% of the signal amplitude we have the result shown in Fig. 4. The noise effects
have become noticeable at larger r. In Fig. 3 the cut — off was at logyr ~ —2.
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Figure 3: Slope of the correlation integral vs. log, r for the sinuscidal function but with 6% noise.
One clearly can recognise the steepening at small r’s due to the stochastic noise.
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In Fig. 4 the cut - off occurs at logy r ~ 0. In addition the slope does not reach
the plateau of unity, as it should. Superposition of noise and of the hump leave too
little space in r to allow this. In principle, analysing a longer time series should help
here, provided that the resolution of the measurement is good enough to increase
not only the number of points but also to increase the information with respect to
the attractor.
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Figure 4: Same as fig. 3 but with 20% noise. The linear scaling range is now reduced so much that
the slope did not reach the value one anymore.

Similar studies have been performed using known chaotic attractors and signal
time series attained from them, with superimposed noise etc. As a summary of our
tests we conclude the following:

1) Under certain conditions the gth order attractor dimension D) can be calcula-
ted from a time series measurement of one observable, and with that the minimum
degrees of freedom required to adequately describe the system responsible for the
signal.
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2) The best representation in phase space must be found, that means an appropriate
At has to be determined. This could be a very difficult problem and in some cases
it may only work by trial and error.

3) Chaotic processes are associated with a certain time scale K ~!, which is a system
property. This must be considered when a signal is analysed. Good guesses for
this time scale can be obtained from autocorrelation analysis or a physical input.

4) Careful pre — scanning of the data using standard time series-analysis methods
(e.g. Fourier, autocorrelation, power spectra) is an indispensable prerequisite for
a successful chaos analysis.

5) No black - box fool — proof algorithm exists so far, that can be applied to any
time sequence of data.

Reconstruction of the attractor from data: Her X-1

Her X-1 is an X - ray binary system, one partner is a neutron star, the other, HZ
- Herculis, is a = 2 Mg star (Liller 1972, Bahcall and Bahcall 1972, Middleditch
and Nelson 1976). The rotation period of the neutron star is 1.24 sec, the orbit
period of the system around its common centre of mass is 1.7 days and there is
also a rough 35-day periodicity observed. The magnetic field of the neutron star is
~ 5 x 10!2 Gau8 (Triimper et al. 1978).

PARTIAL OBSCURATION
NEUTRON (Source made ()

/\\_ B
ETLIPSE

(Source mede M1

NO OBSCURATION
Sewrce mede A) -

HERCULES X-1 HZ - HERCWIS

Figure 5: Schematic diagram of the Her X-1 system showing the optical companion, the accretion
disc and the different viewing geometries described in the text.

Fig. 5 shows the binary system, approximately drawn to scale, as it has been
derived from the available data. HZ - Herculis fills its roche lobe completely, mass
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is drawn over to the neutron star and forms an accretion disc. The strong magne-
tic field of Her X-1 prevents the disc from reaching the neutron star surface, it is
believed that matter is channelled along the field lines and impacts on the polar
caps. The nonalignment of rotation and magnetic dipole axes leads to the regular
periodic pulsing observed. Also shown in Fig. 5 are the three principal observa-
tion sequences for the object: eclipse, when the neutron star disappears behind
its companion; no obscuration, when the neutron star is fully visible and partial
obscuration, when the neutron star is viewed through portions of the accretion
disc.

Voges et al. (1987) made the first analysis of X - ray data from an astrophysical
object, which was designed to reconstruct the attractor and check for the possible
occurrence of deterministic chaos. The object was Her X-1. One of the data sets
used in this analysis is shown in Fig. 6. It is the unobscured source mode data,
averaged in 770 msec bins, taken from EXOSAT observations made on June 11th,
1984,
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Figure 8: Section of the temporal evolution of the X - ray count rate from Her X-1 in the unobscured
mode. The time series contain 1000 points with a temporal resolution of 770 msec.

Various phase space projections of this data are shown in Fig. 7, taking consecutive,
every third, tenth and thirtieth point in the sequence. Inspection shows very little
difference in the phase space projections.
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Figure 7: Two dimensional phase portraits of the Her X-1 measured time series z(t) vs. z(t + Ir)
for delay times of 3, 10, and 30 r. The projection does not change very much with the delay time.

(9)

The analysis of D;"(r) used the consecutive data point projection. This is shown
in Fig. 8 for the two — point correlation function (i.e. actually shown is the slope of
the correlation integral) for artificial phase space dimension d ranging from 1 to 20.
The stochastic component is clearly discernible and dominates for logs r smaller
than 7.0. Above this we note that the slope develops a plateau for embedding
dimensions d > 7. The attractor is completely embedded in the chosen artificial
phase space range d < 20. The value of the plateau level is about 2.4, a fractal
greater than 2! This strongly suggests that a low order chaotic process is operating,
which determines irregular fluctuations in the signal. The most likely degrees of
freedom associated with this process is 3, i.e. a system of three nonlinear coupled
first order ordinary differential equations should suffice to describe the process.
From our earlier theoretical discussion, it follows that this is also the minimum
necessary to obtain chaos in continuous dissipative systems.

There is more information, however. The choice of the time scale, 7, for binning the
data points (r = 770 msec) also allows us to determine the characteristic time scale
of the process, K~! which is a few r. Data which was binned in much more highly
resolved smaller time segments (r < 70 msec) was dominated by stochastic noise
(e.g. photon statistics, background events etc.) and reduced in signal depth, so
that no clear chaotic signature was discernible. Data averaged over a significantly
longer time step (r > 7 sec) did not suffer from the background random noise
problem, but was beset with presumably real stochastic variations in the accretion
flow. In any case, chaotic behaviour again was not found, giving a clue about the
value of K associated with the chaotic process. These results could be reproduced
for other data sets measured on different occasions.

As a test of the results, similar analyses were performed while Her X-1 was in
eclipse. Pure random noise was observed, identical within the range of statistical
uncertainties with a pure background, off source, observation. For further details
the reader is referred to Voges et al. 1987, Atmanspacher et al. 1988 and the
contribution by Atmanspacher et al. in this volume.

Even without a theoretical interpretation of the meaning of this chaotic signal and
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the underlying processes involved, the mere fact that a chaotic behaviour has been
identified in this binary X-ray source, with a time scale K~! of the order of a few
rotation periods of the neutron star, is an important result.
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Figure 8: Plot of the slope (logy C‘(’z)(r) /loga r) vs. logy r for the X — ray count rate from Her X-1
for embedding dimensions d from d = 1 to d = 20. At small r’s the influence of the noise increases
the slope with increasing embedding dimension while the plateau stays constant (slope ~ 2.4) for
d>1.

Physical interpretation: general remarks

There are two major challenges for theorists in this context of deterministic chaos
in dynamical systems: firstly there is the question how best to derive invariant
properties of the strange attractors from a limited data set and secondly there
is the inverse problem, i.e. the reconstruction of the fractal geometry and the
dynamics of the system, given these properties. The latter may also be regarded
as the physical interpretation of the analysis of the data.

In general, if an astrophysical system is analysed and found to be chaotic, we should
be able to manipulate the governing equations which describe the system in such a
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way that the source of the chaotic behaviour is clearly recognisable and can be un-
derstood theoretically. It would be strange indeed if we had no notion whatsoever
about the governing equations, so we will exclude this complete state of ignorance
from our discussion. For low order chaos this manipulation effectively implies con-
siderable simplification in the mathematics coupled with a clearer understanding
of the physics. In this sense a chaos analysis and its physical interpretation are not
only useful extensions of the usual data analysis — the outcome could have much
more far reaching consequences.

The dynamical systems of interest here are accreting neutron stars. This implies
that we are dealing with a problem in radiation (magneto)hydrodynamics. The
principal transport equations involved are the conservation laws and the radiative
transfer equation. These are supplemented by another set of equations governing
the behaviour of the physical processes. The former are partial differential equati-
ons, radiative transfer often being described in the diffusion approximation. If the
system is optically thin, source effects are simply transmitted directly, including
the signatures of possible chaotic effects. If the system is optically thick, radiation
pressure may become dynamically important and a multi - fluid description is ap-
propriate. The interaction between the radiation fluid and the gas may itself create
new instabilities and/or chaotic behaviour (see e.g. the discussion in Demmel et
al., this issue).

Methods how to manipulate and reduce these equations have been developed, al-
though it must bestated that these methods are not universal, and so far have been
applied only to singular situations. The two general concepts that have emerged
are "mode reduction” and ”hierarchies of equations” (Campbell 1987). The most
celebrated example of mode reduction is the set of "Lorenz equations” (Lorenz
1963).

Use of mode reduction assumes that in e.g. a fluid flow problem only a few modes
are important, so that the effective phase space dimension is much smaller than the
full dimension of the equations. The mode reduction should ideally be advanced
to a level, where the number of degrees of freedom of the reduced set of equations
are just sufficient to describe the essential features of the dynamical system. The
remaining modes can be related to e.g. persistent features in the flow such as
convective motions. For instance, one can develop the spatial dependence in terms
of Fourier modes with time dependent amplitude, retain only a few terms of the
Fourier series, and thus obtain a system of coupled nonlinear ordinary differential
equations. Information regarding the number of modes which have to be kept
comes from the analysis of the data and the derived values of D) and n. We
caution, however, against the indiscriminate use of such techniques, each attempt
at mode reduction should be checked, where possible, by suitable reanalysis of the
data.

The hierarchy of equations method again is very problem specific, although the
basic concept is clear. The idea is to describe the dynamical system by approximate
partial differential equations, reducing these e.g. via inertial manifold or more
heuristic methods to a set of coupled ordinary differential equations which may
then, if possible, be reduced further to the simplest example of a given universality
class.



88

Physical interpretation: Her X-1

It has been known for some time that the photon emission from Her X-1 exhibits
strong pulse to pulse variations which cannot be explained by photon statistics
alone (see e.g. Morfill et al. 1984). In order to test whether the chaotic beha-
viour perhaps reflects this pulse to pulse variability or whether it is related to a
pulse phase dependent process, the data were averaged over the neutron star rota-

tion period and multiples thereof, and D{2) (r) was calculated using the techniques
described earlier.

If we only had a periodic signal, with period r,,, then as mentioned earlier, by
choosing r = N7, , with N an integer, we would (somewhat) pathologically reduce
the system to a fixed point with overlying random noise.

If, however, the integrated intensity over the pulse profile is variable because a
deterministic, but chaotic, process is operating, then this should show up over the
random noise, as it did in Fig. 8. The result of this analysis was quite enlightening,
even if partially expected: the chaotic signature disappeared.

The measurements can be understood in the following ways:
1) The pulse consists of at least three components of the form:

L; = A;(t)B;(¢) + 6L, (21)

where B, (¢) are fixed functions of phase angle and where §L; is the random noise.

To quantify the stability of the pulse phase dependence (¢) of the components,
we note that B;(¢) could be variable over a time scale very much longer than the
length of the data record — i.e. we cannot preclude variations on time scales of the
orbital period or even the 35 day cycle. The amplitudes of the components are,
however, time dependent and linked by a set of equations of the type (1). Since

o= 27r1_—‘ty—., ¢ is in principle a function of ¢. Equation (21) is simply an expression

removing the periodic part of the signal from the irregular part. This is the purpose
of introducing ¢ as an independent parameter.

The total signal strength is
L=Yr (22)
T
and the long term average is

E=Z<A5(t)3e(¢) > = Z<A‘.(t) > B, (23)

with 1_3'. = const., by definition. The random part averages to zero, of course.

Averaging over ¢ also implies averaging over time segments of duration 7, ,, the
rotation period of the neutron star. This is written as
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<L;>,=<A >, B+ <L >, (24)

<L>¢=Z<L-‘>¢ (25)
1

with < 4, >, varying from one ¢ — averaged point to the next.
If the difference

|<L>,-I| < > <L, >, (26)

then the data points may be too noisy and extraction of a chaotic signal may be
impossible.

2) The positioning of the components in phase ¢ may vary from pulse to pulse,
i.e. the B;(¢) are not fixed functions, however, the A,(t) are correlated such that
A, /A,. = const. . Phase averaging would then always remove any chaotic signature.
In a phase dependent sampling, however, the chaotic signature should become
apparent, provided the B,(¢) are of the form

5 ~F (B (27)

Further data analysis is needed to differentiate between these possibilities and to
then pinpoint the process responsible for the chaotic signal. Clearly, the next task
is to check on this pulse phase question, and to see if there is any corroborating
evidence. A Fourier analysis of the data should yield simply a large number of mo-
des in order to describe the time variable signal of a limited data set ”adequately”.
T}lis has been done, and the number of modes required is indeed large, about 10
(Ogelman 1988).

Furthermore, we can perform a superposed epoch analysis and determine the pulse
shape as a function of phase, ¢. If there is some obvious structure, then our notion
of a phase dependent process receives independent support. Fig. 9, taken from
Kahabka (1987) shows the pulse structure observed (left panel) and a decomposi-
tion into its various components (right panel): a constant background, a sinusoidal
variation, a main pulse and an interpulse. The fits to the main pulse and interpulse
were Gaussian curves, and it was concluded that the main pulse was quite compli-
cated, consisting of a Gaussian centre and two wing pulses (see the right panel),
also Gaussian.

The interpretation of the interpulse is that we are seeing the less favoured other
polar cap. The signal is weak during this phase of the cycle and statistically pro-
bably not too important. The sinusoidal component was interpreted as scattered
radiation from distributed plasma in the magnetosphere and surrounding the ma-
gnetopause. The phase and modulation for this component are the same, within
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the limits of observational uncertainty, as those of the soft (< 1 keV) X - ray pulse
profile, which supports this interpretation (Kahabka 1987).

Scattered radiation is, of course, derived from the main source, it is seen with a
delay time typically 3lr,, /c where [ is the size of the scattering region and Topt
is the optical depth. Since scattering is a random process, source signatures are

damped out if 7,,, < 1. . For Her X-1, | is the size of the magnetosphere (~ 2 x 108

cm), giving a delay time of 20 7,,, msec.
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Figure 9: Pulse structure of Her X-1, taken on May 5th 1984 in the energy range 1.9 - 3.9 keV.
The left panel shows the observations together with the multi - component fit which is detailed in
the right panel. The main pulse (components 1 to 3) and the other features are described in the
text (from Kahabka, 1987).

The main pulse, with its substructure, is explained in the following way (Kahabka
1987, see also Kaminker et al. 1982):

The main pulse, based on its energy spectral behaviour can be interpreted as the
p — component, pointing along the magnetic field and being determined by the
ordinary polarisation mode.

The wing pulses are asymmetric with respect to the main pulse (= 10°) and, again
based on energy spectral characteristics, are interpreted as the s — component,
which is predominantly determined by the extraordinary polarisation mode. Pulse
maxima for this component are expected at & 40°, observations show 30° and 50°
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for the two wing pulses, i.e. an asymmetry. The s — component depends on the
vacuum parameter, V, the p — component does not. V is defined as

1 me\3 (hwy 4
V= 607n, (7) (W) (28)

where n, is the electron density, m the electron mass and wy is the cyclotron
frequency. Increasing V (e.g. by decreasing the electron density) reduces the s —
component.

The plasma densities inferred for the polar cap by Kahabka (1987) are of the order
4 x 1022 cm™3, which gives a vacuum parameter V ~ 23.

It is known that the pulse form varies during the 35-day cycle. The most obvious
change is seen in the relative intensities of the main pulse and interpulse, however,
there are also clear phase variations which are of the order 40°. Pulse to pulse
variations beyond the statistical uncertainty can also be established (e.g. Morfill
et al. 1988), however, statistical limitations do not allow quantitative statements
about phase variations of the individual components.

Regarding possible causes of such variations there are a number of options, which
have to be investigated in detail in conjunction with further specialised analysis
of the data and, possibly, new instruments. Amongst these are variable accretion
torques, neutron star precession, atmospheric density and scale height variations
as a function of heat transport in the neutron star, bending of field lines in regions
of very high mass accretion through the plasma pressure, variable geometry of the
hot spots etc. coupled to the problem of ray tracing.

It is too early yet to pinpoint any one cause as being responsible for the signatures
seen in the data. At present we have identified the chaotic signal, its correlation
time and the degrees of freedom associated with the process(es) responsible. We
have further identified two possible ways of understanding this in terms of time
and phase dependent processes. We now have the task of analysing the data in
such a way that we may be able to differentiate between these two possible ways.
This appears feasible. In this way steady progress is achieved in restricting the
diversity of options and finally understanding the causes of the chaotic behaviour.

Summary:

In this paper we reviewed the pertinent aspects of the theory of deterministic chaos,
how to identify chaotic systems, quantify them (their complexity), reconstruct the
attractor, and determine the degrees of freedom of the system from a single time
series of data points. We discussed problems associated with superposition of ran-
dom noise, signal depth, time resolution and projection in phase space, using a
simple example. We then proceeded to the actual motivation for the whole study:
the fact that an accreting neutron star system, Her X-1, has been identified as a
chaotic system. The data were briefly discussed and then the physical interpre-
tation — firstly, some general remarks how low order deterministic chaos may be
viewed in terms of dominant modes of a (in principle) much more complex system
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and the ensuing mathematical simplifications, and secondly, direct interpretation
of the Her X-1 results in terms of the complexity of the pulse form.

Finally, we want to point out once more, as has been done in several places in the
main text, that no fool — proof algorithm exists as yet with which a chaos analysis
can be performed from a given set of data efficiently. The chaos investigation has to
be preceeded and supported by a Fourier analysis and by an analysis of the effects of
different phase space projections. Furthermore, although considerable progress has
been made in manipulating a set of governing equations so that the chaotic element
is extracted (e.g. mode reduction), these efforts still remain singular and are not
of general application. However, determination of the dimensionality, hence the
degrees of freedom, and thus e.g. the number of modes, does provide an important
guide for certain mathematical reduction, and hence, hopefully, to greater insight
and deeper understanding of the system. It is our conviction that especially for
astrophysical objects this source of information should therefore be investigated
routinely.
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ABSTRACT. We discuss some of the basic steps of the analysis for the detection and
description of short periodicities in the photon counting regime (typical of gamma-ray
astronomy), focusing the attention to those aspects where a certain degree of subjectivity by
the analyst may lead to erroneous conclusions. As a statistical test for the detection of the
periodic signal, the use of the H__-test is suggested in all exploratory cases when information on

the expected light curve shape is lacking. The bin free kernel density estimator (KDE) and
cluster analysis are used for the description of intensities, the location and significance of
structures on the light curve and are proposed as alternatives to the histogram technique which
is easy to use, but since the construction of the histogram is largely based on subjective
considerations, it may lead to wrong interpretations especially in the case of weak signal and
low counting statistics.

1. INTRODUCTION

The analysis for the detection of periodicities in the arrival times of gamma-ray photons
started about 20 years ago in the context of the search for pulsed gamma-ray emission from
radio pulsars as observed in the TeV region (Charman et al., 1968; Fazio et al., 1968) or with
instrumentation on board of stratospheric balloons (Vasseur et al., 1970). The method used was
the application of Pearson's test (see for example Eadie et al., 1971) to the phase histogram
derived after binning of the residual phases obtained by folding the measured times with the
period suggested by the radio observations. This method of analysis has revealed to be not
very accurate due to several reasons. First of all there is a high degree of subjectivity in the
choice of the number of histogram bins and of the zero phase of the histogram. The number of
histogram bins has a very precise meaning in terms of selection of the signal shape; in
particular, choosing few bins implies a search for broad light curve shapes whereas the use of
many bins is implicitly connected with the presence of narrow or complex structures. In
addition to this, the final choice for the presentation of the results was made, in many cases, a
posteriori by selecting the best-looking histogram thus implying an erroneous interpretation
about the reality of the periodic signature. The binning process itself, on the other hand, may
lead to a consistent loss of power in the case of low counting statistics (De Jager, 1987) which
is the normal case in high energy gamma-ray astronomy with balloon or satellite experiments in
the 100 MeV region or EAS experiments. Another not negligible reason is the assumption very
often made in the past that Pearson's test statistic follows the %2 probability distribution with
M-1 degrees of freedom, M being the chosen number of bins. In the reality the 2 distribution
can be reliably used for Pearson's test only in the case of goodness-of-fit tests; when looking
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for deviation from uniformity (in our case of the distribution of the residual phases) we are
actually using the tail of Pearson's test statistic which, in the case of low sample sizes, deviates
from the %2 distribution. As a consequence of the misuse of Pearson's test statistic, a number of
claims for significant detections has been made in the past, claims that have had serious
difficulties to be confirmed by independent experiments. Viceversa, we can immagine that the
use of Pearson's test in several cases may have been inadequate to put into evidence real
periodicities because of its reduced power due to the binning process and/or to the wrong
choice about the number of bins.

The situation has improved in the last ten years when several groups started to invest time
and effort in the study and formalization of the reliable statistical procedures needed in a search
for periodicities in the photon arrival times as measured in a gamma-ray experiment. As a
result of this effort a set of procedures have been derived with the test statistics having received
particular attention. In spite of these efforts the process of search still contains several points of
indetermination to which this paper aims to dedicate some attention in order to suggest some
solutions. We will concentrate ourselves to a large region of low values of the period
investigated ( P << 1, 7 being the inverse count rate), where the Fourier spectrum is flat, for a
better handling of the probability distribution of the test to use. Concerning the analysis we will
give special emphasis to the process of testing the distribution of residual phases against the
presence of a periodicity in the data and suggest the use of a new statistical test (the H_-test)

which is very powerful when no information is available on the structure of the signal. Also we
will discuss the recent achievements about the description of the structure itself once a positive
detection has been made. It will be reported that the KDE and cluster techniques for the
representation of the pulsar light curve give at the moment the best way for a qualitative and
quantitative estimate of the widths and intensities of the peaks contributing to the pulsed signal.

2. STEPS TO FOLLOW FOR PERIODICITY SEARCHES.

Fig. 1 shows the general flow of operations in the analysis for the search of periodicities in
gamma-ray astronomy (reproduced from Maccarone and Buccheri, 1988). A first discussion on
the analysis steps is given by Buccheri, 1987. The round boxes are critical points of the analysis
where some external decision by the analyst is requested, the decision implying generally a
certain degree of subjectivity. We will discuss them after the rectangular boxes which refer to
standard processing of the data making use of software packages implemented for a particular
experiment or for a well defined calculation method.

2.1 Standard operations

The preprocessing includes all the operations needed to be performed on the raw data for
the derivation of photon arrival times, generally expressed in Julian Days and referred to the
Solar System Barycentre in order to eliminate the modulation due to the earth orbit around the
sun and to the motion of the observatory site (e. g. the satellite).

The folding procedure is generally needed in photon counting statistics in order to derive the
residual phase distribution which will be successively tested against the presence of periodicity.
This step is not necessary if the analysis is performed by using Fast Fourier Trasform
procedures. We will not consider this case because the FFT analysis is generally not
convenient in gamma-ray astronomy due to several reasons: a) impossibility to use
oversampling which may be decisive for the detection of weak signals; b) difficulty in summing
the power of more harmonics of the signal preventing the detection of complex structures
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(unless very strong) and c) loss of resolution in the times due to the binning. Considering, on
the other hand, that FFT procedures are optimized concerning the computer time of analysis,
they may be useful at the condition that i) the numer of arrival times to process is very large; ii)
the signal expected has a quite strong power in its fundamental frequency and iii) no information
at all exists on the interval of investigation of the period (purely exploratory cases). In the
general cases typical of gamma-ray astronomy, the folding procedure is applied for all the trial
periods within the interval investigated, which gives rise to a set of residual phase distributions,
one per trial period. Each of these distributions will be tested against the presence of periodicity
and the final decision on the positivity of the detection must make use of all the (independent)
trial period investigated. Since the significance level for the acceptance of a pulsed signal (and
therefore the sensitivity of the search) decreases with the number of trials, care must be taken
in the predefinition of the scanning interval.

The process of testing the distribution of residual phases implies the a priori choice of a test
statistic; in the traditional use the null hypothesis is the absence of any pulsed signal and the
alternative hypothesis is the presence of a periodicity in the data. The pulsed signal is
considered as detected when the value of the test statistic exceeds a predefined significance
level a (see below); this operation implies a probability o to claim a positive detection when no
signal is present (type | error) and, viceversa, a probability B to claim a negative result in the
presence of a periodic signal (type Il error). The value 1 — B, giving the probability to accept as
positive a detection when a periodic signal is truely present, is referred to as the power of the
test used. In the following we will mainly refer to the so called Z2 -test defined as

z2 = (2IN) .‘24 (?j cos(2m<¢i))2 + (Z:/ sin(2mxc;))2 )

where N is the total number of selected arrival times and ¢, (i = 1 to N) are the residual phases
derived after the folding process. In the particular case of n = 1 the Z2 -test reduces to the
Rayleigh test (see Mardia, 1972). In the asymptotic case (N > 100) and in the absence of a
periodic signal, the probability distribution of Z,2 closely follows the 2 distribution with 2n
degrees of freedom. Fig. 2 shows the cumulative probability distributions of the x2,, random
variable and Z2_ statistic in comparison with that of Pearson’s test with m=2n+1 bins for n = 1

and 10 and N = 10, 50 and 200.
The Z2n-test, depending on the chosen number of harmonics n, is sensitive to any kind of

light curve shape and, being described by a 2, probability distribution down to sample sizes
N& 50, is very easy to handle. Fig.3 shows the probability distribution of Z2_ (for n = 2, 5 and

10) in the absence of any signal compared with the same distribution when a periodic signal
with a gaussian spread is present. The FWHM of the gaussian was taken as 10% and 20%
respectively. The power of the test for the detection of such signals is shown in the figure at a
significance level a = 0.01. An additional study of the power of the Z2 -test can be found in
Protheroe (1988).

A review of the test statistics used in periodicity searches is contained in De Jager, 1987
where the relative powers are also shown. All of these tests have the (positive) characteristics
to be independent from the relative distances between the arrival times under analysis and are
then independent of the phase location of the signal peak. The y-test, used in Harwit et al.
(1987) does not show this advantage and the power of the test is varying with the phase
location of the peak (see fig. 4), the reason being implicit in the definition of the test as the sum
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Fig. 2

Cumulative probability distribution
of x2 (continuous line) compared
with Z2,, (asterisks) and Pearson's
test statistics (crosses). Figs. a),
b) and c) refer to sample sizes
N =10, 50 and 200 resp.

The comparison is made in the
casesof n=1 (2d.o.f. for x2
and 3 bins for Pearson'’s test)
andn=10(20 d.o.f. fory?and
21 bins for Pearson's test).
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Fig. 3 - Probability density distributions of 22, for n = 2 (fig.a), 5 (fig.b) and 10 (fig.c) in the

absence of a signal (continuous line), compared with the same distributions in the
presence of a periodic signal (asterisks for a 10% signal strength and circles for a
20% signal strength). Arrows indicate 0.01 confidence level.
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of the squares of the residual phases. Fig. 5 shows the probability distribution of the y-test in
the absence of a signal (a), compared with the same distribution in the presence of a pulsating
signal consisting in a gaussian peak located at zero phase (b) or at phase 0.5 (c). In these
conditions identical gaussian shapes located at different phases may have a very high or very
low chance to be detected, depending on the (casual) distance between the phase of the peak
and the phase of the first detected arrival time, to which all the phases are usually referred.
Similar problems may be found in the Q-test quoted by Fischer (1987).
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Fig. 5 - Probability density distribution of the y-test: (a) in the absence of any signal ;
(b) in the presence of a gaussian peak located at zero phase; (c) in the presence of
a gaussian peak located at phase 0.5 (reproduced from Buccheri and Ogelman, 1988).
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Parameter estimation consists in our case in the evaluation of the pulsation period (and
period derivative) together with its accuracy and in the description of the pulsed signal topology
for positively detected signals.

Concerning the period and its accuracy as a result of a detection, a generally accepted
method of estimation does not exist. It is true that the error on the estimated period is related to
an independent Fourier spacing (IFS) which equals a frequency interval T-1 (where T is the total
observation time) and a phase analysis at the true frequency % T-1 will result in uniformly
distributed phases. However, to assume that the error equals one IFS leads to a very
conservative confidence interval. Another method used in the literature is a (gaussian) fit to the
experimental curve describing the behaviour of 22, versus the period investigated; we consider

this method too optimistic in the determination of the accuracy to be attached to the period and
will propose below a different evaluation procedure.

For what concerns the evaluation of the topological characteristics of the detected pulsation
the traditional analysis is done selecting by eye the regions of the phase histogram where an
increase of the signal over the background appears. In the following we will discuss some
alternatives to this technique.

2.2 Decision problems and suggested solutions

Definition of the scanning interval. The definition of the search interval of the parameter
values to investigate (period, period derivative, coordinates,...) depends on the previous
knowledge on the parameters themselves; it is very large in the case of exploratory experiments
(where no knowledge at all exists on the parameter values) but reduces to only one value in
confirmatory cases, when the parameters are well known. The intermediate cases in which
some information exist (from other experiments or from theoretical expectations) are the most
usual; the typical intermediate case is the search for pulsation in the 100 MeV gamma-ray
emission from a radio pulsar in an interval of period values derived by extrapolating parameters
measured in the radio range at an epoch which is a few years apart from the epoch of gamma-
ray observations. Considering that gamma-ray observations in the 100 MeV range are usually
few weeks long, require the parameters to be known to a high accuracy. However, several
unpredictable events (glitches, period noise,...) may cause the true pulsar period to be shifted
out of the predicted interval. The search range in period should therefore be carefully selected.
This subjective choice is left to the experience of the analyst. The decision is generallly made
on the basis of two competing aspects which is difficult to quantify: a too small interval may
result in the exclusion of the real period whereas a too large interval will result in a decrease in
the sensitivity due to the inclusion of too many trial periods (Buccheri, Ozel, Sacco, 1987). The
solution to this problem is the most precise determination (where possible) of the scanning
interval; in the case of searches for pulsed gamma-ray emission a from radio pulsar,
simultaneous gamma-radio measurements of the pulsar parameters change the case from
exploratory to confirmatory and may solve the problem; this is the plan for radio pulsar
investigation by the Compton telescope COMPTEL, on board the Gamma Ray Observatory
satellite (GRO) (Buccheri et al. 1987).

Estimate of the independent trials. For a correct evaluation of the statistical significance of a
detection it is essential to quantify with care the number of independent trial periods
investigated in a search. The probability for chance occurrence to be assigned to the maximum
value Z_ . of the used statistical test in a search through k independent trial periods is given by

the formula
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P=1-(1-ppa)k (2

where p, .. is the probability to get Z_,, in a single trial. Little is known how to determine k in

the case of oversampling (i.e. when the distance between trial periods is less than one IFS).
Oversampling is fairly often adopted in gamma-ray astronomy where the signal expected is
near the visibility threshold and therefore we will dedicate some attention to it. Two extreme
attitudes are used in the literature for the calculation of eqg. 2. A conservative one is to use all
the trials as if they were independent; as a result of this attitude, weak signals may be missed.
An optimistic attitude is to consider for k only the number of IFS's present in the search interval
with the result to overestimate the significance of an effect and possibly claim a positive
detection when it is not true. An analytical method to derive the effective number of independent
trials in the case of oversampling is not yet available in the general case. Fig. 6 shows a scatter
plot of values of 22n for three different values of the step used in a period search for n =1 and

10; for step distances larger than or equal to one IFS, the test statistics are uncorrelated, but
the correlation increases when the step distances decrease to zero. The immediate
consequence of this correlation is that in case of oversampling the effective number of
independent trials is between the total trials and the number of IFS contained in the search
interval. When only the latter are used (i.e. k in eq. 2 equals the total number of IFS included in
the search interval) the probability p for chance occurrence must be multiplied by a factor r of
underestimation which can be derived by Montecarlo simulation for each specific case.
Furthermore, r will also be a function of Z__ . Fig. 7 (De Jager, 1987) shows this factor for

Z2,, and Z,2 in the case of 0.05 IFS step distance. Although this procedure of simulation

cannot be considered as a solution to the general problem of the evaluation of the effective
independent trials in a search with oversampling, it gives a way to make a reasonable estimate
of the significance of a detection.
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Fig. 7 - Factor by which to multiply eq. 2 in order to take oversampling into account.
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refer to 22, (a) and 22, (b) (reproduced from De Jager, 1987)
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Definition of the significance level. The definition of the significance level at which to accept
a detection as positive, depends generally on the personal taste of the analyst, some being
satisfied that a chance probability of 1% is low enough to exclude an improbable statistical
fluctuation. If one takes into account that, willing or not, one is always led to unconsciously
optimize the selection criteria in function of the desired positive detection (by trying different
energy and acceptance angle selections and different statistical tests for example) and having
always an eye to the possibility that the selected arrival times are almost never uniformly
distributed along the observation duration (thus implying the presence of systematic deviations
of the probability distributions with respect to the theoretical expectation) a more conservative
probability threshold for positive detection should be used. The latter problem can be solved to
a certain extent by deriving the probability distribution of the test statistic from the data base
itself by sampling more than 1/p_,, periods around the expected period, each having a spacing

of T-1 (see for ex. North et al., 1987). In the case of binary systems with large orbital periods
(e.g. Vela X-1) one can quantify the change in the probability distribution due to non-uniform
orbital coverage (see Protheroe, 1984, for the treatment of PeV data). Depending on the
situation this can also be done by using bootstrap procedures (see Raubenheimer et al., 1988,
for TeV data).

Definition of the test statistics. The examples of fig. 8 illustrate how the probability for
chance occurrence, as calculated using the probability distributions of Z21 (Rayleigh) and 2210,
varies in function of the trial period when a signal is present. Fig. 8a refers to the presence of a
gaussian peak, 0.3 FWHM, containing 0.134 of the total counts, fig. 8b is related to a much
narrower gaussian peak (only 5% FWHM) containing 0.09 of the total counts. The abscissa
describes the distance from the true period in units of IFS. It is striking to note that, at the true
period, the Rayleigh test may accept as positive the broad signal of fig. 8a (99.7 % confidence
level) but may miss the narrow shape (only 99 % c.l.); viceversa the Z2, ;-test definitely accepts

as positive the narrow shape (99.9999% c.l.) but rejects the broad shape (93 % c.l.).
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Fig. 8 - Probability for chance occurrence versus the period (in IFS units) in a search
using Z2, and Z2,, to detect a periodic signal. In fig. 8a the signal has

a broad shape (30% FWHM) and a strength of 13.4%, in fig. 8b the peak is
narrow (5% FWHM) and has a strength of 9% (reproduced from De Jager, 1987).
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It has to be stressed here that the use of Pearson's test with 21 bins would behave
approximately as the Z2,, (with further reduced sensitivity as illustrated in fig.2) and is therefore
useless for weak signals with broad shapes, at variance with what suggested by Leahy (1987).
It is clear that the acceptance as positive or the rejection as negative in the case of weak
signals is strongly dependent on the chosen test statistic. In a confirmatory case where the
shape of the searched signal is known a priori (from theoretical assumptions or from other
experiments) a harmonic analysis of it will define the exact number of harmonics to use in the
Z2 -test to apply. In the general exploratory case, when the information on the shape is scarse,
there is a consistent risk to miss a signal by using an incorrect value of n.

A solution to this problem is the H, -test, first suggested by De Jager (1987). The underlying

idea is the use of Z2_ with n unknown a priori but is optimally estimated from the data, giving m

as the estimate. The definition of the test and an estimate of the probability distribution is given
in De Jager (1987); a more complete treatment with the derivation of a much improved (in
simplicity and effectiveness) distribution is given in De Jager et al., 1988. We recall here that
the statistical variable related to the H,_ -test is given by

Hp, = 22, - 4m +4 3)

m

as derived from the "Hart rule" (Hart, 1985) which determines the optimal number of harmonics
in a periodic signal. The probability distribution of the H_| statistic has now a simple exponential

form  exp(-bH.) where b is given in fig 9a for variour values of the sample size; for large
sample sizes (N > 100) b can be approximated by 0.4. For strong signals (H,, > 25) the

distribution of the statistic flattens out and the exponential term must be multiplied by a factor of
underestimation as given in fig. 9b.

0.460

(3]

n (b
[=3
5]
.

s a)
0.440}

F
T

o

~—

ibuti

= 0430

B 0420

istr

ot
T

=]
~
=
T
[ =)
T

for Probability D

= 0.400 I

——
/

Factor of Underestimation (r)

on
54
e
S
T

030 TR T T8 140 ST 0B 40
Sample Size (n) Value of H,,

Fig. 9 - Parameters of the probability distribution related to the H,,-test statistic: a) gives the

constant b as a function of the sample size; b) a factor by which to multiply the simple
exponential term in case of strong signal and low sample sizes. In the latter case the
errors (1 s ) are indicated by the bars (reproduced from De Jager et al., 1988).



Power

TS

—] L
003  0.05 0.1 0.2

03 0403

Duty Cycle
1.00 -
C
-~ Rayleigh (©
0.80F 2 , .
- - Zz
Zio
5 0.60[— 2 ,
3 3
a
0.40p " fm
0.20f P
"I’:’”, 1 1 t s L
020 .040 .060 .080 .100 .120
Signal Strength
1.00
- - Royleigh (E)
0.80
.. 0.60F
P
z
[~
0.40-
0.20F A
’ -4
4 ¢ N 1 )
20 40 60 80 100

Sample Size

0.80f

0.60f

Power

0.40+

0.20f

107

S
=
o
(=
0.201 e
~. d\e\‘éh
- 1 L -
00— 040 00 080 100
Signal Sfrength of Second Peak
;: T e e,
L
st p=20%
;’: p=10% (F)
2+ p=5%
N P
$ r1e-orf N
o -
a i
o
sk
&
3 . x
o b =
1E. 1 1 1 i 1 1 1 A 1
2 3 4 5 6 7 8 9 10 M

Harmonics (m)

Fig. 10 - Power of H,, compared with 22 for various values of n versus a) duty

cycle; b) signal strength (sinusoidal signal); c) signal strength (gaussian peak with FWHM=
5%); d) signal strength of the second peak in a Vela-like light curve with fixed first peak shape;
e) sample size (gaussian peak with FWHM= 10%); f) harmonics n for a single gaussian peak
with FWHM= 10% and various signal strengths (H_, is indicated by the solid line).



DENSITY

108

Figs. 10a to 10f show the power of the H,-test as compared with 22 as a function of a) the
harmonics n for various values of the signal strength, b) the duty cycle (FWHM) in the case of
a gaussian peak, ¢) the sample size, d) the signal strength of a sinusoidal signal and e) a
narrow gaussian peak and f) the strength of the second peak of a Vela-like double peaked
structure. In all cases the power of the H_-test is comparable with the power of the Z2 -test

which proves the importance to use this test when a priori information on the structure of the
signal is not available.

Definition of the estimation method. _ Fig. 11 (De Jager, 1987) shows that in the case of a

narrow shape the randomization of the phase distribution occurs for an error on the period
consistently less than one IFS. Extensive Montecarlo simulations for two extreme cases (a
sinusoidal shape and a narrow gaussian peak, 0.1 FWHM) were used to estimate the standard
deviation on the period corresponding to the maximum value of the used statistical test. These
are given in fig. 12 in function of the signal strenght expressed in sigmas over the background.
As expected, the accuracy is better for narrower shapes and improves with the signal intensity.
In any case it can assume values which are small with respect to the IFS. The various curves
refer to different choices of the number of harmonics n in Z2; the one to choose in a specific

case must be derived after a harmonic analysis of the detected period.
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Fig. 11 - The average appearance of a light curve when a wrong value of period is used (x
is the displacement from the true period in units of IFS). a) for a broad light curve with 30%
FWHM and b) for a narrow peak (FWHM=5%).
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Fig. 12 - The expected error (1 ¢ standard deviation) on the period estimated from the
periodogram as a function of the contribution of the periodic signal to the DC excess. The
period is that value at which the test statistic obtains its maximum. This is illustrated for a
sinusoidal signal (a) and for a gaussian peak with 10% FWHM.
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De Jager et al. (1986) have shown how to apply the Kernel Density Estimate procedures to
the evaluation of the topological characteristics of a pulsar light curve. The derivation of the
optimal smoothing parameter by minimizing the Mean Integrated Squared Error (MISE)
between the KDE and the true unknown light curve, leads to a continuous function describing
the radiation intensity. The KDE is aimed at a reduction of the bias- a characteristics not
shared by the traditional histogram technique. It also converges with probability one to the true
unknown phase density for large N and it smooths down unwanted fluctuations not present in
the parent density distribution. However, weak but real microstructures may also be smoothed
out in the process. To overcome this difficulty, Buccheri et al. (1988) introduced a new method
(complementary to KDE) based on the adaptive cluster technique, which allows the
identification of clusters at a very small scales down to the experimental resolution limit. Fig. 13
shows the light curve of the Vela pulsar at energies above 100 MeV (data from the COS-B
satellite, first observation of 1975) as derived using the KDE and cluster technique and
compared with that obtainable with the traditional histogram technique. These methods are
strongly suggested for use in gamma-ray astronomy with the KDE being more useful in the
case of broad peaks and the cluster method for the investigation of microstructures.

Acknowledgements. The authors thank B.C.Raubenheimer for discussions and M.Busetta for
help with the software.
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TIMING A MILLISECOND PULSAR ARRAY

Roger W. Romani
Astronomy Department
University of California
Berkeley, CA 94720, USA

ABSTRACT. Pulse arrival times for millisecond pulsars show remarkable predictability over periods
of years; in particular, dominant sources of long-term deviation from timing models for PSR1937421
seem to be uncertainties in the terrestrial time, as established by atomic clocks, and small departures
from the expected ephemerides of earth motion. It is shown that present limits on additional sources
of perturbations, such as those generated by a background of gravitational waves, can be improved
by timing an ensemble of pulsars in concord. Such analyses would also provide measurements of the
clock and ephemeris corrections and could be used to characterize any gravity wave perturbations.

1. INTRODUCTION

For conventional pulsars, measurements of the pulse arrival time at the milliperiod level (Backer,
these proceedings) allow one to examine perturbations on the scale of the several year observation
span with accuracies of ~ AT/Typ, ~ 10-11. In view of this precision Mulholland (1971) suggested
that ephemeris errors might eventually contribute to the arrival time uncertainty and Detweiler
(1979) showed how the lowest amplitude pulsar timing residuals could be used to limit a hypothet-
ical background of cosmological gravitational radiation. The later argument is surprisingly strong—
the energy density in low frequency gravity waves of amplitude h is pgw ~ h?/ (167G) which for
waves of period near Tpp, and a Hubble constant of H gives a background bound (in units of the
critical density for closure) of Qaw (Toss)S6T?/(H?T},). With existing data it was found that
Qew $1073 for Typs ~3-10 years (Hellings and Downs 1983, Romani and Taylor 1983); timing noise
due to intrinsic instability in the pulsar rotation was found to be the limiting factor in these anal-
yses. Millisecond pulsar (MSP) timing (Taylor, these proceedings) has made these measurements
substantially more powerful, as here ~ milliperiod accuracies in arrival time determination corre-
spond to sub-microsecond timing residuals. Nominally, then, one would expect the bounds on the
energy density of any perturbations such as a gravity wave background to improve as the mean
square timing residual R, i.e. by ~ 6 orders of magnitude for observations over a comparable
interval.

2. ARRIVAL TIME NOISE SOURCES

The noise contributing to departures from the timing model fall broadly into two categories: those
peculiar to the individual pulsar or it’s signal propagation path to the Earth receiver, and those
effects common to all pulsar arrival times which produced correlated residuals. We discuss briefly
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the noise sources believed to be important in the present timing of PSR1937+21.

For an individual pulsar, finite signal-to-noise at the receiver and additional uncertainties in
measuring the pulsar phase will give a fundamental random error per epoch, o. With current mea-
surement procedures, such noise at o ~ 0.3us apparently dominates the PSR 1937 timing residuals
up to periods ~ 107s. After averaging over the observation epoch 1077s, this ~white noise con-
tributes a mean squared residual of R? ~ 0.01377 us?. In propagating through the interstellar
medium, the pulsar signal will suffer variable dispersion delays and refraction due to electron den-
sity fluctuations along the ray path. The fluctuating dispersion produces a mean square residual
R? ~ 1.5C_4\2, Dypc(vrr7)? ps? (cf. Armstrong 1984, Romani, et al. 1986) where C_4 characterizes
the strength of the scattering, the observation wavelength is A\, meters, the pulsar distance is Dip,
and the effective velocity of the medium is 107v7cm s—1; with parameters appropriate to 1937 at
1400MHz this is R? ~ 0.01572us?. Note that this variance will continue to grow only until v77y
exceeds the (unknown) outer scale of the ISM perturbations. Moreover, simultaneous observations
at 2380MHz allow the removal of much of this excess delay (Rawley, et al. 1988), and 70d averages
leave residual errors of ~ 0.2us which are thereafter approximately white in nature. Intrinsic fluc-
tuations in the pulsar rotation must eventually be an additional source of noise at some level. If,
as in many pulsars, this takes the form of a random walk in frequency of strength 10~28SpyHz%s~1
for a Pp,,ms spin period the resulting residual grows as R? ~ 3 x 10~3Spy P2 73us?. Present ob-
servations show Spy < 1, however in view of MSP evolutionary histories, it would not be surprising
if Spy were substantially less than those of the quietest measured ‘normal’ PSRs, i.e. ~ 0.1.

All pulsars whose arrival time is determined at a given epoch will suffer additional commeon er-
rors. The terrestrial clock used as a reference will show frequency noise on the longest time scales and
thus introduce additional residuals of R? ~ 10~%02 _,,(107)r$us? where the fractional frequency
stability is 10745, _14 at 107s. Errors in the Earth ephemerides produce significant correlated
residuals for observation spans 2107s: although these will have a complicated frequency structure
and are of uncertain magnitude, the resulting residual should grow as roughly R? ~ 10377 us?.
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Figure 1. Rms arrival time residuals appropriate to PSR1937 as a function of observation span for
ISM propagation (DM, DM’), pulse measurement (WN), clock (Cl), and ephemeris (Eph) errors.
Also shown are the observed rms daily residual and contributions due to hypothetical gravity wave
backgrounds (dashed lines) and pulsar activity (Int).

Finally, a hypothetical cosmological gravity wave background of energy density per logarith-
mic frequency interval Qew times the closure value can produce arrival time perturbations, giving
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R? ~ 33Qewr#pus®. Buffeting of the Earth will produce a'correlated signal, perturbations at the
pulsars will in general be independent (two MSP in a single globular cluster could however show cor-
related signals with a lag proportional to their seperation). The various noise sources describes above
are displayed at levels appropriate to the present timing of PSR1937. The lines DM and DM’ show
the dispersion-induced arrival time fluctuations at 1400 MHz before and after correction, the dotted
line INT is intrinsic frequency noise at a level Spy = 10~29, The rms residuals contributed by a hy-
pothetical Gravity wave background are indicated for QW = 10~6, 10~8. The solid point is the rms
daily residual observed during 4.2 years of timing (Rawley, et al. 1988). Since fitting the pulsar model
subtracts some of the noise power (Blandford et al. 1984), the actual noise down to frequencies 1/7
will be slightly higher.

3. REMOVAL OF CLOCK AND EPHEMERIS ERRORS

After subtraction of contributions due to known dispersion measure variations, Figure 1 shows that
clock errors and ephemeris uncertainties will increasingly dominate the timing residuals for periods
21 year. Thus the timing residual will grow upwards along the corresponding solid lines. Limits on
Qew (dashed lines) would still improve, albeit slowly. However, clock and dipole errors peculiar to
the Earth observatory can be accounted for by timing several pulsars in parallel. A clock correction
would appear as a ‘monopole’ term C(t) common to all pulsars on the sky, while at any instant, errors
in the Earth ephemeris will leave a small unmodeled velocity— the timing residuals would thus show
a varying derivative (which can be thought of as a redshift) of (6t; — &t3)/(t1 — t2) = D(t) fi(04, ¢a)
where f; gives the component of the dipole velocity along pulsar i. Monitoring these variations
would provide improved long-term time standards and better estimates of the barycentric motion.

A gravity wave of strain amplitude h passing the Earth will also produce an anomalous residual
in a pulsar at (6;, ¢;) corresponding to a Doppler shift

2i(t) = h(£)1/2(1 = cosviw )sin(2a) = h(t)gi(6;, ¢:; 6w, dw, ow)

where the wave is incident from (6w, @w) at angle v, to the pulsar and « gives the angle of
projection of the wave’s principle polarization vector along ¢w. Inasfar as the gravity wave signal
in the collection of pulsars is non-degenerate with the other corrections, modeling the clock and
ephemeris errors can improve bounds on Qgw, as well.

The rate of change of the residual (i.e. Doppler shift) seen for pulsar ¢ due to the perturbations
above will be

zi(t) = Si(8) + C() + D() fi + h(t)g: + hi(8)3:
where S; is the individual error and k;, §; refer to gravitational waves buffeting pulsar i. After
performing a least squares fit to extract the clock corrections we would have a new set of residuals
2{(t) = z(t) = (X, 2m(t)/02)/ (X,n om2) where 0y, is the rms individual noise associated with pul-
sar m, and the clock corrections will be determined to an accuracy ~ (3, o2)~ /2. Simultaneous
fitting of the ephemeris term gives a more complicated expression.

To separate these various fluctuations it is clearly desirable to have a number of accurate pulsar
clocks distributed across the sky. Intrinsic timing noise has not been identified for any ‘reprocessed’
pulsar, so the inverse of the arrival time signal-to-noise(cf. Backer, these proceedings) provides an
observing system-independent estimate of the ‘timability’. This residual noise level will scale as
51400/ Wins, where Sis00 is the flux at 1400MHz and W,,, is the pulse width in ms. The positions
of several reprocessed pulsars, with a symbol proportional to the log of this timability, are shown in
Figure 2, along with the line of the galactic plane and the declination range accessible to Arecibo
observatory. Although detection and timing of fast pulsars will be easiest in the Arecibo dec range,
the need for substantial angular separations in the timing array encourages searches in the anti-
center and southern hemisphere— the recently discovered MSPs in the globular clusters M4, M28
and 47Tuc are important in this regard.
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Figure 2. Positions of several ‘reprocessed’ pulsars with symbols scaled by the log of the estimated
pulse arrival time sensitivity. The galactic plane and the Arecibo declination range are indicated.

4. LIMITS ON STOCHASTIC BACKGROUNDS OF GRAVITY WAVES

Although the gravity wave signal is partly quadrupolar in nature, in fitting out the clock and dipole
terms as above we have absorbed some potential gravity wave power; as in the case of the temporal
transfer function estimated by Blandford, et al. it is important to take account of this filter when
converting a observed residual variance to a limit on the gravity wave spectrum.

The correlation among residuals allows us to form such a limit, although not knowing the
direction and polarization of the gravity waves, the signal from the various ’baselines’ formed by
pulsar pairs (4, j) must be averaged up incoherently. Accordingly, a bound on the autocorrelation
function of the spectrum will be provided by

(1) = (a4t + 1)/Y Gy

where G'j; describes the average response of the pulsar pair 7, j to a passing gravity wave and the
weightings o;; are chosen such that the variance

() = (D awanasi (e + et e+ )/ (S )

is minimized. When clock and dipole errors are not removed G;; = (g;; + 8;;/6), where the second
term is omitted if only the gravity waves perturbing the Earth are to be measured and g;; is the
average of g;g; over all wave directions and polarizations. The expression for Gj; after extraction of
C(t) and/or D(t) will have additional terms, so the resulting a;; will differ, as well. Since h2(1)$x(7)
this provides an minimum bound on the background energy density for an array of pulsars i. Note
that the a;; will be functions of the individual noises o;(7) and will vary as a function of lag,
especially if the o; are red in nature. Moreover, the transmission function for the gravity wave
signal will, in general, be decreased by fitting other parameters, so unless the noise removed by the
fit is larger than this decrease in transmission, the limit on h?%(r) will not improve. For instance,
removal of ‘clock’ terms from collinear pulsars would also absorb all Earth passing gravity wave
signals.
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As an example consider an array composed of PSRs 1937, 1957 and 1821 timed for a period
such that the relative arrival time accuracies are (1:3:5) and the clock errors introduce additional
residuals of 10 in these units (i.e. ~ 3-10y at present sensitivities). If only the local (Earth-crossing)
component of the gravity wave background is considered, then after selecting the optimum o;; as
above, the rms value for x will be reduced below that estimated from 1937 alone by a factor of 2.2
when monopole clock corrections are not fitted out; the rms x is, however, 2.1 times larger when
the clock is previously fit. If the distant (pulsar crossing) gravity waves are considered, as well,
then the limits improve by 2.5 (no fit) and degrade by 1.4 (clock fitted), respectively. However,
with larger relative contribution of clock errors (slightly longer observation spans) gravity wave
background limits should always be lower with clock error removal, and will improve rapidly with
observation span relative to the single pulsar values. In addition, improved timing relative to 1937
or the discovery of other accurate pulsars at large angles would allow more complete separation of
the clock, ephemeris and gravity wave residuals.

The techniques for improving limits on cosmological backgrounds of gravity waves suggested
above can produce bounds quite significant for several popular cosmologies. In particular, present
limits from 1937 timing alone, @ gw < 1.5x 10722, for waves of frequency 0.23550.63yr~! (Rawley
et al. 1987), already place rather tight constraints on theories of cosmic string-induced galaxy
formation (Vilenkin 1981, Romani 1988). Even modest improvements obtainable from timing an
array of PSRs over short periods would produce strong violations of the backgrounds predicted by
most forms of these theories. On a more speculative note, improved pulsar timing might eventually
reach sensitivities for which gravity wave perturbations (which are certainly present at a minimum
level associated with primordial fluctuations) are significant and contribute to the timing noise.
It is also possible that exotic astrophysical sources might generate detectable waves at late times.
For instance ~ 10y of 1us white noise residuals would give a strain sensitivity of ~ 10-15— a
10°Mg, 3 year period black hole binary anywhere within the Hubble volume could then be detected
with a signal-to-noise of ~ 10. (For one such object to be present today, one could require that
10-3 of all massive galaxies would suffer mergers and coalescence of such central black holes.) In
this case the positive identification of the gravity wave signal could be obtained via the correlated
‘local’ residuals between several pulsars timed at this level of accuracy. Since the signals would
now be detected coherently on the several baselines, simulation shows that the timing experiment
would then operate as a gravity wave ‘telescope’, locating such sources to ~ 10arcmin accuracy and
providing measurements of the wave amplitude and polarization; alternatively, the array would put
rather strong limits on their occurrence.
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THE SCALING OF RADIO PULSAR TIMING NOISE WITH SPIN PARAMETERS
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ABSTRACT. Measurements of pulsar timing noise are now available for 39 pulsars, and
upper limits for 18 other pulsars. We investigate the relation of timing noise to pulsar period
and period derivative using a method that incorporates the upper limits. We confirm previous
findings that timing activity, as conventionally quantified, depends strongly on period derivative
but only weakly (if at all) on period. We also find that the scatter around our best fit to P and
P is considerably larger the measurement error, suggesting that other variables must play a
significant role in timing activity. At this point we find no need to treat millisecond pulsars as
a separate population in timing noise studies, though this may become necessary if the limits
on the timing activity of such pulsars continue to decrease.

KEYWORDS: pulsars - stars: neutron

1. INTRODUCTION:

Radio pulsars are, in general, very good clocks: some appear to be as good or better than
the best clocks on earth (see papers by Backer and Talyor in this volume). Others, however,
are not nearly as good and most pulsars with periods longer than 10 ms show deviations from
a simple secular slowdown. These deviations appear as sizable “glitches” in period P and
period derivative P and/or as lower level timing noise .e. small random fluctuations in pulsar
arrival times. Timing noise reflects small scale changes in the pulsar’s rotation rate which are
believed to be tied directly to the the interior dynamics of the neutron star or to processes in
its magnetoshpere. Pulsar timing behavior can therefore be used as a probe of neturon star
physics (e.g. Alpar et al. 1984ab, Alpar, Nandkumar and Pines 1985, 1986, Cheng 1987ab; see
also Alpar, Cheng, Pines, Shaham and Sauls in this volume).

In this paper we investigate the correlation of timing activity to pulsar period and period
derivative. These quantities describe the basic rotational behavior of pulsars and are expected
to be intimately connected with timing activity. In addition they correlate strongly with other
neutron star properties (e.g. age and magnetic field) on which timing activity may depend.
Therefore, even if timing activity cannot be completely described by P and P, its dependence
on these quantities should provide useful information about the underlying neutron star physics.

! Present address: Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109
USA

119

H. Ogelman and E. P. J. van den Heuvel (eds.), Timing Neutron Stars, 119-124.
© 1989 by Kluwer Academic Publishers.



120

2. DATA AND METHODS USED

Studies of pulse arrival times (e.g. Cordes and Downs 1985, Cordes and Helfand 1980) show
that the level of timing noise varies strongly from pulsar to pulsar as does its detailed behavior.
Rotational phase deviations can be described as superpositions of small discontinuities in phase,
frequency, or frequency derivative and the rms phase residual after a second order polynomial
fit (used to remove the secular spindown) is the simplest measure of timing noise. Following
Cordes and Helfand (1980), we define an “activity parameter”

A=log [}—cq;%é:_)z‘—)]

which relates o{2, T'), the rms residual over a time span T after a second order fit, to the same
quantity for the Crab pulsar over the same length of time. Since the timing noise of the Crab
has been idenitified as frequency noise, 6¢rqb(2, T) can be scaled from the value measured over
1628 days:

T ays T ays
ocran(2,T) = 0cras(2, 1628)(—1%2”—8)3/2 ~ (12ms)(%)3/2.

Note that the rms timing noise is defined in temporal units. In the analysis below this choice
of units affects the way in which A scales with P and P; we also consider the scaling which
results when the rms timing noise is expressed in phase units.

We used as our data set the activity parameters compiled by Cordes and Downs (1985),
with improved data for PSRs 1937+21 and 1913+16 from Rawley (1986). We also included data
for three recently discovered pulsars, PSRs 1855409 and 1953429 for which good upper limits
on the timing noise are available (Rawley 1986) and PSR2334+61 which shows measurable
timing noise (Dewey et al. 1988). Figure 1 shows the activity parameters of these pulsars
plotted against period and period derivative.

For a number of the most interesting pulsars, and for a considerable range in P, only
upper limits on A are available and it is useful to incorporate these into the analysis of timing
noise. To do this we use the parameterized maximum likelihood method described by Avni et
al. 1980. Similar methods are discussed by Schmitt (1985) and Feigelson and Nelson (1985).
We assume that timing activity depends on P, P and on some “hidden variables”, such as
mass or temperature, on which we have no direct information. These hidden variables produce
scatter around any relation between A, P and P. We assume that the mean activity parameter
scales with log P and log P as

A=alogP+BlogP ++

where P is measured in seconds, P in units of 1015 ss~1, and where a, A and 4 are unknown
constants. Individual values of A are assumed to be gaussianly scattered about the mean with
standard deviation & that, for tractability, is considered independent of both of P and P. Our
analysis shows no evidence to contradict this last assumption.

For a given underlying distribution described by a, 8,4, §, the probability p; that the gth
pulsar with period P; and period derivative P; has a measured activity parameter A; is

1
§/2m

where A A; is the uncertainty in the measurement of 4;. The probability of observing an upper
limit A; is

pi(@,8,7,6) = elA=A(PURII/38% o g,

1 Ai B 2
Pi(ayﬂ, T 5) = m/ e["'_A(P"P‘)]’/” dz

oo
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Figure 1 The activity parameters which make up our data set plotted against pulsar
period (a) and period derivative (b).

The probability of obtaining the total observed set of A; for N pulsars is:

N
ptot(a’ﬂvqya) = Hpi(a)ﬂ)716) ’

=1

where p; is given by whichever of the above equations is appropriate. By maximizing p;.:
with respect to «,,, §, we obtain the underlying distribution (given our choice of underlying
functional form) most likely to result in the N observed values of A. The maximization was
done numerically, assuming AA = 0.2 for all pulsars for which a value (rather than an upper
limit) for A was determined. The values which maximized pi,x were @ = —0.4, § = 0.8,
4 =—18, 6 =0.75.

3. GOODNESS OF FIT AND ERROR ESTIMATES

The method just described gives a “best fit” to the data, but does not quantify the goodness
of fit. If the fit is good the probability, ppaz, of the maximized solution should be similar to
the optimum value obtained if the input data are replaced with random numbers drawn from
the best fit underlying functional form. We found this to be true. If the assumed form of the
underlying distribution is in error a fit to subsets of the data, such as pulsars with large P,
or pulsars with small P, should result in different solutions for «, 8, and 4 and smaller values
of §. Fits to such subsets did not result in smaller values of 6, and within the uncertainties
(which were large for some subsets) did not result in different solutions for «, 8 or . Finally,



122

if the basic underlying model is good and A indeed depends more strongly on P and P than on
any of the hidden variables, the scatter around 4 should be significantly smaller than the total
range of A. Since values of A range from —4.0 to 1.0 and § = 0.75, we find this to be true.

We used two methods to estimate the uncertainties in our solution. Avni et al. (1980)
show that the 95% confidence level is equivalent to the surface in «, B,, § space where

_ptot(a: ﬁl") 6) — e—4

Pmazx

This method has the disadvantage that it does not provide any information about the overall
goodness of fit. Schmitt (1985) suggests obtaining error estimates by generating pseudo input
data from the best fit underlying distribution and looking at the scatter obtained in numerous
trials. This allows a comparison of the values of pyq, obtained from pseudo data with that
obtained from the actual data, as described above. We found that the two methods produce
similar error estimates. Our final results are:

a=-04+0.8
B=+08+04
4=-18+0.4
§ = +0.75+0.2

Since the rotational dynamics of neutron stars are naturally quantified using } = 1/P,
and 1, it is useful to define an alternative function for the mean activity parameter in terms
of these variables: .

A=d'logQl+ f'log ||+

It may be shown that o/ = —(a + 28) and ' = B. Another ‘rescaling’ results if, instead of
expressing phase deviations in time units, a new activity parameter Ay is defined in terms of
dimensionless phase deviations:

Ag = A+ log Porap —log P

If Ay scales as
Ay =a"logP+ " log P ++",

then " =a—1and g’ = 8.

Figure 2a shows the regions of the o, plane allowed by our solutions and Figure 2b
shows the value of A predicted by our best fit solution plotted against measured values of A.
The upper limit on the activity parameter for PSR1937421 (A < —4.0) lies slightly below
the predicted value (A = —3.8), though well within the expected scatter. This suggests that
1937421 may begin to show meausurable timing activity in the next few years. The limits on
A for the two other millisecond pulsars in our sample (1855+09 and 1953+29) lie well above
the predictions for 4.

4. CONCLUSIONS

A number of conclusions can be safely drawn from our results. First, and most importantly, it
is possible at present to treat all pulsars as a single population with regard to timing activity.
This may cease to be true if the upper limits on A for the millisecond pulsars (and PSR1913+16)
decrease significantly (more than one unit in A). Such a decrease requires at least an order of
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FIGURE 2 (a) The regions of the a, 8 plane allowed by our solution and (b) observed
values of A plotted against values of 4 obtained from our best fit model.

magnitude increase in timing accuracy or an additional seven to ten years of data at current
accuracies. Second, when timing activity is measured in temporal units, the dependence of A
on only P and hidden variables is allowed by the data, while dependence on only €2 and hidden
variables is not. If phase units are used, the data allow a dependence of A4 on 1 alone but
not on P alone. Finally, for values of P > 101855~ A depends more strongly on P than on
any of the hidden variables (for lower values of P only upper limits on A are available and so
the true scatter in the data is unknown). However, the scatter (§ = 0.75) around our best fit
model is considerably larger than the measurement uncertainty, signifying that variables other
than P and P play a substantial role in determining a pulsar’s level of timing activity.

This research was supported by the NSF through grant AST 85-205030 to Cornell Uni-
versity and by the National Astronomy and Ionosphere Center, operated by Cornell University
under contract with the NSF. A portion of the research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of Technology under contract with the
National Aeronautics and Space Administration.
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SIMULATION OF INTERSTELLAR SCATTERING EFFECTS ON PULSAR TIMING

Roger S. Foster! and James M. Cordes®
! Astronomy Department, University of California, Berkeley, CA 94720 USA
2 Astronomy Department, C¢ *nell University, Ithaca, NY 14853 USA

ABSTRACT. A computer simulation has been devised to study the effects of interstellar scattering
on pulsar pulse times-of-arrival using a one-dimensional power-law phase screen. The motivation
for this study is to understand the limits on pulsar timing imposed by interstellar scattering (ISS).
For a given model of the electron density spectrum, multi-frequency timing observations may be
able to remove the plasma propagation effects. Removal of these effects is necessary to obtain sub-
microsecond timing estimation of pulsar proper motion, parallactic distance, and other effects. In
this paper we present some of our preliminary results.

1. INTRODUCTION

Pulse times-of-arrival are perturbed by delays associated with the low wavenumber (refractive)
electron density variations in the interstellar medium (e.g. Armstrong 1984; Blandford, Narayan,
and Romani 1984; Cordes, Pidwerbetsky, and Lovelace 1986). We use a one-dimensional phase
screen to simulate the effects of a varying electron column density along different lines of sight. The
electron density spectrum can be modelled as a power spectrum

Psn. (@) =Cn’¢™%,  @<g¢<a, (1

where ¢ is the fluctuation frequency, go and ¢; are the low frequency and high frequency cut-
offs respectively, Cy? measures the amplitude of the power spectrum, and « is the spectral index.
Cordes et al. (1988) show, from three years of timing observations on PSR 1937+214, that diffractive
scintillation parameters (time scale and bandwidth) scale with frequency in a manner consistent with
a Kolmogorov turbulent spectrum. A Kolmogorov spectrum in the one-dimensional case corresponds
to a power spectrum with o = 8/3.

As a function of position along the screen, the phase can be directly related to the changing
electron column density (dispersion measure) fluctuations as follows:

Az
é(z) = —-/\re/ dz'6n.(z) = —8.4 x 10°AADM, (2)
0

where 7, is the classical electron radius, A is the observing wavelength in cm, én.(z) is the amplitude
of the electron density fluctuations, Az is the screen thickness, and ADM is the dispersion measure
fluctuation in pc cm~3. The refraction angle produced by the screen is proportional to the derivative
of the phase across the screen:

_ -198(z) .
HT(T) =k T’ (3)

where k is the wavenumber.

The phase screen ¢(z) produces three major time delay terms that can be observed in pulsar
timing analysis. The dispersion measure delay is proportional to the phase divided by the frequency,
~ ¢(z)/w. The geometrical delay, ~ D8,%/2¢ depends on the increased path-length a wave travels
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after refractive bending. Finally, the angle-of-arrival fluctuations introduce errors in estimating the
times of arrival at the solar system barycenter, manifested as an additional refractive delay term.
This ISS barycentric correction error for a source in the ecliptic plane is ~ (AU8, /c) cos§2t, where
2 is the orbital frequency of the earth around the sun. In the simple single cloud model these three
delays scale as A2, A*, and A? respectively. For the case of a Kolmogorov power spectrum these
delays scale as A2, A49/15 apd X49/30,

TABLE 1

Time of Arrival Variations

Term Single Kolmogorov. PSR 1937 @ 1 GHz
cloud spectrum (7 in months)
DM variation A? 2 0.475/6 ys

(Tsat ~ 10* yl‘)

Geometric time 4 A\19/15 0.17 ps

delay (Tsat ~ 2.3 months)
ISS b A49/30 0.2 7 cos(S2t) ps
‘barycentric error’ (7sat &~ 1.9 months)

Other frequency dependent delays that contribute at the sub-microsecond level, including
variability of the diffraction smearing time, imperfect polarization calibration, and pulse phase jitter.
These additional delays have been explicitly neglected in this simulation, but are effectively included
in the white noise background. Table I lists the various delay terms, the wavelength dependence
of each term, and the amplitude of the term scaled for PSR 1937421 at an observing frequency of
1 GHz. These terms scale with time 7 up to a saturation scale. Different phase screens have been
used in the simulations, but most of the work was done using a standard Kolmogorov power-law
screen.

2. MODEL

The simulation model is based on a spherical wave radiating from a pulsar at distance D. A
one-dimensional phase screen is generated by multiplying a white noise spectrum by a power law
and taking its Fourier transform. The phase screen is then normalized to produce the appropriate
dispersion measure variation for a given scintillation bandwidth at 1 GHz. The screen propagates
perpendicular to the observer at a velocity V., and distance D/2. The screen has explicitly mapped
structure covering scales from ~ 102 ¢m to ~ 10'¢ cm. Length scales between 10° ¢cm to 1012 ¢m are
reached by scaling laws. The 10'® cm outer scale is arbitrary, and equals the size of the computed
phase screen. Each point on the phase screen maps to a unique point on the ground using a ray-
optics code. The mapping from the ground back to the screen may be multi-valued, however. Every
point on the ground has an accumulated intensity and average angle-of-arrival.

The resulting data scale with frequency according to the observational input parameters, the
power spectrum slope, and the assumed scintillation bandwidth. The arrival times of the wavefronts
are adjusted to topocentric arrival times from barycentric arrival times assuming a circular earth
orbit. After fitting the data for standard pulsar spin parameters (P, P, I"’), proper motion and
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distance, residuals are output for further analysis. The assumed parameters for the PSR 1937421
system used in the simulation are given by Rawley et al. (1987, 1988). The timing accuracy was
(optimistically) assumed to be ~ 100 nanoseconds for most runs. Table II list the scaling of the
various terms used in the simulation.

TABLE II
Scaling Laws Used in Code

Term Scaling Relationship ~ Description
Scintillation Av p2et)/(e-1) set to ~ 3 x 10° Hz
Bandwidth for PSR 1937421 @ 1 GHz
Diffraction angle 04 2(c/aDAV)/? using spherical wave
geometry
Fresnel Scale Ry (AD/4x)1/? assuming a 1-D screen

at distance D/2

Diffraction scale bg 1/kb4

Refraction scale I R} Jba

Multi-path scale Ry Dé4/2 where D/2 is the
screen distance

Bin size b Vier bin size is in units of
screen velocity times
seconds per day

rms phase amplitude @, (b/ba)le—1)/2 root-mean-square phase
fluctuations wused to
normalize screen

3. RESULTS

Assuming a Kolmogorov power law spectrum for the electron turbulence and an observing
frequency of 1 GHz, a four-year simulation for one particular phase screen produces ISS barycentric
correction errors of ~ 0.5 us, geometrical delays of ~ 0.3 us, and dispersion measure delays of about
4 ps. These terms plus the final fits are shown in figure 1. Simulations at lower frequencies yield
results that scale according to the wavelength dependences given above and in Foster and Cordes
(1988). Looking at the best-fit residual data, the derived proper motion is determined to better
than 50 percent of the true value, while the distance estimate has no statistical significance.

Comparison of the simulated data and the observed data from PSR 1937+214 (Cordes et
al. 1988) has not been completed. Assuming that the electron density power spectrum really does
obey a Kolmogorov power law then it may be possible to remove the effects of a phase screen by fitting
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FIGURE 1
1 GHz

Simulated timing residuals at 1 GHz as a function of observation date. Panels show the ISS
barycentric correction term, geometrical delay, dispersion delay, and post-fit residuals.
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multi-frequency data to the appropriate frequency dependent functions. Clearly, if high precision
timing is the primary goal then higher frequency observations reduce the dependence on removing
the effects of a phase screen. Lower frequency observations though, can be utilized to probe the
electron column density turbulent spectrum. With the appropriate measurements, removal of the
dispersion measure and refractive delays may be performed. The ultimate precision of delay removal
is uncertain, as it depends on the form of electron density variations for scales much larger than
those probed with scintillation observations. Although pulsar scintillations show consistency with
a Kolmogorov spectrum, ample evidence exists (Fiedler et al. 1987; Cordes and Wolszczan 1986)
that discrete electron density clumps exist that are probably distinct from any Kolmogorov process.
Removal of the effects caused by clumps will require observations at several to many frequencies.

4. CONCLUSIONS

Dispersion measure and geometrical delay terms cannot be separated by single frequency
observations. Multiple frequency observations could help separate the various frequency dependent
terms. The ISS barycentric correction term is not separable from the dispersion measure fluctuations
because they both scale as ~ A2, At observing frequencies near 1 GHz, dispersion measure and ISS
barycentric correction errors dominate for a Kolmogorov spectrum and four years of simulated data.
Near 500 MHz the geometrical term becomes more important.

High precision timing data require very frequent regular sampling over intervals much less
than the refraction time scale. A good distance estimate from the parallax term requires sampling
at intervals of less than one month. Angle-of-arrival and dispersion measure fluctuations may be
evident on time scales of days. Long-term high precision timing of multiple pulsars along different
lines of sight can place constraints on the likelihood of observing extreme scattering events of the
kind reported by Fiedler et al. (1987). Well sampled data also place constraints on the electron
density spectrum that exists in the interstellar medium.

The authors gratefully acknowledge helpful discussions with R. Romani and D. Backer. Par-
ticular mention is given to D. Backer for his suggestion to consider the ISS barycentric correction
error eflect on pulsar timing.
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THE RADIO EMISSION FROM PULSARS

F. Graham Smith

University of Manchester

Nuffield Radio Astronomy Laboratories
Jodrell Bank
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The location and the geometry of the radio emission from pulsars follow

a simple pattern: the excitation and mechanism of the radiation are
complex and less easily understood. The simple geometry may even be
obscured behind the mass of detail imposed by the variety and variability
of the observed characteristics of the radiation.

1. GEOMETRY

I start with the simplest model, in which the radio emission originates
in limited regions over the polar caps, forming two opposite radial beams.

Figgre 1. The magnetic field structure of a pulsar, showing the two
radio emitting regions. The light cylinder radius re = cw~!, where w
is the angular velocity.

Depending on the position of the observer, one or both of these beams
may cross his line of sight to the pulsar; the width and shape of the
pulse then depend on the angular width of the emitted beam and on the
way in which the beam crosses the line of sight.
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The two youngest pulsars, Crab and Vela, conform to this model but
radiate in addition another double beam from optical to gamma-ray
energies. The Crab Pulsar also radiates in the radio spectrum in these
high photon energy beams: its typical radio emission, analogous to that
of all other radio pulsars, is only in its so-called precursor pulse.
The high photon energy beams are radiated from further out in the co-
rotating magnetosphere, from locations defined by the edges of the polar
caps but about nine—tenths of the radial distance to the velocity-of-
light cylinder (Smith et al. 1988).

Although the pulses from a typical pulsar are very variable, the
integrated profiles constructed by superposing some hundreds of pulses
are stable. They vary greatly in shape and width, but could be charac-
terised by a small number of simple components each of order 2° wide
spread over about 10° of rotation. These individual components
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Figure 2. Integrated profiles of thirty-one pulsars, on a single scale
of rotational longitude. (Jodrell Bank; 408 Miz)

i

5

originate in discrete regions within the polar cap, indicating that
there is a stable pattern of excitation which varies across the cap.

The integrated profile of most pulsars is recognisably similar
over a wide range of radio frequencies, often showing the same pattern
of discrete components. The overall width, however, is frequengy
dependent, especially below 1 GHz, where the width varies as v74.

This frequency dependence is simply interpreted as lower radio
frequencies originating from larger radial distances .,

Some integrated profiles are very wide: these correspond to close
alignments between the magnetic polar axis, the rotation axis and the
line of sight. For PSR 0826-34 the beam remains within the line of
sight for almost the complete pulse period, while for PSR 0950408 the
beam occupies about half the period. In the latter case, the radiation
is seen to be concentrated at the outer edges of the beam, and one edge
is stronger than the other.
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Figure 3. Profiles at three frequencies: ____, 610 Miz; ----. 240 MHz;
+ee+, 150 MHz. (After Lyne, Smith & Graham, 1971).
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Figure 4. Integrated profiles of two pulsars with wide profiles

Some integrated profiles are doubles in which the two pulses
correspond to the two poles: here the polar axis is perpendicular to
the rotation axis, and the observer is close to the equatorial plane.
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Figure 5. Integrated profiles of two pulsars with interpulses
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These geometrical effects combine with the inherent variety of
excitation across the polar cap to produce a chaotic range of integrated
pulse shape and width. The chaos has been reduced to order by Rankin
(1983) and by Lyne and Manchester (1988). The key is the recognition
of partial profiles, in which part of the polar cap is not observed:
these are recognised by the pattern of linear polarisation, and their
proper width can then be deduced. Lyne and Manchester show that this
width depends on the orientations of the polar and rotation axes. The
bipolar pulsars give the minimum observed width; other orientations
give wider widths.

q°' T T T T T T LCye— T T

! ! 1 ) L i 1 ) 1 L

0-01 o )0 Sec

Figure 6. Corrected angular beamwidths (shown as the angular half-
width p}) as a function of period P.

The minimum deduced widths p}, as shown in Fig.6 as angular half-
widths for 408 Miz, follow a simple law:

-1

- o
Pl 6.5 PSec

The larger values correspond to different orientations. Their
distribution enabled Lyne and Manchester to point out a weak tendency
towards aligmment of the magnetic and rotation axes in older pulsars.

2. EXCITATION AND THE RADIATION MECHANISM

We have already seen that the polar cap is not a uniform source of
radiation. The discrete components of a typical profile originate in
discrete locations, which seem to be randomly distributed over the
polar cap. These components may switch on and off, giving the
phenomonon of moding.

Moding occurs simultaneously at all radio frequencies: it is
regarded as a change in excitation which follows along a connecting
magnetic field line. An extreme form of moding is nulling, in which
all components switch off simultaneously. Modes and nulls may persist
for any time from a single pulsar period up to several hours.
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Figure 7. Two different modes for the pulsars PSR 1237+25 and
PSR 0329454

The polarisation in the integrated profile follows a simple
typical pattern, showing none of the complicated components of the
intensity profile itself.

PSR 0301 +19 PSR 1929+10

(610 MHz)

R 2 ;
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Figure 8. Polarisation in integration profiles of six pulsars. The
broken line represents the linearly polarised component, and the graphs

below the profiles show the position angle. (Jodrell Bank recordings at
408 MHz and 610 Miz).

The linear component shows the typical S-shaped sweep, covering up
to 180°. The total swept range, and the rate of sweep, provide the
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essential beam geometry as investigated by Lyne and Manchester. A
circularly polarised component is often observed in integrated profiles
when the line of sight cuts close to the centre of the polar cap:
typically a simple switch is observed between the two hands of circular.
The linear polarisation is often very high, approaching 100%. The
circular polarisation reaches 50% in the bipolar pulsar PSR 1720-19;
surprisingly it has the same hand for the two opposite poles.

3. INDIVIDUAL PULSES

The repeatability of the integrated profiles is in contrast to the
variability of the individual pulses.

Figure 9. A sequence of individual
pulses of PSR 0329+54, and the
integrated profile

This variability is at least partly attributable to change in excitation
affecting a wide range of radio frequencies simultanecusly. Some
individual pulses have a very fine structure, known as micro-structure;
This is often quasi-periodic, repeating at intervals of order 1 milli-
second. Microstructure is also seen simultaneously over a considerable
range of frequencies, and is therefore regarded as a variation in
excitation common to a particular field line.

Individual pulses are commonly very highly polarised, occasionally
practically 1007 polarised.

An organised pulse-to-pulse variation which is observed mainly in
older pulsars is the phenomenon of drifting.

Here an identifiable pulse component is seen in successive pulses
at a progresively earlier or later pulse phase. Again, this is regarded
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Figure 10. Drifting and nulling. Each horizontal line is centred on the
expected arrival time, with time increasing downwards and to the right.
The positions of each sub-pulse are shown. PSR 0031-07 and PSR 0809+74
are typical negative drifters. PSR 0031-07 shows large null periods,
missing about twenty pulses. (After Taylor & Huguenin, 1971).

as a variation in excitation. Activity of some kind circulates around
the magnetic pole. Two or more excited regions can be seen as they
move into and cross the observable region of the polar cap.

Drifting and nulling are interconnected. When pulses restart
after a short null, the drifting has apparently continued through the
nulling interval, but at a modified rate.

4. TINTENSITY AND SPECTRUM

The overall radio spectrum is very steep. It is well fitted by a power
law, with a change of index in the region of 1 GHz and often with a

low frequency cut-off. The centre of the polar cap has a steeper
spectrum than the outer regions.

The intensity is very high, corresponding to impossibly high
brightness temperatures. Both the high intensity and the narrow band-
width of radiation from a particular location indicate that the
radiation is coherent.
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5. INTERPRETATION

The geometry of the emitting regions is determined by the polar
magnetic field, and the emission is directed along the field lines.
If we locate the edges of the integrated profile on the limiting field
lines, i.e. those lines which just close on the velocity of light
cylinder, we can find the height of emission from simple geometry. If
the limiting field line is inclined to the magnetic axis by angle &,
as 1t crosses the surface at radius a, its inclination § at radius r
is given by
sing? _ r
Sin(Sa ;
1

Since §, = fla 2 where is angular velocity, for a pulsar with a=15 km
c

we have an angular beam width for a source on the surface

-1

28,=20p "
a Psec L
The observed beamwidth at 408 MHz is 13° P_"° . We deduce that the

gource is at radius r * 40 a for a pulsar with P = 1 sec, and at
radius r » 20 a for P = 10 millisec. At other frequencies these
heights vary as V-3

This height probably does not scale exactly down to the shortest
periods, where it would place the radio source far out in the magneto-
sphere beyond the velocity of light cylinder. In these pulsars we may
have to take account of relativistic beaming.

The radiation frequency is associated with radius; the beamwidth
and polarisation are determined by the magnetic field lines. It is
reasonable to associate the radio frequency with magnetic field strength.
The gyro frequency for electrons with relativistic factor T is
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eH
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At r = 40a, H ~ 107 gauss. Hence we need I' v 102 to 103, which is
reasonable. The radius-to-frequency mapping needs o L.

Coherence probably falls with decreasing wavelength, giving the
steep spectrum. We therefore expect the enhancement in brightness tem-
perature to be due to particle concentrations within linear distances
of the order of one wavelength, i.e. in bunches of order one metre in
size.

The radiation mechanism is presumably similar to gyro radiation,
in a stream moving towards the observer along the curved field lines.
It is boosted by coherence which varies across the source and which
may differ for different polarisations. A warning against simple
models is provided by the common phenomenon of orthogonal polarizationm,
in which the position angle switches by about 90° either within a pulse
or randomly in successive pulses. As with other switching phenomena it
seems that this is to be associated with changes in excitation rather
than with propagation conditions outside the source.

Nulling itself does not mean that a stream of particles has been
cut off. Fillipenko and Radhakrishnan (1982) suggest that the stream
may continue, but without the bunching that is essential for radio
emission.

6. CONCLUSION

We now understand the geometry of the radio emission, but not very much
of the physical processes of excitation and radiation.
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A Timing Analysis of the Clifton and Lyne Pulsars
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ABSTRACT. Utilising standard procedures, timing studies of the 40
pulsars discovered in the Jodrell Bank 1400MHz Survey have been
undertaken. The results include the first measurement of the pulsars'
period derivatives which then permit a determination of their
characteristic ages. On average, the pulsars are about one order of
magnitude younger than the rest of the known pulsar population.

Despite this, none of them, with the possible exception of PSR 1822-14,
is associated with a known supernova remnant. Although confirming that
previous searches missed some younger, faster pulsars, the results
presented here do not preclude the possibility that pulsars are
"injected" into the population with a period of about 0.5s (Narayan,1987).
Finally, "glitches" have been observed in two of the pulsars. That seen
in 1823-13 has AP/P = -2.5x10 ° making it one of the largest glitches
yet seen. The glitch in 1737-30 has AP/P = -4 .2x10 ’and AP/P =2.6x10 °.

1. INTRODUCTION

In this paper, I intend to show how the timing of radio pulsars can
impinge upon many areas of neutron star astronomy. In particular, we
shall see that timing studies can reveal about the birth, evolution and
interior of neutron stars.

First, however, it might be appropriate to make a few general
remarks about pulsar timing as done at Jodrell Bank. The techniques
employed to collect, reduce and analyse data are very similar to those
used by other groups (Backer, 1989; Taylor, 1989). One possibly
important difference is the use at Jodrell of the JPL planetary
ephemeris (Standish 1982), as opposed to the MIT ephemeris more commonly
used. Tests are, however, currently underway to ensure that no major
discrepancies exist in results obtained from the different pulsar timing
programs.

In total, about 130 pulsars are observed regularly at Jodrell Bank.
This means that for each pulsar two or three observations separated by
a few days are made about every three months. Timing is undertaken
primarily at 408 MHz, 610 MHz, 1420 MHz and 1667 MHz and we have the
use of four fully-steerable telescopes. One of these, the 12.5m dish,
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follows the Crab pulsar for as long as it is above the horizon.

120
— 20
100 |-
dis
80 —
[72]
(A4
<)
[72]
5 6o
& —10
40 -
s
20
o Lt ! I —J g
0.1 0.3 1.0 30
PERIOD (S)

Figure 1. A histogram showing the distribution of periods
for (a) all pulsars discovered in previous major surveys
(solid line and left-hand scale) and (b) the Clifton and
Lyne pulsars (dotted line and right-hand scale).

2. THE JODRELL BANK 1400 MHz SURVEY

The particular sample of pulsars under consideration here were
discovered in the Jodrell Bank 1400 MHz Survey of 1983/4 (Clifton,1985;
Clifton and Lyne, 1986; Clifton et al, 1987). Essentially, this survey
was an attempt to find young, fast, Crab-like pulsars by mitigating
certain selection effects which had biased previous surveys against
such objects. The main features employed to this end were a high
observing frequency, 1400 MHz, and a high sampling rate of 500 Hz. The
concomitant reductions in pulse broadening due to scintillation,
dispersion and sampling were calculated to allow increased sensitivity
towards shorter period pulsars. The high observing frequency also
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reduced the relative strength of the galactic background, thus
permitting a low galactic latitude search for young pulsars.

The survey found forty new pulsars, thirty of which, it is
estimated, would not have been detected in previous surveys. Figure 1
shows that the survey was successful in finding faster pulsars; it is
clear that the average period of these pulsars is somewhat shorter
than that of the rest of the known population. To ascertain whether
or not the Clifton and Lyne pulsars (as these objects are widely known)
are young pulsars requires a knowledge of their period derivatives.
These only became available after timing observations were made over a
number of months.

3. THE TIMING ANALYSIS

The observations of the pulsars were carried out between August 1985
and January 1988 during which time an average of 30 separate
observations were obtained for each pulsar. The standard methods of
data analysis (Manchester and Taylor, 1977 ; Backer and Hellings, 1985)
were used to solve for six parameters - period, period derivative,
dispersion measure, position and epoch. In most cases, this was the
first determination of the pulsar's period derivative. Unique fits
were obtained for 34 of the 40 pulsars and the results are given in
Tables I and IT.

4. THE IMPLICATIONS OF PERIOD DERIVATIVE

The determination of a pulsar's period derivative allows us to estimate
both its magnetic field and its age.

4.1. Magnetic Field

An approximation to a pulsar's magnetic field strength can be made if
we assume the pulsar to be an oblique rotator (Pacini, 1967). It can
then be shown that the surface magnetic dipole strength, B, is given by

. 1
B = 3.2x10°(PP)? (1)
where B is measured in gauss, P in seconds and P in ss_1. Thus the
magnetic fields of the Clifton and Lyne pulsars are shown in Table I.
Note that PSR1737-30 has the second highest field in the known pulsar
population.
4.2. Characteristic Age

A pulsar's "characteristic age", tc, is defined as,

TC =

p
oF (2)
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TABLE I

Periods , period derivatives ,
characteristic ages and magnetic fields
of the Clifton and Lyne pulsars

PSR PER PDOT AGE B
seconds E-15 ss E+03 yr E+12 g
1735-32 .76849876730(3) 0.800(3) 15000 0.79
1736-29 .32288076515(1) 7.851(1) 650 1.6
1736-31 .52943755808(1) 18.406(3) 460 3.2
*1737-30 .60657976231(4) 466.31(3) 21 17
1750-24 .5283332229(1) 14.07(1) 590 2.8
1753-24 .67047989826(2) 0.284(1) 37000 0.44
1800-21 .133588492866(1) 134.0951(3) 16 4.3
1804-20 .9184064710(1) 17.09(1) 850 4.0
1806-21 .70241276657(2) 3.819(2) 2900 1.7
1809-173 1.20536193373(4) 19.118(4) 1000 4.9
1809-175 .538340252(1) 1.5(1) 5700 0.91
1813-17 .782326(4)
1815-14 .29148820999(1) 2.035(1) 2300 0.78
1817-13 .9214587178(1) 4.502(3) 3200 2.1
1819-14 .21477093439(3) 0.45(2) 7600 0.31
1820-11 .279822(6)
1821-11 .43575827169(2) 3.576(2) 1900 1.3
1822-14 .27918201531(1) 22.6781(3) 200 2.5
1823-11 2.0931352637(3) 4.89(3) 6800 3.6
1823-13 .101440656830(3) 75.217(1) 21 2.8
1824-09 .2457569048(1) 1.48(1) 2600 0.61
1828-10 .40502972520(3) 60.035(2) 110 5.0
1829-10 .330354(4)
1829-08 .64727924004(1) 63.8912(2) 160 6.5
1830-08 .085281651607(1) 9.1618(1) 150 0.89
1832-06 .30583(1)
1834-04 .35423614431(4) 1.79(2) 3100 0.81
1834-06 1.9058085410(4) 0.79(3) 38000 1.2
1838-04 .186145156242(1) 6.3877(1) 460 1.1
1839-04 1.8399442066(1) .50(1) 58000 0.97
1841-04 .99102572826(4) 3.918(3) 4000 2.0
1841-05 .255697129412(4) 9.7016(4) 420 1.6
1842-02 .5077185070(3) 15.11(3) 530 2.8
1842-04 .1622506
1849+00 2.1802
1855+02 .41581416756(1) 40.2849(3) 160 4.1
1859+07 .64399810043(4) 1.578(4) 6500 1.0
1903+07 .6480389969(1) 4.94(1) 2100 1.8
1904+06 .267274526144(3) 2.1356(1) 2000 0.76
2000+32 .69673832884(3) 104.792(3) 110 8.6

Notes.(l) Periods quoted are for MJD 47000 except for PSR
1737-30 (*) where epoch is MJD 47075 .
(2) The formal error in the last quoted figure is
given in brackets .



PSR

1735-32
1736-29
1736-31
1737-30
1750-24

1753-24
1800-21
1804-20
1806-21
1809-173

1809-175
1813-17
1815-14
1817-13
1819-14

1820-11
1821-11
1822-14
1823-11
1823-13

1824-09
1828-10
1829-10
1829-08
1830-08

1832-06
1834-04
1834-06
1838-04
1839-04

1841-04
1841-05
1842-02
1842-04
1849+00

1855+02
1859+07
1903+07
1904+06
2000+32

TABLE II

Positions and dispersion measures
of the Clifton and Lyne pulsars

RA
h m s

17'35'38.65(2)
17'36'23.57(1)
17'36'09.76(1)
17'37'21.27(1)
17'50'26.2(1)

17'53'53.54(1)
18'00'51.137(4)
18'05'07.0(1)
18'06'14.70(1)
18'09'12.64(2)

18'09'38(1)
18'13'04(26)
18'15'32.9(1)
18'17'29.7(1)
18'20'05.6(1)

18'20'37(24)
18'21'42.47(2)
18'22'11.64(1)
18'23'18.1(1)
18'23'23.312

18'24'24.5(1)
18'28'01.20(3)
18'29'28(24)
18'29'53.416(4)
18'30'56.696(3)

18'32'32(24)
18'34'12.3(1)
18'34'33.0(1)
18'38'26.771(2)
18'39'48.15(3)

18'41'54.44(2)
18'41'24.82(1)
18'42'10.5(1)
18'42'36(24)
18'49'54.3(1)

18'55'12.35(1)
18'59'14.20(3)
19'03'28.0(1)

19'04'08.93(1)
20'00'07.07(2)

DEC

° ’ ”

-32'10'11(1)
-29'01'48(1)
-31'29'39(1)
~30'14'27(1)
-24'56'46(30)

~-24'35'29(8)
-21'37'15(3)
~-20'58'30(14)
-21'09'35(4)
-17'19'16(2)

-17:30(6)

~17:30(6)
-14'23'51(6)
~13'47'38(4)
-14'01'51(7)

-11'12(6)

-11'20'25(1)
-14'48'36(1)
-11'33'30(3)
-13'36'34.77

-09'58'10(5)
-11'01'27(2)
-10'26(6)
-08'29'20.2(2)
-08'29'51.2(2)

-06'46(6)
-04'38'59(3)
-06'55'41(4)
-04'28'11.9(1)
-04'02'59(1)

-04'36'20(1)
-05'41'38.9(?
-02'47"'20(”
-04'35(6)
00'28'20¢

02'08'36.4(3)
07'11'56(1)
07'04'45(1)
06'36'21.2(1)
32'08'53.3(3)

DM
em3pe

52(3)
136(1)
601(2)

152.3(1)
657(6)

365(2)

234.2(3)

608(8)
379(2)
252(2)

630(20)
490(30)
626(2)
784(5)
605(3)

430(50)
597(3)
349(3)
327(11)
230(1)

442(7)
170(5)
440(40)
300(1)
411.2(5)

‘10(40)
7(2)
3(8)

327(1)

190(7)

127(3)
416(1)
372(33)
280(30)
680(60)

506(1)
261(5)
295(11)
473(1)
139(2)

Note. The formal error in the last quoted figure is
given in parentheses.
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Given egn (1), this is a reasonable approximation to the pulsar's true
age if its magnetic field remains constant and if it is born spinning
very fast. Calculating these characteristic ages for the Clifton and
Lyne pulsars provides the second test of the survey's effectiveness.
The results, shown in histogram form in figure 2, indicate that, on
average, these pulsars are one order of magnitude younger than the rest
of the known population. This then confirms the success of the survey.
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Figure 2. A histogram showing the distribution of
characteristic ages for (a) all pulsars discovered in
previous major surveys (solid line and left-hand scale)
and (b) the Clifton and Lyne pulsars (dotted line and
right-hand scale)

5. PULSAR-SUPERNOVA REMNANT ASSOCIATIONS

Of the 40 pulsars, three - 1822-14, 1838-04 and 1904406 - lie within
the boundaries of a known supernova remnant (hereafter SNR). PSRs
1838-04 and 1904+06 have characteristic ages of 0.46 Myr and 2.0 Myr
respectively, and since it is unlikely that recognisable SNR
morphology would last longer than 0.2 Myr (Caswell and Lerche, 1979),
these associations must be considered purely coincidental.

Pulsar 1822-14 lies within an area of complex radio morphology;
the object with which it is associated, G1685-1.05, is an extended
HII region seen in front of a- strongly polarised remnant (Reich et al.,
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1986). With a characteristic age of 0.2 Myr, this pulsar might still
have an extent SNR but it is more likely that this is just a chance
association. Given the size of G16.85-1.05, two or three of the Clifton
and Lyne pulsars might be expected to be positionally coincident with

a SNR while not being causally connected. Hence further study is
required before any association of PSR 1822-14 with G16.85-1.05 can be
corroborated.

Another approach to this problem is to inpsect the eight pulsars
with characteristic ages less than 0.2 Myr. Knowing both their
dispersion measure (distance) and period derivative (age), we can
calculate the transverse velocities they would require to have moved
from the centre of the nearest known SNR to their present position.

Five of these pulsars - 1737-30, 1800-21, 1823-13, 1828-10 and 1855+02

- would need velocities far in excess of 400 kms !, the maximum observed
pulsar velocity (Lyne, Anderson and Salter, 1982). Consequently, we

can be certain these pulsars are not associated with any known SNRs.
This is a negative test since the comparative speeds of pulsars and
supernova shells suggest that pulsars ought to be found within their
SNRs. Hence, although they would not require unrealistic velocities,
the other three pulsars - 1829-08, 1830-08 and 2000+32 - are unlikely

to be connected with their nearest SNRs. Thus, it would seem improbable
that any of the Clifton and Lyne pulsars is associated with a known
supernova remnant.

6. THE CASE FOR PULSAR INJECTION

The standard theory of pulsar birth envisages a pulsar with a period of
about 10 ms born in a supernova explosion. However, this has been
challenged by Vivekanand and Narayan (1981) whose model-independent
analysis of 210 pulsars led them to suggest that pulsars are injected
into the population with periods as high as 0.5 seconds. This was
questioned by Lyne, Manchester and Taylor (1985) who argued that the
previous analysis had neglected those selection effects which
discriminate against the faster pulsars. They also showed that pulsar
statistics could be adequately explained using the accepted model of
pulsar birth and the luminosity relation L <« B>.

As this timing analysis has revealed, many fast, young pulsars
have been missed by previous surveys and this seems to confirm the
criticism by Lyne et al of injection. However, more recent studies by
Narayan (1987) have allowed for the aforesaid selection effects and,
using a luminosity model L<* Plla/P, the evidence for injection is said
to increase. However, an alternative analysis of pulsar statistics
(Stollman 1987), which utilises a slightly different luminosity model,
does not require pulsar injection. It would seem then that a
resolution of the controversy awaits a definitive luminosity model,

7. PULSAR GLITCHES

These timing studies have revealed that two of the youngest pulsars
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Figure 3a (top). Post=gliteh residuals for PSR 1823-13
after fitting for P,P and B. The apparent quartic
variation is due to the underlying exponential recovery
from the glitch. Figure 3b(bottom). Residuals before
and after the glitch in PSR 1737-30
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have recently undergone sudden spin-up events or "glitches".
PSR 1823-13 glitched between January 19 1986 and May 14 1986. The
fractional change in period was

-2.2x10° ¢ 3 AP 3 -2.7x10 ¢
P

which makes this one of the largest glitches yet observed. The relative
scarcity of pre-glitch data for the pulsar has prevented a precise
determination of the fractional change in period derivative but this
could be as high as 6%, i.e.,

AP & 0.06
a0

The other pulsar to have glitched is PSR 1737-30. Unfortunately,
but not surprisingly, this glitch also occured in a large gap in our
data between June 7 1987 and August 21 1987. The glitch parameters
in this case were

AP = 4 2510’ AP = 2.6x10 2
P B

There is some evidence for an exponential recovery from both these
glitches. In figure 3a, we see the post-glitch residuals of PSR 1823-13
after a fit has been made for period, period derivative and period
second derivative. There is clearly a quartic variation in the
residuals almost certainly due to the unfitted fourth-order term in an
exponential. Figure 3b shows the timing residuals for PSR 1737-30

and they depict a classical glitch behaviour (see, eg. Lyne 1987). At
the time of writing, however, the parameters of the exponential recovery
were undetermined, partly as a result of period ambiguities. However,
further investigation of the post-glitch data should yield the

recovery timescales and so further elucidate the behaviour of neutron
stars' superfluid interiors.

8. FUTURE WORK

We have seen how observations taken from August 1985 to January 1988
have led to improved values for the parameters of the Clifton and Lyne
pulsars. These results have permitted some investigation of pulsar-
supernova remnant associations and the problem of pulsar injection.

The collection of further timing data will allow us to determine
the period derivatives of those six pulsars still without good timing
solutions. Eventually, a quantitative study of timing noise will also
be possible. It is quite likely that more glitches will come to light
and the study of these, and the two already seen, will provide further
information on the superfluid interior of a neutron star.
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SLOWDOWN RATE AND OSCILLATIONS IN THE CRAB PULSAR

F. Graham Smith

University of Manchester

Nuffield Radio Astronomy Laboratories
Jodrell Bank

Macclesfield, Cheshire  SK11 9DL U.K.

Continuous monitoring of arrival times from 1982, as reported by Lyne,
Smith and Pritchard (1988), has provided a complete record over more
than 5 x 10° pulsar rotations. One well-defined glitch occurred on
22 Aug 1986 (Lyne and Pritchard 1987); the total amplitude of the
phase deviation was 3 milliseconds, and the overall effect was minor
compared with the normal slowdown and with the major oscillation which
is discussed in this paper.

We have included data from 1969 to 1987 in an analysis of the
pulsar slowdown rate V. Fig.l shows the almost linear variation of v,
with a small step at the major glitch of 1975 (Gullahorn et al. 1977).
Fig.2 shows the same data on an expanded scale after the removal of a
single value of V. A small curvature can now be seen in addition to
the 1975 step. This curvature is fitted within 107 by the value of the
next derivative, V¥, found from the usual power-law spin down. If the
timing behaviour is correctly expressed by

O o« =yl

then the index n is found from

n= -

Our observations give n = 2.509%0.001.
The third derivative is expected to be given by

- n(2n-1)v3

\)2

= -0.615 x 10730 g%,

Fig.3 shows the data corrected for this value. No other trends are
discernable, and it is concluded that the power-law_is a good overall
representation of the slowdown.

The data from 1982 onwards provide a phase-connected record which
can be used to measure deviations from the smooth slowdown behaviour,
These timing residuals are shown in Fig.4. The conspicuous feature is
a quasi-sinusoidal oscillation with a period of about 20 months and a
peak-to-peak amplitude approaching one complete pulse rotation. It is
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Figure 4. Timing residuals for the Crab Pulsar, showing the quasi-
periodic oscillation remaining after removing the first
three derivatives of the frequency v.

a low-Q oscillation, but it is obviously different from the red noise
behaviour which has been used to describe shorter data sets. The period
and amplitude of the oscillation, as they appear in our analysis, are
unrelated to the total length of our data set.

The oscillation may be due to some form of precession, or to an
internal oscillation which does not involve a movement of the spin axis.
If it is due to precession, it must involve a slow periodic change in
the angle between the magnetic dipole and the spin axis, resulting in
a modulation of spin-down rate of order 1 part in 10°.

Internal oscillation may be some form of Tkachenko oscillation of
the superfluid vortex lattice (Tkachenko, 1966; Ruderman 1970). The
superfluid vortices have an area density proportional to angular
velocity, and their lattice structure is maintained by elastic forces
as in a crystalline solid. A torsional oscillation of the vortices
inside a superfluid sphere with radius 12 km has a period of 20 months,
if the vortex density corresponds to a period P=1 second. The oscil-
lation period varies as (vortex demsity)™Z, i.e. P}, so that for the
Crab Pulsar the observed period is five times too long. Furthermore,
only part of the superfluid can be involved, since the core is rigidly
attached to the dipole magnetic field.

It may be significant that the amplitude of the oscillation is less
than half a rotation of the pulsar, whereas a variation in slowdown due
to a change in the angle of the magnetic axis in some form of precession
might produce a very much larger or much smaller effect. If the
oscillation is internal, it may be appropriate to consider it as an
oscillation in the proportion of vortices which are pinned to the crust.
This proportion evidently can change, as seen in the 1975 glitch which
resulted in a long-term change in slowdown rate; there is as yet no
explanation for an oscillatory change in numbers of pinned vortices.
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A combination of the two explanations may be appropriate; the
period may be that of a precession, and the effects may be due to a
consequent reorganisation of the interior vortices.
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A SEARCH FOR MILLISECOND PULSARS IN GLOBULAR CLUSTERS

J. D. Biggs, A. G. Lyne and A. Brinklow
University of Manchester

Nuffield Radio Astronomy Laboratories
Jodrell Bank

Macclesfield

Cheshire SK11 9DL, United Kingdom

ABSTRACT. We present details of a search for millisecond pulsars in 24 globular
clusters. One new pulsar, PSR 1620-26, has been detected in a wide binary system
in the core of the globular cluster M4. Upper limits to pulsed emission are given for
the other 23 globular clusters. A future software enhancement should considerably
improve the sensitivity of the search and reveal any weak pulsars that reside in the
globular clusters we have observed.

INTRODUCTION

Millisecond pulsars are neutron stars that are thought to have attained their
rapid rotation rate during an episode of mass transfer from a low-mass giant com-
panion. The study of millisecond pulsars provides information concerning many
aspects of pulsar-neutron star astrophysics, binary stellar evolution and the mass
transfer process. Observations of millisecond pulsars have applications in many
other scientific disciplines ranging from time standards to general relativity (Backer

1987).

In 1987 May, radio pulses were detected from the first pulsar to be found in
a globular cluster; namely PSR 1821-24 in the globular cluster M28 (Lyne et al.
1987). This discovery provided support for the suggestion that the cores of globu-
lar clusters were favourable environments for millisecond pulsar formation owing to
their high stellar densities and attendant high binary formation rate (Fabian et al.
1983). Information on the evolution of millisecond pulsars in globular clusters and
their probable relation to low-mass x-ray binaries will be obtained from further
discoveries of such pulsars. Also, the proper motion of globular clusters may be de-

termined from timing observations of the millisecond pulsars they contain (Romani,
Kulkarni & Blandford 1987).

Here we report on a search for radio pulses from pulsars in globular clusters.
So far we have detected one millisecond pulsar, PSR 1620-26, in a wide, low-mass
binary system in the core of the globular cluster M4 (Lyne et al. 1988).
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OBSERVATIONS

Observations were made from 1987 June 19 to 23 using the 76-m Lovell telescope
at Jodrell Bank, England. The observation parameters are given in Table 1. Pulse
searches are favoured at 610 MHz because the reduction in adverse effects (such as
galactic background radiation and dispersion) outweighs the characteristic decrease
in pulsar radio luminosity at higher observing frequencies. The receiver was sen-
sitive to both senses of circular polarisation and these were combined after square
Jaw detection to form the total intensity. The total intensity from each channel
of the filter bank was sampled and recorded with 1-bit precision every 300 us. A
loss in sensitivity of about 20% results from the 1-bit digitisation as compared with
multi-bit sampling, but it also maximises the duration of data recorded on a given
storage medium.

Table 1: Observation and analysis parameters.

Observation frequency 610 MHz

Beamwidth 30 arcmin

Bandwidth 32 channels x 125kHz

Sample interval, Toamp 300 us

Receiver temperature, Trec 55K

Observation duration 75 min (% 14 x 220 time samples)
Maximum frequency, fnyquist 1666.7Hz

Dispersion measure when smearing = Tyamp, DMy 65 pc cm™3

Observation duration for each analysis 3155 (220 time samples)

Elapsed cpu time for each analysis 120s

Off-line analysis was performed on the University of Manchester Regional Com-
puting Centre Cyber 205 supercomputer. The analysis algorithm searched for pe-
riodicities using a two-dimensional fast Fourier transform (Ashworth & Lyne 1988)
and has the parameters given in Table 1. The five periodicities with highest signal-
to-noise ratio (S/N) were output after incoherent summation of each of 1, 2, 4, 8 and
16 harmonics, for approximately 50 values of dispersion measure (DM). Analyses
were conducted on data sets of length 22° time samples (x 32 frequency channels).
About 14 independent analyses were performed on each source and the outputs
from all of these were searched for coincidence in frequency and DM. Searching
for coincidences has the effect of reducing the S/N threshold at which a detection
is deemed significant. The data were also analysed after averaging the input time
samples. This increased the sensitivity of the pulse search at the expense of increas-
ing the minimum detectable pulsar period and reducing the number of independent
analyses per source.

The globular clusters observed were chosen from among those visible from Jo-

drell Bank that were either:

1) close, R, (heliocentric distance) < 5kpc, or

2) dense, p, (core density) > 10* Mg pc~2.
The globular clusters that had been observed by Hamilton, Helfand & Becker (1985)
were not included since the sensitivity of their survey was slightly better than that
described here and they detected no significant sources other than the one in M28.
Table 2 shows the sources observed and their relevant properties.
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Table 2: Globular clusters observed at 610 MHz. Most of the parameters are from
Webbink (1985).

name 4 b R, logpe® Teay Smin

) () (kpo) (K) (mly)
0443+313 Pal 2 170.5 -09.1 13.6 5.1 12 4.6
0522-245 NGC 1904 M 79 2272 -294 13.0 4.2 5 4.5
15164022 NGC 5904 M5 003.9 +446.8 7.6 4.1 11 4.5
1620-264 NGC 6121 M4 351.0 +16.0 2.1 3.9 19 5.5
1714-237 NGC 6325 001.0 +08.0 6.2 4.3 31 5.9
1716-184¢ NGC 6333 M9 005.5 +10.7 7.5 4.1 23 5.3
1720-263 NGC 6355 359.6 +05.4 7.1 4.4 48 7.2
1725-050 NGC 6366 018.4 +16.0 4.0 2.4 20 5.1
1730-333 Lil1 354.8 -00.2 7.9 6.1 146 13.8
1745-247 Ter 5 003.8 +401.7 7.1 6.4 94 10.3
1746-203 NGC 6440 007.7 +403.8 7.1 5.7 53 7.4
1747-312 Ter 6 HP 5 3586 -02.2 128 5.0 111 11.3
1759-089 NGC 6517 019.2 +406.8 6.1 5.4 43 6.7
1801-300 NGC 6528 001.1 -04.2 6.8 5.0 60 7.9
1802-075 NGC 6539 020.8 +06.8 3.1 4.2 38 6.4
1804-250 NGC 6544 005.8 -02.2 2.6 4.7 92 10.1
1820-303 NGC 6624 002.8 -07.9 8.0 5.3 32 6.1
1827-255 NGC 6638 007.9 -07.2 6.7 4.4 38 6.4
1828-235 NGC 6642 009.8 -06.4 5.5 5.2 44 6.7
1852-227 NGC 6717 Pal9 0129 -10.9 7.8 5.1 22 5.3
19084009 NGC 6760 036.1 -03.9 4.1 4.3 41 6.6
2003-220 NGC 6864 M 75 020.3 -25.7 18.5 4.7 10 4.8
21274119 NGC 7078 M 15 065.0 -27.3 9.7 5.3 9 4.4
2130-010 NGC 7089 M 2 053.4 -35.8 11.9 4.0 8 4.3

%p, units are Mg pc~3.

The minimum detectable flux density (Smin) in a pulsar survey is given by

Smin = IBSO T

rec + Tsky(l’ b) + Tsp(elevation)] PVVe % (1)
)

T, WP -W,

This equation is discussed more fully by Stokes et al. (1986), Narayan (1987) and
references therein, and only an outline is given below. The first term of equation
(1) is composed of a factor 8 (> 1) which is related to losses in the system and the
S/N threshold for positive detection, and S, is the rms fluctuation of the system.
The second term of equation (1) is a factor related to the noise contribution from
the receiver, galactic background and spillover as compared to the average noise.
The third term of equation (1) takes into account the pulse duty cycle and effects
that tend to broaden the pulse to width W, from its intrinsic width (W). Figure 1
shows the typical variation of Smin as a function of pulse period and DM for varying
time-sample averages.
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Figure 1. Minimum detectable flux density plotted as a function of pulse period in the
direction of the globular cluster M4 and assuming a duty cycle of 5%. The thin lines are
Smin Without time sample averaging for DM = 0, 100, 300 and 1000pccm™3. The dotted
and dashed lines are S, after averaging 3 and 14 time samples, respectively. The thick line
is the locus of Spin for all the analyses with DM = 0pccem™3. The filled circle corresponds
to the detection parameters for PSR 1620-26. The shaded region is the parameter space
accessible after a future software upgrade.

Calibration was effected by observing known pulsars such as PSR0531+21 and
PSR 1937421 firstly with the millisecond pulsar search system and shortly after
with the normal timing system. The S/N and average flux density of the calibration
pulsar was determined from the periodicity search analysis and the integrated pulse
profile output during the timing observation, respectively.

RESULTS AND DISCUSSION

To date, only one pulsar has been discovered; PSR 1620-26 in a wide, low-mass
binary system in the core of the globular cluster M4 (Lyne et al. 1988). Its current
measured parameters are given in Table 3. PSR 1620-26 probably followed a low-
mass x-ray binary evolution (van den Heuvel 1984) and its current companion is
most probably the only companion it has had and hence is the star from which
matter was transferred in order for it to be spun up. Its surface magnetic field is

unknown since P has yet to be determined, however, proposals for spinup suggest
that it lies between 4x 108 G and 8 x10° G (Lyne et al. 1988 and references therein).
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Table 3: Measured Parameters of the PSR 1620-26 system.

Pulsar period 11075.75us
Dispersion measure 62.876 pccm 3
Right ascension (1950.0) 16h20m34%14
Declination (1950.0) —26°24'58"0
Flux density (408 MHz) ~ 15mly
Projected semi-major axis, a sini 64.808lights
Orbital period, Py 191.440days
Mass function, f(mp, m.) 0.007Mg
Eccentricity, e 0.025
Longitude of periastron, w 117.135°
Time of periastron 47192.72MJD
Projected orbital velocity ~ 7kms™?

Upper limits to pulsed emission from the globular clusters observed are given in
Table 2. The S, values are determined from the 14 independent analyses without
time sample averaging as illustrated in Fig. 1. S, is smallest (% 4mJy) far from
the galactic plane and increases toward the galactic plane as does the background
temperature. The average Spin in Table 2 compares well with other recent surveys
by Manchester, D’Amico & Tuohy (1985) and Clifton & Lyne (1986) when account
is taken of the different observing frequencies. Averaging 14 time samples reduces
Smin quoted in Table 2 by about a factor of 3 as shown in Fig. 1. The weak pulsar
recently discovered in the globular cluster M15 (Wolszczan et al. 1988) was not
detected in this survey, even when averaging was employed, and this implies it has
a spectral index 2 -1.5.

A planned software upgrade will enable a search for periodicities using the whole
data set in one analysis. This should facilitate the detection of any weak, fast
rotating pulsars to which the present analysis is insensitive (see Fig. 1). If the
luminosity function of millisecond pulsars is similar to that of the more numerous,
slowly rotating, radio pulsars, the future improvement in sensitivity should result
in the discovery of some more millisecond pulsars in the present sample of globular
clusters.
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A MILLISECOND PULSAR IN AN ECLIPSING BINARY

A. S. Fruchter, D. R. Stinebring and J. H. Taylor
Joseph Henry Laboratories and Physics Department
Princeton University

Princeton NJ 08544

ABSTRACT. We report the discovery of a remarkable pulsar with period 1.6 ms,
moving in a nearly circular 9.17 hour orbit around a low mass companion star. At
an observing frequency of 430 MHz, the pulsar, PSR 1957420, is eclipsed once each
orbit for about 50 minutes. For a few minutes before an eclipse becomes complete,
and for more than 20 minutes after the signal reappears, the pulses are delayed by
as much as several hundred microseconds—presumably as a result of propagation
through plasma surrounding the companion. The pulsar’s orbit about the system
barycenter has a radius of 0.089 light seconds projected onto the line of sight. The
observed orbital period and size, together with the fact that eclipses occur, imply
a surprisingly low companion mass, only a few percent the mass of the sun. The
eclipsing mass extends well beyond the Roche lobe of the companion, and appears
to possess a comet-like tail, strongly suggesting that the pulsar is evaporating its
companion.

The new pulsar was discovered in the course of a general survey for millisec-
ond pulsars being carried out with the 305 m telescope of the Arecibo Observatory,
which I will describe in detail in a later talk during this meeting. The signal from
PSR 1957420 was first observed in October 1986, during some of the earliest obser-
vations of the search, but re-observation of the accumulated list of candidate pulsars
was not begun until March 1988. The existence of PSR 1957420 was confirmed on 3
March 1988; observations over the next several days showed its period to be variable
at a level corresponding to orbital velocities of £5 km s~!. These observations also
revealed the presence of a strong interpulse. On 5 March, at approximately 1330 UT,
the signal disappeared abruptly for no apparent reason. As I will explain later, we
now realize that the pulsar went into eclipse behind its companion star.

Additional observations were made for about 2.5 hours per day on 9 additional
days between 9 and 28 March. These measurements made use of two data acquisition
systems explicitly designed for timing millisecond pulsars?. The newest system,
used for most of the observations, coherently de-disperses the signals received in two
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Figure 1: Integrated profile of PSR 1957420 at 430 MHz. Instrumental smoothing
amounts to about 15 us, mostly a result of drifting pulse.phase during the integration
caused by imperfect knowledge of the period.

0.4 MHz passbands centered at 427 and 430 MHz. After square-law detection, these
signals are sampled, integrated synchronously with the topocentric pulsar period, and
recorded approximately once a minute. The sum of 20 of these integrated profiles
is plotted in Figure 1, illustrating the main pulse of width 39 us and a much wider
interpulse separated by about half a period.

Using the process of template fitting described by Joe Taylor in the previous
talk, an equivalent pulse arrival time was determined for each integration. Analyzed
in short segments of about 5 min duration, the arrival times (reduced to the solar
system barycenter) yield periods which, when folded modulo the 9.17 hour orbital
period, comprise the velocity curve illustrated in the second figure. A linearized
least-squares fit to the period data yielded the pulsar and orbital parameters shown
in Table 1. A “phase connected” solution to the observed pulse arrival times, with
no pulse numbering ambiguities between observing days, should be achievable soon
and will provide much more accurate pulsar and orbital parameters.

The entire orbit has now been observed. Good observations exist on five different
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Figure 2: Orbital velocity curve of PSR 1957+420. The pulsar is eclipsed by its
companion between phases 0.21-0.29. Points with visible error bars were taken using
the pulsar survey system; all other points were obtained with the data acquisition
system designed for timing millisecond pulsars.

TABLE 1. Parameters of the PSR 1957420 system

Right Ascension (1950.0) 19® 57= 10° + 20°
Declination (1950.0) §=+20°40"% 5
Pulsar period P =1607.40171 = 0.00003 ps
Dispersion Measure DM =29.13+ 0.01 cm™3 pc
Flux Density at 430 MHz §=25+ 10 mJy
Projected semi-major axis a;sini = 0.08923 & 0.00007 light s
Eccentricity e < 0.001
Orbital period P, =33001.9+ 055

Time of ascending node To = 2447245.08471 + 0.00004 JED
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Figure 3: Excess group delays in the pulsar signal at 430 MHz relative to a model
based on our best-fit parameters, plotted as a function of orbital phase near the center
of eclipse. Different symbols correspond to different observing days.

days for all or part of the region 0.15 < ¢ < 0.35, where orbital phase ¢ is measured
from the time of the ascending node. On all of these days the pulsar signal has
disappeared completely between the orbital phases 0.21 and 0.29. At ¢ = 0.25 the
pulsar is at its greatest distance from Earth, and closest to being directly behind the
companion star. We, therefore, believe that the intervals of missing signal are the
result of eclipses by a surprisingly large, though very low mass, companion.

During the few minutes immediately before eclipse, and for about 20 minutes
after the eclipse, the pulsar signal is delayed by as much as 400 ps relative to arrival
times predicted from a model fitted to parts of the orbit farther from eclipse. These
effects are illustrated in Figure 3, which shows that although the eclipse interval is
very nearly symmetric about ¢ = 0.25, the magnitude and duration of the excess
signal delays are far from symmetric, and appear to change significantly from orbit
to orbit.

The excess delays are probably the result of propagation in ionized gas surround-
ing the companion. The maximum delay, just after the pulsar has emerged from
eclipse, corresponds to an increase in dispersion measure of about 0.017 cm~2 pc, or
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equivalently an electron column density of 5 x 10'® cm~2. Unfortunately, our two
frequency channels at 427 and 430 MHz are too closely spaced to reliably determine
the frequency dependence of the effect. Away from eclipse the dispersion measure 1n
the pulsar is found to be 29.13 4 0.01 cm~3 pc.
The orbital parameters listed in Table 1 correspond to a pulsar mass function

(21r)’ (a1sini)®  (mgsini)®

Pb G - (m1 + Tnz)2
where G is the gravitational constant, m; and m, are the masses of the pulsar and
companion and ¢ is the inclination between the plane of the orbit and the plane of the
sky. The observed eclipses suggest that sini is not much less than 1.0, and thus for a
pulsar mass m; =~ 1.4 Mg the companion mass must be near the minimum possible
mass of 0.022 M. Even without the observation of eclipses, the a priori probability
of finding sini < 0.4, and hence m,; > 0.055, is less than 10%. A pulsar mass of
1.4 Mg, further implies that the ratio m;/m; is around 60, and that the radius of the
companion’s orbit is near 2.4 Ry. As the eclipse lasts for about 10% of an orbit, we
find that the opaque portion of the companion star must be at least 1.5 Rg across.

= (5.20 £ 0.01) x 107* M, ,

The radius of the Roche lobe of the companion is only ~ 0.3 Rg, so most of
the volume occupied by the eclipsing body lies well outside it. We suggest that the
eclipsing plasma may be a stellar wind powered by the ~ 100 solar luminosities of
energy that would be emitted by the pulsar were it to spin down at a rate comparable
to other millisecond pulsars. (For a detailed account of the mechanisms by which the
pulsar could heat its companion, see talks by M. Rudermann and J. Shaham in this
volume, and references contained therein). The slow decrease of plasma density on
the trailing side of eclipse might then be interpreted as a comet-like tail spewing off
the companion.

It is exciting to speculate that we are witnessing the evaporation of the companion
by the pulsar. While it is difficult to reconstruct the density of the plasma without
knowing the geometry of the object, the rapid variation in the observed column
density suggests a scale size perhaps as small as 0.1 light s, and thus a plasma density
exceeding 10 cm™2 in the transparent region. If the plasma concentration continues
to rise steeply in the region that is now obscured, and if the wind reaches velocities
comparable to the companion’s orbital velocity, it seems possible that the companion
will disappear in much less than 10® years, leaving behind an isolated millisecond
pulsar. We expect that in the near future radio observations at higher frequencies,
and perhaps spectroscopy of the wind, will allow us to determine whether there is
any truth to this fascinating possibility.

We thank G. Berman, M. Davis, J. Hagen, T. Hankins, P. Perillat, and M. Ryba
for essential contributions to the observational work, and B. Paczynski and C. Thomp-
son for valuable discussions concerning binary evolution. This work was made possible
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X-RAY OBSERVATIONS OF ACCRETING NEUTRON STARS
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ABSTRACT. The class of accreting neutron stars that are in close binary systems
is reviewed. Basic physical parameters related to their X-ray emission are summa-
rized. The highlights of the accretion process from leaving the companion star to
landing on the neutron star are considered. Recent revival of the neutron star free
precession interpretation of the long-term cycles is discussed.

1. Introduction

The first X-ray source outside the solar system was discovered back in 1962 by
Giacconi et al. (1962) during a short, 5 minute rocket exposure of a detector con-
sisting of ~20 cm? area Geiger counters. This source, Sco X-1, turned out to be an
accreting binary neutron star, the class of objects I want to discuss in this review.

It is interesting to note that one of the scientific motivations for starting X-
ray astronomy was to detect thermal radiation from cooling neutron stars in the
X-ray energy band. Since neutron stars are the remains of the central cores of
massive stars that have consumed all possible internal energy sources, it was logical
to assume that they would be cooling from the moment they were born. The
hope was to detect youngish neutron stars with surface temperatures around a few
million degrees. The newly discovered X-ray source did not fit the cooling scheme;
the temperature was about a factor ten higher hence the luminosity about 10*
higher than expected. While scientists were pondering over the nature of this new
class of X-ray objects, neutron stars were discovered as pulsars (Hewish et al. 1968).
In retrospect, it is obvious that during the collapse to a neutron star, the original
magnetic field and the rotation rate of the progenitor star would be amplified by
approximately the square of the initial to final radius ratio (=~ 1010), and that
such objects should be capable of generating periodic electromagnetic signals as
they spin. These ideas were already being expressed in the literature, prior to the
discovery of pulsars (Hoyle et al. 1964, Woltjer 1964, Tsuruta and Cameron 1966,
Wheeler 1966, Pacini 1967).
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Meanwhile, the strong X-ray sources, discovered 5 years before the pulsars, were
also being considered as neutron stars; Shklovskii (1967) suggested that Sco X-1
was a neutron star in a close binary system accreting mass from its companion and
converting the gravitational energy gained by the infalling gas to X-rays emitted
from the surface. However, several years were to pass before the observations with
the UHURU satellite showed the existence of pulsing X-ray sources which were
unmistakably interpreted as rotating, accreting neutron stars. In effect, it was the
timing aspect of the measurements that again was the clinching argument of the
neutron star signature.

In this review of the X-ray observations of accreting neutron stars, I will at-
tempt to summarize the general status and the outstanding problems of the field.
I will give in section 2 a brief overview of the basic physics underlying their X-ray
emission. Section 3 contains a short summary of binary physics related to accret-
ing neutron stars. In section 4, I discuss the statistics of their properties including
classification according to their companion masses, orbital and rotational period
distributions. Section 5 contains a discussion of the various phases of the mass
transport from the companion to the neutron star surface. The resulting accretion
torques leading to spin-up/down are summarized in section 6. In section 7, the
free-precession of the neutron star is discussed as a possible mechanism underlying
the long-term cycles observed in several systems. Evolution of single and binary
neutron stars are covered by van den Heuvel in this volume and hence are not dis-
cussed in this review. More detailed treatment of some of these topics can be found
in related articles in this volume.

2. The Basic Physics

The limiting mass of a neutron star was estimated by Landau (1932) more than
half a century ago. The argument went approximately as follows (see Shapiro and
Teukolsky 1983 for a more complete discussion): Consider the neutron star to be a
ball of radius R containing N neutrons ( with total mass M = Nmy). The Fermi
energy Er of the neutrons in the relativistic regime is determined by their number
density as

(1)

the gravitational energy as

Eg~ - =~ (2)

making the total energy

E=Ep+Eqg=

[he — GmLN?3] (3)

The stability of eqn. 3 to radial perturbations depend on the sign of the term in
brackets: If it is positive (meaning small N), the energy decreases as R gets large,
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and when the fermions become nonrelativistic stability can be achieved at a finite
value of R (i.e a white dwarf). If the term is negative (meaning large N) minimum
energy is achieved as R approaches 0, meaning gravitational collapse. We can also
achieve stability when the term in brackets is 0; this condition gives us roughly the
maximum mass of the neutron star

he 13/2

57
omzl " 10 (4)

Nmaz ~ [

corresponding to about 1 Mg . The radius at this maximum mass can be deter-
mined only after an equation of state is adopted; typically this value turns out to
be about 10 km.

Knowing that a neutron star should have the mass and radius estimated as
above (Mps=1 Mg , Rns=10 km) we can proceed to derive the scales of physical
parameters associated with accretion:

What would happen to a mass m dropped from oo to its surface? The kinetic
energy gained Ej can be estimated as

GM,
E;, = Z2ns™ _ 0.15me? (5)
Rns
and its velocity
v 1 1
B===1-—F—=|"=049 (6)
¢ [ (1 + m:ﬁ )2]

If we assume that the mass m is an atom with its associated electrons then we can
consider the radiation of the electrons with the above velocity when they impinge on
a target, i.e. the surface of the neutron star. The typical bremsstrahlung photons
emitted will have an endpoint energy of 75 keV and and 1/E, differential photon
number spectrum. Due to the gravitational red shift, the photons will soften by
about 15% by the time they arrive at co. These energies imply that if the neutron
star accretes mass and if this mass strikes the surface and emits bremsstrahlung
radiation we should be seeing the bulk of the emitted energy in the hard X-ray
region. Thus the discovery of accreting binary neutron stars in the X-ray band is a
natural consequence of the mass and radius of the neutron star.

The emerging luminosity of an accreting neutron star can be simply calculated

from a given mass accretion rate M as the product of M times the energy dissipated
per unit mass as given in eqn.5

_ GMuM

= 0.15Mc? 7
R, (7)

L

There is a mazsmum limit to the luminosity of an accreting neutron star called the
Eddington Luminosity. Consider a hydrogen atom falling under the gravitational
potential of the neutron star while at the same time it is being illuminated by the
luminosity from the neutron star. The outcoming photons will interact with the
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electron of the atom and exert radiation pressure on it in a direction opposite to
the gravitational pull. Any force on the electron will also be exerted on the proton
since they are strongly bound by electrostatic forces. The same argument holds
for ionized plasmas since no internal electric field can be maintained in conducting
plasmas. When the luminosity is sufficiently high the gravitational force on the
atom is balanced by the radiation force and accretion stops. This limiting luminosity
is called the Eddington luminosity Lggy. We can proceed to derive this limit by
considering that the radiation pressure at a distance r from the neutron star is

L
= 47ric (8)

The force is Py times the effective cross section of the electron, the Thomson cross
section agg given by

2
87 —25 2
% = (mc2) =6.6 X 10 “°cm (9)

Balancing the radiation and gravitational forces gives

L4400 _ GMpsmy

= 10
4nric r2 (10)
which yields
471G M, My,
Lpga= T naMHC _ 1.3 x 103821 erg s1 (11)
9 Mg

If we assume that all this luminosity comes from accretion of mass we can estimate
the Eddington mass accretion rate as

4mmp Rysc
op

=6x107gms™ 1 =10 Mg yr~t (12)

Mgqq =

The effective blackbody temperature of a neutron star emitting at Eddington luma-
nosity can also be estimated from the Stefan-Boltzman relationship

L
T =2 2] ~2x10" K (13)
470 Ry

This temperature corresponds to a peak intensity around photon energies of 5 keV
which again falls in the X-ray band.

Many of the bright X-ray sources like Sco X-1, indeed have the typical values
of Luminosity and Temperature as estimated above close to the Eddington limits.

The spectral characteristics of the X-ray emitting neutron stars have been ex-
tensively studied and found to have different properties. It has been generally
possible to fit the observations with some combinations of blackbody, thermal
bremsstrahlung and power-law models. In Figure 1, I show the comparative shapes
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Figure 1: Energy spectrum of various possible processes that can contribute to the X-
ray spectrum of accretion powered neutron stars: TTB - thin target bremsstrahlung;
TB - thermal bremsstrahlung; BB - blackbody. The photon energy is in units of kT;
for the thin target bremsstrahlung, the electron energy ts assumed to be kT.

of thin target bremsstrahlung of monoenergetic electrons, thermal bremsstrahlung
of a spectrum of thermal electrons and a blackbody spectrum as discussed in this
section. In real measurements, the additional effects of the strong magnetic fields
on the opacity can be also observed and used to determine the field strengths (e.g.
Triimper et al. 1978; Voges et al. 1982).

3. Some Binary Physics

I have already mentioned that an X-ray emitting neutron star derives its lumi-
nosity through the mass accreted from its binary companion. At least half of the
stars we observe are in binary pairs, hence it is not surprising that some neutron
stars are also in such systems. The parameters that specify a binary system are the
masses of the two stars Mp;, and M, (companion mass), the semi-major axis a, and
the eccentricity of the orbit e. There are two additional parameters that specify
the orientation of the orbit with respect to the observer, the inclination angle ¢ of
the orbital plane and w the longitude of the periastron in the plane of the orbit.
Detailed information exists in a number of books on orbital motion (see e.g. Kopal
1978, Roy 1982).

Kepler’s third law relates the the orbital period P,,; to a and the total mass of
the system

3

a
G(Mns + Mc) = 47['2 P2

orb

(14)
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For the sake of simplicity, here I discuss circular orbits only (e = 0) which appears to
be valid for most accreting neutron stars. If we define the mass ratio ¢ = My /M.,
the distances from the center of mass ans and a. are also related as ac/ans = g.

The most readily observable parameter in an X-ray binary is the orbital period
P,,;. If the neutron star shows pulsations (i.e. a rotation period) then we can also
measure angsint. Together these quantities give us the mass function f(M) of the
system

(@ns sin i)3 M,sin3¢ (15)

— A2 _
) =4 cpr, = it aP

If in addition, the companion star is identified we may be able to measure the
amplitude of the companion star’s velocity variations K, and infer ¢ through the
relationship

K.P
q= 2_0___07:L: (16)
Maps SIN 1
The factor sint is still not determined and it scales the mass with it’s 3rd power.
Possible observations of eclipses, together with stellar models can restrict the ranges
of sin? so as to allow reasonable mass determinations.

In the case of accreting X-ray binaries an additional physical assumption is that
the companion star has a radius close to a critical radius called the radius of the
Roche lobe. This radius is can be calculated simply by examining the motion of a
test mass in a coordinate system rotating with the angular velocity of the binary
system (see Rose 1977). Choosing a coordinate system with its origin on the center
of mass and z-axis going through the two stars, z-axis along the rotation axis 2 we
can express the potential V felt by the test particle as

(@—2n2+ 92} [(z— 202+t 2zns + 2c)?

The first two terms in the above equation are the gravitational potentials of the
neutron and companion star respectively, the third term is the centrifugal potential
~102%(2? + y?) rewritten in terms of the Kepler’s law (eqn 14). The additional
relationships

|Zns|Mns = |zc|Me, and |zps| + |zc| =@ (18)

can be used to reduce eqn. 17. further. Figure 2 shows the plots of potential
derived from eqn. 17 in the z — z plane for increasing values of y starting with 0; the
parameters Mps = 1.4 Mo , M; = 2.2 Mg and P, = 1.7 days (appropriate for Her
X-1) were used. The curves are symmetric for negative values of y. The Lagrangian
points Ly, Ly, L3, and Ly where the potential has a maxima are indicated (there
is a symmetric counterpart of Ly for the negative y values. A test particle arriving
at L9 ,L3, L, and Lg will leave the system. On the other hand, a particle on
the atmosphere of the companion at L; will fall in to the gravitational well of the
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Figure 2: Plots of potential derived from egn. 17 in the = — z plane for increasing
values of y starting with O; the parameters Mp, = 1.4 Mg , M, = 2.2 Mg and
P,., = 1.7 days (appropriate for Her X-1) were used. The companion star is on
the left. The curves are symmetric for negative values of y. The Lagrangian points
Ly, Lo, L3, and L4 where the potential has mazima are indicated. The potential
going through Lj is called the critical Roche potential.

neutron star and lead to X-ray emission. The potential around the companion going
through this point is called the critical Roche potential, and defines the Roche lobe.

The radius of the Roche lobe Ry, is calculated by equating its volume to %WR%.
Numerical calculations of Eggleton(1983) give the following expression for Rf,.

Rp 0.49
a 0.6+ q23n(1+q1/3)

(19)

When we observe an X-ray emitting neutron star in a binary system, we assume
that the companion star is filling its Roche lobe and we can use the above approxi-
mate relationships for the radius to separation ratio R;/a of the companion. Using
various stellar mass-radius relationships it is then possible to take one further step
in the complete specification of the binary system parameters.

4. Statistics of their Properties

Presently there exist ~ 102 observed bright X-ray sources estimated to be binary
systems with accreting neutron stars. About half of them have measured binary pe-
riods; the X-ray luminosity lies in the 1034 to several times 1038 erg s~ luminosity
range. In about 30 of these sources, the rotation period of the neutron star has
been detected. Table 1 is a summary of these X-ray pulsars.
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Table 1. List of confirmed and unconfirmed X-ray pulsars as of May 1988.

Name Rot.Per. Orb.Per. axsin: f(M) Lx ecc.
(sec) (days) (It —sec) Mg ergs™!

21E1024 — 57 0.061

3 40538 — 66 0.069 16.7 8x10%% 04

lsMc X -1 0.714 3.89 53.46 10.8 5x10% < .007

1Her X —1 1.24 1.70 13.18 09 1x10%7 <.003

4H0850 — 42 1.78 1 x 10%7

1400115 + 63 3.61 24.3 140.13 5 3x10%7 .34

50332 + 53 4.38 34.25 48 1 4x10% .31

1Cen X -3 4.84 2.09 39.79 15.5 5x 1087 < .0008

61£1048.1 6.44

71E2259 + 59 6.98 .03? < .27 2 x 1035

1401627 — 67 7.68 .03 3 x 10%7

8251553 — 54 9.30 30.6 164 5 .09

lLMC X -4 13.5 1.41 26 15 7x10%8 <.02

1251417 — 67 17.6

9GPS1840 + 01 29.5

10A01653 — 40 38.2 1 x 1037

10 £ X 02030 41.8

Neepx — 47 66

124U1700 — 37 67.47 3.4 3 x 1036

1 40535 + 26 104 111 500 20 2x10%7 3

IgX 1+4 122 4 x 1037

1401230 - 61 191

lax 304 -1 272 133 500 5 x 103%°

1400900 — 40 283 8.96 112 20 2x 1036 .09

14U1145 — 61 292 188 600 3 x 1035

Y4 FE1145.1 297 3 x 10%

141118 — 61 405

1BGPS1722 — 36 414

144171907 + 09 438 8.38 80 9 5x10% 22

14U1538 — 52 529 3.73 55 13

lgx 301 -2 696 41.5 367 31 1x10%6

1400352 + 30 835 580 4 x 1033

Discovery references:

IThe discoveries are referenced in Rappaport & Joss 1983. 2Caraveo et al., this
volume. 3Skinner et al. , 1982. 4Wood & Norris, IAU Circ. 5859, 1984. 5Stella &
White, IAU Circ. 3902, 1983. Seward et al. , 1986. "Fahlman & Gregory 1983.
8Kelley, Ayash and Rappaport, IAU Circ. 3667, 1982. °Ginga Team, IAU Circ.
4598, 1988. 0Parmar et al. , IAU Circ. 4066, 1985 11Ginga Team, IAU Circ. 4577,
1988. 12Murakami et al. , 1984. 13Ginga Team, IAU Circ. 4530, 1988. 4Tenma
Team, IAU Circ. 3882, 1983.
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Since we suspect that the neutron stars in all these binary systems more or less
have similar properties, an obvious sub-divisions of the accreting systems can be
made on the basis of the companion mass M,. Indeed, a closer look at the galactic
X-ray binaries reveals that they are divided into two main categories: massive
X-ray binaries with companion masses M;210 Mg (HMXRB), and the low mass
systems (LMXRB) with M;S2 Mg . Roughly, similar amount of sources belong to
each category. Inbetween these categories, extending into the HMXRB category,
there are the B emission star companions. These systems generally show transient
X-ray emission owing either to their elliptic orbits or the transient shell ejection
fom the B star. A further possible subdivision in the LMXRB may be made for
M.~ Mg (young-population LMXRB) and M.< Mg (old-population LMXRB)
(van den Heuvel 1983). A sizeable fraction of LMXRB s show X-ray bursts with
seconds to minutes duration interpreted as thermonuclear flashes on the neutron
star surface. It has been also recognized that a high fraction of the low-mass systems
occur in globular clusters (see Lewin and Joss 1983; Parmar and White 1988 for
reviews). The expected X-ray lifetimes for the high-mass and the low-mass systems
are ~ 10* — 105 and ~ 108 — 10° years respectively (Savonije 1983). Considering
that we see about equal numbers in both categories, the formation rate of high
mass X-ray binaries must be about 10 times more. If we further take into account
the smaller number of massive stars, the formation probability of an X-ray binary
must be a factor ~ 10% more in high mass systems in comparison to the low mass
ones.

Figure 3 is the countrate profile during an early rocket flight, back in 1973
where three different sources were observed in sequence (Rothschild 1977). The
two classes mentioned above, and a black hole candidate Cyg X-1 are seen with
their characteristic intensity fluctuations: Her X-1, although at the low mass end
of the massive X-ray binary category, showing the typical periodic time profile due
to its 1.24 s rotation; Cyg X-2, a low mass X-ray binary showing low frequency
quasi periodic oscillations; and Cyg X-1, showing bursts of millisecond shot-noise
type fluctuations.

The massive X-ray binaries show a galactic disk distribution with an average
galactic height of ~ 70 pc, reminiscent of OB stars; low-mass systems are more
concentrated toward the galactic center and have an average height of ~ 500 pc,
reflecting an older population (White 1987).

Figure 4 shows the orbital period distribution of X-ray binaries in both high-
and low-mass systems. With the exception of few, most of the low-mass systems lie
on the shorter side of 1 day orbital period and the high-mass systems on the longer
side. There is a good reason for this. As can be seen from Keplers law, eqn. 14, the
ratio of a3/ P2 is fixed for a given M, (assuming that Mps~ 1.4Mg ). Equation 19
(or 20) fixes also the Roche lobe radius to separation ratio. The radius R of the
companion star should be less than the Roche lobe radius R. SRy, (otherwise mass
transfer would be too fast). If we further express R, as a function of M, through
the mass-radius relationship for main-sequence stars (since most of a star’s lifetime
is spent on the main-sequence) as R¢/Rp ~ (M./Mg )3/% we can get the following
approximate expression that gives the minimum period that can accomodate a
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Figure 8: Counting rate of a GSFC X-ray detector rocket payload on October
4, 1978 where three different class of X-ray sources are detected in sequence (from
Rothschild 1977).
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Figure 4: Orbital period distribution of accreting neutron stars.

main-sequence companion star of mass M,

M85/8
———————(1.60 + 0.84 log

(1+ Jpo)12 ¢

(all masses are in Mg ). For example, an 8 Mg star has to have a period of more
than one day in order to fit inside its Roche lobe radius. Or conversely, as in Figure
4, we can conclude that the binary systems with periods less than one day have to
be less massive than 8 Mg if they are on the main-sequence; if they have evolved
off the main-sequence, they have to be even less massive. Similar calculations for
degenerate dwarfs can be made using different mass-radius relationships.

P(in days)2 _M_n_s_)—s/ 2 (20)
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The rotation periods of the neutron stars in accreting systems are listed in
Table 1 and plotted in Figure 5. Compared to radio pulsars, the accreting neutron
stars appear to have considerably longer periods. The mean period of the observed
accreting neutron stars is ~ 160 s in comparison to the mean period of ~ 0.8 s
for single radio pulsars. Assuming that binary and single neutron stars are born
with similar periods, this implies that considerable external accretion torques are
exerted on a binary neutron star throughout its lifetime in order to slow it down to
the observed values. Assuming a moment of inertia of 1045 gm cm?, we can conclude
that about 10%6 gm cm? s—! worth of angular momentum must have been extracted
from the system before it became an X-ray binary. In fact, it has been noticed that
neutron stars have to slow down in order to reduce their dipole radiation pressure
and allow accretion to start (Illarionov and Sunyaev 1975; see Henrichs 1983 for a
review). It is interesting that most of the observed present period changes of the
X-ray pulsars are in the sense of a slow spin-up superimposed with considerable
noise. In section 6 I discuss the general features of accretion torques.

Number of Sources
w
(=]

o

AL gt Yl

Log of Rotation Period (sec)

Figure 5: Rotation period distribution of accreting neutron stars.

5. From the Companion onto the Neutron Star Surface

In this section I will review some of the standard arguments that follow the path
of the accreting material from the atmosphere of the companion to the surface of
the neutron star.

5.1 LEAVING THE COMPANION

I have already mentioned the Roche lobe geometry in section 3. If the companion
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star is filling its Roche lobe the material should flow out of the Lagrangian point Ly
into the Roche lobe of the neutron star; this type of mass transfer is called Roche
lobe overflow. The rate of mass transfer through Lq has been calculated by a num-
ber of authors (for a review see Savonije 1983). If the companion star’s envelope is
radiative, it is estimated that the peak mass-transfer rates would be of the order of
(Paczynski 1971)

Mg yr_1 (21)

. RL s Re Le Mo
~ ~ 3 — —
Mo~ Gpg; ~ 310 R To M

If the companion star has a convective envelope, the mass transfer is ecpected to
proceed in a more violent way as soon as the Roche lobe is filled. The problem
of determining the time history of Roche lobe overflow type mass-transfer is a
complicated one involving the angular momentum transfer within the binary system
and from the system. It is generally estimated that massive-systems in Roche lobe
filling geometry have typical lifetimes of 10° years before the mass-tranfer rate
exceeds the Eddington limit given in eqn. 12.

In the case of low-mass systems, the conventional picture is that processes
such as orbital gravitational radiation (e.g. Rappaport et al. 1982; Paczynski and
Sienkiewicz 1981 and references therein) or rotational braking by a magnetic stellar
wind (e.g. Verbunt and Zwaan 1981) keeps driving the two stars closer while the
mass-transfer from the less massive companion to the neutron star keeps driving
the two stars apart. Presumably these two processes keep the system in a steady
mass-transfer state throughout the evolutionary timescale of the companion at a
rate ~ 1078 Mg yr~1. Thus, these X-ray binaries can be luminous X-ray sources
for 108 years or more.

In the case the companion star does not fill its Roche lobe, a fraction of a strong
wind may also end up on the neutron star leading to X-ray emission. Such strong
winds (~ 1076 — 107 Mg yr~1) are only expected in massive stars. A first order
estimate for the fraction of the wind that is accreted is given by a simple argument
(Bondi and Hoyle 1944). One assumes that all the wind material that arrives within
a radius Ryc from the neutron star is accreted if the kinetic energy of the wind
with respect to the neutron star is less than the gravitational energy at that radius;
ie.

2GM,
RaceS—5— (22)

rel

where v,,; is the relative velocity of the wind with respect to the neutron star.
Consequently, the accretion rate onto the neutron star can be estimated as the
geometrical cross section of this radius at the separation distance a

. . GM,
Maee ~ M::('Tna)2 (23)
avy,

There are several HMXRB where wind accretion may be the responsible mecha-
nism for X-ray emission. For example in the case of Vela X-1 (4U 0900-40), with

Vye1 ~ 900 km 571, @ = 3.6 x 1012 cm, eqn. 23 requires that ~ 4 x 1075 of the wind is
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captured. Its X-ray luminosity of 1036 erg s~1 implies that M ~ 10710 Mo yr—1
and M, ~ 3 x 1078 Mg yr—1; a wind mass-loss rate that the ~ 20 Mg companion
is capable of providing.

5.2 FORMING AN ACCRETION DISK

In the case of Roche lobe overflow, it is likely that the material will have suffi-
cient angular momentum to prevent it from falling directly onto the neutron star.
The velocities at the Lagrangian point are expected to be in random directions
having velocities of the order of the internal velocities of the gas i.e. the sound
speed. These velocities times the distance of the Lagrangian point from the neu-
tron star gives the typical specific angular momentum of the flowing gas (angular
momentum per unit mass) which is nominally higher than the specific angular mo-
mentum of a Keplerian orbit near the neutron star. If these particles behaved as
non-interacting particles, their angular momentum would force them to settle in
stable orbits around the neutron star and no accretion would take place. However,
if we turn on some energy dissipating interactions (i.e. viscosity) then velocities
perpendicular to the orbital plane are reduced and elliptical orbits become circular-
ized and we end up with a flat disk. The gas in this disk moves in almost Keplerian
orbits with azimuthal velocities

vg = (GMns) /2112 (24)

The gas has to also move in the radial direction slowly in order to provide the mass
acretion rate to the neutron star at its center

M

o) )

v,’(r) =

while angular momentum has to flow out radially since the specific angular momen-
tum jg of a Keplerian orbit goes like

Ir(r) = (GMps) 21/ (26)

There has been extensive literature on disk modelling in close binaries starting some
20 years back (see Pringle 1981 and references therein). In the case of accreting
neutron star binaries it is believed that all low-mass systems and a major fraction
of the high-mass systems accrete via a disk. In many cases, the disk obscures the
direct emission from the neutron star and complicates the measurements pertain-
ing to the processes happening in the close vicinity of the neutron star. Absence of
periodic modulation in most LMXRB s is blamed on the existence of a disk that
extends very close to the neutron star surface.

5.3 ACCRETION ONTO THE NEUTRON STAR

As we know from radio pulsars, neutron stars have strong magnetic fields of the
order of 1012 gauss near the surface (dipole moments u = B,,Rf ~ 1030 gauss-cm3).
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In the case of accreting neutron stars, electron-cyclotron reasonances have been ob-
served for Her X-1 indicating the existence of a field in the 2 — 5 x 1012 gauss range
near the surface (Triimper et al. 1978). These fields play a very important role in
determining how the material coming down in the disk (or wind) gets eventually
onto the neutron star.

The first step in calculating the approximate scale of the magnetospheric radius
rm (also called the Alfvén radius) is to balance the magnetic pressure with the ram
pressure of the infalling material at this radius (Davidson and Ostriker 1973; Lamb
et al. 1973):

9

87”,9" = (’m)vz("m) (27)

where the radial velocity vy is assumed to be a fraction of the free-fall (or Keplerian)
velocity at rp,

v,-(rm)S(G—f_\-lﬁ)l/2 (28)

After expressing the density in terms of M by the use of the continuity equation
(eqn. 25) we can write

o ~ N4/7(GMns)_l/7M_2/7

M, M
~2 % 108 4/7_Mns \-1/7 -2/7
X107 em 0 (743757 (078t 3o D) (29)

The wind accretion case gives a similar magnetospheric scale since the magnetic
pressure goes up very steeply with decreasing r.

The interaction of the accretion disk or a wind with the magnetosphere of a
rotating magnetic neutron star is a complex phenomenon despite the surprising
success of the above ideas. In the next section I will outline some of the current
ideas and their experimental checks through the observed period changes in accret-
ing neutron stars.

6. Accretion Torques

The simple model outlined in the previous section assumes that the plasma ap-
proaches the neutron star all the way to the magnetospheric radius without know-
ing anything about the neutron star except its gravitational attraction. And all of
a sudden it finds itself in the grasp of the neutron star’s magnetic field and starts
co-rotating with it. Effectively the plasma switches from one state to the other in
an infinetely thin region. If we continue with this logic, the rate of angular momen-
tum carried in by the accreted material J (or the torque N = I2) can be obtained

by multiplying M with the specific angular momentum j K (rm) as given in eqn. 26.
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Since angular momentum is only added, in this simplified picture, the neutron star
would only spin-up. The timescale of spin-up 7 can be obtained as:

T = g = QIM—2/7(GMns)—3/7M—6/7 (30)

This relationship can also be expressed in terms of the X-ray luminosity L, via
eqn. 7. With typical parameters (u = 1030 gauss-cm®, Mps = Mo , Rns = 108 cm,
Ly =10%8 —10%7 erg s—1 ), the value of 7 in the above equation is in the range 103
to 10% years. If we assume all the neutron stars have about the same moment of

inertia (I), mass and radius then the measured /(1 should scale as ﬂL;ﬁ/ 7. The
early measurements indeed showed that this was generally true although spin-down
episodes also existed (see Rappaport and Joss 1983). Another consequence of the
simple picture is that the neutron star should approach an equilibrium period Peq,
when its period is equal to the Keplerian period at the magnetospheric radius ry,

i.e.
P,
rm = (GMns) V3 (52)%/° (31)
Using eqns. 7 and 29 the above relationship becomes

Peq = 2mp®/T(GMye) 2 TR L%T (32)

Again, with typical parameters the equilibrium periods expected range around a
few seconds. At this period the accretion should stop since the the centrifugal force
at ry, equals the gravitational attraction and the material should not be able to
flow in.

There has been further theoretical work that improves the simple picture by
taking into account the disk magnetosphere interaction (Ghosh and Lamb 1978,
1979a, 1979b; Anzer and Bdrner 1980, 1983; Wang, 1987). Continuing observations
reveal that almost all accreting neutron stars with known spin periods do show spin-
down phases indicating that short-term torque fluctuations dominate the long-term
trends. The spin fluctuations have been extensively studied in Vela X-1 (4U0900-
40) (Boynton et al. 1984). They find that a white noise in {2 leading to a random
walk in Q provides an acceptable model of the pulse timing fluctuations. In such
a model, the rms deviation of {1, < {1 >,ms from its value at ¢t = 0, can be
expressed in terms of the elapsed time t and the equivalent strength of the noise S as
<80 >pms ~ (St)l/ 2. For Vela X-1, the measured noise strength is § = 6.4 x 10~19
rad? s—3. Effectively, on the timescale of few days, the torque can be ~ 10% times
more than that expected from eqn. 30, and have positive and negative values
equally likely. Vela X-1 is possibly a wind accreting source (see section 5.1) and
hence may have a reason for showing both spin-up and spin-down. However Her
X-1, a source with strong observational evidence for a disk, also shows + P values.
Figure 6 shows the period history of this source.

A similar torque noise analysis for Her X-1 also shows that the white torque
noise can account for these variations; the corresponding noise strength S is about
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Figure 6: Rotation period of Her X-1 as a function of time.

8 x 10718 rad? g3 (Boynton, 1981). Assuming that all pulsars that show P fluc-
tuations can be explained by white torque noise, I have estimated the magnitude
of their noise strength S by a crude procedure where the first and last 2 measure-

ments are connected with a straight line and the maximum deviation from this line
AQ yields

2(AN)?
S~—"7 33

~ (33)
where At is the time interval between the first and last measurement. Figure 7
shows a plot of S versus the X-ray luminosity for 11 X-ray pulsars. It is apparent
that sources with higher L; (or M) also have larger torque noise strength. A better
theoretical understanding of this behaviour and hence the accretion torques is yet
to come.

7. Long Periods: Precession?

While the rotation frequencies and binary periods of accreting neutron stars have
been readily identified, a third type of long-timescale periodicity that exists in some
X-ray binaries has not found a convergent interpretation (see Priedhorsky and Holt
1987 for a review of long-term cycles in X-ray sources). Two X-ray pulsars, Her
X-1 and LMC X-4 have intensity variations with periodicities of 35 and 30.4 days
respectively; there are some half a dozen more neutron stars in massive systems
that are possible candidates for long-term variations. The source $SS433, shows
a precessing relativistic jet at a period of 164 days; it is a black hole candidate
although the possibility of being a neutron star is not excluded. Another black
hole candidate, Cyg X-1, shows intensity variations at 294 day period. Long-period
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Figure 7: Rotation noise strength S as a function of X-ray luminosity for 11 pulsars
(in increasing luminosity order: 4U0352+80, 4U1145-61, GX 301-2, 4U0900-40,
1E1145.1, Her X-1, A0535+26, 4U1627-67, GX 1+4, Cen X-3, SMC X-1).

cycles have also been observed in several low-mass systems. These are generally
interpreted as variations in mass transfer rates. The Be/neutron star systems that
constitute about half of the massive systems also show long-term cycles. Some of
these systems are in wide, eccentric orbits and it is speculated that the periodicity
results from enhanced mass transfer during periastron passage.

The most extensively studied system showing this long-term periodicity is the
Her X-1/HZ Her X-ray binary, initially discovered by Tananbaum et al. (1972). A
variety of mechanisms has been proposed to explain this 35 day cycle (Katz 1973;
Brecher 1972; Pines, Pethick, and Lamb 1973; Roberts 1974; Lamb et al. 1975;
Petterson 1975, 1977; Meyer and Meyer-Hofmeister 1984). A disk that periodically
occults the X-ray source is assumed in most of the models to explain the details
of the X-ray and optical light curves of the system. The three major choices for
the clock mechanism under current discussion are: a) a clock mechanism that is
provided from the outer part; i.e. the precession of HZ Her (Roberts 1974; Pet-
terson 1975, 1977); b) a mechanism that resides in the properties of the disk itself
either in the form of long wavelength azimuthal perturbations that grow into a
tilted structure (Boynton, Crosa, and Deeter 1980), or self excited nonlinear mass
flow oscillations (Meyer, and Meyer-Hofmeister 1984); c) A centrally located clock
mechanism that originates from the precession of the neutron star, Her X-1 (Brecher
1972; Pines, Pethick, and Lamb 1973; Lamb et al. 1975; Triimper et al. 1986). Due
to the imprecise nature of the turnons and the large amplitude of phase excursions
Boynton, Crosa, and Deeter (1980) have argued that the origin of the 35 day clock
cannot reside in more precise mechanisms such as the precession of HZ Her or Her
X-1. Trimper et al. (1986), on the other hand, have presented clear evidence for
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changes of 1.24 s pulse profiles throughout the 35 day cycle that fits a precessing
neutron star picture thus making this model viable again. The precession model
was further developed by Kahabka (1987) using a pulse decomposition method in
which the pulse profiles are fitted with a physical beaming model initially developed
by Kaminker et al. (1982, 1983) where the angular dependence of the emerging ra-
diation in an atmosphere with strong magnetic field has been investigated. With
this beaming model it was possible to associate with each pulse profile a theoretical
shape parameterized with the viewing geometry of a dipole field. Thus, it was pos-
sible to determine the precession parameters: the angle between the figure axis of
the neutron star and its rotation axis as 10° —25°; the angle between the figure axis
and the dipole axis as 65° — 75°. A recent analysis of the HEAO-1 A-4 low-energy
detector data from Her X-1 has shown that the relative intensity of the two poles
can also change rapidly during the main-on state (Soong et al. 1987), thus casting
doubt on the determination of precession parameters based on relative intensity of
the two poles of the neutron star. However, the pulse shape decomposition analysis
of Kahabka (1987) still shows that the beam profile model fits to the precession
parameters are valid.

One previous objection to the precession model, the inaccuracy of the clock
mechanism, has further been examined by Ogelman {1987), and concluded that, in
addition to the poor quality clock models with white period noise, an alternative
possibility exists which implies that the intrinsic clock is good and that the turnon
phase fluctuations can be modelled with white phase noise plus an integrating filter
with about 1.5 to 7 year timescale which may originate in the timescales of the
mass transfer process from HZ Her.

The implications of neutron star precession on the dynamics of the superfluid
interior of the neutron star has been re-examined by Alpar and Ogelman (1987).
They find that the superfluid interior of the star has steady states in which the
interior follows the crust’s precession. The steady state of the core superfluid is
determined by the internal torque on it which is linear in the lag between the rota-
tion rates of the superfluid and the crust. Furthermore, the pinned crust superfluid
also takes part in the precession through vortex creep. The constraint of absolute
pinning which, as shown by Shaham (1977) would change the precession frequency
drastically, is never operative because a steady state exists in the regime where the
creep rate is linear in the lag between the pinned superfluid and the crust. Using
the current understanding of the neutron star interior based on observations of ra-
dio pulsars, they show that the torques necessary to make up for the dissipation do
not exceed those available in the Her X-1/ HZ Her binary system.

Pines (1987) has shown that the precession of Her X-1 can be used to constrain
the neutron matter equation of state. Effectively, the current observed oblateness
€ ~ Qprec/Qyot ~ 4 X 107 can be related to the maximum period P"3% at which
the crust has solidified. A stiff equation of state gives PJ*3* ~ 20 ms, in contrast
to a very soft equation of state where PJ"*%% ~ 1.5 ms. In view of our understand-
ing of initial birth periods of pulsars which should not be as short as 1.5 ms, the
very soft equations of state are unlikely to be valid if Her X-1 is precessing at the
35-day period. To be able to study nuclear forces through X-ray observations of
astrophysical objects is a fine example of the progress of scientific understanding
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through the advances in very different fields.
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GALACTIC POPULATIONS OF X-RAY BINARIES

Jan van Paradijs
Astronomical Institute "Anton Pannekoek",
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Abstract

The Galaxy contains two major groups of accretion-driven stellar X-ray
sources, the high-mass and the low-mass X-ray binaries. In this paper
the properties of these two types of sources are briefly described, with
some emphasis on optical observations. The differences between their
properties are likely related to a large difference in the magnetic
fields of the neutron stars in these objects. A brief discussion is
given of the evidence that magnetic fields of neutron stars decay.

Introduction

The properties of the spectra of the first two optically identified
X-ray sources, Sco X-1 [57] and Cyg X=2 [15] led to early speculation
that their X-ray luminosity is generated by accretion onto a compact
star in a mass-transfer binary star. In the case of Sco X-1 the spectrum
was found to be similar to those of old novae and U Gem type stars,
which were known to be binary stars, in particular through the work of
Crawford and Kraft [11,24] in the 1950s and '60s. The optical spectrum
of Cyg X-2 was found to be composite, showing the signatures of both an
F-type giant and a component of much higher excitation; Cyg X-2 also
showed significant radial-velocity variations. However, the single most
important characteristic of a binary star, i.e. an orbital periodicity,
was not found in either system until many years later, in spite of
substantial effort (see e.g. [19,25] for discussions of early optical
observations of X-ray sources, and references).

The idea that the bright galactic X-ray sources are binary stars
gained immediate acceptance with the discovery ([58] of the eclipsing
binary X-ray pulsar Centaurus X-3, which showed persuasively that in
this system the X rays are generated by accretion onto a strongly
magnetized neutron star rotating at the observed 4.8 s pulse period. The
properties of the X-ray orbit showed that the mass-transferring companion
star is very massive (> 10 MQ), a result which was later confirmed by
the optical identification of this source with an O-type giant star
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[26]. The discovery that Cen X-3 is an X-ray binary star was soon
followed by more observations of eclipsing X-ray sources, some of them
pulsating, and the identification of these X-ray sources with early-type
stars (see e.g. [36, 49, 80]). In addition, a general framework for the
origin and evolution of a massive X-ray binary, as a rather normal
episode in the life of a massive close binary star with successive
stages of mass transfer between the two components, was readily accepted
[70]. Thus, within a few years the existence of a galactic population of
high-mass X-ray binaries (HMXB) was well established.

The clustering of bright X-ray sources within ~30° of the direction
of the galactic center without a strong background of unresolved sources
showed already quite early that there is a group of sources located in
the central regions of the Galaxy [55,59]. It was therefore suspected
that apart from the above-described HMXB there is a class of low-mass X-
ray binaries (see e.g. [56]), but proof for this basic idea was hard to
obtain. Apart from the difficulty of finding orbital periods, the
apparent heterogeneity of the properties of low-mass X-ray binaries
(LMXB) probably played a role. Compared to the HMXB the first handful of
systems now classified as ILMXB (Her X-1, Cyg X-3, Sco X-1, Cir X-1) show
rather more diversity than similarity in their properties. As a result,
the establishment of two broad groups of galactic X-ray sources has come
slowly, and along various roads: only at the end of the 1970's it became
clear that with respect to their sky distributions, X-ray spectral
characteristics, optical properties, and types of X-ray variability, the
LMXB are distinct from the HMXB as a group with "family traits" (see
e.g. [31)). The LMXB comprise the globular cluster X-ray sources, X-ray
bursters, soft X-ray transients, and the bright galactic bulge X-ray
sources (most of which have recently been found to be QPO sources; see
[35] for a review).

In this paper I briefly describe the main properties of the HMXB
and LMXB, with some emphasis on optical observations, and show how the
differences between these two groups of X-ray sources may be linked to a
difference in the strength of the magnetic fields of the neutron stars
they harbour. Within the limits of these conference proceedings I cannot
strive for completeness. For background information on various topics
related to X-ray binaries the interested reader is advised to consult
individual chapters in [12, 13, 14, 33, 34, 41, 46, 51, 60}. References
on optically identified individual sources can be found in [3, 76].

Optical counterparts

The optical counterparts of HMXB have normal early~-type spectra, in the
sense that they can be MK~classified without particular difficulty, on
the basis of ratios of spectral line strengths. Some disturbance of the
spectrum, indicative of anisotropic gas flow near the primary may show
up as variable emission/absorption components, particularly in He,B,

He II A4686, and the CIII-NIII A4640 complex. However, when the latter
two lines are strongly in emission (see e.g. [18]) this is likely due to
a very early spectral type (Of characteristics) of the primary, and not
to the presence of the X-ray source.
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The reason that the X-ray source does not seem to affect the
spectral properties of the primary much, is that the bolometric
luminosity of the latter generally exceeds the X-ray luminosity, often
by a large margin (see [76]).

With respect to the spectral types of the optical counterparts the
HMXB can be subdivided into two subgroups, as follows.

(i) The spectral type is earlier than B2, and the luminosity class is I
to III, i.e. the primary star has evolved off the main sequence. These
stars are filling, or close to filling their Roche lobes, as is apparent
from the amplitudes of their optical light curves (see below).

(ii) The primary is a B-emission (Be) star, located in the Hertzsprung-
Russell diagram rather close to the main sequence. The orbits of these
Be/X-ray binaries are eccentric, and their periods tend to be long. The
primaries underfill their Roche lobes.

As first suggested in [38] the mass transfer in these two groups is
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driven by different mechanisms. In the first group mass is transferred
via a strong stellar wind (in a few short-lived sources Roche-lobe
overflow is important). In the Be/X-ray binaries the mass transfer is
related to the anisotropic (often highly variable) shedding of mass as
observed in all Be stars, which is believed to be the result of their
rapid rotation [61]. This inferred difference in mass transfer mechanism
is supported by the different relations between orbital period and X-ray
pulse period (first pointed out in [7, 8] for these two groups of
sources (see e.g. the discussion in [72]).

Most Be/X-ray binaries are highly variable, or transient. In some
of them recurrent outbursts have been observed, which reflect the
varying accretion rate onto the neutron star as it moves in its
eccentric orbit through regions of varying density around the Be star.
In addition, a more sudden turning on and off of the accretion can occur
when the wind density becomes too low for the neutron star magnetosphere
to be within the corotation radius, so that accretion becomes
centrifugally inhibited [65]. However, in many cases outbursts have been
observed which are not related to the orbit of the Be/X-ray binary, but
are due to a sudden enhancement of the mass loss of the Be star (for
recent reviews of various aspects of Be stars see [62]).

The optical counterparts of IMXB are rather faint stars. Their
spectra show a few characteristic emission lines, particularly Ha,B,
HeII A4686, and CIII/NIII A4640, superposed on a flat (in frequency)
continuum. These spectra, which definitely are not those of normal
stars, are dominated by the emission from an acretion disk around a
neutron star, which radiates mainly through reprocessing of incident X
rays into optical/UV photons. In very few cases. the signature of a
companion star can be discerned.

It appears that the optical properties of LMXB are rather uniform,
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and can be well described by average values [76]. The colour indices B=V
and U~-B (reddening-corrected) have average values of 0.0 + 0.3, and -0.9
+ 0.2, respectively (errors are one sigma standard deviations), close to
those expected for a flat continuum (F_ = constant). The distribution of
the ratio of X-ray to optical luminosity is rather sharply peaked.
Expressed in terms of an "optical/X-ray colour index" B, +2.5 log
F,(uJy), the peak occurs at 21.5, corresponding to a ratio of fluxes
emitted in X rays (2-11 keV) and in optical light (3000-7000 A) of ~350.

Absolute visual magnitudes have been estimated for optical
counterparts of X-ray burst sources and some soft X-ray transients, for
which a reasonable distance determination can be made. These absolute
magnitudes (average value = 1.0) scatter over a remarkably small
interval of + 1 magnitude [76]). This small scatter may be related to a
rather small range in orbital periods of the systems used in this
average. If the relative shape of the accretion disk (in particular its
angular thickness as seen from the neutron star) is assumed to be
independent of the orbital period then the X-ray irradiated accretion
disk will (for the same X-ray luminosity) be hotter as the orbital
period decreases since they are then smaller [T® (:) a < (:) P~ 7“/°]. A
relatively larger fraction of its emission will then be in the UV (i.e.
the bolometric correction increases).

It is of some interest to compare the optical properties of LMXB
with the closely related cataclysmic variables (CVs), which are
different in that the accreting compact star is not a neutron star but a
white dwarf. The spectra of CVs bear a general resemblance to those of
LMXB, showing emission lines superposed on a continuum. However, in
general the equivalent widths of these lines in LMXB spectra, in
particular that of HB, are much smaller than those in CV spectra [77]
(see Fig. 3). Since the absolute magnitudes of LMXB and CV differ by
values ranging between ~3.5 mag (for nova-like variables, and dwarf
novae in outburst) and at least 6 mag (for dwarf novae in quiescence)
the luminosities in HB are substantially higher in the LMXB than in CV.
In general, the equivalent width of HeIl A4686 varies somewhat less
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between the LMXB and CV (except the AM Her systems); this suggests that
in the LMXB the luminosity in this line is enhanced by X-ray
reprocessing by a similar factor as the continuum flux.

The orbital-period distributions of CV and LMXB (see Fig. 4) are
different. Compared to the CV there is a relatively larger fraction of
LMXB with periods above about half a day; this may partly reflect the
fact that CV systems with long orbital periods may be classified as
symbiotic stars. Also, there are no LMXB in the period range between 1
and 2 hours (i.e. below the period gap), which is well populated by the
CV. This is perhaps the result of evaporation of the companion stars by
the large luminosity from the rapidly rotating neutron star (spun up by
accretion torques), which becomes active as the mass transfer stops when
the system has reached the upper edge of the period gap [54, 73].

Optical light curves of HMXB and IMXB

Regular optical brightness variations at the orbital period have been
observed for many HMXB and LMXB.

In almost all HMXB an important contribution to the orbital optical
light curve is due to a double-wave modulation with generally equal
maxima and two somewhat different minima. This so-called ellipsoidal
variation is the result of the tidal and rotational distortion of the
companion star, and a non-uniform surface brightness distribution
("gravity darkening"), often described by Von Zeipel's theorem. The
maxima in the light curve occur at quadratures of the system, the
deepest minimum at inferior conjunction of the X-ray source. The
amplitude of these ellipsoidal light curves is mainly determined by the
mass ratio q = Mo t/Mx’ the inclination angle i of the orbital plane,
and a dimensionless potential parameter @, which measures how far the
companion star fills its Roche lobe.

Superposed on the regular orbital brightness variations significant
irregqularity is observed; consequently observations over many orbital
cycles are required to obtain a fair estimate of the average light curve
that hopefully contains information on the geometry of the primary.

In some systems (e.g. Cen X~-3, SMC X-1) the presence of the X-ray
source is noticeable through the heating by X rays of the hemisphere of
the companion star facing the X-ray source. This leads to a brightening
of that side of the star and therefore a filling-in of the deepest
minimum of the purely ellipsoidal light curve.

A further complication in the light curve arises when an accretion
disk is present, which: (i) provides an additional source of light; (ii)
can give rise to mutual eclipses with the companion ; (iii) shields a
fraction of the companion star from X rays. Since those HMXB in which
mass transfer occurs through Roche-lobe overflow (and which therefore
have an accretion disk) are also the most luminous X ray sources, the
effects of X-ray heating and of the presence of the acretion disk tend
to be present together.

In Fig. 5 we show some examples of optical light curves of HMXB,
illustrating the above mentioned effects. For detailed description of
the light curves of HMXB, and discussions of the limitations and
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Fig. 5:
Optical light curves for
the high-mass X-ray
binaries SMC X-1 and
Cen X-3. Observed data are
indicated by squares. In
both cases the dashed line
indicates the expected
purely ellipsoidal light
curve. The dotted line for
SMC X-1 shows the effect
of X-ray heating of the
A 1 L 1 L compantion star. The solid
000 025 050 075 100 125 curves indicate the
PHASE theoretical curves which
Cen X-3 inelude ellipsoidal
T T T T T T variations, X-ray heating,
v and the effects of an
accretion disk (see
ref. 68).
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underlying assumptions, we refer to [68, 86].

Optical counterparts of LMXB are generally faint, with apparent
visual magnitudes V > 17 in the majority of cases. With notorious
exceptions (e.g. Sco X-1 [85]) orbital variations of the optical
brightness are not too difficult to detect, particularly since the use
of CCD photometers has become commonplace. As a result orbital light
curves have now been determined for many optically identified LMXB.

As mentioned above, the optical emission of LMXB comes mainly from
X-ray reprocessing in matter in the binary system. Orbital light
variations are therefore due to deviations from axial symmetry of the
reprocessing matter. This asymmetry is mainly provided by the companion
star, whose "polar caps" are not shielded from X rays by the disk, and
therefore are heated (see below).

The orbital light curves of LMXB show "family characteristics";
their amplitude is correlated with the inclination, i, of the orbital
plane (see Fig. 6) , and also their shape seems to change with i in a
characteristic way.

For low inclination angles (as apparent from the lack of X-ray
eclipses and X-ray "dips", see [47]) the light curves are approximately
sinusoidal (see Fig. 7), with an amplitude of a few tenths of a
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magnitude. For systems with somewhat higher inclination angles (as
evident from the presence of periodic dips in the X-ray intensity curve,
but absence of X-ray eclipses) the amplitude of this sinusoidal light
curve increases to ~0.5 mag (e.g. X1755-338). For systems with the
highest inclinations the amplitude reaches about 1.5 mag. For these

2 - Fig. 6:
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systems the optical light curve can be decomposed into the sine wave
that is also observed for systems at lower inclinations, and a rather
sharp cusp superposed on the minimum of the sine wave (see Fig. 7). From
a comparison of the phases of the optical and X-ray intensity curves it
appears that the cusp (and therefore the minimum of the sine wave
component) occurs at superior conjunction of the X-ray source. This
indicates that the cusp in the optical light curve is due to the eclipse
of the luminous accretion disk. The relative phasing in the non-
eclipsing system X1755-338 of the sinusoidal optical light curve, and
the X-ray dips, confirm that this picture is valid also for the lower-
inclination systems. The correlation of the amplitude of the sinusoidal
component with inclination angle is likely due to the fact that as the
inclination angle decreases the average brightness of the accretion
diskincreases (larger projection factor, less self shielding), and the
relative importance of the variable component (due to eclipses of the
disk and the heating of the companion star) decreases.

Galactic distributions of optically identified HMXB and LMXB

The sky distributions of the optically identified HMXB and LMXB are
shown in Fig. 8. The HMXB are distributed along the galactic plane, with
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Fig. 7: Optical light curves for the low-inclination LMXB Sco X-1 (ref.
85) and 4U/MXB 1636-53 (ref. 63), the X-ray dipper X1755-338 (ref. 40),
and the X-ray eclipsing system 4U2129+47 (vef. 43). In the case of

Seo X-1 the radial-velocity curve (ref. 10) of the accretion disk shows
that maximum light is reached when the X-ray source is in inferior
conjunction. The X-ray intensity curve of the X-ray dipper X1766-338
suggests a similar phase relation for the optical maximum for this
source.
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Fig. 8: Sky maps (in galactic corrdinates) of the optically <identified
high-mass X-ray binaries (top panel) and low-mass X-ray binaries
(bottom panel); the latter also contains the globular-cluster X-ray
sources (indicated by crossed square boxes).

a narrow latitude distribution (<bII> = -0.5 + 3.9°; if we leave out the
very nearby high-latitude system X Per we find 0.2 + 1.9°). The optical
counterparts of ILMXB have a much wider latitude distribution (<bI > =
-1.6 + 10.7°), and are also more concentrated in the general direction
of the galactic center.

These distributions fit the idea that the HMXB and LMXB are parts
of a very young galactic population of massive stars (population I), and
of a much older population (population II, and old disk poulation),
respectively.
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A recent detailed analysis [75] of the kinematic properties of the
optically identified HMXB indicates that these objects are runaway
stars; this is perhaps the result of asymmetries of the supernova
explosions in which the (now) acreting neutron stars were formed [75].

The radial velocities of the IMXB optical counterparts support
their membership of an old galactic population [2].

X-ray variability: pulsations and bursts

Almost all HMXB show X-ray pulsations, which indicates that the
accreting compact stars in these systems are strongly magnetized neutron
stars (for a review of various aspects of X-ray pulsars see e.g. [22,
52] ). Strong magnetic fields (a few 10 G) have also been inferred from
the presence of cyclotron lines in the hard X-ray spectra of some X-ray
pulsars (see [23], for a review of this subject).

Observed pulse periods range over a factor ~10°, between 69 msec
(for the IMC transient A0538-66) to 835 s in the Be/X-ray system X Per.
From a survey of X-ray pulsars with HEAO-1 White et al. [84] found a
correlation between the pulse profile and the X-ray luminosity; their
result are supported by recent EXOSAT observations of the transient
source EXO 2030+475 which cover a large range in luminosity [48].

Pulse-arrival time measurements for pulsating HMXB, in combination
with radial-velocity observations of their massive companions, have
provided invaluable information on the masses of neutron stars (see [22,
52] for a review). In Fig. 9 our present knowledge on neutron-star
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SMC X-1

CenX-3

LMC X-4
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Summary of our present knowledge of
neutron star masses from observations

PSR1913+16 of binary X-ray pulsars and the

| | [ { | binary radio pulsar PSR 1913+16. This

Figure is an update from ref. 22,
0 L 2 3 4 > using more recent data from vefs 50
NEUTRON-STAR MASS (M) and 82.
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masses is summarized. These results are consistent with a standard
neutron star mass between 1.2 and 1.6 Mo; however, mass differences of
more than 0.5 M, cannot at present be excluded. The limiting factor in
the accuracy of neutron star masses are the optical radial-velocity data
(which so far have mainly been based on photographic and image-tube
observations). Significant progress in this area in the form of much
improved error ranges for these masses, and an extension of the sample
of observed neutron stars, appears definitely possible with presently
available CCD spectrographs.

X-ray pulsations occur only rarely in IMXB. This suggests that the
magnetic fields of the neutron stars in these systems are much weaker
than of those in HMXB. (The alternative that the magnetic and rotational
axes of the neutron stars are aligned, is discussed below).

On the other hand, many IMXB emit X-ray bursts, which are the
result of thermonuclear flashes in accreted matter on the surface of a
neutron star (for reviews of X-ray bursts see [32, 78].

Not a single source is known that shows both pulsations and bursts.
Apparently, the presence of a strong magnetic field suppresses the
instability of the nuclear reactions that gives rise to bursts (as
expected from models for thermonuclear flashes, see e.g. [21]). This
muitual exclusion of bursts and pulsations indicates that it is a weaker
magnetic field, and not only alignment of the field axis, which
distinguishes the neutron stars in LMXB from those of HMXB.

The radiation observed during an X-ray burst originates directly
from the surface of the neutron star (with possibly some modification

Fig. 10:

Distributions of the
rattos of count rates, as
observed with the HEAO-1
Ad experiment (vef. 30) in
the 25-40 keV and 40-80
keV bands, to that
observed with Ariel 5 in
the 2-11 keV band (refs
44, 81), shown separately
for the high-mass and low-
mass X-ray binaries. X-ray
pulsars are indicated by a

0 1 2 3 4
darker shade. log (A4/3A)
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due to e.g. Compton scattering in intervening hot plasma). Because of
this, time-resolved spectral studies of bursts provide an observational
method to study the properties of neutron stars, in particular their
mass-radius relation. The main problem in this area appears to be the
interpretation of X-ray burst spectra in terms of atmospheric models
(see [78] for a recent discussion of this topic).

X~-ray spectra

The X~-ray spectra of HMXB (most of which are pulsars) are generally much
harder than those of LMXB {20, 45, 67, 83]. This distinction is present
for both the steady and transient X~-ray sources [6]. As is illustrated
in Fig. 10 the difference in spectral hardness persists into the hard X-
ray energy range, up to ~102 keV. From this Figure it appears that the
average difference in spectral hardness, as measured by the ratio of the
count rates observed with the A4 experiment on HEAO-1 [30] and with the
SSI on Ariel-5 [44, 81], is about a factor 10.

It is remarkable that the few LMXB which show pulsations (GX 1+4,
Her X-1, and 1627-673) have X-ray spectra which are as hard as those of
HMXB (almost all of which are, likewise, pulsars). This result strongly
suggests that the division into hard and soft X-ray spectra is related
to a difference in the geometry of the accretion flow. For neutron-star
magnetic fields of the order of 10 G, and sub-Eddington accretion
rates, the accretion flow is dominated by the_magnetic field within a
relatively large distance (of the order of 10~ km) from the neutron star
(magnetospheric radius, see e.g. [17]); a large fraction of the
inflowing matter reaches the neutron star via an accretion column on a
relatively small area (near the polar caps). For magnetic fields < 107 G
the magnetospheric radius becomes comparable to the radius of the
neutron star; one then expects that the accreting material is
distributed over a larger fraction of the neutron star surface.

It should be noted that alignment of the magnetic and rotational
axis of the neutron star may also_lead to the disappearance of
pulsations, even for fields of 10 G. However, since the magnetospheric
radius will not be much affected by this alignment one does not expect
the accretion flow within ~ 10 km of the neutron star to be much
affected by the alignment; it is therefore unlikely that alignment alone
can explain the systematic difference in the hardness of the X-ray
spectra of pulsating and non-pulsating sources. Thus, the differences in
these X-ray spectra support the inference, from the distribution of
pulsars and bursters among the HMXB and LMXB, that the magnetic fields
of the neutron stars in LMXB are systematically weaker than those of the
neutron stars in HMXB.

In many LMXB a correlation has been observed between the X-ray
intensity and the hardness of the X-ray spectrum (see [35] for
references). In addition to this so-called normal-branch (NB) spectral
state a number of LMXB have, at times, been observed in a different
state, in which the X-ray spectrum is relatively hard (but still much
softer than the X-ray spectra of pulsars), and does not change much with
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source intensity (horizontal branch: HB). These different spectral
states are correlated with different fast-variability behaviour, with
high-frequency intensity~dependent QPO occurring in the HB state, and
low-frequency QPO (~5 Hz, independent of source intensity) occurring in
the NB state [74]. Recently, a third spectral state (the "flaring
branch" in the spectral hardnesss vs. intensity diagram) has been
distinguished, which also is correlated with QPO behaviour [16]. The
origin of the different spectral states, and the connection to the QPO
properties is presently unknown.

For reviews of QPO in IMXB with emphasis on observations and data
analysis we refer to [35] and the contributions of Hasinger and of Van
der Klis to the present volume. For a recent review with emphasis on
models for QPO see [29].

Magnetic field decay ?

The strong correlation between X-ray pulsars and HMXB on the one hand,
and between X-ray bursters and LMXB on the other hand, and, in addition,
the striking correlated difference in the persistent X-ray spectra of
HMXB and LMXB (except for the LMXB pulsars), persuasively argues for a
systematic difference in the magnetic field strengths of the neutron
stars in these two groups of X-ray sources.

There are two possible ways to understand this difference. In the
first place the magnetic fields of the (generally o0ld) neutron stars in
LMXB may be much weaker than those of the (young) neutron stars in HMXB,
because they have always been very weak. This difference might be
related to a difference in the formation mechanism of neutron stars in
HMXB and LMXB, viz. via the normal evolution of a massive star, and via
the accretion-induced collapse of a white dwarf, respectively (see e.g.
[4]). With respect to the latter process it is of interest to note that
for two of the three (0ld) IMXB which show pulsations (Her X-1, GX 1+4)
the accretion lifetime can be calculated from the system parameters;
these_lifetimes of both systems turn out to be very short (of the order
of 10° years) compared to a typical accretion lifetime of a LMXB (of the
order of 10” years). This coincidence strongly suggests that in these
LMXB pulsars the neutron star magnetic field is high because the neutron
star was formed recently through accretion-induced collapse of a white
dwarf during the same stage of accretion in which we observe the system
now as a source of X rays.

As discussed in more detail in [64] the above idea is hard to
reconcile with : (i) observed periods and period derivatives of new-born
radio pulsars; (ii) the observed weak magnetic fields of the binary
radio pulsars PSR 1913+16 and PSR 0655+64, which are late stages in the
evolution of massive binary stars (see e.g. [69]); (iii) the statistics
of CV's and LMXB in globular clusters [79].

It appears that the simplest description of the properties of LMXB
vis a vis the HMXB is provided by the assumption that the magnetic
fields of all neutron stars decay. This is in agreement with a simple
interpretation of kinematic data of new-born radio pulsars [37]. We note
that these kinematic data (and data on pulse profiles) have been been



205

interpreted as evidence for alignment of the rotational axis of the
neutron star with the magnetic axis [2]; (see also the contribution of
Blair to this Volume). However, this interpretation does not exclude
that decay takes place.

It is possible that decay of a magnetic field takes place only in
accreting neutron stars. As shown in [66] one cannot distinguish between
spontaneous decay, and decay as a consequence of accretion; in
particular the inferred B fields of neutron stars correlate well with
the total amount of accreted material.

Observations of millisecond radio pulsars in binaries provide good
evidence that the decay of the field of neutron stars does not continue
indefinitely. From the colours of the optical counterpart of PSR 0655+64
(a white dwarf) Kulkarni [27] estimated that the (cooling-) age of this
system is ~2 10~ years, yet the magnetic field of the neutron star (as
inferred from its period derivative) is a few 10 Gauss. A similar
conclusion follows from the observed number of millisecond pulsars in
binaries which descended from LMXB [1, 71] (see also [28]). These
results indicate that when the magnetic field has decayed to a value of
the order of 107 G (this value may be different for different
sources) the decay time increases substantially (from ~10° to more than
107 years).
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TRANSIENT X-RAY SOURCES WITH LATE-TYPE COMPANIONS

Jeffrey McClintock
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ABSTRACT. In a few short-period (P< 1 day) X-ray binaries it is possible to
observe the late-type secondary. Two examples are the X-ray novae Cen X-4 and
A0620-00. Optical studies have shown that the degenerate star in the former has
the mass expected for a neutron star, whereas the compact object in the latter is
considerably more massive and is a likely black hole. Another binary, 4U2129+47,
which was a persistent X-ray source for at least several years, has been in an X-ray
“off” state since mid 1983. Its optical appearance and behavior in the off state are
wholly unexpected and puzzling given the compelling model that was developed
earlier when the source was X-ray active. A fourth transient source discussed here,
EXOQ 0748-676, is a 3.8-hour eclipsing binary, which has provided a fresh look at
the properties of neutron-star shell flashes and accretion-disk coronae.

1. INTRODUCTION

About a quarter of the well-studied Low-Mass X-ray Binaries (LMXBs) are tran-
sient sources (I4z/Imin > 100) that undergo month-long to decade-long periods of
X-ray quiescence (Bradt and McClintock 1983). Best known are the X-ray novae,
or soft (spectrum) X-ray transients, which brighten to a maximum X-ray/optical
intensity in a few days and then fade on a timescale of weeks to months.

During quiescence the X-ray luminosity of X-ray novae is thousands to mil-
lions of times less than during outburst; correspondingly, the optical intensity,
which during outburst is due to reprocessed X-rays, dims by five magnitudes or
more. Consequently, in a few favorable cases, it is possible to observe the late-type
secondary directly. This is fortunate, since star light contains important and in-
terpretable information, as I will illustrate by discussing two X-ray novae, Cen X-4
and A0620-00. For a broad review of the properties of X-ray novae see White et
al. (1984) and van Paradijs and Verbunt (1984).

A few LMXB have transient episodes that are distinctly unlike those of the
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eruptive X-ray novae. For example, the large optical modulation of HZ Her/Her X-1
almost ceased for several years in the 1950’s (as determined from an inspection
of archival plates); presumably the X-ray source, Her X-1, was inactive then
also (Jones et al. 1973). Another example is the (formerly) persistent source
4U2129+4-47. Its X-ray emission turned off in mid 1983 and since then the source
has remained dormant. Recent studies of its quiescent optical counterpart, V1727
Cygni, have yielded surprising results, which are difficult to reconcile with ear-
lier (X-ray on-state) models of this supposedly well-characterized system. This
intriguing puzzle is outlined in Section 3.

The fourth and final transient discussed here is the 3.8-hour eclipsing, “dip-
ping”, bursting, coronal source EXO0748-676 (Parmar et al. 1986), which displays
a wider range of phenomona than any other X-ray binary. It has proved, how-
ever, to be more than a freak: because it is a transient, it has provided important
new data on how type I bursts and scattering coronae are affected by changes in
luminosity.

It is probable that the transient nature of EX00748-676 is more akin to that
of 4U2129+47 than to an eruptive nova like A0620-00 (Parmar et al. 1986). In
any case, the causes of alternating cycles of activity and quiescence in LMXB are
poorly understood and are not considered here (see Hameury et al. 1986, and
references therein).

2. X-RAY NOVAE: CEN X-4 AND A0620-00

In most X-ray active LMXB the light from the accretion disk overwhelms the feeble
light of the late-type secondary. Consequently, because almost nothing definite is
known about the properties of X-ray illuminated disks, most optical studies of
active LMXBs have been rather unrewarding.

Fortunately, there are a few nearby X-ray novae (d~1 kpc) with relatively
luminous secondaries (M, ~ 8), which are bright enough for quiescent-state spec-
troscopic study. In particular, recent optical studies of the K-dwarf secondaries of
two soft transients — A0620-00 and Cen X-4 — have yielded precise and insight-
ful results. The absorption-line radial velocity data imply strongly that A0620-00
is a black hole (McClintock and Remillard 1986), whereas Cen X-4, which is a
type I burst source, has the mass expected for a neutron star (Fig. 1; Cowley
et al. 1988). For both systems the optical light curves are dominated by tidal
(ellipsoidal) effects of the primary on the secondary (Fig. 1; Chevalier et al. 1988;
McClintock and Remillard 1986), a process that can be modeled. Further study
of these light curves, combined with measurements of the rotational widths of the
K-star absorption lines, should provide useful information on the system param-
eters (orbital inclination and mass ratio) and further constrain the masses of the
compact objects.
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Figure 1. Simultaneous spectroscopic and photometric data for Cen X-4 obtained at
CTIO on 24-27 April 1987 (McClintock and Remillard 1988). The different symbol shapes
represent different observing nights. (Top) Radial velocities of the K-dwarf secondary vs.
orbital phase (P,»; = 15.098 hours). The velocity semi-amplitude is 14612 km s~!.
(Bottom) Folded CCD light curve of Cen X-4. The solid symbols are I-band data and the
open symbols are V-band data, which have been scaled to match the mean intensity in
the I band.
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It is highly probable that both K stars fill their respective Roche lobes, even
in quiescence. This is strongly implied by the sizable modution of the ellipsoidal
light curves (Bochkarev et al. 1979). Moreover, a full Roche lobe is required
to explain the bright, quiescent-state accretion disks, which are present in both
systems: the luminous disks (M, ~ 8) shine due to viscous heating, and their
optical luminosities imply a mass transfer rate ~ 107! Mg yr~!. Such a rate is
consistent with the quiescent X-ray luminosity of Cen X-4 (1 — 4 x 10%%rg s71;
van Paradijs et al. 1987). In the case of A0620-00, however, no quiescent X-ray
emission is detected (L, < 10°? erg s™!), which seemed to me (McClintock 1986)
inconsistent with the inferred rate of mass transfer. This puzzle was solved recently
by de Kool (1988) who argues as follows: the effective X-ray temperature of an
inner accretion disk scales as M'/4; consequently, the kT~ 1 keV X-ray spectrum
of A0620-00 in outburst (M~ 108 My yr~1) cools to become an 0.1 keV EUV
spectrum in quiescence (M~ 10712 M, yr~1), which is difficult to detect (with
Ep-v ~ 0.39 mag and Ny ~ 3 x 10! cm™?).

Of course, one expects the Cen X-4 disk spectrum to be similarly softened in
passing from outburst to quiescence. However, the outburst spectrum of Cen X-4
is much harder than that of A0620-00 (5 keV vs. 1 keV), and therefore should still
be observable in quiescence at X-ray energies as a soft component. In addition, the
quiescent mass-transfer rate should generate a relatively hard spectral component
at the neutron star magnetosphere or at the boundary layer between the neutron
star and the disk. No comparable source of emission will be present in A0620-00
if, as expected, its surface is a black-hole event horizon.

A cartoon sketch to scale of A0620-00 and Cen X-4 are shown in Figure 2.
The longer orbital period of Cen X-4 (15.1h vs. 7.8h) compensates for the greater
mass of A0620-00 to make the two systems about the same size. As shown, a
main-sequence K dwarf (represented by the cross-hatched circle) essentially fills
its Roche lobe in A0620-00 (a conclusion that is independent of the assumed or-
bital inclination). Based on evolutionary models of A0620-00, it appears probable
that its secondary began life as a dwarf star, and has been affected little by the
subsequent evolution of the binary system, including the black-hole collapse of its
massive companion {Eggleton and Verbunt 1986; de Kool et al. 1987).

On the other hand, Cen X-4’s secondary, which almost certainly fills its Roche
lobe (see above), has a density that is only a tenth that of a main-sequence K
dwarf, and it therefore appears to be in a peculiar evolutionary state. Cen X-4’s
neutron-star primary was probably formed by the accretion-induced collapse of a
white dwarf (Chevalier et al. 1988, and references therein).

Cen X-4’s large systemic velocity suggests that it is an old, halo-population
object (Cowley et al. 1988), whereas, A0620-00 may belong to the disk population.
Thus, despite similarities (spectral type and the occurrence of nova eruptions), it
appears probable that Cen X-4 and A0620-00 had very different origins.
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Figure 2. A sketch to scale of plausible models for two X-ray novae. The view is in
the orbital plane. The critical Roche lobe is a figure eight, the sytem center of mass is
marked by a “+” symbol, and an accretion disk whose size is not known is represented by
a stippled region centered on each compact star. For both systems it is assumed that the
orbital inclination is 45° and the mass of the secondary is 0.7 Mg.
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3. THE PUZZLING OFF-STATE OF 4U2129+47=V1727 CYGNI

The star V1727 Cygni, the optical counterpart of the X-ray source 4U21294-47,
displayed pronounced photometric variations with a period of 5.2 hours from the
time of its discovery in 1979 until some time in 1983 (Thorstensen et al. 1979; Mc-
Clintock et al. 1981). The light curve was very similar to that of Her X-1/HZ Her;
the color was bluest at maximum light, which showed that the modulation arose
from the X-ray heated face of the companion star. The large amplitude of the
modulation (Amp =~ 1.5 mag) established that the plane of the orbit is highly
inclined to the plane of the sky (i > 60°).

Partial X-ray eclipses, which occurred at the phase expected from the optical
ephemeris, were discovered in X-ray data obtained in mid 1980 (McClintock et al.
1982). The gradualness of the eclipse and the energy-independent shape of the
X-ray light curves were interpreted as due to the partial eclipse of an extended
X-ray source — an accretion disk corona (White and Holt 1982; McClintock et al.
1982). In this model, the system is viewed nearly edge on (¢ ~ 80°), the compact
X-ray source itself is hidden from us by the accretion disk, and we observe only
those (relatively few) X-rays that are Compton scattered toward us by the corona
above the disk. Recently, in a search of archival Einstein Observatory data, Garcia
and Grindlay (1987) found a type I X-ray burst, which showed conclusively that
the compact object is a neutron star; moreover, the properties of the burst also
supported the accretion-disk corona model.

Thus, during the X-ray active state, observations pointed to a model with a
secondary of radius 0.6 Ry (determined by the 5.2-hour period) orbiting a neutron
star. The X-ray eclipses and large optical modulation showed plainly that the
inclination of the orbit is close to edge on. In short, 4U2129447 appeared to be a
well-understood LMXB.

In the fall of 1983, X-ray observations by Pietsch et al. (1986) revealed that
the X-ray source had gone into an “off” state; the source was not detected and
had become more than 100 times fainter than it was in June 1980. Pietsch et al.
also reported that the optical counterpart was in a low intensity state and was no
longer strongly modulated at the orbital period.

Extensive CCD photometric data were obtained by Thorstensen et al. (1988).
They found no photometric modulation: at the binary period their 99 percent
confidence limit on the amplitude of a sinusoidal modulation is 0.012 mag in the
V band. No eclipse was detected, despite extensive coverage at the expected phase.
The magnitude (V=17.88+0.03) and color (B-V=0.93+0.05) in the quiescent state
are comparable to but slightly fainter and redder than the magnitude and colors
observed at minimum light during the X-ray active state (McClintock et al. 1981).
The spectrum of the quiescent star resembles a late F type with Balmer lines,
G Band and (possibly interstellar) absorption lines. No sizable radial velocity
amplitude (Kop: < 20 km s7%) is observed at the orbital period (Garcia 1988).
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The complete absence of optical modulation in quiescence is a great surprise:
previous (on-state) models predicted a large ellipsoidal modulation (due to the
tidal deformation of the secondary), an effect that was observed for HZ Her dur-
ing the 1950’s off-state mentioned above (Jones et al. 1973). The limit on the
modulation of V1727 Cygni in quiescence is about a factor of 20 less than the
predicted value. Similarly, the radial velocity amplitude of the secondary was ex-
pected to be ~ 200 km s~1, whereas the observed amplitude is less than a tenth of
this value. Finally, the colors of the quiescent counterpart are much too blue and
the spectral type is too early to be consistent with a late K or M type secondary,
which was predicted as a consequence of the short orbital period.

The observations of V1727 Cygni in quiescence present a serious challenge to
previous models of the system. Thorstensen et al. attempt a reconciliation by
considering a half-dozen possibilities: light from an accretion disk? A low-mass
neutron star? Low metallicity? An underfilled Roche lobe? A grossly abnormal
secondary? A third star? They conclude that none of the alternatives are entirely
satisfactory, although a very low metallicity system with a somewhat underfilled
Roche lobe may be consistent with all of the observations. Another possibility
is that the quiescent X-ray star itself has faded below visibility and one is now
observing another star along the line of sight. The probability of an unrelated
interloper is small (1073), but the system might more plausibly be triple.

4. A REMARKABLE X-RAY SOURCE: EXO0748-676

EXO00748-676 is a transient X-ray burst source that is abruptly eclipsed by its
companion for 8.3 minutes during its 3.82-hour orbital cycle (Parmar et al. 1986).
It displays irregular, periodic dips in X-ray intensity; these are presumably caused
by obscuration of the X-ray source by a “splash” region where the accretion stream
strikes the disk. Also seen in EX00748-676 is a residual X-ray emission during
eclipse, which may be due to X-rays scattered into our line of sight by an accretion
disk corona. All the above-mentioned phenomona are apparent in a simple plot of
count rate vs. time (see Fig. 1 in Parmar et al. 1986).

Bursts, eclipses, coronal scattering, and so on, have all been observed in other
LMXB. Because EX0O0748-676 is a transient, however, Parmar et al. were able to
study how two of these phenomona — type I bursts and X-ray emission during
eclipse — are affected by gross changes in X-ray luminosity.

X-ray emission during eclipse. The X-ray eclipse is not total. There is a resid-
ual emission that is linearly correlated with the average strength of the uneclipsed
intensity observed during the intervals preceding and following the eclipses (see
Fig. 4 in Parmar et al. 1986). The 2-6 keV flux in eclipse is a constant fraction
(= 4%) of the uneclipsed flux. Parmar et al. attribute this residual emission to
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scattering of the eclipsed, compact source by an accretion disc corona. This is plau-
sible; there is strong evidence for the presence of such coronae in other LMXB (see
Section 3). It is surprising, however, that an order-of-magnitude increase in the
uneclipsed source intensity of EX0O0748-676 leads to only an order-of-magnitude
increase in the eclipsed intensity. One might have expected the scattered com-
ponent to increase faster than linearly, since the corona, which is powered by the
central source, should grow in size and opacity as the source luminosity rises. This
apparent constancy of the corona with changes in X-ray luminosity may prove to
be a valuable input to models of accretion disk coronae.

Type I bursts. Gottwald et al. (1986,1987) observed and analyzed about three-
dozen type I bursts from EX0O0748-676. They found that the burst properties are
a strong function of the persistent emission. For example, the ratio (a) of the total
persistent energy emitted between bursts to the energy emitted in the following
burst decreased by about an order of magnitude as the strength of the persistent
flux decreased by a factor of 5. This result is contrary to the predictions of nuclear
flash models with stable hydrogen burning, and Gottwald et al. (1986) suggest that
it may be due to the flashes changing from helium-dominated at high accretion
rates to hydrogen-triggered, helium-hydrogen flashes at low accretion rates. This
suggestion was first made by Fujimoto et al. 1981. The apparent blackbody radius
during the burst decline was also correlated with the persistent flux and decreased
from about 9 km to 4 km (for a fixed temperature of 1.6 keV) as the persistent
emission decreased by a factor of 5.

Especially interesting was the detection of several bursts with very short (~10
minute) recurrence times—so-called “double bursts”—which are not well accounted
for by the thermonuclear flash model. The double bursts occurred during periods
of low accretion rate and, in so short an inter-burst interval, it is not possible to
accrete sufficient material to fuel a flash. Gottwald et al.’s analysis of these bursts
suggests that they are due to fuel that is not completely consumed during the
first burst, but which is somehow ignited 10 or so minutes later in a second burst.
These results support a model proposed by Fujimoto et al. (1987) to explain the
occurrence of double bursts in 4U1636-53.

5. CONCLUSION

Observations of transient sources in quiescence provide opportunities for a qual-
itative increase in our knowledge of LMXBs: Direct optical observations of the
secondaries in A0620-00 and Cen X-4 have yielded valuable dynamical data and
strong constraints on evolutionary scenarios; the findings from recent optical ob-
servations of 4U2129+47, a supposedly well-understood system, are surprising
and puzzling, and should lead us eventually to new insights. Finally, the study
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of EXOQ0748-676 in an X-ray active state has given us new information on the
properties of scattering coronae and thermonuclear shell flashes.

I thank John Raymond for stimulating discussions on accretion disks and Ronald
Remillard, my collaborator, for discussions and for his considerable help in prepar-
ing this paper. I am also grateful for financial support from the Research Oppor-
tunities Fund of the Smithsonian Institution.
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Chaotic dynamics in the X-ray variability of Her X-1

H.ATMANSPACHER, H.SCHEINGRABER, AND W.VOGES

Maz-Planck- Institut fir eztraterrestrische Physik, 8046 Garching, FRG

1. Introduction

In addition to its fundamental implications on the foundations of statistical physics,
the concept of deterministic chaos in dynamical systems has provided considerable
impact concerning the experimental characterization of dynamical systems. There
exist different methods to derive invariants of such systems from measured time
series (for an overview, see Ref.1). The determination of these invariants is possible,
if only one single variable of a generally complex system is accessible by observation.
This issue underlines the particular importance for astrophysical systems, for which
the only observable variable is the electromagnetic radiation.

In the present contribution we report results obtained from one of the mentioned
procedures introduced by Grassberger and Procaccia’? and described elsewhere in
this volume.? In brief, this method allows for a determination of the dimension of

the reconstructed attractor representing the investigated process. A non — integer
dimension indicates chaotic behavior.

The attractor dimension is of specific interest since it gives a lower bound for
the number of degrees of freedom of the system. It provides the mathematical
justification to model the system with the corresponding low number of variables.!1]
Since it is an appropriate measure for the complexity of a system, the attractor
dimension can also serve as a classifying criterion for different dynamical systems
of similar type. (For instance, it would be interesting to investigate and compare

the attractors of white dwarfs, neutron stars, and black hole candidates® as different
compact objects.)

This article describes the attractor analysis based on the X - ray luminosity from the
neutron star Her X-1. In the following sections we present the observational material
(2), discuss some methodical details (3), and summarize the obtained results (4).

(UFor an example of a successful application of this idea we refer to the discovery of low —
dimensional chaos in multimode laser systems. Here, the attractor analysis has led to the
prediction of unexpected microphysical mode coupling mechanisms which could be verified by
its additional effects on the behavior of the laser system.*
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We proceed without an elementary introduction into the applied method, for which
we refer to Refs.1-3.

2. Observational material

The neutron star Her X-1 and its visible companion HZ Her form a low mass
X-ray binary system showing several specific features. Her X-1 is surrounded by
an accretion disk consisting of gaseous matter flowing in from HZ Her. The strong
surface magnetic field of &~ 4 x 1012 Gauss causes a channeling of the accreted matter
onto the polar regions of Her X-1. The gravitational energy of the decelerated
matter is mainly converted into X-ray radiation.

The emitted X-ray radiation as observed by the EXOSAT satellite shows three
different periods of regular temporal variability: (i) the 1.24 sec rotaion period of
the neutron star, (ii) the 1.7 day orbital period of the system, and (iii) the 35
day period ascribed to a warping accretion disk. The geometry of the system is
illustrated in Fig.1.

PARTIAL OBSCURATION (C)

NEUTRON
STAR

=

ECLIPSE (B)

NO OBSCURATION (A}

HERCULES X-1 HZ - HERCULIS

Figure 1: The geometrical configuration of the binary system HZ Her / Her X-1. The different
source modes (A) - (C) are indicated as described in the text.

In addition to the regular periodic behavior, irregular (erratic) temporal variabil-
ities have been found on each of the periodic time scales. In order to distinguish
this irregular behavior in different geometrical configurations we define the follow-
ing source modes (see also Fig.1):

(A) Unobscured phase: the X-ray radiation is observed without any obscuration
effects due to the accretion disk or due to HZ Her and its atmosphere. The unob-
scured radiation amounts to slightly above 400 counts/sec and shows small intensity
variations.
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(B) Totally obscured phase (eclipse): the X-ray source is shaded by HZ Her and
the count rate is reduced to less than 300 counts/sec.

(C) Partially obscured phase (absorption dips): strong intensity variations of a typ-
ical duration of some hours. The count rates cover the range between (A) and (B).
(D) Background: in the off — source observation mode, the X-ray signal shows ir-
regular temporal variations around an average count rate comparable to the eclipse
mode.
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Figure 2: EXOSAT count rates of the ME X-ray radiation from Her X-1 as a function of time. The
different source modes (A) - (C) are indicated. The increased intensity during eclipse is due to solar
activity.

An X-ray luminosity time series containing source modes (A) - (C) is shown in
Fig.2. The data have been acquired in the EXOSAT PULS mode during a main
- on state of the 35 day period of the system at April 5, 1984 (for further details
see Ref.6). A much better impression of the temporal variablity in the individual
modes can be achieved on a spread time axis. In Fig.3 count rates for modes (A)
and (B) per 770 msec are plotted over a time interval of 770 sec. In both time
series, some long time variability of the signal can be recognized in addition to the
erratic short time variations. However, it seems extremely difficult to state any
significant difference between both types of irregular behavior. As it will be shown
in the following section, a clearcut difference can be obtained from an attractor
analysis.

3. Methodical details

The attractor analysis according to the procedure of Grassberger and Procaccia
requires a careful pre — investigation of the system in terms of conventional methods
like correlation functions and power spectra. Subsequently one has to determine
the crucial parameters for the attractor analysis, namely: (i) the optimum temporal
resolution 7 of the time series, (ii) the time delay At for the reconstruction of the
attractor in an artificial phase space, and (iii) a sufficient number N of data points
per time series.
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Figure 3: Temporal evolution of the X-ray count rates from Her X-1 in modes (A} and (B). Both
time series consist of 1000 data points with a temporal resolution of 770 msec.

The temporal correlation of the signal has a direct consequence for the value of 7.
In order to achieve a sufficiently dense covering of the attractor, a number of some
ten data points per correlation period is usually required. Too few data points
per correlation period would simulate an uncorrelated (random) behavior. On the
other hand, a very high temporal resolution often results in low count rates so that
counting statistics may dominate the signal which then appears to be random. For
the unobscured source mode (A), Her X-1 provides a correlation period of roughly
10 sec. The effects mentioned above appear for 7 > 1 sec and 7 < 150 msec, resp.

A value of =~ 770 msec has eventually been chosen. 2!

For a proper choice of At we refer to a suggestion of Fraser and Swinney.” Obviously,
At must not correspond to an eigenperiod of the system, since in this case the
artificial phase space would necessarily be one — dimensional. For the Her X-1
analysis the results were basically independent of At between 7 and 10r.

A criterion for a sufficient number N of data points has been proposed recently.’
The idea is to check whether an increase in N causes an improved representation
of the entire attractor in the artificial phase space. As a result, N = 1000 turned
out to be an adequate number of data points.

The determination of the attractor dimension from the time series shown in Figs.3a
and b is shown in Figs.4 (mode (A)) and 5 (mode (B)). While Fig.5 clearly represents
random behavior, Fig.4 shows a deterministic component indicated by the plateau
in the slope plot 4c. The constant slope corresponds to an attractor dimension
of ~ 2.35, whereas the random behavior in the eclipse mode can of course not be

associated with any attractor.l3

The fact that 7 is not too different from the 1.24 sec rotation period of Her X-1

(2]The EXOSAT data acquisition time binning is 9.67 msec. Longer time bins are simply achiev-
able by integration.

(311 seems worth to emphasize that the slope plot 4c nicely illustrates a basic feature of this type
of analysis. It decomposes the dynamics of the system into its random and its deterministic
contribution. The different types of behavior in Figs.4 and 5 allow for a clear distinction
between the time series shown in Figs. 3a and b.
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Figure 4: Attractor analysis of the time series shown in Fig.3a representing X-ray count rates from
Her X-1 in mode (A). a) Two — dimensional phase protrait of the measured time series vs the first

delay series (At = 7); b) correlation integral C’(z) according to Grassberger and Procaccia c) plot

of the slope (log C¢ )/loge vs log e. Dimensions of the artificial phase space are shown fromd =1
to 20, N = 1000, 7 = 770 msec.
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Figure 5: Attractor analysis of the time series shown in Fig.3a representing X-ray count rates from

Her X-1 in mode (B). a) - ¢) as in Fig.4. The lacking plateau in 5c indicates that there is no
attractor, but purely random behavior.

might suggest the influence of some sort of beat phenomenon on the analysis. In
order to check the relevance of the obtained result in this respect, an analysis of
a time series with a subtracted average 1.24 sec pulse profile has been performed.
In this case the signal turned out to be much too noisy to provide a deterministic
component. The pulse — corrected signal will be further investigated by methods
which are less sensitive to high noise levels.?

4. Results

A detailed description of the analyzed time series and the calculated dimensions
can be found elsewhere.8 The main results are the following:

In the unobscured mode (A) the reconstructed attractor reveals a dimension of
D =~ 2.35 for different time series and different data acquisition modes. This low
dimension indicates a fairly low number of variables required to model the dynam-
ical process accounting for the irregular X-ray variations. Corresponding attempts
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have been started.!?

For the eclipse data (B) and the X-ray background (D) there is no deterministic
component of the irregular signal. The motion of the system in the artificial phase
space is purely random.

During the absorption dips (mode (C)) we obtained a correlation period of ~ 200
sec and an optimum integrated resolution of ~ 5 sec. On this time scale, the
mode (A) behavior appears to be random, so that a separate attractor analysis is
possible for mode {C). The investigation of different time series provided dimensions
in the range between 8 and 10. The corresponding attractor can be ascribed to the
turbulent dynamics of density inhomogeneities in the accretion disk as the origin
of the partial obscurations.

In summary, the analysis of the irregular X-ray variability of Her X-1 in terms
of attractor dimensions provides basic information about the underlying dynami-
cal processes. Apart from its capability to distinguish random from deterministic
components of the system, the complexity of the deterministic contribution can be
quantified. Since it provides a lower bound for the number of variables of the sys-
tem, the attractor dimension should be considered as a tool supporting the search
for theoretical models of the dynamics of the system.
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ABSTRACT - We present new data on the X-ray source lying in the core of

47 Tuc that is the brightest of the dim globular cluster X-ray sources. From the
recalibrated IPC Einstein satellite data the X-ray spectrum was obtained (thermal
bremsstrahlung with kT = 2 ’:‘? keV and no intrinsic absorption). X-ray variability
is present at time scales of days, hours and tens of minutes. In addition we have
discovered transient periodic pulsations at period 120.200 s. Rapid periodic
pulsations at period 4.580 s are also marginally present.

We present the results of a CCD and image tube optical search for a faint
blue variable object in the X-ray source field. The limiting magnitude U =17
(M~ 3.6) is reached. A possibly UV and variable object stands out in our U
CCD frames.

We then discuss the nature of the X-ray source : cataclysmic variable or
transient low mass X-ray binary.

1. INTRODUCTION.

The Einstein survey of 71 globular clusters gives a bimodal luminosity function
(Hertz and Grindlay. 1983 a, bl. The source X0021.8-7221 which lies at 0.36
core radius from the centre of 47 Tuc is the brightest of the "dim" sources.
but still 10-100 times fainter than the faintest of the low mass X-ray binaries
(LMXB] observed outside or inside globular clusters (Verbunt et al, 1984). lts
nature is then unclear.

The accurate position provided by 5 HRI| observations permits a sensitive search
for the optical counterpart though the object is located in the overcrowded
core of the cluster,

In this paper we present new spectral and variability X-ray data, we give the result
of a high angular resolution optical investigation of the X-ray field and discuss
the nature of the object [see Auriére et al, 1988, for a more detailed
presentation).

* The optical data are based on observations collected at the European Southern
Observatory, La Silla, Chile.

** Presenter of this paper.
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Table 1 - IPC spectral fitting parameters,
fluxes and luminosities of X 0021.8-7221
in the 0.2-4keV energy range

Model Spectrum X%in/dof kT (keV) Ny fx fx Ly
or
aindex (1019%cm~2) observed emitted erg s-1
(1) (2) (2) (erg cm2 s-1) (3)
Th. Brems. 2.6/ 2.0°4:0 18 713 2.5 10712 2.8 10712 7.0 1033
Pow. law 2.4/9 2.1%1.0 31 130 2.7 10712 3.5 10712 8.7 1033
(1) x ;in : minimum x2 (not reduced) ; dof : degrees of freedom = number of

IPC channels used in the fit - 2 fit parameters.
(2) kT = spectral fit parameter for thermal bremsstrahlung spectrum ;
o = logarithmic slope for power law energy spectrum S(v)e v®
The uncertainties on kT (or « ) and Ny are 90 percent confidence limits,

they correspond to x + 4.6 (Avni, 1976).
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Figure 1:

The incident energy spectrum of X 0021.8-7221 as deduced from the EINSTEIN
IPC data. The error bars are 10. The histogram is the predicted distribution
for a thermal bremsstrahlung spectrum with temperature kT = 2 keV and
an absorbing column density Npy = 1.8 1020cm=2,
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2. THE EINSTEIN X-RAY DATA ON 47 TUC REVISITED.

2.1. Spectral parameters :

The Einstein IPC data were obtained during a 16240.7s exposure lasting from
19 to 22 November, 1979, the observatory axis pointing 10.5 arcmin. North
of the centre of 47 Tuc. In the 44 arc min diameter circle corresponding to
the angular diameter of the cluster, 3 X-ray sources are detected above 4.
the brightest one., detected at 31.7 X0021.8-7221 is the core source discovered
by Hertz and Grindlay (1983b) and precisely located at 0.36 core radius from
the cluster centre by Grindlay et al, (1984). A highly significant spectral fit
is obtained (Koch-Miramond and Auriére, 1987). Table 1 shows the parameters
of the best fits : either a thin thermal bremsstrahlung spectrum with kT = 2

keV and Np= 1.8 1020cm=2 or a power law energy spectrum with index 2.1
and Ny = 3.1 1020cm~2 (reduced X2 = 0.28 in both cases). No acceptable fit
was obtained with black body spectra. The former best value of N corresponds
to that deduced from the visual absorption, Ay = 0.04% mag.. to the cluster.
Figure 1 shows the incident spectrum together with the predicted distribution
of the best spectral fit for thermal bremsstrahlung. The 90 percent confidence
limits on kT and Np corresponding t0X2min+ 4,6 (Avni, 1976) are 1 < kT <

6 keV and 2 1019¢<Npy <3.1 1020cm™2,

Note that kT > 10 keV cannot be completely excluded due to the very limited
energy range of the Einstein IPC and toc the shape of the chisquare grid :
nevertheless a very soft spectrum (kT a few tens eV] is excluded.

We conclude that the core source in 47 Tuc has a low temperature spectrum
(kT=2 keV] with little or no intrinsic cut-off and no very soft spectral
component.

We then deduce the fluxes [observed and emitted] and the luminosities in the
0.2 - 4 keV energy range. As shown in Table 1 a luminosity approaching 103"'erg
s~ is found.

2.2. Brightness variability :

i) Long term variations :

We have used the spectral parameters determined above to calculate the
ratio of the fluxes given by the two Einstein instruments I{PC and HRI in their
common bandwith 0.5 - 2.5 keV. We then have corrected the fluxes obtained
with the IPC in order to compare them with the HRI fluxes, using the above
ratio and the same spectral parameters (assumed to remain constant with
timel. This correction factor remains smaller than the statistical errors when
kT varies within the 90 percent confidence limits defined above. The last column
of Table 2 gives the calculated fluxes and figure 2 shows their variation versus
time. There is evidence for a long term variability of the source. amaounting
to a factor 2.5 to 3 in 2.6 days and to a factor 2 in 12 h.

We have searched for shorter term variability of the source with the simple
variability test using x2 applied to the photon arrival times in the IPC (Harnden
et al. 1984). As shown in Table 3 evidence of variability is obtained for bin
sizes 987s and 1780s, the probability being 0.5 percent that the source is constant
at these time scales.

The source was observed at maximum brightness during the HRI observations,
Ly =2 1034 erg s1. During the IPC observations the source was in a lower
state lasting at least 2 days, L, = (7%.1] 1033 erg s,
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Table 2 - X0021.8-7221 in 47 TUC :

observations with the Einstein observatory

Instrument/ Date Middle Effective Count Rate Calculated
HRI / 658 * 21 April lh3lm 1640 71 7.7 5.3 10712
HRI / 4858 18 Nov. 19hl4m 838 8l * 12 6.1 1012
HRI / 4857 19 Nov.  7h05m 1513 85 * 10 6.4 10712
HRI / 4855 ** 19 Nov. 15hl2m 1989 65 ¥ 7 4.9 10-12
HRI / 4856 19 Nov. 18h25m 1882 56 £ 7 4.2 10712
IPC / 4969A 19 Nov. 20 h47m 4774 119 ¥ 5 2.9 10-12
IPC / 4969B 20 Nov. 6hl4m 4828 101 t 5 2.4 10-12
IPC / 4969 C 21 Nov. 23h00 7208 90 * 6 2.2 10-12

* 47 TUC is on axis for sequence 658 and offset by ~ 8 arcmin in a

different direction for each of the 4 other HRI sequences.

** The x-ray source is split into two equal sources separated by 15
arcsec and located in two adjacent 12x12 arcsec detection cells ;

we have summed the corresponding counts.

. e ' : : :
= 47 TUC X 00218 - 7221
w = .
% % o Einstein HRI
£
- 6 } 4 Einstein IPC -
]
o~
L or i I
x % .
u.
o
g | |
E L 4
2, * +
=T

1 1 1 1 1

2 Aprii’ 18 Nov. 19Nov. 20Nov. 21Nov

year 1979 (Time)
Figure 2 :
The X-ray flux of X 0021.8-7221 wversus time in the Einstein energy band
0.2-4 keV. Five HRI and 3 IPC flux measurements with 10 error bars are shown.
Intercalibration of the two measurements is explained in the text.
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Table 3 - Search for variability of X 0021.8-7221

in the photon arrival times (Einstein IPC)

Observation Effective Photons Bin size Reduced Dof Probabil. Variabil.

time obs. time yged s x2 (3) (4)
s

Nov. 1979

19, 19h.68 800 1.54 8 0.2 -
4774.4 568 { M

19, 21h.90 1600 0.7 4 0.6 -

20, 3h.56 987 3.2 7 0.005 Yes
4828.2 489

20, 8h.49 1780 3.9 5 0.005 Yes

20, 5h.83 1679.4 139 336 1.2 4 0.3 -

20, B8h.26 409.5 63 90 2.2 4 0.07 Possible

21, 20h.52 1084 0.96 12 0.5 -
7208.6 651

22, 1h.48 1872 1.95 6 0.07 Possible

Einstein IPC, sequence number 4969

(1)

(2)

(3)

(4)

Zooming on interval where counting rate is 1llo above mean value on
Nov. 20.

Zooming on interval where counting rate is 7 o below mean value on

Nov. 20.

Probability for getting x2 or greater from random data.

Probability less than 1 percent is the adopted criterion for varia-

bility. "Possible" means that there is some evidence for variability

(probability that source is constant is less than 10 percent).

Table 4 - Parameters of the frequency analysis of X 0021.8 - 7221
with a Fast Fourier Transform algorithm

IPC Segment Total Minimum Maximum Period
Elapsed time frequency frequency range
s Hz Hz S
A 7928 1.26 1074 2.06 0.48 - 7928
Bl 8393 1.19 10-4 1.95 0.51 - 8393
B2 1679 5.94 10-4 9.76 0.10 - 1679

c 13394 7.46 1075 1.22 0.81 - 13394
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Figure 3 : 47 TUC  X0021.8-7221
The distribution of bins versus power s T ! f LI T '
in all bins from period 0.6 s up to L Einstein IPC data  —
2640 s for 537 photons from the 0.01 - 4.47 keV
source and 580 background photons. R 19 November, 1979
The histogram represents the expe- n g
rimental data and the straight line - _
the theoretically expected distribu- ]
tion. The arrow shows the bin with 2, -
signal at period 120.123 s. 2
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Figure 4 :

X-ray light curve of X 0021.8-7221 during segment A of the IPC observation.
on 19 November, 1979, when the decreasing luminosity of the source was
Ly~ 81033erg s”!. The data in the 0.01-4.47 keV range have been folded
modulo 120.200 s in 12.02 s channels. The 10 statistical error bars are shown.
The phase 0. has been chosen in the middle of the lower plateau. The peak
to peak modulation is 52 * 14 percent.

Figure 5 :

X-ray light curve of X 0021.8-7221 during segment C of the IPC observation
on 21 November, 1878, when Ly~ 6.103 erg s71. Low energy data {0.01 -
1.08 keV) folded modulo 4.5806s in 0.458 s channels. The 1 o statistical
error bars are shown. The peak modulation is 58 * 14 percent.
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ii] Periodic oscillations :

A frequency analysis using a Fast Fourier Transform (FFT) algorithm was done
on 4 segments of the IPC observation which started on 19 November. 1879,
finished on 22 November, 1878 (see Table 3) and on a background file containing
1732 counts registered in a 6.6 arcmin radius circle at the centre of the same
IPC field where no sources are detected. For each segment the broad energy
range of the IPC (0.01 - 4.47 keV), its soft part (0.01 - 1.08 keV]) and hard part
(1.08 - 4.47 keV) were analysed separately. The data in each segment are divided
in 327868 time bins, producing 16384 evenly spaced frequency samples starting
with f min = 1/T [T total elapsed time in each segment) and finishing with
f max = 16384/T. In Table 4 we list for each segment the total elapsed time,
the minimum and maximum frequencies and the corresponding period range
in the FFT search. In the Fourier spectrum of segment A, a frequency peak
with amplitude 3.45 is present, the probability being 89.1 percent that the
source is not steady at the corresponding period Py = 120.123 s, Figure 3
demonstrates that the distribution of power within the various frequency bins
follows the expected exponential law for random fluctuations (Middleditch
and Nelson,1873) except for the peak at 120.123 s. Another frequency peak,
corresponding to a period P, = 4.580 s, appears in the Fourier spectrum with a
probability of 92.5 percent in the low energy data of segment C, but its harmonics
2, 3 and 4 are also present with smaller probabilities in the low and high energy
data of all segments.

These frequency peaks and their harmonics are not present in the Fourier
spectrum of the background as shown by figure 3 for segment A.

We have then folded the 587 photons collected during the 7928 s of the first
segment in 10 or 20 bins in the period range 119.8 s to 120.3 s with 0.01 s steps.
The best (reduced X2 = 5.96 for @ degrees of freedom is obtained for a period
P =120.200 s. The corresponding light curve is shown in figure 4 with the lo
statistical error bars. Taking into account the number of independant frequency
bins used in this analysis we obtain a probability of 5 1079 that this light curve
could be produced by chance. The peak to peak modulation of the X-ray flux
is 52 *. 14 percent. The double peaked shape of the light curve is still present
at the same phase when we fold an uninterrupted data set in segment A (duration
2335 s, 284 photons) or when we change the binning of the data. The level
of confidence associated with the light curve is higher than that of the Fourier
peak, due to the non-sinusoidal modulation of the X-ray flux.

We have then folded the 413 low energy photons collected during the 13393
s of segment C, in 10 bins, in the period range 4.575 to 4,585 s with 0,0002
s steps. The best [reduced) X2, 4.49 for 9 degrees of freedom. is cbtained for
the period Po = 4.58060 s (the fundamental detected in the Fourier analysis).
The corresponding light curve with the 1o statistical error bars is shown in
figure 5 : it has a probability of 1.5 percent of being random. The peak to peak
modulation of the X-ray flux is 58 * 14 percent,

We conclude that the X-ray core source in 47 Tuc shows variability at days,
hours and tens of minutes time scales. In addition transient periodic oscillations
at period 120.200 s lasting for 2.2 h were present on 18 Nov. 1979 and rapid
periodic oscillations at period 4.580 s were marginally present two days later
and probably during the entire observation. The upper limits of the coherence
are found to be 1078s/s and 10~8s/s respectively for these 2 periods.

Owing to the recent discovery of two millisecond binary pulsars in 47 Tuc
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Figure 6 :

The investigated field around the HRI Einstein position for the core X-ray
source in 47 Tuc.

The V, B, U images are from 20s, 1 min, 10 min exposures obtained with
the GEC CCD at ESO La Silla 2.2 m telescope. The observations are listed
in table 5 and the photometry for identified stars is given in table 6, Star 9
is the bluest object in the field and could be a hot object.

The drawn circle is 7 arcsec radius and centred on star 1, Our best estimate
for the centre of the error circle (used in table 6) is however located between
star 1 and star 6. North is up, East is left.
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[(Ables et al. 1988) we have searched for a modulation of the X-ray flux of
X0021.8-7221 at the orbital period, 1924.3 *. 0.3 s, of the pulsar PSR0021-
72A. No signigicant peak appears at the corresponding frequency in the Fourier
spectrum. The same negative result was obtained for X0022.5-7229, a source
lying at ~ 27 core radii from the centre of 47 Tuc and detected at 7 ¢ level
by the IPC.

3. SEARCH FOR THE OPTICAL COUNTERPART.

As for the corresponding galactic objects a faint blue variable object is expected
(Bradt and McClintock, 1983). The error box for its pesition is small (Grindiay
et al, 1984) but is located in the core of the cluster, at ~10 arcsec from the
centre. The good point is that 47 Tuc is a nearby object with a high
metallicity : 1) fainter absolute meagnitudes might be reached : 2) its horizontal
branch does not contain blue stars and only two RR Lyrae variables are
catalogued (Sawyer Hogg. 1973). Every hot or faint variable star in the error
box region should then be an interesting object.

3.1. The error circle :

Grindlay et al (1984) give the position of the X-ray source in 47 Tuc with a
1o precision of 0.9 arcsec. Nevertheless, the optical identification of the M
15 X-ray source (Auriére et al. 1884]), with M 15: AC 211, a star located about
3 arcsec from the HRI Einstein position, suggests taking this last value as
the uncertainty for the 47 Tuc source position. As we did not do astrometry
in 47 TUC, we used the field chart of Fig.l in Grindiay et al (1984) in order
to find the centre of the error circle : the star alignment procedure we had
to use adds an uncertainty of ~ 4 arcsec. Finally we traced an error circle of
7 arcsec.

3.2. Observations and photometry :

Our optical investigation is based upon 3 sets of data obtained at ESO (La
Silla) : a series of UBV frames taken with a UV coated GEC CCD camera at
the 2.2 m telescope [Auriere. 1986) : UBV image tube photographs obtained
at the 1.5 m Danish telescope with an instrumentation specially designed for
the study of cores of globular clusters [Auriere and Cordoni. 1981) ; a series
of B and V frames obtained with a RCA CCD.at the 1.5 m Danish telescope.
The GEC set obtained in excellent seeing conditions is the deepest one. The
RCA set was mainly used for calibration purposes. Table 5 gives the journal
of observations. 33 stars were resolved in the error circle defined above. Figure
6 shows the corresponding field from the GEC CCD data [with 3B85x576 pixels
22p square in size, each representing 0.26 arcsec on the skyl. The relative
photometry in the U.B.V filters was obtained on the July 1987 GEC CCD series
using the DAOPHOT and ALLSTAR packages (Stetson, 1887). The magnitude
calibration was abtained from Landolt (1983) standard stars for the B and V.
As for the U, we used the U-B aperture photometry of Da Costa (1978) combined
with our B photometry. The uncertainty in the final zero point calibration
is about 0.03 mag. both in B and V and 0.1 mag. in U. The complete photometric
procedure used to reduce our CCD data is described in Auriére and Ortolani
(1987).
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Figure 7 :
U/U-B colour magnitude diagram for 31 stars resolved in the error circle for
47 Tuc X-ray source. The possible locus for the blue star 9 is shown. The large
cross shows a typical interval error of 0.1 mag. [in both magnitude and colour)
due essentially to background determination.

i
N

Figure 8 :

U-B/B-V two colours diagram for 31 stars resoived in the position error circle
of the 47 Tuc X-ray source. The paossible locus for the blue star 9 is shown.
The solid line shows a population | relation reddened with E (B-V]) = 0.04, The
large cross shows a typical internal error of 0.1 mag (on both colours) due
essentially to background determination.
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3.3. Results :

Table 6 presents positions and photometry for the 33 stars resclved in the
error circle. NUM is the star number marked on Fig 6 : the X and Y define
the star position in CCD pixel coordinates : Ry is the distance in arcsec between
the star and our best estimate of the X-ray source position in the field : next
columns give the classical UBV magnitudes and colours when available. Fig.
7 and Fig. B8 show the corresponding U/U-B colour magnitude and U-B/B-V
colour-colour diagrams. These diagrams are the best suited for having hot
objects stand out. Bars give our 10 estimate of *. 0.1 mag. both in magnitude
and colour. Star 9 appears of great interest. It stands out on the 3 U images
obtained in July 1986, in good seeing conditions (U = 16.3 % 0.2]. This star
is nevertheless almost invisible on our B and V frames (Fig. 6] and measurements
appear to be almost impossible : if we impose the star position, it is found
fainter than the limiting magnitude of the frames : if the position is free,
we find B=16.8 and V = 16.4 but the star position moves by 0.6 arsec and
0.3 arsec respectively, with respect to the U position. One has to consider
that star 9 is 1.2 arsec from a red giant (star 17). The contamination by star
17 is not troublesome in U (U = 15.4, FWHM = 1 arcsec) but is worse in B (B
= 13.4) and in V, though seeing is better (FWHM = 0.B arcsec but V~ 12 and
star 17 is slightly saturated]. We then only got a lower limit for the B magnitude
of star 9. We estimated B > 16.8 since this number is the magnitude of the
two faintest stars well resolved in the field. star 6 and star 31 (which is only
1.7 arcsec from star 17]) as well as the value found for star 9 (using ALLSTAR)
when the position is free.

With U = 16.3 *. 0.2 we conclude that U-B £ - 0.3. The locus for star 9 is
then plotted on Fig. 7 and Fig. B which sho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>