Astronomical Data Analysis Software and Systems XXVII

ASP Conference Series, Vol. 522

Pascal Ballester, Jorge Ibsen, Mauricio Solar, and Keith Shortridge, eds.
©2019 Astronomical Society of the Pacific

Stingray Software The Code of the Spectral-timing Revolution:
Black Holes, a Library, and a GUI

Simone Migliari,'> Paul Balm,? Ricardo Vallés,> Matteo Bachetti,?
Daniela Huppenkothen,* Abigai Stevens,’ Matteo Guainazzi,® and
Erik Kuulkers®

VESA/ESAC, Madrid, Spain. smigliari@sciops.esa.int
2Timelab Technologies Ltd, London, UK.

3INAF-AOC, Cagliari, Italy

4Universily of Washington, Seattle, WA, USA

SUvA, Amsterdam, the Netherlands

SESA/ESTEC, Noordwijk, the Netherlands

Abstract. The use by the astrophysical community of novel high-frequency time-
series analysis techniques, more recently brought outstanding advancements especially
in the study of relativistic systems, such as black holes and neutron stars. One of the
obstacles of the several fast-moving research groups in this field is the lack of shared,
publicly available tools for analysis. Many individual tools and libraries exist, but they
are typically private, self-made implementations in a variety of different languages,
without a clear, independent check of reliability. Furthermore, the lack of any GUI
makes the tools (more) difficult to use. We initiated an open source project that imple-
mented timing techniques in such a way that scientists with or without good knowledge
of Python can exploit the full power of X-ray data. Under the sometimes used sin-
gle umbrella name of Stingray Software, we in fact built three: Stingray the library,
that provides a robust, well tested and clear API in Python to perform all most com-
mon (and some advanced) timing and spectral timing analysis techniques; HENDRICS,
a shell script interface; DAVE, an interactive interface in Javascript and Python that
aims to implement data exploration and also reduce the learning curve for newcomers
and non-programmers. Our Open Source approach involves the interested astronomical
community as well as non-astronomy developers.

1. The Science Context: Black Holes and Compact Objects

One of the main goals of high energy astrophysics is to understand how matter behaves
under strong gravity, near black holes where relativistic corrections to Newtonian phys-
ical laws - as predicted by Einstein - are important. The most important window to ob-
serve the regions near black holes is X-rays. X-ray radiation is produced when matter
heats up while falling towards the event horizon. Since X-rays are shielded by the Earth
atmosphere, our research uses data from satellites. By studying the fast-variability of
this X-ray radiation (variability in the range of second to fraction-of-millisecond), we
can have tremendous insights on the geometry and nature of the phenomena that occur

521

522 Migliari et al.

in the proximity of relativistic compact objects, therefore constraining the properties of
the space-time in extreme-field gravity. In more recent years, new ideas about how to
analyze astronomy data with new but also old, consolidated time-series analysis tech-
niques has initiated what we call the spectral-timing revolution, leading to a hotbed of
new developments.

2. Problem: Current Software Tools

One of the obstacles of the several fast-moving research groups in this field is the lack
of shared, publicly available tools for analysis. Many individual tools and libraries
exist, and some are even publicly available, but what is lacking is a coherent set for a
complete analysis. Also, the lack of any GUI makes the tools (more) difficult to use.
This situation hinders collaboration and mobility of researchers between groups. It
is also a barrier for other researchers or students to join this field that is now living an
exciting period of new discoveries. In this project, we implement new timing techniques
in such a way that scientists with or without good knowledge of Python can exploit the
full power of X-ray astrophysical data: 1) a well-documented API with classes and
methods that can be used and modified to improve the analysis pipeline; command-line
scripts to launch the analysis in batch mode; 2) a GUI for data exploration, detailed
analysis and interactive adjustments.

Existing tools that we use (directly or as a source of information) to build our
product are Astropy, Sherpa, SciPy and Carma. On one hand, the fact that there are
many tools already available, highlights the problem that many research groups tend
to use their own tools, which hampers collaboration between the groups. This project
has the goal to provide a single, well-tested and well-documented package, that all
groups can use together to collaborate. On the other hand, the existing tools provide
an excellent source of information about which functionalities are needed and how
scientists want to use them.

3. Requirements Overview

The four main requirements are:

The software has to suit a broad range of problem domains within astronomy:
The software needs to be flexible and adaptable, using a programming language that is
both popular among the potential users and suitable for the computational algorithmic
tasks. This was the reason for choosing Python as the language for implementing the
algorithms.

The software must permit data exploration: Existing software tools for analysis
of variable events fall short in the area of data exploration, generally because they lack
a graphical user interface. One very important aspect of the GUI is to contribute to a
modern user experience.

Access to existing software is limited: Access to existing analysis tools is limited
for a variety of political, legal and technical reasons. We implemented an open source
software that invites improvements and development from anyone who wishes to use
it. There is no limits to the access to the software, and all documentation and software
will be available. The software is released under the open source license Apache v2
License, allowing the highest degree of flexibility to benefit from the software.

The Code of the Spectral-timing Revolution 523

Existing software tools have outdated user interfaces and work-flows: Another
concern with existing software packages is that these tools have grown slowly, often
over decades, and that they were built by scientist users, not software engineers. This
leads to software that is difficult to modify for anyone, let alone someone outside of the
initial research group. It also tends to lead to software with a less than intuitive user
interface.

4. Open Source development

Two imperatives in the development of the software are: 1) involvement of specialized
astronomical community in the definition of the software functionalities, 2) involve-
ment of professional developers and software engineers in the architectural design and
coding of the software. These characteristics lead naturally to the development of the
software as an open source. Among the benefits of developing an open source software,
we highlight here six: 1. Security. Given enough eyeballs, all bugs are shallowquotes
what is often referred to as the Linus Law, after Linus Torvalds, the creator of Linux.
Bugs in open source software also tend to get fixed immediately. 2. Quality. Open
source software gets closest to what users want because those users can have a hand in
making it so. 3. Customizability. Users can take a piece of open source software and
change it and/or expand it to add the functionality they needs, therefore making it use-
ful to a larger community. 4. Freedom. Since one of the primary goals of the software
is to become widely used as standard in the community, turning to open source means
that there are no barriers in use and development manpower worldwide. S. Flexibility.
Open source software is typically much less resource-intensive than a proprietary soft-
ware, meaning that it can be run well even on older hardware. 6. Support Options.
Behind an open source software there is often support through the vibrant communities
surrounding each piece of software.

The use of open source license assures that the source code will always be avail-
able and its value can be maintained. The use of a popular and suitable programming
language for algorithmic tasks helps the adaptability to future requirements. A modern
user interface will permit data exploration in ways that current tools do not. The open
source license applicable to the software will permit free access and maximizes its use.

5. Results: the Stingray Software

This software was kick-started thanks to funding from the European Space Agency
(ESA) through the project Data Analysis of Variable Events, or DAVE, that we also
kept as the name of the GUI. Under the sometimes used single umbrella name Stingray
Software, we in fact refer to three software: a library, a shell scripting interface and a
GUI. At the time of writing, three coordinated papers with details on the three software
are in preparation. We herewith show some headlines:

Stingray, the library, is a spectral-timing software package for astrophysical X-
ray (and more) data. Stingray merges existing efforts for a (spectral-)timing package
in Python, and is structured with the best guidelines for modern open-source program-
ming, following the example of Astropy. Stingray aims not only at becoming a standard
timing package, but at extending the implementation to the most advanced spectral

524 Migliari et al.

timing techniques available in the literature. Reference: D. Huppenkothen et al. in
preparation. Github link: https://github.com/StingraySoftware/stingray

HENDRICS, the shell scripting interface, is a set of command-line scripts
based on Stingray is designed to do correctly and fairly easily a quick-look (spectral-
)timing analysis of X-ray data. Originally, its development as MaLTPyNT - Mat-
teo’s Libraries and Tools in Python for NuSTAR Timing - was driven by the need
of performing aperiodic timing analysis on NuSTAR data. Today, this set of com-
mand line scripts is much more complete and it is capable of working with the data
of many more satellites. The analysis done in HENDRICS is compatible with the
graphical user interface DAVE (below), so that users will have the choice to ana-
lyze datasets with an easy interactive interface, and continue the analysis in batch
mode with HENDRICS. Reference: M. Bachetti et al. in preparation. Github link:
https://github.com/StingraySoftware/HENDRICS

DAVE, the GUI, is built on top of the Stingray library. It is intended to be used
by astronomers for time-series analysis of variable sources. The goal of the GUI is to
enable scientific exploration of astronomical (X-ray, but not only) observations and to
do detailed analysis of data in a graphical environment. Reference: S. Migliari et al. in
preparation. Github link: https://github.com/StingraySoftware/dave

e
-

Figure 1. Examples of the DAVE GUI: Left: Fitting a PDS with power law mod-
els; Right: 3D view of the dynamical PDS.

