AstroSat / CZT Imager

Dipankar Bhattacharya IUCAA, Pune India The primary objective of AstroSat is simultaneous, broadband (UV-hard X) Timing and Spectroscopy

The UV Imaging Telescope is also a good instrument for studying the distribution of hot gas/ star formation.

ASTROSAT

Launched 28 Sep 2015

Open proposal based

Annual cycle based

ToO proposals may be

submitted at any time

Oct 2016

proposals;

science operation since

Orbital period 98 minutes

Dipankar Bhattacharya

CalTech X-ray club

17 Aug 2020

ASTROSAT A Satellite Mission for Multi-wavelength Astronomy Indian Space Research Organisation

ASTROSAT orbit

650 km altitude: stable and limited background 6 deg inclination: avoids most of South Atlantic Anomaly

Dipankar Bhattacharya

CalTech X-ray club

Astrosat: angular resolution of co-pointed instruments

Spectral Coverage and Time Resolution available in some active space borne observatories

Fast timing also requires high photon collection rate, demanding a large effective area

Effective area of AstroSat compared with other missions

Dipankar Bhattacharya

17 Aug 2020

CalTech X-ray club

UltraViolet Imaging Telescope (UVIT)

Currently NUV channel is unavailable due to a communication issue

Dipankar Bhattacharya

CalTech X-ray club

NGC 4151 Seyfert galaxy

G.C. Dewangan et al

Gold coated foil mirrors

Mirrors: Nested & Segmented conical surfaces in Wolter type I geometry working at Grazing incidence **39 nested shells**

SXT team / K P Singh

Spectroscopy with SXT

LAXPC team / J S Yadav

Large Area X-ray Proportional Counter (LAXPC) on AstroSat

3 units

3-80 keV

Energy resolution ~12-20%

Timing resolution 10 µs

Non-imaging, collimator 1 deg x 1 deg

Effective area ~2100 cm² per detector

BHXRB MAXI J1535-571: Spectro-timing behaviour

Bhargava et al 2019

Crab Pulsar with AstroSat

Crab Pulsar AstroSat LAXPC + CZTI

Dipankar Bhattacharya

17 Aug 2020

ASTROSAT Cadmium Zinc Telluride Imager

Built at TIFR, Mumbai and VSSC, Thiruvananthapuram

CalTech X-ray club

CZTI team / A R Rao

Cadmium-Zinc Telluride Imager (CZTI) aboard AstroSat

Geometric detector area 952 cm²

Coded mask, 50% transmission Collimators 4.6 deg x 4.6 deg

Energy resolution ~5%

Timing resolution 20 µs

Compton Polarimetry possible above 100 keV

Csl Veto detector below CZT detectors

Both CZT and Veto record GRB events

Am²⁴¹ alpha-tagged calibration source at each quadrant

Astrosat CZTI mask design

Designed to gather as much independent information as possible

based on 256-element pseudo-noise Hadamard sets

16x16 elements per module

4x4 modules per quadrant 7 basic patterns, shuffled

4 quadrants rotated patterns

Black regions represent holes to be cut into the mask plate

Actual Fabricated Pattern for one quadrant.

Other quadrants have rotated versions

Mask of the same size as detector, elements the size of pixels

CZTI as a Hard X-ray Polarimeter (100-380 keV)

Compton Polarimetry

$$\frac{d\sigma}{d\Omega} = \frac{3\sigma_{\rm T}}{16\pi} \left(\frac{\omega'}{\omega_0}\right)^2 \left(\frac{\omega_0}{\omega'} + \frac{\omega'}{\omega_0} - 2\sin^2\theta\cos^2\eta\right)$$

Distribution of azimuthal scattering angle η is measured

count rate
$$C(\eta) = A + B\cos^2(\eta - \phi)$$

B = polarisation degree

 $\phi = \text{incident polarisation angle}$

CZT Imager coordinate system

CZTI DQR page provides a quick summary of observations

http://www.iucaa.in/~astrosat/czti_dqr

ASTROSAT CZTI

Orbit-wise Data Quality Report

Last updated on: 2017-12-21T11:27:29.792969

Switch to: Orbit-wise | Merged OBSID-wise | Merged processing logs | Problem pages | Pixel enable/disable history |

Module threshold history

Click on any table heading to sort by that column

Dipankar Bhattacharya

17 Aug 2020

ASTROSAT CZTI

S.V. Vadawale, N.P.S. Mithun

Pixel selection

- Grade: dynamically determined + CALDB
- Grade 0 = good, 1 = spectroscopically bad,
 2 = flickering, 3 = noisy, 4 = dead
- Grade 2-4 : ~ 8%
- Grade 1 : ~20% (can be used for imaging and timing but not for spectroscopic work)
- CALDB has detailed response function for each of the 16384 pixels. Used for generating combined weighted response

Ageom ~ 976 cm² ~50% blocked by CAM

A_{eff} for spectroscopy ~ 340 cm² @ 30-100 keV

Making an image

CalTech X-ray club

Start with an event file

Count the number of events occurring in each pixel, creating a Detector Plane Histogram (DPH)

Normalise the DPH count in each pixel by the relative effective area of the pixel. This yields a Detector Plane Image (DPI)

 $D_i = \mathbf{DPI} \text{ count in pixel } i$

This is a linear combination of shadows cast by the sources in the FOV

Quadrant Q0, ObsID 1694

Reconstructing the sky plane image Quick Method

Look for a shifted replica of the mask pattern $M_i \ \theta_y$ $\{M_i\}$ is a collection of 0-s (closed) and 1-s (open)

Cross correlate $\{M_i\}$ and $\{D_i\}$ via FFT $\{S_j\} = \mathcal{F}^{-1}[\mathcal{F}\{M_i\} \times \mathcal{F}\{D_i\}]$

 ${S_j}$ is a collection of source intensities at sky elements j

This is the imaging algorithm used in the pipeline software at present

Slight misalignments between the mask and the detector are accounted for by using a calibrated phase matrix $\{\phi_i\}$

$$\{S_j\} = \mathcal{F}^{-1}[\mathcal{F}\{M_i\} \times \{\phi_i\} \times \mathcal{F}\{D_i\}]$$

Dipankar Bhattacharya

Quadrant Q0, ObsID 1694

Pro: Computational economy

Con:

Does not account for partial shadowing of pixels, flux estimates inaccurate, higher coding noise θ_x

Reconstructing the sky plane image

More rigorous methods

Compute expected shadows of sources in different directions: $\{R_{ij}\}$ Use ray tracing, include all effects e.g. camera structure, partial transparency of mask plate, energy dependence etc.

 $\{R_{ij}\}$ can then be used in several ways

Cross Correlation: $\{C_j\} = \{R_{ij}\} * \{D_i\}$ Balanced Cross Correlation: $\{S_j\} = \{R_{ij}\} * \{D_i\}/N_o - \{\tilde{R}_{ij}\} * \{D_i\}/N_c$

Forward fitting: $D_i = \sum_j R_{ij}S_j$ Fit $\{S_j\}$ to reproduce $\{D_i\}$

Bayesian inference: $S_j^{(n+1)} = S_j^{(n)} \sum_i R_{ij} \frac{D_i}{\sum_j R_{ij} S_j^{(n)}}$ **Richardson-Lucy iterative** reconstruction

These algorithms have been implemented and tested with CZTI data. Some of them will be made available in future releases of the pipeline.

FFT image

Crab: extract from ObsID 406 duration 50 second

Quadrant Q0 only

Using $\{R_{ij}\}$

Cross correlation

Richardson-Lucy

Vibhute et al 2017

Mask Weighting

Used to estimate background subtracted flux of a single dominant source at a known location in the FOV

For a given source location (θ_x, θ_y) in camera coordinates, the fractional exposure f_i of pixel *i* can be computed by ray tracing.

If S is the source flux and B the background flux (counts/area) then

DPH count $D_i = (f_i S + B)a_i$ [a_i = **pixel effective area**]

Define Mask Weight $w_i = (2f_i - \alpha)$ such that $\sum_i w_i a_i = 0$ Then $\sum_i w_i D_i = S \sum_i w_i f_i a_i$; Hence $S = \frac{\sum_i w_i D_i}{\sum_i w_i f_i a_i}$

This can be done for different energy selections, generating a spectrum or for different time bins, yielding a light curve.

In CZTI pipeline, mask weighting estimate is done separately for every second of data in order to compensate for pointing jitter.

Crab, Q0, ObsID 406

Mask weighted spectrum

normalized counts s⁻¹ keV⁻¹

 \times

Timing with CZTI

normalised intensity

Timing with CZTI

Absolute time calibration using simultaneous radio observations Stable within ~200 microsec rms CalTech X-ray club Dipankar Bhattacharya

Crab spectral fit with AstroSat instruments

CalTech X-ray club

CZTI performs two simultaneous functions

- E < 100 keV: pointed detector, 4.6 deg FOV, targeted observations: proposed science
- E > 100 keV: all-sky open detector, high energy transient monitoring: POC action, shared on web <u>http://astrosat.iucaa.in/czti/?q=grb</u>

GW counterpart search

ATLAS 17aeu : purported counterpart of GW 170104; shown by CZTI to be associated with a GRB that occurred 21 h later

GW170817 BNS merger event : No CZTI detection due to Earth occultation

CZTI as Hard X-ray Polarimeter

Phase resolved polarimetry of the Crab in 100-380 keV band using ~800 ks AstroSat CZTI observation

CZTI as Hard X-ray Polarimeter

AstroSat/CZTI detects ~60 GRB/y; ~10/y bright enough for polarisation study

GRB 160821A: time resolved spectro-polarimetry

Dipankar Bhattacharya

CalTech X-ray club

17 Aug 2020