

Into the Heart of the AGN IRAS13224-3809

Andy Fabian

Institute of Astronomy, University of Cambridge With the help of Michael Parker, Will Alston, Jiachen Jiang, Ciro Pinto, Chris Reynolds, Javier Garcia, Thomas Dauser, Erin Kara and others

Into the Heart of the AGN IRAS13224-3809

Andy Fabian

Institute of Astronomy, University of Cambridge With the help of Michael Parker, Will Alston, Jiachen Jiang, Ciro Pinto, Chris Reynolds, Javier Garcia, Thomas Dauser, Erin Kara and others

IRAS13224-3809

IRAS 13224-3809

- ROSAT: Boller+93; 97
- z=0.0667; NLS1, RQ (5mJy at 1.4 GHz)

Fig. 4. Optical spectrum of IRAS 13224-3809 obtained at the 2.2 m telescope at La Silla in January, 1993

EXTREME VARIABILITY MAKES IRAS13224-3809 INTERESTING

IRAS13224-3809 XMM 1.5 Ms 2016

Alston+19

Alston+19 5ks bins 0.3-1.2 keV band

 $Rms \propto flux^{2/3}$

Accretion disc

Lamppost model

Accretion disc

Reflection from ionized gas Ross+Fabian93,05; Garcia+13

Ionization Parameter $\xi = L/nr^2$

Relativistically Broadened Line

Soft excess – broad iron line – Compton hump

Parker, Matt+

Reflection in AGN with NuSTAR

Spectra show ratio of data to model power-law

IRAS13224-3809

J.Jiang

IRAS13224-3809

Sometimes most emission from within 2r_g

Mkn 335 Parker+14

Parker, Tomsick+, JMiller+13,15 and Galactic sources too

Walton+16 V404 Cyg Flare NuSTAR

Path difference leads to Reverberation (Time lags) So far all lengthscales are in units of r_g (=GM/c²), i.e. depend on BH mass.

Time lags give lengths in cm.

Observations of Reverberation complicated since see both Direct and Reflection components together

Separate spectrally (contributions vary with energy)

Need Spectral Timing

Fabian+09

X-ray Reverberation

1H0707-495 Fabian+09 TIME LAGS between 0.5-1 and 1-3 keV

3-4 keV vs 5-7 keV

Kara+16

Microlensing confirms that Corona is compact

Source

Microlensing Star

View from Chandra

Chandra

в

Galaxy

Coronal Size from Microlensing: Coronae are Compact

Half-light radius of X-ray emission in quasars is about 5-10 gravitational radii

Chartas+16; Kochanek+04

SPECTRA show Fe K absorption

Parker+17

Parker+17a Variable Blueshifted 0.24c Iron Emission Line

Predicted line spectra

Parker+17, see also Pinto+18

Parker+19 Fractional variability spectrum of IRAS13224

Do High Velocities always mean Outflows?

Orbital velocity rise to c/2 at the ISCO, so:

- Observed UFO velocities are present in the orbital motions of the disc.
- Our line of sight passes over parts of the disk with v_{LOS} = -0.24c
- Can the absorber be located there?

How the effects of resonant absorption on black hole reflection spectra can mimic high-velocity outflows

L. C. Gallo^{1*} and A. C. Fabian²

Accretion disc

Fabian, Jiang, Reynolds +20

Image frame

Depth of absorber ~ $10^{-4} r_g$

Further work on blueshifted absorption in IRAS13224 may need new spectra (e.g. XRISM) and/or comparison with other UFO features

Further test of Lamppost model uses measurement of the density of the reflector

This is possible because free-free absorption is energy and density dependent, strongly affecting the soft X-ray spectrum at high densities

Energy at which free-free opacity equals Thomson opacity $E \propto \sqrt{n}$

Garcia+16

IRAS13224-3809 XMM spectra in 5 flux states

Use Ionization Parameter to infer "Euclidean" coronal height h₀

$$\xi = L/nh_0^2$$

BUT need to include effects of strong gravity (light bending, blueshifts etc)

Coronal Height Measurement

- Euclidean estimate $h_0 \sim 0.4 1.7 r_g$
- Flux boosted height $h \sim 2 5 r_g$
- Reverberation height h $\sim 6 12 r_g$

Other Considerations

- Returning radiation?
- Size of corona

Jiang+19, 20 in prep using modified SS equations (Svensson&Zdziarski93)

Summary of New Results

- Relativistic reflection and reverberation common in luminous accreting BH
- First X-ray reverberation AGN BH mass from IRAS13224 (10% uncertainty; Alston+20)
- Possible absorption lines from disc surface
- Measuring surface disc density for objects with BH mass < 2 x 10⁷ M_{sun} (Jiang+19a,b,c,20)
- Approximate agreement between height as measured by reverberation and through the ionization parameter
- Obtaining geometry of innermost 5r_g around BH the heart of the AGN

Some implications for other objects

- There are dozens of bright AGN which could be observed to this depth with long exposures (need high f_{var} * Countrate).
- Many more with eXTP, Athena, Lynx...
- High density reflection models open new observational approach to accretion discs
- Since BHB discs more ionized, then surface absorption unlikely to be observable
- Accretion disc models may need to be revised to account for powerful coronae.
- Implications for Super-Eddington behaviour

IRAS13224-3809 – MOST VARIABLE AGN IN X-RAYS XMM + NuSTAR PROGRAMME 1.5Ms

NICER measures short reverberation lags

Reverberation in XRBs: Uttley et al., 2011, De Marco et al., 2017

Consistent picture between spectra and timing analyses!

H Moseley

X-ray Fluorescent Spectroscopy / X-ray Reflection

But is there relativistic reflection in NGC 4151?

High mass black hole, short observations \rightarrow Are we probing long enough timescales?

Zoghbi, Miller & Cackett 2019

NuSTAR

Zoghbi et al., 2013 - Lags can be measured through time domain techniques, allowing for reverberation measurements even from data with gaps

Swift J2127.4+5654

1.3

1.2

1.1

0.9

Spectrum

10

Energy (keV)

20

5

ratio data/model

IRAS13224 RMS – Energy spectra

Alston, Parker+19

NICER observations of MAXIJ1820+070

NICER measures short reverberation lags

Reverberation in XRBs: Uttley et al., 2011, De Marco et al., 2017

8 D. J. K. Buisson et al. 19

Disc is NOT truncated

Fabian+09

X-ray Reverberation

relativistic reflection and reverberation

Broad line is constant over time

Gallo+04

1H0707-495

