Reopening the window of astronomical soft X-ray polarimetry

Hua Feng 冯哔 (Tsinghua University)

on behalf of the PolarLight collaboration

CONTENTS ENTS

\square
眰

Science with X-ray Polarimetry

Technique for X-ray Polarimetry

PolarLight

CubeSats in Space Astronomy

Science with X-ray Polarimetry

What can we learn from X-ray polarimetry?

- Information about the magnetic field
- Synchrotron radiation (PWNe, Jets)
- Plasma polarization (Magnetized plasma)
- QED vacuum birefringence (Neutron Stars)
- Information about the scattering medium
- Thomson/Compton/InverseCompton scattering
- Geometric symmetry (accretion flow, BH spin, Sgr B2, etc.)

Science cases

- Synchrotron radiation and B-fields

Blazars GRB Jetted TDEs
(Marscher et al. 2010)

Pulsar wind nebulae

Science cases

- Accreting Pulsars

Science cases

- Surface thermal emission from NSs
- QED effects (vacuum birefringence) \& B-field geometry
- Tested in optical (RX J1856.5-3754; Mignani et al. 2017)
- SGRs \& AXPs

~10\%

~70-80\%

Simulations by R. Taverna and R. Turolla

Science cases

Technique for X-ray Polarimetry

Exploration of the new window since the 1960s

X-ray astronomy started in 1962

First attempt: 1968
Scattering polarimeter Aerobee 150

First precise measurement: 1975
Bragg polarimeter, OSO-8
$P=19.2 \% \pm 1.0 \%$
$\psi=156.4^{\circ} \pm 1.4^{\circ}$
Weisskopf et al. 1976, 1978

First detection: 1971
Bragg polarimeter
Aerobee 350
Crab nebula $P=15.4 \% \pm 5.2 \%$

First satellite: 1974
Flat Bragg crystal
Ariel 5

45°
${ }_{\substack{\text { Fio. . . } \\ \text { Ariel } V . \\ \hline}}$

X-ray polarimetry based on the photoelectric effect

Cross-section of photoelectric effect

$$
\frac{\partial \sigma}{\partial \Omega}=r_{0}^{2} \frac{Z^{5}}{137^{4}}\left(\frac{m c^{2}}{h \nu}\right)^{7 / 2} \frac{4 \sqrt{2} \sin ^{2}(\theta) \cos ^{2}(\varphi)}{(1-\beta \cos (\theta))^{4}} \quad \frac{d \sigma}{d \Omega} \propto \cos ^{2} \varphi
$$

Technical difficulties

- Short range for electrons of a few keV
- in silicon: $\sim \mu m$
- in gas: ~mm
- Electron tracks are not straight due to scattering
- Challenge for detector
- Require 2D imaging device
- Resolution < $100 \mu \mathrm{~m}$

Gas Pixel Detector (GPD)

- First demonstrated by INFN-Pisa \& IAPS-Rome
(Bellazzini et al.; Costa et al. 2001)

Detector assembly

Measured electron tracks

Angular modulation

PART THREE

PolarLight

Polarimeter Light（PolarLight；极光计划）

Shocking test

Vibration test

Thermal vacuum

Launched into a low Earth orbit

Re-detection of X-ray polarization from the Crab nebula

Time variation of polarization

With pulsar emission

Without pulsar emission

Magnetosphere altered after the glitch

significance level: 3σ

- Bayes factor
- Bayesian posterior
- Bootstrap

High energy emission from pulsars

Cheng et al. 1986
Muslimov et al. 2004
Kalapotharakos et al. 2012
Harding et al. 2019

Reopening the window

OSO-8 (1975)
nature astronomy

PolarLight (2018)

IXPE in 2021
(Weisskopf et al. 2016)

eXTP in 2027
(Zhang et al. 2019)

CubeSats in Astronomy

CubeSat 立方星

－The CubeSat standard
－proposed in 1999 by Jordi Puig－Suari of California Polytechnic State University and Bob Twiggs of Stanford University
－an educational tool for teaching students about spacecraft hardware， electronics and programming
－Low cost

$3 U$

6U

Astronomical CubeSats funded by NASA

- ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics)
- to measure exoplanetary transits across bright stars with <100 ppm photometry
- launched in August 2017, one of the first CubeSats enabled for astronomical measurements
- PicSat
- to observe in visible light the potential transit of the directlyimaged giant planet β Pictoris b
- HaloSat
- measure the soft X-ray emission from the hot halo of the Milky Way galaxy to resolve the missing baryon problem
- CUTE (Colorado Ultraviolet Transit Experiment)
- survey of exoplanet transit spectroscopy in the near-UV
- SPARCS (Star-Planet Activity Research CubeSat)
- the far- and near-UV monitoring of low-mass stars (0.2-0.6 M_{\odot})
- BurstCube
- to detect and localize GRBs

A rapid growth

Launches of CubeSats

The GRID network

Flight model \& satellite

GRID - a student project

The first group

Testing the detector

Talking at COSPAR 2018

- Started in 2016 October
- More than 50 Students from 16 universities
- GRID-1 in orbit
- GRID-2/GRID-3 will be launched this year

CubeSats in Astronomy

- To demonstrate new techniques
- Sounding rockets vs. Balloons vs. CubeSats
- Highly customized science objective
- Large missions: observatories

THANK YOU!

- Small missions: dedicated
- Long-term monitoring of a single or a few targets
- Student training
- Project cycle: ~3 years
- All-around skills: science + engineering + leadership

