
When is νfν useful?

S. R. Kulkarni

August 1, 2007 (some modifications since then)
Further modification on 4 June 2005 (§5)

Abstract

Instruments usually measure the photon rate or power over a band-
pass and from which we can extract the power per unit area per spectral
unity or the spectral flux density, f(ν). However, what is of astrophys-
ical interest is the spectral flux density integrated over frequency range
which essentially captures most of the energy, I(ν1, ν2). Frequently the
quantity νf(ν) is used as a surrogate for I.

Here, I show that for power law spectra over the photon index range
1 < αP < 3 (with αP = 2 for the Crab nebula over the X-ray and hard
X-ray bands) the quantity log(ν2/ν1)νf(ν) evaluated at νg = (ν1ν2)1/2,
the geometric mean of the frequency bounds, is an excellent surrogate
for I.

Finally, (perhaps an obvious point), in general νfν can be quite
misleading when line emission is plotted along with continuum emis-
sion.

1 Spectral Flux Density

The spectral density is the energy received per unit time in a specific band-
width. Spectral flux density is the energy received per unit area per unit
time in a specific bandwidth.

Radio astronomers prefer frequency spectral flux density with the band-
width set to 1 Hz. Optical astronomers prefer the wavelength spectral flux
density in which the bandwidth is set to either 1 Å, 1 nm or 1µm.

f(ν) =
dF

dν

f(λ) =
dF

dλ
(1)

where F is the flux density (energy per unity time per unit area).
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X-ray astronomers use keV and sometimes the photon flux density which
is the number of photons per unit time per unit area usually in a frequency
bandwidth of ν0 = h/E0 where E0 =1 keV and h is Planck’s constant:

dN

dE
=
f(ν)

hν
ν0. (2)

Power law spectra are often seen in astronomical sources. Using the
radio astronomy convention,

f(ν) = A∗(ν/ν∗)
−α (3)

where α is the spectral index (the negative sign being dropped by conven-
tion). The photon flux density is then dN/dE ∝ ν−α−1. Thus the “photon
index”, αP , is one unit larger than α (the negative sign being understood).
The X-ray spectrum of the Crab Nebula is a power law with α = 1. The
photon index is thus αP = 2.

2 The use of νf(ν)

The numerical value f(ν) depends on value of the bandwidth which is ar-
bitrary. 1 Hz could be much smaller than the range over which the object
emits power (the usual case) or be too fine a range (say some sort of a cavity
in resonance). Furthermore, f(λ) = f(ν)|dν/dλ| = f(ν)ν2/c and thus has
a different shape compared to f(ν). This difference in shape has led to the
usual (not particularly meaningful) trick questions in elementary classes: at
what frequency does the black body spectrum peak and why is this different
from the peak wavelength?

The relationship

F(ν) ≡ νf(ν) = λf(λ) ≡ F(λ) (4)

makes it attractive to consider this quantity rather than f(ν) or f(λ). In-
deed, the peak frequency (νmax) or peak wavelength of a black body peak is
the same when F(ν) is differentiated with respect to ν. I was surprised to
discover that this basic point was only realized in the fifties, by Bracewell
[1].

In particular, the integral of the Planck black-body function (IBB) is∫ ∞
0

IBB(ν)dν =
σT 4

π
= 1.3586F(νmax). (5)
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Equation 5 says that the bolometric flux density is, within 36%, approxi-
mated by the maximum of F(ν). Incidentally, νmax is related to the black
body temperature as follows: hνmax/kBT = 3.92.

The two principal motivations to the use of F(ν) are best summarized
by Equations 4 (invariance of shape to the frequency spectral flux density
or wavelength spectral flux density) and 5 (as a surrogate for the bolometric
flux). See Gehrels[2] for a summary of the history of the usage of F(ν) in
astronomy. In that note, Gehrels points out two incorrect statements about
F : it is not the energy within an octave and neither within a decade. It is
the flux within a logade1 (a factor of of e ∼ 2.7) of frequency:

F(ν) = ν
dF

dν
=

dF

d(log(ν))
. (6)

3 Power Law Spectrum

In this section we focus on the bolometric flux density for power law spectra.
Integrating a power law spectrum (Equation 3) between ν1 and ν2 yields

Iα(ν1, ν2) = A∗ν∗
1

1− α

[(
ν2
ν∗

)−α+1

−
(
ν1
ν∗

)−α+1]
. (7)

Evaluation of Equation 7 requires knowledge of A∗ν
α
∗ and α.

For the special case of α = 1,

I1(ν1, ν2) = A∗ν∗ log(ν2/ν1)
= f(ν)ν log(ν2/ν1). (8)

The form of Equation 8 motivates us to define the following quantity as
a surrogate for I(α):

F (ν) ≡ log(ν2/ν1)νf(ν)
= log(ν2/ν1)A∗ν∗(ν/ν∗)

−α+1. (9)

Given the definition of F (ν) I define the “bolometric” correction as

Cα(ν) ≡ Iα(ν1, ν2)

F (ν)

=
1

(1− α)

1

log(ν2/ν1)

[(ν2
ν

)−α+1
−
(ν1
ν

)−α+1]
. (10)

1This word is my invention.
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I evaluate the bolometric correction at the two bounding frequencies,
ν1 and ν2 as well as the geometrical mean between the two frequencies,
νg = (ν1ν2)

1/2:

Cα(ν1) =
1

(1− α)

1

log(ν2/ν1)

[(ν2
ν1

)−α+1
− 1

]
,

Cα(ν2) =
1

(1− α)

1

log(ν2/ν1)

[
1−

(ν1
ν2

)−α+1]
,

Cα(νg) =
1

(1− α)

1

log(ν2/ν1)

[(ν2
ν1

)−α+1
2 −

(ν1
ν1

)−α+1
2
]
. (11)

These correction factors are displayed in Figure 1.
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Figure 1: The bolometric factor, Cα, as a function of the photon index (α + 1).
The frequency ratio, ν2/ν1 is set to 102.

Conclusion: The quantity

νgF (νg) log(ν2/ν1) (12)

where νg is the geometric mean of ν1 and ν2 is an excellent surrogate for the
flux integrated between ν1 and ν2.
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Unfortunately, this (elegant) result as well as the result for the blackbody
model (Equation 5) are what I call as parlor tricks. If you already have a
black body fit then the bolometric flux is given by Stefan’s formula . For the
power law model, you need to have a very good sense of ν1 and ν2 in order
to evaluate a meaningful νg (and have the security that f(νg) is measured
or can be reasonably inferred). If you already had that assurance then you
may as well use the exact formula (Equation 7).

The lesson is primarily pedagogical: F(ν) can, with some caution and
proper choice of frequency, be a good surrogate for the bolometric flux at
least for two very different types of intensity distributions (black body and
power law).

4 Line Emission

Broad-band emission from the Galactic Center region is displayed in Fig-
ure 2. The e+-e− line seemingly has the same flux as the continuum emission
at higher energies. However, the line is very narrow (primarily arising from
annihilation in the interstellar medium. In this case, νfν is an over-estimate
by the factor ν/∆ν where ∆ν is the width of the line.

5 Photon index and spectral index

In X-ray and γ-ray astronomy it is practical to measure the photon flux i.e.
the number of photons per square centimeter per second. This is usually
denoted by N (E). The spectral photon flux is the number of photons per
unit frequency bandwidth per unit area per second. It makes little sense to
use Hz as the unit bandwidth. A practical unit is keV (X-ray) or MeV (γ
ray).

N (E) : photons cm−2 s−1 (13)

N(E) : photons cm−2 s−1 keV−1. (14)

Thus, EN(E) is the spectral energy flux and is ∝ fν and E2N(E) ∝ νfν .

A The Crab Nebula

Traditionally, the Crab nebula is used as a calibrator for classical (2–10 keV)
and hard X-ray band (10–100 keV). According to Toor & Seward [3]

I = AEα exp(−σNH) (15)
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Figure 2: Broad band emission from the Galactic Center
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where A = 9.7 keV keV−1 cm−2 s−1, α = 1.1±0.03 and the exponential term
represents the ISM absorption.

Thus I(1 keV) = A or I = 9.4 photon cm−2 s−1 keV−1. The Jansky
unit is spectral density but per Hz and so we find I(ν = 2.4 × 1017 Hz) =
6.4 × 10−26 erg cm−2 s−1 Hz−1. Thus at E = 6 keV the flux is about 1 mJy
whence the usual statement “1 Crab = 1 milliJy”.

Ignoring the exponential term, the flux between photon energy E1 and
E2 (both in keV), given that α is almost 1, is

F = A log(E2/E1) keV cm−2 s−1. (16)

Since 1 keV=1.6× 10−9 erg we find

F (2−10 keV) = 2.5× 10−8 erg cm−2 s−1

F (20−50 keV) = 1.4× 10−8 erg cm−2 s−1. (17)
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