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ABSTRACT. Basic principles of Fourier techniques often used in X-ray time series 
analysis are reviewed. The relation between the discrete Fourier transform and the 
continuous Fourier transform is discussed to introduce the concepts of windowing 
and aliasing. The relation is derived between the power spectrum and the signal 
variance, including corrections for binning and dead time. The statistical properties 
of a noise power spectrum are discussed and related to the problems of detection 
(and setting upper limits) of broad and narrow features in the power spectrum. 
A "dependent trial" method is discussed to search power spectra consistently for 
many different types of signal simultaneously. Methods are compared to detect a 
sinusoidal signal, a case that is relevant in the context of X-ray pulsars. 

1. INTRODUCTION 

Fourier techniques are wielely used in science and engineering, but problems 
of terminology and differing conventions hamper the flow of information between 
the various branches. Even within the field of neutron-star timing, radio-, X-ray 
and high-energy gamma-ray astronomers sometimes have difficulties to compare the 
techniques they routinely apply. 

In the present paper an attempt ,,,ill be made to explore some of the techniques 
that are commonly used ill timing studies of neutron stars, and that refer to the 
detection of signals against a background of noise, in the language of the X-ray 
astronOl1wr. 

The regime that I will nearly exclusively be referring to is that of equidistantly 
binned timing data, the backgronnd noise of which is dominated by counting statis­
tics. If there are gaps in the data, they are far apart, and the d"ta are not "sparse" 
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in the sense that nearly all time bins are empty. This kind of data is eminently 
suited to analysis with Fast Fourier Transform (FFT) techniques, and the discussed 
methods will all be based on these techniques. Emphasis will be on the statistics of 
the detection of weak signals rather than on the characterization of signal shapes, 
with a special discussion of the basic problem of detecting a strictly periodic signal 
with a sinusoidal shape. While the discussion is specially geared towards photon 
counting data such as produced by, for example, an X-ray proportional counter, 
many of the techniques discussed are also applicable in other regimes. 

Section 2 contains a general introduction to the Fourier transform and intro­
duces the power spectrum. Section 3 deals with the problem of detecting a signal 
in the presence of noise. In Section 4 it is discussed how to quantify the power of 
the signal and how to estimate its variance using the power spectrum. Section 5 
discusses how to search a power spectrum by making use of the basic properties of 
power spectral statistics only, usiug "independent trials". At the end of this section 
there is a summary in "recipe" form of how to simply search a power spectrum 
for a weak signal. In Section 6, a detailed discussion is given of the specific case 
of detecting a sinusoidal signal. The subject of Section 7, finally, is a method of 
searching power spectra for various types of signal simultaneously. The methods 
discussed in Sections 6 and 7 have in common that because higher demands are 
made on the tests performed on the power spectrum than in Section 5, the test 
statistics are no longer simple (in particular, "dependent trials" are considered) 
and have to be evaluated by simulations. 

The present exposition owes much to the paper by Leahy et al. (1983). Some 
of the material discussed is also contained in Chapter 2 of the review about quasi­
periodic oscillations by Lewin, van Paradijs and van del' Klis (1988), hereafter 
Paper 1. 

2. THE FOURIER TRANSFORM 

2.1. Introduction 

In this section (2.1) the Fourier transform is introduced in very general terms. 
We do not yet worry about summation indices and the like; such details are filled 
in in the following sections. 

A Fourier transform gives a decomposi tion of a signal, say, x( i), into sine waves. 
At any given frequency w, one can find a set of values (a,<p) or (A,B) such that 
the sinusoid a cos( wi - <p) = A cos wi + B sin wt best fits the data x( t) 1. Do this for 
a sufficient number of different frequencies Wj, then the signal can be written as 

1 (a, <p) and (A, B) are, of course, related by a = vA 2 + B2 and tan <p = B / A 
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xCi) = ~ L aj cos(u..'jt - <pj) = ~ L (Aj coswji + Bj sinwjt). (2.1) 
j j 

The Fourier coefficients A j and B j cau be straightforwardly computed as 

.4j = L Xk COSWjik 

k 

B j = LXksinwjtk' 
k 

(2.2) 

where Xk = X(tk)' It can be seen from Eq. 2.2 that Aj and Bj are simply the 
correlation of the signal Xk with a sine or cosine wave of frequency Wj: if there 
is a good correlation then the corresponding Fourier coefficient is high and gives a 
large contribution to the sum in Eq. 2.1 which reconstructs the signal out of sine 
waves. 

For easier handling of the two numbers (( A, B) or (a, <p)) which one obtains at 
each frequency, it is possible to represent the Fourier transform in terms of complex 
nunlbers: 

(2.3a) 

(2.3b) 

where i 2 = -1. The complex l1lunbers aj are called the (complex) Fourier 
amplitudes; together they form the Fourier transform of the x k. Inversely, the 
Xk form the inverse Fourier transform of the aj. \Vriting aj as lajlei<f>j, we 
see (Eq. 2.3b) that the signal ;-Ck is now decomposed into functions of the form 
aje-iWjtk = lajle-i(wjtk-¢j) = lajl(cos(Wjtk - <pj) - isin(wjtk - <Pj)), having a non­
zero imaginary component. This is nothing to worry about: in this representation 
both positive and negative frequencies are considered, with W_j = -Wj, and if the Xk 

are real numbers then one sees from Eq. 2.3a that a_j = aj (the asterisk indicating 
the complex conjugate), so that the imaginary terms at j and -j (i.e., at Wj and 
W_j) cancel out and the end result in the summation (2.3b) is (2/N)lajl cOS(Wjtk­
<Pj), strictly real. 
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2.2. The Discrete Fourier Transform 

We now get a bit more specific and define our signal as a series of N numbers 
x k (k = 0, ... ,N - 1); in the applications discussed in this article, x k will always 
stand for the number of photons detected in bin k. The discrete Fourier transform 
a j (j = - N 12, ... ,N 12-1) decomposes this signal into N sine waves. The following 
expressions describe the signal-transform pair: 

N-l L :ekc27rijk/N . N N 1 
)=-2'···'"2- (2.4a) 

k=O 

N/2-1 
1 '" -27rijk/ N 

Xk = N ~ 0je k = 0, ... ,N-1. (2.4b) 
j=-N/2 

If, as before, the signal is an equidistant time series of length T, so that x k 

refers to a time tk == kT IN, then the transform is an equidistant "frequency series", 
and aj refers to a frequency Wj == 27rlJj = 27rjIT. The time step is 6t = TIN; the 
frequency step is 61/ = liT, and substituting 27rjklN = Wjtk, we find back Eq. 2.3. 

It is a matter of taste where one puts the factor liN in Eq. 2.4; definitions 
where this factor appears in Eq. 2.40, or where both sums are preceded by a factor 
1/VN are also possible and do, in fact, occur in literature. 

Note that the number (N) of input values Xk equals the number of output 
values a j; if the x k are uncorrelated, then the a j are as well. The discrete Fourier 
transform gives a complete description of the discrete signal; the highest frequency 
needed for this complete description is 1/N/2 = !NIT. This frequency, equal to half 
the "sampling" frequency defined by the spacing of the Xk, is called the Nyquist 
frequency. An oscillation at l.lN/2 corresponds to an alternating "up-down" signal 
in the Xk. Note that a_N/2 = I:k Xke-7rik = I:k Xk( _l)k = aN/2; it does not 
matter whether one puts the Nyquist frequency at the positive end or the negative 
end of the Fourier transform. At zero frequency, the result of Eq. 2.4a is just the 
total number of photons detected; ao = I:k Xk == N ph . 

2.2.1. The Fast Fourier Transform. The fast Fourier transform (FFT) is a 
computer algorithm to efficiently compute the discrete Fourier transform. Often, 
but not always, the data is constrained by these algorithms to have a number of 
bins N equal to a power of 2. See, e.g., Press et al. (1986) for an exposition of the 
functioning and sample computer codes of FFT algorithms. 
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2.3. The Continuous Fourier Transform 

The continuous Fourier transform decomposes an infinitely extended continuous 
function x (t) (-00 < t < (0) into an infini te number of sine waves: 

a(v) = j<Xl :r(t)e271"vit dt 
-<Xl 

-00 < v < 00 (2.5a) 

x(t) = f: a(I/)e-271"vit dv -00 < t < 00. (2.5b) 

When doing analytical calculations, the continuous Fourier transform has a 
number of pleasing properties (for example, the continuous Fourier transform of a 
sine wave is a delta function; this is not in general true for the discrete Fourier trans­
form, see Fig. 6.1a). Therefore, theoretical predictions of the shape of the Fourier 
transform of a signal are usually in terms of the continuous Fourier transform. 

Unfortunately, in the real world the data are not infinitely extended nor con­
tinuous, and one might well ask what is the relation of Eq. 2.5 with the discrete 
Fourier transform of a discretely sampled section of x( t). This question will be 
adressed in Section 2.5. 

2.4. The Power Spectrum 

A result known as Parseval's theorem states: 

N-l N/2-1 

L l;q:12 =~ L lajl2. 
k=O j=-N/2 

(2.6) 

This implies that there is a relation between the summed squared modulus of the 
Fourier amplitudes and the total variance of the data: Var(xk) == Ek(Xk - xl = 
" 2 1 (" )2 1" 1 12 1 2 1 uk Xk - N uk Xk. = N uj (lj - NaU' so t lat 

j=-N/2 
#0 

(2.7) 

Adopting the normalization used by Leahy et ai. (1983), we will define the power 
spectrulu as 

. N 
J = 0""'2' (2.8) 

where Nph is again the total number of photons Ex k = ao and a i is given by 
Eq. 2.4a. Using once more the result that for real data lajl = la_jl and taking 
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account of the fad that the term at the Nyquist frequency occurs only once 111 

Eq. 2.7, we find for the expression for the total variance in terms of the Pr 

(2.9) 

Note the differences in the indexing of (Ij and Pj. Computer implementations of 
the FFT usually employ a storage scheme that is different again (Fig. 2.1). 

aj _!i.. -'t+ 1 -1 0 1 't- 2 't- I 2 

Pj 0 1 't- 2 't- I N 
'2 

FFT 0 1 't- 2 't- I 1:!.. 
2 

-'t+1 -1 

Fig. 2.1. Storage schemes. The FFT scheme may differ between implementations 
- in this example bin - J;f + 1 follows bin J;f. 

Often the variance is expressed ill terms of the fractional root-mean-square 
(rms) variation in the Xk: 

I' == 
iJ Var(;rk) 

x 

""N/2-I P Ip 
L.Jj=1 j + 2" N/2 

Nph 
(2.10) 

Sometimes r is expressed in terms of a percentage, and is then also called the 
"percentage nns variation". A sinusoidal signal at the Fourier frequency IIj (see 
Section 4 for the 1110re general case) :1' k = A sine 27l' II jt d will cause a spike at II j in 
the power spectrum with 

N2 
Pj,sine = 1 __ A2 

2 Nph 
(2.11 ) 

The reason for choosing this apparently rather a\vkward normalization for the pow­
ers lies in the statistical properties of the noise power spectrum, to be described in 
Section 3. 

If the data consist of the sum of a number of independent signals: x k == Y k + Z k, 

then the so-called superposition theorem ("the transform of the sum is the sum of 
the transforms") says that if bj and Cj are the Fourier transforms of Yk and Zk, 
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respectively, then the Fourier transform of Xk is aj = bj + Cj. This means, that a 
similar superposition principle does not apply to power spectra: 

(2.12) 

However, if one of the two signals summed consists of random uncorrelated noise, 
then the cross-terms will tend to average out to zero. 

2.5. The Relation between the Discrete and the Continuous Fourier 
Transforll1 

The answer to the question posed in Section 2.3 about the relation between 
the discrete and the continuous Fourier transform can be obtained by making use 
of one of the powerful theorems of Fourier analysis, the convolution theorem. This 
theorem states, that the Fourier transform of the product of two functions is the 
convolution of the Fourier transforms of these two functions. So, if a(v) is the 
continuous Fourier transform of x(t) and b(v) that of y(t) then the continuous 
Fourier transform of x(t)y(t) is a(v) * b(v) == J~oo a(v')b(v - v')dv': "the transform 
of the product is the convolution of the transforms". The inverse is also true ("the 
transform of the convolution is the product of the transforms"), and in the case of 
the discrete Fourier transform analogous theorems apply. 

Now suppose that a( v) (-00 < v < 00) is the continuous Fourier transform 
of the infinitely extended continuous function x(t) (-00 < t < 00). Suppose, 
furthermore, that x k (k = 0, ... , N - 1) is a finite discrete time series defined as 
Xk = X(tk)' where tk = l..:TjN, i.e., :Ck is a discretely sampled section of x(t). 
Then we see (Fig. 2.2a) that the relation of :r( t) with x k is given by a double 
multiplication: x( t) has been multiplied with a "window function" 

. { 1, w(t) = 
0, 

and with a "sampling function" 

where o(t) is the Dirac delta function. 

0-::; t < T 
otherwise, 

(2.13) 

(2.14) 

Consequently, the relation of a(l!) with aj is given by a double cOl1volu­
tiol1(Fig. 2.2b): a(//) must be convolved with the Fourier transforms of both the 
window function and the sampling function. 

Because (to be consistent with Eq. 2.4) we have chosen the window function 
to be asymmetric around t = 0, the "window transform" l-V(v) turns out to be 
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1['( t) WINDOW FUNCTION 

,r(t)w(t) WINDOWED TIME SERIES 

i (t) SAMPLING FUNCTION 

x(t)w(t)i(t) WINDOWED AND SAMPLED TIME SERIES 

TIME 

Fig. 2.2. a) Obtaining the discrete time series Xk as a discretely sampled section 
of x( t) involves a d01lble m'/lltiplication. 

complex. To understand what is going on, it is sufficient to consider the power 
spectrum of Well): 

IW(v)1 2 == 11: w(t)e 21r,'it d{ = I sin7r:T 12 (2.15) 

For a symmetric wet) we would have FV(v) = sin(7rvT)/7rv. The Fourier transform 
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Fig. 2.2. b) The discrete Fo~trier tran,~form a j of x k is obtained out of the contin­
uous Fourier transform a(v) by a do·ttble convol·ntion. The fig~tre shows the power 
spectra corresponding to the var·io1ts FO'nrier transforms. Vedical dashed lines in­
dicate the Nyquist frequency. 

of an infinitely extended periodic series of delta functions such as the sampling 
function i( t) is again an infinite periodic series of delta functions; 

(2.16) 
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The functions wet) and i(t) and the power spectra corresponding to l'V(v) and lev) 
are plotted in Fig. 2.2. 

The convolution of a( II) with Hr( 1)) causes all features in a(v) to become wider; 
in particular, a delta function can be seen in Fig. 2.2 to change into shifted version 
of l1'(v); a peak of finite width with side lobes. The convolution of an arbitrary 
function with a delta function at 1/0 is a shifted version of the original function: 
f(v) * b(v - vol = f(v - 1/0)' Therefore, the convolution of a(1/) with 1(1/), which 
is a series of delta functions with spacing N /T results in a convolved function 
a(1/) * lev) that repeats every N/T frequency units. 

For a real signal xCt) we have, as before, aC-v) = a(1/)*, so that Ja(vW = 
Ja( -v)J2: the power spectrum is symmetric around v = O. The final result is that 
the power spectrum of the conw)lved function Ja(v) * l(v)J2 is reflected around the 
Nyquist frequency vN/2 = tN/T. This causes features with a frequency exceeding 
the Nyquist frequency by Vx (::;0, located at v = VN/2 + vx) to also appear at a 
frequency 1/N/2 - vx, a phenomenon known as aliasing; the reflected feature is 
called the alias of the original one. 

Using Eqs. 2.13 and 2.14 it is straightforward to show that the discrete Fourier 
amplitudes a j are the values at the Fourier frequencies Vj == j /T of the windowed 
and aliased continuous Fourier transform a IVI( v) 

00 

aWI(v) == a(v) * W(II) * lev) = J x(t)w(t)i(t)e211'ivt dt 
-00 

so that a WI(j /T) = aj. Explicitly performing the convolution of a( 1/) with l( 1/) we 
finally have: 

aj = aw](j/T) = aw(j/T) * l(j/T) = ~ f aw (1/j - e~) , 
(=-00 

(2.17) 

where we have used Eq. 2.16 and where Ilj = j/T and ClIV(V) == a(v) * l1'(v). 
To summarize, the transition from the continuous Fourier transform to the 

discrete Fourier transform involves two operations: windowing, a convolution with 
the function 11'( 1/), which is essentially a peak with a width bv = l/T plus sidelobes, 
and aliasing, a reflection of features above the Nyquist frequency back into the 
range (0, VN/2)' \Vinclowing is caused by the finite extent, aliasing by the discrete 
sampling of the data. 
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In practice, aliasing is not so much of a problem as one might fear, as the data 
are not really discretely sampled at intervals Dt = TIN, but rather binned into time 
bins with a width {it. This is cquivalent to convolving the data with the "binning 
window" 

bet) = {NIT, 
0, 

T T 
-2N < t < 2N 

otherwise 
(2.18) 

before the discrete sampling. Applying the "inverse" convolution theorem, we see 
that the effect of this on the Fourier transform will be that a( ll) is multiplied with 
the transform of bet): 

B( v) = sin7rvTIN 
I 7rvTIN' (2.19) 

This function drops from a valuC' of 1 at v = 0 to 0 at v = NIT; halfway, at the 
Nyquist frequency it has a vnlne of 2/7r, so that the effect of this multiplication 
is a considerable repression of the high-frequency features that could be aliased 
back into the frequency range (0, IIN/2)' This is understandable; the effect of the 
binning is nothing else than averaging the time series over the bin width TIN so 
that variations with a frequency close to NIT are largely averaged out. 

The problems caused by the windowing can be more serious; the "leakage" 
caused by the finite width of the central peak of W(v) and by its side lobes can 
strongly distort steep power spectra (they become less steep, e.g., Deeter, 1983) 
and, as we will see later on, it can spread out delta functions over the entire power 
spectrum. 

2.6. Literature 

The "handy cookbook" of time scries analysis has yet to be written. A good 
standard reference that covers a large amount of information but is not always easy 
to follow is Jenkins and \Vatts (1 06S ). I\'I uch easier are the texts by Bloomfield 
(1976) and Bracewell (1065). A very clear exposition of some basic principles of 
Fourier analysis stressing intuition rather than mathematics can be found in Press 
et al. (19S6). 

3. POWER SPECTRAL STATISTICS 

3.1. Introduction 

The process of detecting something in a power spectrum against a background 
of noise has several steps. The first thing we need to know is the probability 
distribution of the "noise powers" Pj,noise in a power spectrum of data consisting 
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only of noise. If one or Iuore of the powers Pj in the observed power spectrum differ 
significantly from the values expect.ed from noise, then we may conclude that we 
have detected a "source signal", which is the term I shall use to indicate intrinsic 
variability in the x k other than due to background noise. 

To quantify the power of the source signal, i.e., to determine what the "signal 
powers" Pj,signal of the source signal would have been in the absence of noise (or 
to determine their upper liluit), we must consider the interaction between the 
noise and the signal powers. 

This quantitative knmvledge about the Pj,signal can be directly converted into 
a statement about the variance (or the 1'111S variation) of the source signal. To 
say something about other properties of the source signal we need to consider the 
expected shape of the signal power spectrum. The optimal way to detect a given 
signal will also depend on this expected shape. 

In this section, we will consider the first of these steps, signal detection, and 
consequently we must considf'r the probability distribution of the noise powers. 
The problem of quantifying thc signal power will be discussed in Section 4. For 
the interaction between the noise and signal powers, we will follow convention by 
making the following very simple assumption 

Pj = Pj,noise + Pj,signal' (3.1) 

Note that this is an approximation; as we have seen (Section 2.4), if it would be 
true that aj = aj,noise + aj,signa" and if the noise is random uncorrelated noise, then 
Eq. 3.1 is probably valid. Howcver, for a photon counting signal, the properties 
of the (e.g., Poissonian) coullting lloise will in general change with the count rate. 
As long as the amplitudes of the source signal are small with respect to those of 
the noise, so that the source signal call be seen as a small disturbance of the noise, 
Eq. 3.1 will be approximately correct. 

3.2. The Probability Distribution of the Noise Powers 

For a 'wide range of types of noise, the noise powers Pj,noise follow 2 the X2 

(chi-squared) distribution with 2 degrees of freedom (dof). The proof of this X2 
property of the noise powers proceeds approximately as follows (see e.g., Jenkins 
and Watts, 1968): 

The noise power Pj,noise = A],noise + Bi,Hoise' where Aj and B j are given by 
Eq. 2.2; Aj and B j are both linear combinations of the Xk. Therefore, if the Xk 

follow the normal dist.rihution, then the Aj and Bj do as well, so that Pj, by 

2 'With the exception of the power at the Nyquist frequency which follows the 
X2 distribution with 1 dof. 
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definition, is distributed according to the X2 distribution with 2 dof. If the x k 

follow some other probability distribution, for example the Poisson distribution, 
then it follows from the central limit theorem that for "certain" conditions on this 
other distribution the A j and B j will still be approximately normally distributed 
(for large N), so that the \2 property for the Pj still approximately holds. 

'While this "proof" may seem some\vhat unsatisfactory, the conditions for the 
central limit theorem to be applicable not being spelled out, in practice one finds 
that noise powers are nearly always X2 distributed, not only for Poisson noise, but 
also for many other types of noise. "\Ve shall see examples of this later on in this 
section. 

The normalization of the power spectrum defined by Eq. 2.8 is chosen such, 
that if the noise in the photon counting data l: k is pure Poissonian counting noise, 
then the distribution of the Pj.noise is exactly given by the X2 distribution with 2 
dof, so that the probability to exceed a certain threshold power level Ptbresbold is 
given by 

Probe Pj,noise > Pthreshold) = Q( Pthrcshold \2) U=1,N/2-1), (3.2) 

where the integral probability of the X2 distribution is defined as 

(3.3) 

where v is the number of do£. 
Because the Pj,noise follow this distribution, the power spectrum is very noisy; 

the standard deviation of the noise pO'vvers is equal to their mean value: (]" Pj = 

(Pj ) = 2. This noisy character of the power spectrum can not be improved by 
increasing the length T of the data or taking a coarser time step 8t; this just 
changes the number of powers. 

Two more 01' less equivalent methods are often used to decrease the large vari­
ance of the Pj,noise' One is to rehin the power spectrum, averaging W consecutive 
frequency bins; the other to divide the data up into AI equal segments, transform 
these segments each individually and then average the resulting A1 power spectra, 
each normalized according to Eq. 2.8, where Nph is now the number of photons in 
one transforn1.. Both methods of power spectrum compression, of course, degrade 
the frequency resolution. 

As the time required to calculate the Fourier transform of N data points using 
an FFT algorithm is pl'Oportional to 1'1 log }'.,r, there is a computational advantage in 
the second method; the time saying factor is about 1 + log !vI / log N. In many cases, 
considerable additiona.l time savings result f1'0111 the smaller array sizes that need 
to be handled by the computer. For a variable source, a further advantage of the 
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second method is that cutt.ing up the data into smaller segments allows one to study 
variations in the power spectra as a function of, e.g., source intensity by selectively 
averaging power spectra obtaiued wit.hin certain source intensity intervals and that 
it allows the construction of t.wo-dimensiona.l images showing the time evolution 
of the power spectrum. These techniques have proven particularly useful in the 
detection of transient QPO phenomena. The first method, on the other hand, has 
the advantage of producing a power spectrum that extends to lower frequencies (the 
lowest measurable frequency being liT). It is possible to combine both methods; 
each power in the fina.l spectrum will then be the avera.ge of lVlW origina.l powers. 
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Fig. 3.1. The probability distribution of average noise powers for different values 
of the number of powers _MHT avc-raged. 

Because of the additive properties of the X2 distribution, the sum of AIW 
powers is distributed according to the :\"2 distribution with 2111lV dof, so that the 
powers in the averaged spect.rum will be distributed according to a X2 distribution 
with 2MW dof scaled by a factor l/]IIH'. The mean of this distribution is 2, its 
variance is 4/1I1W, and its standard deviation 2/ J A1H! so that for large MW the 
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spectrum becomes much less noisy. The probability for a given power Pj,noise in 
the averaged spectrum to exceed a Ptl.reshold is given by 

Prob( Pj,noise > PLhreshold) = Q( AllV Pthreshold I 2l\llV) , (3.4) 

where Q(x 2 Iv) is again given by Eq. 3.3. For large MW, this distribution tends 
asymptotically to a normal distribution (see Fig. 3.1) with a mean of 2 and standard 
deviation 2/VMW: 

. 1 (P P ) Q (PthreShold - 2) 11m Pro) j noise > threshold = Gauss ~, 
MW->oo ' 2/v MW 

(3.5) 

where the integral probability of the normal distribution is 

. _ 1 100 -t2 /2 QGallss(:~) = I?= e elt. 
V~1l' x 

(3.6) 

So, a considerable simplification can be obtained by averaging large numbers 
of powers, empirically determining mean and standard deviation of the averaged 
power spectrum to account for llon-Poissonian noise in the Xk (see Section 3.4), and 
then using Gaussian statistics. In the following, we will, unless otherwise stated, 
assume the more general case described by Eq. 3.4. 

3.3. The Detection Level - the Number of Trials 

Assuming the X2 property for the noise powers (Eq. 3.4), we can now determine 
how large a power must be to constitute a significant excess above the noise. 

Define the (1 - E) confidence detection level Pdetect as the power level that has 
only the small probability E to be exceeded by a noise power. So, if there is a power 
Pj that exceeds Pdetect then there is a large probability (1- 1") that P j is not purely 
due to noise, but also contains signal power (Eq. 3.1). 

A crucial consideration. occasionally overlooked, is the number of different Pj 

values, known as the number of trials Ntrial that one wishes to compare with 
Pdetect. Ntrial can be equal to tIlE' total number of powers in the power spectrum, or 
less than that if only a certain frequency range in the spectrum is considered. The 
probability to exceed Pdetect by noise should have the small value E for all powers 
in the frequency range of interest together, so that the chance per trial should 
have the much smaller value of about 3 E/Ntrial. So, the detection level Pdetect is 
given by 

3 The exact expression can be obtained by setting the joint probability for Ntrial 

values of Pj not to exceed Pdetect equal to 1 - to, which gives a chance to exceed 
Pdetect per trial of 1 - (1- E)(l/N'cia'), nearly equal to E/Ntrial for t <t:: 1. 
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f 
W- = Q(MWPdetectI2111W) 
1 trial 

(3.7) 

In Fig. 3.2, Pdetect is plotted as a function of Ntrial for various values of .M1V 
and for confidence levels of 90% (f = 0.1) and 90% (f = 0.01). Note that although 
Pdetect increases with the number of trials N trial , the increase is relatively slow. 

LOG (NUMBER OF TRIALS) 
Fig. 3.2. 90% (drawn) and 99% (dashed) confidence detection levels (minus 2) 
as a function of the n'umber of triniB. The n'!l.mber of independent powers, lIflV, 
averaged together due to rebinning of the power spectra by a factor TV and averaging 
111 different power spectTa increases by a factor of 2 in consecutive curves. The 
trials are assumed to be independent, so no overlaps between the lV-bin averages 
are allowed. As an example, for a power spectrum prod'ueed by averaging together 
2 "TaW" power spectra of 4 096 bins each and binning up the resulting spectrum by 
a factor of 4 to produce II. 1 024 -bin alJemge speci'rmn the 90% confidence detection 
level can be read from the clI:r'ue llnV = 8 at Ntl'ial = 1024 to be 5,8, 
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3.4. Non-Poissonian Noise 

For various reasons the noise in the ;r k can differ from purely Poissonian count­
ing noise. The consequence of this is that the Pj,noise are no longer distributed ac­
cording to Eq. 3.4; in general, correlations introduced by the noise process between 
the x k will introduce correlations between the Pj,noise, so that the noise power spec­
trum will not even be flat any more. However, as we have seen in Section 3.2, under 
"certain" conditions one still expects the noise powers to follow a X2 distribution 
with 2 dof. Even if this is the case, the normalization will be different from that 
implied by Eq. 3.4 and will in general depend on j. 

3.4.1. Dead Time 

One reason why nOlse m the x k can be non-Poissonian is the occurrence of 
various instrumental effects snmmarized under the name "dead time" . Various 
types of dead tim.e exist, all of which considered here have in common that the 
instrument is unable to detect a photon for a given short interval of time Tdead after 
a photon has been detected; Tdoad may be constant, or depend itself on various 
instrumental parameters. 

The case where Tdcad is constant is typical for an X-ray proportional-counter 
dead time. If the incident connt. rate is A and the deteeted count rate p, then during 
an observation of length T the total dead time will be IlTTdead, so that ("incident 
= detected + missed") /\T = pT + pTTdeadA, or 

p= ----
1+ TdeadA' 

(3.8) 

This type of dead time introduces a correlation between the Xk: if a photon 
has been deteetecl in bin k, then there is a certain probability that the dead time 
interval associated with this photon extends into the next bin k + 1, and therefore 
the average chance to deteet a photon in bin k + 1 will be diminuished. This then 
means that the average chance in bin l..: + 2 will be slightly higher, eic., so that 
the final result is that a quasi-periodic oscillation is introduced into the x k with a 
frequency equal to the Nyquist frequency. Consequently, the noise power spectrum 
will rise towards vN/2' This constant Tdeacl process has been simulated by Weisskopf 
(1985). The result of these simulations is that the expectation value of the noise 
power spectrum (normalized according to Eq. 2.8, where Nph = pT) becomes: 

(P ) 'J( 2 [ .• J ( pTdead ) (Tdead) . 27rJ] 
j,noise =- 1-PTdeacI) 1+~ 1-PTdead TIN sm N . (3.9) 



44 

360 

3~O 

OBSERVED 
320 

300 

280 

260 

240 

220 

~ 
~ 200 

~ 
180 

~ 
EXPECTED 

~ i 60 

Z 
1~0 '. 
120 

100 

80 

60 

~O 

20 

0 
0 10 20 110 90 100 

POWER 
Fig. 3.3. The complicated dead time process of the EXOSAT ME (see Andrews 
and Stella 1985, Tennant 1987) strongly modifies the probability distribution of the 
noiu powers (drawn) with respect to that expected for a Poisson noise process. 
After scaling the distribution with the mean noise power, however, the match with 
the expected X2 distribution (d(Lshed) i<~ good. (Simulated QPO data; S1tm of 20 
power spectra.) 

The amplitude of the frequency-dependent component in the noise power spectrum 
is seen to be proportional to both the ratio of total dead time to total live time and 
the ratio of T dead to the duration of a time bin T / N. 

Another simple type of dead-time process is that where the instrument can only 
detect at most one photon per instrumental "sample" cycle, which has a duration 
Tsample. So, in this case Tdead is variable and lasts from the time a photon is detected 
until the end of the sample. If the arrival times of the incident photons are Poisson 
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distributed, then the chance that no photon arrives during Tsample is e-TsampleA, so 
that the chance that a photon is detected is 1 - e-TsamPleA, so 

1 - e -TsampleA 
It = ------------- (3.10) 

Tsample 

If each bin x k contains Nsample samples, then the number of counts in x k is 
the number of "successes" among Nsample trials, where the chance of success is 
p = 1 - e -Tsample A. This means that the x k follow (by definition) the binomial 

rather than the Poisson distribution, with lllean Nsample and standard deviation 
y'p(l - p)Nsample. Note that in this case no correlations are introduced between 
the Xk. 'With Eq. 2.9 for the total variance in the Xk and noting that Nph = L:xk = 
pN Ns am pie it can be derived that the average noise power will be 

(p . . ) - ') .. Tsample A - ')(1 ) 
),nOISe - _e - - - J-lTsample , (3.ll) 

as compared to 2 in the case of Poisson noise. 
In practice, dead-time processes are often llluch more complex than in the two 

examples above. In particular, there may be an interaction between dead-time 
processes in different instrumental channels (see Paper 1). However, usually one 
finds that the X2 property of the noise powers is at least approximately preserved 
(Fig. 3.3). 

3.4.2. Intrinsic Noise 

It is very common for the source signal itself to consist (partly) of noise. Such 
intrinsic noise signals can contain "cry useful information about the source and are 
worthwhile to try and detect over the background noise caused by, e.g., counting 
statistics; examples are reel noise and QPO. However, in many cases one wishes to 
consider such an intrinsic noise component as br ckground against which to detect 
another source signal component. In such cases it is of particular importance to 
test empirically the probability distribution of the noise powers. 

For example, a theoretical description of red noise as the integral of white noise 
(e.g., Deeter and Boynton 1982) suggests that the X2 property of the noise powers 
will apply for red noise. However, although any observed power spectrum that rises 
towards lower frequencies is often called a red noise spectrum, the underlying source 
variability is not specified by this power spectral property (it is not even necessarily 
a noise process) and the \:2 property can not be guaranteed. 

Again, in practice one usually finds that also for noise in the source signal 
the noise power distribution closely matches a X2 distribution scaled to the local 
average power (Figs. 3.4,3.5). 
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Fig. 3.4. a) An average of v1 vv power spectm of EXOSAT ME data on the source 
GX 5-1 showing red noise and QPO (qlWsi-periodic oscillations). b) The standard 
deviation of the v1 vv power val'l/.es averaged in each frequency bin. Inset: the ratio 
of b) to a). Standard devia.tion equals mean power as expected for x2 distributed 
powers. 

It is stressed that it is essential when looking for weak source signals to take 
into account the (likely) prCSCllCC of intrinsic noise. In particular it is completely 
wrong to use the normalization of the noise power distribution valid for Poisson 
statistics (Eq. 3.4) when trying to ueted something against a background of red 
noise. Note that red noise can 1>c present even if the quality of the data is not 



47 

-3 

-4 

Q -5 
~ 
~ 
U -6 
~ 
~ 

0 -7 
E-< 
>--
E-< ...... 
;..J a) ...... 
P:1 -1 
~ 
p:) 
0 

-2 ~ 
0... 

-3 

-4 

-5 

-6 

-7 

-8 
0 10 1. 20 2. 30 35 

POWER 

Fig. 3.5. a) Integral distribution of all individual powers in the 6166 power spectra 
of Fig. 3.4 a (crosses). Strong deviations from a x2 distribtdion (drawn line) d'ue 
to QPO and red noise are visible, b) Distribution of the same powers as in a), 
after dividing each individtwl power specir'um by the average specir'lLm of Fig. 3.4 a. 
The match to the X2 distribtdion is 'very close now. Small r-esid'lwl wiggles are d'lLe 
to the intrinsic variations of the shape of the QPO/red noise power- spectrum as a 
flLnction of source intensity. 

sufficient to clearly see the slope in the power spectrulll .1. 

If the X2 property is expected to apply then a correct procedure would for 

4 "Scrambling" techniques where the time order of the Xk is randomized are 
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example be to divide the power spectrum by some average red noise shape (e.g., 
a best-fit power law) in order to bring all noise powers back to one X2 distribution 
and then evaluate the significance of any excess. Obviously, the uncertainties in the 
description of the shape of the noise spectrum itself should also be taken in into 
account in such an analysis. 

4. THE SIGNAL POWER 

4.1. Introduction 

Any quantitative statement one can make about the signal power Pj,signal will 
be a statement of a probability based on the probability distribution of the noise 
powers Pj,noise, because the ouly thing one knows for sure is the total power Pj which 
is (Eq. 3.1) equal to the signal pmyer contaminated with an unknown amount of 
noise power. In Section 4.2 we will consider this process of quantifying the signal 
power. In Section 4.3 it 'will be discussed how to convert a statement about Pj,signal 

into a statement about the rms variation in the source signal. It is reiterated at this 
point that to say anything else about the source signal, e.g., about the amplitude of 
a sine wave, is an entirely different problem for which we need to model the shape 
of the signal power spectrum. For a sinusoid signal, this problem will be touched 
upon in Section 6. 

4.2. Quantifying the Signal Power 

4.2.1. Detected Signal Power. Supposing that we have a detection, i. e., for 
given j it is true that Pj > Pdctect, then we ask what is the probable value of the 
signal power Pj,signal at j. 

Determine a "limiting noise power leyel" Plloiselimit that has only a small prob­
ability 1" to be exceeded in one trial: 

( 4.1) 

Then, with confidence (1 - 1") we can say that for given j Pj,noise < Pnoiselimit. 

Because according to Eq. 3.1 Pj,signal = Pj - Pj,noise, this implies that 

Pj,signal > P j - Pnoiselimit (1 - 1") confidence. ( 4.2) 

sometimes used to evaluate the probability to produce a certain feature in the 
power spectrum by chance given the distribution of the Xk. These techniques are 
incorrect when red noise is present, as the scrambling destroys the correlations in 
the x k underlying the red noise and artificially converts the red noise into white 
noise. 
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Note that a slightly misleading statement about this case occurs in Paper 1 (in the 
text after Eq. 2.13). 

4.2.2. Upper Limit to the Signal Power. If no significant power level has been 
attained by any of the Pi, then it is useful to determine an upper limit to the signal 
power. The (1 - 8) confidence upper limit PUL to the signal power is defined as the 
power level for which with (1 - 6) confidence Pi,signal < PUL irrespective of where 
(at which j) in the frequency range of interest this signal power may have occured. 
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Fig. 4.1. Relations bet'ween the detection lC'vel Pdetect) the "1lsually exceeded" level 

Pexceed) the maxim'um observed po'Wer Pmax ) the upper limit PUL and the sensitivity 

level Psensitive (see text). 

To determine PUL we define a power level Pexceed that has the large probability 
(1 - 8) to be exceeded by a given individual Pi,noise: 

1 - 15 = Q( Jill" Pexceed 12MW). ( 4.3) 

So, a fraction of approximately (1 - 8) of all powers considered will exceed Pexceed 

in the absence of a source sigual. lYe now find the largest actually observed power 
Pmax in the frequency range of interest, and write 

PUL = Pmax - Pexceed. ( 4.4) 

If for some j there would have been a signal power in the power spectrum with 
Pj,signal > PUL, then for that. j with (1 - 8) confidence P j would have exceeded 
P max = PUL + Pexceed (Eq. 3.1). As we know that for all j it is true that P j :::; P max, 
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we can say with (1 - 8) confidence that indeed for all j Pj,signal S; PUL. Note that 
the number of trials Ntrial does not enter into the calculation of P UL , as one reasons 
in terms of one hypothetical undetected signal power Pj,signal at given j. 

4.2.3. Sensitivity to Signal Power. It is sometimes useful to predict the ca­
pabilities of a planned experiment in terms of its sensitivity to signal power. The 
sensitivity level Psensitive can be calculated on the basis of the (expected) probability 
distribution of the noise power as 

Pscllsitive = Pdetect - Pexceed, (4.5) 

where Pdetect and Pexcecd are defined in Eqs. 3.7 and 4.3, respectively. If there 
occurs a Pj,signal somewhere in the power spectrum that exceeds Psensitive then 
with (1- 8) confidence it will be detected (at the (1- c) confidence level associated 

with Pdetect). Note that Pscllsitive is not the same as PUL; in fact, Psensitive is in a 
sense the upper limit to PUL (see Fig. 4.1). 

4.3. The r111S Variation in the Source Signal 

Assuming that the signal power spectrum has been properly separated out 
from the total power spectrum using the methods described in Section 4.2, we can 
convert the signal power into the nns variation r of the source signal in the x k using 
the expression 

1·= 
W Lj Pj,signal 

.lVph 
( 4.6) 

(c.f. Eq. 2.10), where P j is an Al1fT time::; averaged power and where Nph is the 
number of photons per transform. 

We shall consider two effects that may cause a difference between the value of r 
obtained in this way and the actual value R applicable to the signal x( t) as emitted 
by the source. As we haye seen in Section 2.5, the binning of the data causes the 
power spectrum to be suppressed preferably towards the higher frequencies. The 
correction factor by which r should be multiplied is 

( R) = (3 = 7rvT/N 
l' binning sin 7rvT / N ' 

( 4.7) 

(c.f. Eq. 2.19), where v is SOllle appropriate average over the signal feature in the 
power spectrum. 

The second effect is our old friend dead time (see also Section 3.4.1). Provided 
that the variations in the signal of interest are slow with respprt to the dead time 
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process, the way in which dead time changes the signal is completely described 
by the instrument-dependent relation betweencA and J-l, the incident and detected 
count rates. Examples of such relations are givon in Eqs. 3.8 and 3.10; any relation, 
either theoretical or empirical, can he 1\sed. 

Expressing the relation as the dead time attenuation factor f(A) == J-li A, one 
finds that a small change 0).. in the incident rate causes a change 15J-l in the observed 
rate given by 

011_( ~df)I5A 
fl - 1 + f d)" )..' (4.8) 

From this expression we can derive the dead time correction factor 

( R) 10)..11 A (I A df 1)-1 
-;: dead time = a = 1151111 Jl = 1 + f dA 

( 4.9) 

See Paper 1 for a discussion of the case of dead-time interaction between several 
instrumental channels. 

One minor pitfall remains to he considered, being the practice of describing 
the signal power spectrum Pj.signal in terms of a function Psignal(V) defined such 
that Psignal(Vj) == Pj,signal. 'Vhen integrating this function one should note that 
J Psignal(V) dll = l,J ~ Pj.signal. Defining the excess power in the power spectrum 
due to the signal as Pexcess == TV ~ Pj.signal = T J Psignal(V) dv, we finally have for 
the fractional rm8 variation in the signal corrected for binning and dead time 

R= a/3 Pexcess I ).. c"f 1-1 7r1i/5t --= 1+--
Nph f d)" sin Trv/5t 

J Psign"l (v) dv 
I 

( 4.10) 

where I = NphlT is the count rate, Ii the average frequency of the signal feature 
in the power spcctrum, 8t = TIN the duration of a timc bin, and the sum and the 
integral run over all frequencies where the signal causes a non-negligible power (a 
power at the the Nyquist frequency should enter with a factor t, see Eq. 2.10). 

5. OPTIMAL DETECTION - INDEPENDENT TRIALS 

5.1. Introduction 

'When deriving the detection level from the noise power distribution in Sec­
tion 3.3, we implicitely assumed that the trials (i. e., the powers to be tested against 
the detection level) would all have the same statistical properties, and that they 
would be statistically indepcnclmt. In particular, lIHV was assumed to be equal 
for all trials and no oycrlaps were allowed between the averages of HI bins. This 
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approach is not necessarily optimal for all signal shapes, but it has the enormous 
advantage that the statistical properties of any power excess that is found can easily 
be evaluated analytically from the known distribution of the noise powers. In this 
section, we develop the possibilities of this method to its limit by considering the 
optimal value of the number of bins to average, given the expected signal. In Sec­
tion 5.4 the method as it has been developed in the previous sections is summarized 
in a step-by-step style. In Sections 6 and 7, we shall abandon the constraints that 
the trials should be equal and independent. 

5.2. Detecting a Narrow Feature 

The detection of a narrow featme in the power spectrum (defined as a feature 
in which all power is concentrated in one frequency bin) is a fundamental problem 
because the continuous Fourier transform of a strictly periodic signal consists of one 
or more delta functions (see, however, Section 4.5 for the case of the discrete Fourier 
transform). If the signal power of a narrow feature in a full frequency-resolution 
power spectrum is PsignaJ, then it will drop to PsignaI/(.MvV) after the frequency 
resolution has been degraded by a factor _~HV by one of the methods described in 
Section 3. For the method of averaging W adjacent bins this is immediately obvious; 
for the method involving division of the data into lv1 equal segments, this can be 
seen by using Eq. 2.9 (and assuming that the signal remains the same through the 
observation). 

The detection level also drops when the frequency resolution is degraded, both 
because the probability distribution of the noise powers in the average power spec­
trum becomes narrower and because the number of trials decreases by a factor 
MW. In addition, the narrower noise distribution causes Pexceed to increase. How­
ever, in the final analysis the sensitivity level Psensitive (Eq. 4.5) always drops more 
slowly than l/MW (Fig. 5.1), so that the conclusion is that for detecting a narrow 
feature in the power spectrum the highest sensitivity is reached for the maximum 
possible frequency resolution, i. e., by choosing AfvV = 1. Note that we have not 
specified what the source signal should be in order for the signal power spectrum to 
be narrow; as we shall see, the discrete Fourier transform of even a strictly periodic 
sinusoidal signal does not approximate a delta function very well. 

5.3. Detecting a Broad Feature 

Similar reasoning as in Section 5.2 shows that also for a feature of finite width 
t::.v the signal power summed over all frequency bins in the feature will drop 
proportionally to l/.i\;{vl1 when the frequency resolution of the power spectrum is 
degraded. However, as long as the width of the feature exceeds the frequency resolu­
tion: t::.v > MvV/Tobs, where Tobs = AfT is the total length of the observation, the 
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Fig. 5.1. The sensitivity level as a junction of the n'umber of powers averaged 
(lvIlV) for various numbers of trials. The sensitivity level always decreases more 
slowly than I/111Hl. 

signal power in one frequeuey bin wi thin the feature will remain constant (strictly 
speaking, for a feature with a rectangular profile, and ignoring edge effects), because 
the number of bins in the feature !:::,./J I (l~I1V ITob,) is also inversely proportional to 
1I1VV. Because Psensitive drops as a fuuction of l1fTV, this implies that the sensitivity 
to the feature increases with jlfTI'. ,Vhen (lUW~/Tobs) > !:::,.v, we recover the case 
of Section 5.2, and the sensitivity begins to drop. So, the optimal value of lvHV is 
that which just concentrates all power in one bin: Tobs!:::"~/. 

The above argument. ignores the alignment between the feature and the fre­
quency bins; for 1IllV = Tobs!:::,./J one is lucky when all power is in one bin; more 
likely is a situation where the power is distributed over 2 bins. It is possible to devise 
tests which take into account various possible alignments and which are optimized 
for specific shapes of the broad feature; some examples of this ,vill be considered in 
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Sections 6 and 7. 

5.4. Summary: Power Spectral Searches Made Easy 

In this section we collect all previous results into a "how to" recipe of testing 
the power spectrum for a weak signal using equal statistically independent trials. 

1. Determine the 111 and n" (Section 3.2). The optimal choice for .iVHV is that 
which approximately matches the expected width of the power spectral feature 
one desires to detect, Tobs~l/ (Sections 5.2 and 5.3), but gaps in the data or 
the desire to see the time evolution of the power spectrum may dictate M. 

2. Calculate the !vI power spectra normalized according to Eqs. 2.8 and2.4a. Note 
that Xk is the number of photons in bin k and Nph the number of photons in 
one power spectrum, 2: k :r k· 

3. Average the Al power spectra. 
4. Think about the noise power distribution (Sections 3.2 and 3.4). Does the 

noise power spectrum seem to be flat? Is its mean level 2.0? If so, the noise is 
probably dominated by Poissonian counting statistics - go to step 5. If not, find 
out why not. Try to determine whether the X2 property applies (Section 3.4). If 
you are satisfied that it does, you can divide the power spectrum by some mean 
noise power spectral shape and go on step 5. Otherwise, find out what is the 
distribution of the noise powers and determine the detection level accordingly. 

5. Determine the detection level (Eq. 3.7, Fig. 3.1). 
6. Check the average spectrum for powers exceeding the detection level. 
7. Quantify the signal power in terms of a detection (Section 4.2.1) or an upper 

limit (Section 4.2.2). 
8. If necessary, multiply back in the noise power shape you may have divided out 

in step 4. 
9. Convert the signal power into the relative rms variation of the source signal, 

correcting for the effects of binning and dead time (Section 4.3). 
10. To say more about the signal, you need to model its power spectrum. For a 

sinusoidal signal, see Section G. 

6. DETECTING A SINUSOIDAL SOURCE SIGNAL 

6.1. Introduction 

When searching for an X-ray pulsar, the first assumption that is made is often 
that the pulse shape is sinusoidal- and for many X-ray pulsars, of course, this is not 
a bad assumption. In this section, we first derive the shape of the discrete power 
spectrum of a sinusoidal signal of arbitrary frequency and phase, and then consider 


