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ABSTRACT. Basic principles of Fourier techniques often used in X-ray time series
analysis are reviewed. The relation between the discrete Fourier transform and the
continuous Fourier transform is discussed to introduce the concepts of windowing
and aliasing. The relation is derived between the power spectrum and the signal
variance, including corrections for binning and dead time. The statistical properties
of a noise power spectrum are discussed and related to the problems of detection
(and setting upper limits) of broad and narrow features in the power spectrum.
A ”dependent trial” method is discussed to search power spectra consistently for
many different types of signal simultaneously. Methods are compared to detect a
sinusoidal signal, a case that is relevant in the context of X-ray pulsars.

1. INTRODUCTION

Fourier techniques are widely used in science and engineering, but problems
of terminology and differing conventions hamper the flow of information between
the various branches. Even within the field of neutron-star timing, radio-, X-ray
and high-energy gamma-ray astronomers sometimes have difficulties to compare the
techniques they routinely apply.

In the present paper an attempt will be made to explore some of the techniques
that are commonly used in timing studies of neutron stars, and that refer to the
detection of signals against a background of noise, in the language of the X-ray
astronomer.

The regime that I will nearly exclusively be referring to is that of equidistantly
binned timing data, the background noise of which is dominated by counting statis-
tics. If there are gaps in the data, they are far apart, and the dita are not "sparse”
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in the sense that nearly all time bins are empty. This kind of data is eminently
suited to analysis with Fast Fourier Transform (FFT) techniques, and the discussed
methods will all be based on these techniques. Emphasis will be on the statistics of
the detection of weak signals rather than on the characterization of signal shapes,
with a special discussion of the basic problem of detecting a strictly periodic signal
with a sinusoidal shape. While the discussion is specially geared towards photon
counting data such as produced by, for example, an X-ray proportional counter,
many of the techniques discussed are also applicable in other regimes.

Section 2 contains a genecral introduction to the Fourier transform and intro-
duces the power spectrum. Section 3 deals with the problem of detecting a signal
in the presence of noise. In Section 4 it is discussed how to quantify the power of
the signal and how to estimate its variance using the power spectrum. Section 5
discusses how to search a power spectrum by making use of the basic properties of
power spectral statistics only, using ”independent trials”. At the end of this section
there is a summary in "recipe” form of how to simply search a power spectrum
for a weak signal. In Section 6, a detailed discussion is given of the specific case
of detecting a sinusoidal signal. The subject of Section 7, finally, is a method of
searching power spectra for various types of signal simultaneously. The methods
discussed in Sections 6 and 7 have in common that because higher demands are
made on the tests performed on the power spectrum than in Section 5, the test
statistics are no longer simple (in particular, "dependent trials” are considered)
and have to be evaluated by simulations.

The present exposition owes much to the paper by Leahy et al. (1983). Some
of the material discussed is also contained in Chapter 2 of the review about quasi-
periodic oscillations by Lewin, van Paradijs and van der Klis (1988), hereafter
Paper 1.

2. THE FOURIER TRANSFORM
2.1. Introduction

In this section (2.1) the Fourler transform is introduced in very general terms.
We do not yet worry about summation indices and the like; such details are filled
in in the following sections.

A Fourier transform gives a decomposition of a signal, say, z(%), into sine waves.
At any given frequency w, one can find a set of values (a, ) or (A4, B) such that
the sinusoid a cos(wt — ¢) = A coswt + B sinwt best fits the data z(¢)!. Do this for
a sufficient number of different frequencies wj, then the signal can be written as

! (a,¢) and (A4, B) are, of course, related by a = /A2 + B? and tan¢ = B/A



1 1 .
z(t) = v Za]- cos(wjt — ¢j) = N Z (A;jcosw;t + Bjsinw;t). (2.1)
J J

The Fourier coefficients 4; and B; can be straightforwardly computed as

Aj = E a;kcoswjtk
k

B]' = Z.’L‘k sinw]-tk,
k

where = = z(fx). It can be seen from Eq. 2.2 that A; and B; are simply the
correlation of the signal x; with a sine or cosine wave of frequency w;: if there
is a good correlation then the corresponding Fourier coefficient is high and gives a
large contribution to the sum in Eq. 2.1 which reconstructs the signal out of sine
waves.

For easier handling of the two munbers ((A, B) or (a, ¢)) which one obtains at
each frequency, it is possible to represent the Fourier transform in terms of complex
numbers:

aj= Y et (2.3a)
k
o= — 3" azem it (2.3b)
N £ J ’
j
where ¢ = —1, The complex numbers «; are called the (complex) Fourier

amplitudes; together they form the Fourier transform of the zp. Inversely, the
zi form the inverse Fourier transform of the a;. Writing a; as |aj|e’®, we

see (Eq. 2.3b) that the signal zp is now decomposed into functions of the form
—twjty

aje lajle™" it =9) = | |(cos(w;ty — @;) — i sin(wjtr — ¢;)), having a non-
zero imaginary component. This is nothing to worry about: in this representation
both positive and negative frequencies are considered, withw_; = —wj, and if the zj

are real numbers then one sees from Eq. 2.3a that a_; = a} (the asterisk indicating
the complex conjugate), so that the imaginary terms at j and —j (i.e., at w; and
w_;) cancel out and the end result in the summation (2.3b) is (2/N)|a;| cos(w;tx —
@;), strictly real.
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2.2. The Discrete Fourier Transform

We now get a bit more specific and define our signal as a series of N numbers
2y (k=0,...,N —1); in the applications discussed in this article, z will always
stand for the number of photons detected in bin k. The discrete Fourier transform
aj(j =—-N/2,...,N/2-1) decomposes this signal into N sine waves. The following
expressions describe the signal-transform pair:

N-1

a; = Z:lfkehijk/N j:—iv‘;-,...,-]-;—-—l (24q)
k=0 -
N/2-1
1 —omiik
wk:?\f—‘z aje kN =0, N -1, (2.4b)
Jj=-N/2

If, as before, the signal is an equidistant time series of length T, so that zj
refers to a time t; = kT /N, then the transform is an equidistant "frequency series”,
and a; refers to a frequency wj = 2xv; = 2xj/T. The time step is 6t = T/N; the
frequency step is v = 1/T, and substituting 2njk/N = w;t;, we find back Eq. 2.3.

It is a matter of taste where one puts the factor 1/N in Eq. 2.4; definitions
where this factor appears in Eq. 2.4a, or where both sums are preceded by a factor
1/ VN are also possible and do, in fact, occur in literature.

Note that the number (N) of input values z; equals the number of output
values a;; if the z; are uncorrelated, then the a; are as well. The discrete Fourier
transform gives a complete description of the discrete signal; the highest frequency
needed for this complete description is vy/; = -%N /T. This frequency, equal to half
the ”"sampling” frequency defined by the spacing of the zy, is called the Nyquist
frequency. An oscillation at vy, corresponds to an alternating "up-down” signal
in the 2. Note that a_n;; = ), rpe” Tk = Yrak(~DF = apnyz; it does not
matter whether one puts the Nyquist frequency at the positive end or the negative
end of the Fourier transform. At zero frequency, the result of Eq. 2.4a is just the
total number of photons detected; ag = 3, zx = Npy.

2.2.1. The Fast Fourier Transform. The fast Fourier transform (FFT) is a
computer algorithm to efficiently compute the discrete Fourier transform. Often,
but not always, the data is constrained by these algorithms to have a number of
bins N equal to a power of 2. See, e.g., Press et al. (1986) for an exposition of the
functioning and sample computer codes of FFT algorithms.
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2.3. The Continuous Fourier Transform

The continuous Fourier transform decomposes an infinitely extended continuous
function z(t) (—oo < t < o0) into an infinite number of sine waves:

o<

a(v) = / a(t)e ™t dt —00 < v <o (2.5a)
-~ |

z(t) = / a(v)e ™ dy —00 < t < o0. (2.5b)
~0oo

When doing analytical calculations, the continuous Fourier transform has a
number of pleasing properties (for example, the continuous Fourier transform of a
sine wave is a delta function; this is not in general true for the discrete Fourier trans-
form, see Fig. 6.1a). Thercfore, theoretical predictions of the shape of the Fourier
transform of a signal are usually in terms of the continuous Fourier transform.

Unfortunately, in the real world the data are not infinitely extended nor con-
tinuous, and one might well ask what is the relation of Eq. 2.5 with the discrete
Fourier transform of a discretely sampled section of z(¢). This question will be
adressed in Section 2.5.

2.4. The Power Spectrum

A result known as Parseval’s theorein states:

N-1 1 N/f2-1
Sialf=w S lolt (26)
k=0 T j==NJ2

This implies that there is a relation between the summed squared modulus of the
Fourier amplitudes and the total vaxiance of the data: Var(zx) = Y 1 (zx —7)% =

Ekxﬁ—”}v‘(zkmk)z = NZ laj)% — ao,so that
1 N/2-1
Var(zi) = 5 > lasl (2.7)
s

Adopting the normalization used by Leahy et al. (1983), we will define the power
spectrum as

2
P._N |aj)? j=0,...

where N, is again the total number of photons ) z; = ao and a; is given by
Eq. 2.4a. Using once more the result that for real data |a;| = |a—;| and taking

(2.8)
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account of the fact that the term at the Nyquist frequency occurs only once in
Eq. 2.7, we find for the expression for the total variance in terms of the P;:

N/2-1
-NJ h
\'72\‘1“(;17;;) = —]{_TL Z Pj -+ %PN/‘Z . (29)
Jj=1

Note the differences in the indexing of «; and P;. Computer implementations of
the FFT usually employ a storage scheme that is different again (Fig. 2.1).

aj [ % | %1 [ -~ ] -1 [0 1] -] &2 ] #-1 |

P; foT 1 - [T &8s 5] %]

FFT Lol 1] | 52 [ &1 [ &
—Z41 | [ -1 ]

Fig. 2.1. Storage schemes. The FFT scheme may differ between implementations
— 1n this ezample bin —% + 1 follows bin %

Often the variance is expressed in terms of the fractional root-mean-square
(rms) variation in the zj:

VEVas) | EN2p 4 1Py,

T N, ph

ﬁ
I

(2.10)

Sometimes r is expressed in terms of a percentage, and is then also called the
"percentage rms variation”. A sinusoidal signal at the Fourier frequency v; (see
Section 4 for the more general case) a = Asin(27nv;t;) will cause a spike at v; in
the power spectrum with

(V2
Pj gine = EN;I-: A® (2.11)
The reason for choosing this apparently rather awkward normalization for the pow-
ers lies in the statistical properties of the noise power spectrum, to be described in
Section 3.
If the data consist of the sum of a number of independent signals: =i = y + 2%,
then the so-called superposition theorem (”the transform of the sum is the sum of

the transforms”) says that if b; and ¢; are the Fourier transforms of y; and z,
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respectively, then the Fowrier transform of zy is a; = b; + ¢;. This means, that a
similar superposition principle does not apply to power spectra:

la;|* = 1b; + ¢;|* = |b;]1* + |¢;]* + cross terms. (2.12)

However, if one of the two signals summed consists of random uncorrelated noise,
then the cross-terms will tend to average out to zero.

2.5. The Relation between the Discrete and the Continuous Fourier
Transform

The answer to the question posed in Section 2.3 about the relation between
the discrete and the continuous Fourier transform can be obtained by making use
of one of the powerful theorems of Fourier analysis, the convolution theorem. This
theorem states, that the Fourier transform of the product of two functions is the
convolution of the Fourier transforms of these two functions. So, if a(v) is the
continuous Fourier transform of z(t) and 0(v) that of y(¢) then the continuous
Fourier transform of z(t)y(t) is a(v)*b(v) = f:x;o a(v'")b(v — v")dv': "the transform
of the product is the convolution of the transforms”. The inverse is also true ("the
transform of the convolution is the product of the transforms”), and in the case of
the discrete Fourier transform analogous theorems apply.

Now suppose that a(v) (—oco < v < o0) is the continuous Fourier transform
of the infinitely extended continuous function z(t) (—oco < ¢t < o). Suppose,
furthermore, that zx (K = 0,...,N — 1) is a finite discrete time series defined as
zy = x(ty), where tp = RT/N, ie., x} is a discretely sampled section of z(t).
Then we see (Fig. 2.2a) that the relation of z(¢) with x4 is given by a double
multiplication: z(¢) has been multiplied with a "window function”

w(t) = { L, 0=t<T (2.13)

0, otherwise,

and with a "sampling function”

: = kKT
i(t) = §lt——=—1, 2.14
0= 5(e-5) (219)
where 6(t) is the Dirac delta function.

Consequently, the relation of a(r) with a; is given by a double convolu-
tion(Fig. 2.2b): a(r) must be convolved with the Fourier transforms of both the
window function and the sampling function.

Because (to be consistent with Eq. 2.4) we have chosen the window function
to be asymmetric around ¢t = 0, the "window transform” W(v) turns out to be
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TIME SERIES

w(t) ' WINDOW FUNCTION
2(Hw(t) WINDOWED TIME SERIES

INTENSITY

1HHHHHlHH\H\HHHUU\l\llIl I

(Hw(t)i( WINDOWED AND SAMPLED TIME SERIES

il

TIME

Fig. 2.2. a) Obtaining the discrete time series vy as e discretely sampled section
of z(t) imvolves o double multiplication.

complex. To understand what is going on, it is sufficient to consider the power
spectrum of W(r):

. 2
sinwvT

[o%) 2
|W(u)|25| / w(t)e?™ it dt| =

(2.15)

TV

For a symmetric w(t) we would have W(v) = sin{wvT)/nv. The Fourier transform
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TRANSFORM

S SRS

W(v) WINDOW TRANSFORM

a{v) * W(v) WINDOWED TRANSFORM

!
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- |
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I(v) SAMPLING TRANSFORM
a(v) « W(v) * I{v) WINDOWED AND SAMPLED TRANSFORM
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Fig. 2.2. b) The discrete Fourier transform a; of x. is obtained out of the contin-
uous Fourier transform a(v) by a double convolution. The figure shows the power
spectra corresponding to the various Fourier transforms. Vertical deshed lines in-
dicate the Nyquist frequency.

of an infinitely extended periodic series of delta functions such as the sampling
function i(¢) is again an infinite periodic series of delta functions:

I(v) = /00 i(t)e? it dt = % 2 ) (u —-6%) . (2.16)
f=—c0

-0
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The functions w(t) and () and the power spectra corresponding to W(v) and I(v)
are plotted in Fig. 2.2.

The convolution of a{r) with (/) causes all features in a(v) to become wider;
in particular, a delta function can be seen in Fig. 2.2 to change into shifted version
of W(v); a peak of finite widtl: with side lobes. The convolution of an arbitrary
function with a delta function at vy is a shifted version of the original function:
fw)*8(v —vy) = f(v — vg). Therefore, the convolution of a(v) with I(v), which
is a series of delta functions with spacing N/T results in a convolved function
a(v) * I(v) that repeats every N/T frequency units.

For a real signal z(t) we have, as before, a(—v) = a(v)*, so that |a(v)|? =
|a(=v)|%: the power spectrum is symmetric around v = 0. The final result is that
the power spectrum of the convolved function |a(v) * I(v)|? is reflected around the
Nyquist frequency v/, = %N/ T. This causes features with a frequency exceeding
the Nyquist frequency by v, (so, located at v = vy/3 + v2) to also appear at a
frequency vy — vz, & phenomenon known as aliasing; the reflected feature is
called the alias of the original one.

Using Egs. 2.13 and 2.14 it is straightforward to show that the discrete Fourier
amplitudes a; are the values at the Fourier frequencies v; = j/T of the windowed
and aliased continuous Fourier transform aywy(v)

aWI(V) = a(v) * W‘(y) * ](:,,) = / w(t)w(t)i(t)e21riut dt
F N-1 N-1
. kT ; kT ,
— 5 2 ) p2mivt — fdat 2nivkT/N
/:v(t)kz::o(<t N)e dt k}__;x<N>e ,

so that aw;(j/T) = a;. Explicitly performing the convolution of a(v) with I(v) we
finally have:

o
a; = au/](j/T) = aW(j/T) * I(J/T) = % Z aw (Uj —Z%) 5 (2.17)
{=~o0
where we have used Eq. 2.16 and where vj = j/T and aw(v) = a(v) * W(v).

To summarize, the transition from the continuous Fourier transform to the
discrete Fourier transform involves two operations: windowing, a convolution with
the function W(v), which is essentially a peak with a width év = 1/T plus sidelobes,
and aliasing, a reflection of features above the Nyquist frequency back into the
range (0, vny2). Windowing is caused by the finite extent, aliasing by the discrete
sampling of the data.
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In practice, aliasing is not so much of a problem as one might fear, as the data
are not really discretely sampled at intervals 6t = T/N, but rather binned into time
bins with a width ét. This is equivalent to convolving the data with the ”binning
window”

N _.I T

pty=4 VT —iw<t<zy (2.18)
0, otherwise

before the discrete sampling. Applying the "inverse” convolution theorem, we see

that the effect of this on the Fourier transform will be that a(v) is multiplied with

the transform of b(t):

sinwvT /N

B) = =5

(2.19)
This function drops from a value of 1 at v = 0 to 0 at v = N/T; halfway, at the
Nyquist frequency it has a value of 2/7, so that the effect of this multiplication
is a considerable repression of the high-frequency features that could be aliased
back into the frequency range (0, vy/2). This is understandable; the effect of the
binning is nothing else than averaging the time series over the bin width T/N so
that variations with a frequency close to N/T are largely averaged out.

The problems caused by the windowing can be more serious; the "leakage”
caused by the finite width of the central peak of W(v) and by its side lobes can
strongly distort steep power spectra (they become less steep, e.g., Deeter, 1983)
and, as we will see later on, it can spread out delta functions over the entire power
spectrum.

2.6. Literature

The "handy cookbook” of time series analysis has yet to be written. A good
standard reference that covers a large amount of information but is not always easy
to follow is Jenkins and Watts (1968). Much easier are the texts by Bloomfield
(1976) and Bracewell (1965). A very clear exposition of some basic principles of
Fourier analysis stressing intuition rather than mathematics can be found in Press

et al. (1986).
3. POWER SPECTRAL STATISTICS

3.1. Introduction

The process of detecting something in a power spectrum against a background
of noise has several steps. The first thing we need to know is the probability
distribution of the "noise powers” P;oice in a power spectrum of data consisting
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only of noise. If one or more of the powers P; in the observed power spectrum differ
significantly from the values expected from noise, then we may conclude that we
have detected a "source signal”, which is the term I shall use to indicate intrinsic
variability in the zp other than due to background noise.

To quantify the power of the source signal, i.e., to determine what the "signal
powers” Pjgignal Of the source signal would have been in the absence of noise (or
to determine their upper limit), we must consider the interaction between the
noise and the signal powers.

This quantitative knowledge about the Pjsignal can be directly converted into
a statement about the variance (or the rms variation) of the source signal. To
say something about other properties of the source signal we need to consider the
expected shape of the signal power spectrum. The optimal way to detect a given
signal will also depend on this expected shape.

In this section, we will consider the first of these steps, signal detection, and
consequently we must consider the probability distribution of the noise powers.
The problem of quantifying the signal power will be discussed in Section 4. For
the interaction between the noise and signal powers, we will follow convention by
making the following very simple assumption

Pj - Pj,l\oise + Pj,signal‘ (31)

Note that this is an approximation; as we have seen (Section 2.4), if it would be
true that a; = ¢ noise + @} signal. and if the noise is random uncorrelated noise, then
Eq. 3.1 is probably valid. However, for a photon counting signal, the properties
of the (e.g., Poissonian) counting noise will in general change with the count rate.
As long as the amplitudes of the source signal are small with respect to those of
the noise, so that the source signal can he seen as a small disturbance of the noise,
Eq. 3.1 will be approximately correct.

3.2. The Probability Distribution of the Noise Powers

For a wide range of types of noise, the noise powers P;j yoise follow? the x?
(chi-squared) distribution with 2 degrees of freedom (dof). The proof of this x?
property of the noise powers proceeds approximately as follows (see e.g., Jenkins
and Watts, 1968):

The noise power P poise = ;—1‘]‘?“0“6 + Biuoise, where A; and B; are given by
Eq. 2.2; A; and B; are both linear combinations of the @. Therefore, if the z
follow the normal distribution, then the A; and B; do as well, so that P;, by

2 With the exception of the power at the Nyquist frequency which follows the
x? distribution with 1 dof.
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definition, is distributed according to the y? distribution with 2 dof. If the z;
follow some other probability distribution, for example the Poisson distribution,
then it follows from the central limit theorem that for ”certain” conditions on this
other distribution the A; and B; will still be approximately normally distributed
(for large N), so that the \* property for the P; still approximately holds.

While this "proof” may seem somewhat unsatisfactory, the conditions for the
central limit theorem to be applicable not being spelled out, in practice one finds
that noise powers are nearly always y?2 distributed, not only for Poisson noise, but
also for many other types of noise. We shall see examples of this later on in this
section.

The normalization of the power spectrum defined by Eq. 2.8 is chosen such,
that if the noise in the photon counting data a is pure Poissonian counting noise,
then the distribution of the Pj s 1s exactly given by the y? distribution with 2
dof, so that the probability to exceed a certain threshold power level Pyjreshold 18
given by

PrOb(Pj,noise > Pthreshold) - Q(Pthres]mldig) (] = 11 N/2 - 1) ) (32)

where the integral probability of the x? distribution is defined as

[Zv/'zr (%)} o /:ot%"le‘% dt, (3:3)

]

Q(x*v)

< -2

where v is the number of dof.

Because the Pjqoise follow this distribution, the power spectrum is very noisy;
the standard deviation of the noise powers is equal to their mean value: op =
(Pj) = 2. This noisy character of the power spectrum can not be improved by
increasing the length T of the data or taking a coarser time step 6t; this just
changes the number of powers.

Two more or less equivalent methods are often used to decrease the large vari-
ance of the P; oise. One is to rebin the power spectrum, averaging W consecutive
frequency bins; the other to divide the data up into M equal segments, transform
these segments each individually and then average the resulting M power spectra,
each normalized according to Eq. 2.8, where Npy, is now the number of photons in
one transform. Both methods of power spectrum compression, of course, degrade
the frequency resolution.

As the time required to calculate the Fourier transform of N data points using
an FFT algorithm is proportional to N log N, there is a computational advantage in
the second method; the time saving factor is about 1+log M/log N. In many cases,
considerable additional time savings result from the smaller array sizes that need
to be handled by the computer. For a variable source, a further advantage of the
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second method is that cutting up the data into smaller segments allows one to study
variations in the power spectra as a function of, e.g., source intensity by selectively
averaging power spectra obtained within certain source intensity intervals and that
it allows the construction of two-dimensional images showing the time evolution
of the power spectrum. These techniques have proven particularly useful in the
detection of transient QPO phenomena. The first method, on the other hand, has
the advantage of producing a power spectrum that extends to lower frequencies (the
lowest measurable frequency being 1/T). It is possible to combine both methods;
each power in the final spectrum will then be the average of MW original powers.

4.0 T T T T T

PROBABILITY DENSITY

T

4 5 6

3
POWER

Fig. 3.1. The probability distribution of uverage noise powers for different values
of the number of powers MW averaged.

Because of the additive properties of the y? distribution, the sum of MW
powers is distributed according to the y? distribution with 2MW dof, so that the
powers in the averaged spectrum will be distributed according to a x? distribution
with 2MW dof scaled by a factor 1/MW. The mean of this distribution is 2, its
variance is 4/M W, and its standard deviation 2/ MW so that for large MW the
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spectrum becomes much less noisy. The probability for a given power P; noise in
the averaged spectrum to exceed a Py eshold 15 given by

PrOb(Pj,noise > Pthreshold) = Q(A:[I/thhreshold!2]\[[/‘/), (34)

where Q(x?2|v) is again given by Eq. 3.3. For large MW, this distribution tends
asymptotically to a normal distribution (see Fig. 3.1) with a mean of 2 and standard

deviation 2/v/MW:

. Pthresho]d -2
ol j,noise hresho - auss \ T ., ——7x | .
Al%‘%/rgoo Pro )(Pjy > Pires 1d) QG ( 2/\/]\4_W ) (3 5)

where the integral probability of the normal distribution is

b 2
QGauss(?) = \/il)—/ C‘t /zdt. (36)
o0r J;

So, a considerable simplification can be obtained by averaging large numbers
of powers, empirically determining mean and standard deviation of the averaged
power spectrum to account for non-Poissonian noise in the z (see Section 3.4), and
then using Gaussian statistics. In the following, we will, unless otherwise stated,
assume the more general case described by Eq. 3.4.

3.3. The Detection Level - the Number of Trials

Assuming the y? property for the noise powers (Eq. 3.4), we can now determine
how large a power must be to constitute a significant excess above the noise.

Define the (1 — €) confidence detection level Pyegecy as the power level that has
only the small probability € to be exceeded by a noise power. So, if there is a power
P; that exceeds Pyetect then there is a large probability (1 —¢€) that P; is not purely
due to noise, but also contains signal power (Eq. 3.1).

A crucial consideration, occasionally overlooked, is the number of different P;
values, known as the number of trials Ny, that one wishes to compare with
Pyetect- Nirial can be equal to the total number of powers in the power spectrum, or
less than that if only a certain frequency range in the spectrum is considered. The
probability to exceed Pjerect by noise should have the small value € for all powers
in the frequency range of interest together, so that the chance per trial should
have the much smaller value of about® €/Nyia1. So, the detection level Pietect is
given by

3 The exact expression can be obtained by setting the joint probability for Nya
values of P; not to exceed Pyeiect €qual to 1 — ¢, which gives a chance to exceed
Pyetect per trial of 1 — (1 — €)1/ Newiad) nearly cqual to €/Nyyq for € < 1.
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€

N trial

= Q(MW Paerect|2MTV) (3.7)

In Fig. 3.2, Pjetect is plotted as a function of Nyia) for various values of MW
and for confidence levels of 90% (e = 0.1) and 99% (e = 0.01). Note that although

Pjetect increases with the number of trials Nya, the increase is relatively slow.
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Fig. 3.2. 90% (drawn) and 99% (dashed) confidence detection levels (minus 2)
as a function of the number of trials. The number of independent powers, MW,
averaged together due to rebinning of the power spectra by a factor W and averaging
M different power spectra increases by a factor of 2 in consecutive curves. The
trials are assumed to be independent, so no overlaps between the W-bin averages

are allowed. As an example, for a power spectrum produced by averaging together
2 Praw” power spectra of 4096 bins each and binning up the resulting spectrum by
a factor of 4 to produce « 1024-bin average spectrum the 90% confidence detection
level can be read from the curve MW = 8 at Nyyja = 1024 to be 5.8.
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3.4. Non-Poissonian Noise

For various reasons the noise in the x; can differ from purely Poissonian count-
ing noise. The consequence of this is that the Pj ise are no longer distributed ac-
cording to Eq. 3.4; in general, correlations introduced by the noise process between
the z; will introduce correlations between the Pj noise, so that the noise power spec-
trum will not even be flat any more. However, as we have seen in Section 3.2, under
?certain” conditions omne still expects the noise powers to follow a x? distribution
with 2 dof. Even if this is the case, the normalization will be different from that
implied by Eq. 3.4 and will in general depend on j.

3.4.1. Dead Time

One reason why noise in the 2y can be non-Poissonian is the occurrence of
various instrumental effects summarized under the name "dead time”. Various
types of dead time exist, all of which considered here have in common that the
instrument is unable to detect a photon for a given short interval of time 7ycaq after
a photon has been detected; Tqead may be constant, or depend itself on various
instrumental parameters.

The case where 7qeaq is constant is typical for an X-ray proportional-counter
dead time. If the incident count rate is A and the detected count rate g, then during
an observation of length 7' the total dead time will be pT'Tgead, so that (”incident
= detected + missed”} AT = uT + T 7gead A, OT

A

- 1+ Tdead)\ . (38)

7
This type of dead time introduces a correlation between the z;: if a photon
has been detected in bin k&, then there is a certain probability that the dead time
interval associated with this photon extends into the next bin k 4 1, and therefore
the average chance to detect a photon in bin k& + 1 will be diminuished. This then
means that the average chance in bin & + 2 will be slightly higher, etc., so that
the final result is that a quasi-periodic oscillation is introduced into the z; with a
frequency equal to the Nyquist frequency. Consequently, the noise power spectrum
will rise towards /5. This constant 7qc.q process has been simulated by Weisskopf
(1985). The result of these simulations is that the expectation value of the noise
power spectrum (normalized according to Eq. 2.8, where Npn = pT') becomes:

P; noise) = 2(1 — uTgea 2149 HTdead Tdead . 2211' ‘ '
{Pjnoise) (1 — p7acaa) [ + (1_#”%{1 T/N sin” - (3.9)
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Fig. 8.3. The complicated dead time process of the EXOSAT ME (see Andrews
and Stella 1985, Tennant 1987) strongly modifies the probability distribution of the
noise powers (drawn) with respect to that expected for a Poisson noise process.
After scaling the distribution with the mean noise power, however, the match with
the ezpected x? distribution (dashed) is good. (Simulated QPO data; sum of 20
power spectra.)

The amplitude of the frequency-dependent component in the noise power spectrum
is seen to be proportional to both the ratio of total dead time to total live time and
the ratio of Tgeaa to the duration of a time bin T/N.

Another simple type of dead-time process is that where the instrument can only
detect at most one photon per instrumental "sample” cycle, which has a duration
Tsample- S0, in this case Tqeqq 15 variable and lasts from the time a photon is detected
until the end of the sample. If the arrival times of the incident photons are Poisson
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distributed, then the chance that no photon arrives during Tsample 18 e~ Teempled 5o
that the chance that a photon is detected is 1 — e~ Tsmple} 50
1-— e“Tsample/\
= — (3.10)

Tsample

If each bin @ contains Neumple samples, then the number of counts in zj is
the number of "successes” among Neymple trials, where the chance of success is
p = 1 — e~ Tesmpier. This means that the z; follow (by definition) the binomial
rather than the Poisson distribution, with mean Ngumple and standard deviation

P(1 ~ p)Neample- Note that in this case no correlations are introduced between
the zj. With Eq. 2.9 for the total variance in the z; and noting that Npp = )z =
PN Ngample it can be derived that the average noise power will be
A

(Pj,noise) = 2€Tsample = 2(1 - ,U'Tsample), (311)

as compared to 2 in the case of Polsson noise.

In practice, dead-time processes are often much more complex than in the two
examples above. In particular, there may be an interaction between dead-time
processes in different instrumental channels (see Paper 1). However, usually one

finds that the y? property of the noise powers is at least approximately preserved
(Fig. 3.3).

3.4.2. Intrinsic Noise

It is very common for the source signal itself to consist (partly) of noise. Such
intrinsic noise signals can contain very useful information about the source and are
worthwhile to try and detect over the background noise caused by, e.g., counting
statistics; examples are red noise and QPO. However, in many cases one wishes to
consider such an intrinsic noise component as be ckground against which to detect
another source signal component. In such cases it is of particular importance to
test empirically the probability distribution of the noise powers.

For example, a theoretical description of red noise as the integral of white noise
(e.g., Deeter and Boynton 1982) suggests that the x? property of the noise powers
will apply for red noise. However, although any observed power spectrum that rises
towards lower frequencies is often called a red noise spectrum, the underlying source
variability is not specified by thLis power spectral property (it is not even necessarily
a noise process) and the \? property can not be guaranteed.

Again, in practice one usually finds that also for noise in the source signal
the noise power distribution closely matches a \? distribution scaled to the local
average power (Figs. 3.4, 3.5).
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Fig. 3.4. a) An average of 6166 power spectra of EXOSAT ME data on the source
GX 5-1 showing red noise and QPO (quasi-periodic oscillations). b) The standard
deviation of the 6166 power values averaged in each frequency bin. Inset: the ratio
of b) to a). Standard deviation equals mean power as expected for x?* distributed
powers.

It is stressed that it is essential when looking for weak source signals to take
into account the (likely) prescnce of intrinsic noise. In particular it is completely
wrong to use the normalization of the noise power distribution valid for Poisson
statistics (Eq. 3.4) when trying to detect something against a background of red
noise. Note that red noise can be present even if the quality of the data is not
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Fig. 3.5. a) Integral distribution of all individual powers in the 6166 power spectra
of Fig. 3.4a (crosses). Strong deviations from a x? distribution (drawn line) due
to QPO and red noise are visible. b) Distribution of the same powers as in a),
after dividing each individual power spectrum by the average spectrum of Fig. 8.4a.
The match to the x? distribution is very close now. Small residual wiggles are due
to the intrinsic variations of the shape of the QPO /red noise power spectrum as a
function of source intensity.

sufficient to clearly see the slope in the power spectrum *.

If the x> property is expected to apply then a correct procedure would for

4 ”Scrambling” techniques where the time order of the z; is randomized are
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example be to divide the power spectrum by some average red noise shape (e.g.,
a best-fit power law) in order to bring all noise powers back to one x? distribution
and then evaluate the significance of any excess. Obviously, the uncertainties in the
description of the shape of the noise spectrum itself should also be taken in into
account in such an analysis.

4. THE SIGNAL POWER
4.1. Introduction

Any quantitative statement one can make about the signal power Pjsignal will
be a statement of a probability based on the probability distribution of the noise
powers Pj noise, because the only thing one knows for sure is the total power P; which
is (Eq. 3.1) equal to the signal power contaminated with an unknown amount of
noise power. In Section 4.2 we will consider this process of quantifying the signal
power. In Section 4.3 it will be discussed how to convert a statement about Pj signal
into a statement about the rms variation in the source signal. It is reiterated at this
point that to say anything else about the source signal, e.g., about the amplitude of
a sine wave, is an entirely different problem for which we need to model the shape
of the signal power spectrum. For a sinusoid signal, this problem will be touched
upon in Section 6.

4.2. Quantifying the Signal Power

4.2.1. Detected Signal Power. Supposing that we have a detection, i.e., for
given j it is true that P; > Pqcrect, then we ask what is the probable value of the
signal power P; signal at J.

Determine a "limiting noise power level” Pygigelimit that has only a small prob-
ability €' to be exceeded in one trial:

el = Q(]\’/[I/VPnoiselimitI?‘J\JW/)' (41)

Then, with confidence (1 — ¢') we can say that for given j Pjoise < Proiselimit-
Because according to Eq. 3.1 Pjsignal = Pj — Pj noise, this implies that

P;j signal > Pj — Pyoiselimit (1 —€') confidence. (4.2)

sometimes used to evaluate the probability to produce a certain feature in the
power spectrum by chance given the distribution of the zx. These techniques are
incorrect when red noise is present, as the scrambling destroys the correlations in
the z; underlying the red noise and artificially converts the red noise into white
noise.
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Note that a slightly misleading statement about this case occurs in Paper 1 (in the
text after Eq. 2.13).

4.2.2. Upper Limit to the Signal Power. If no significant power level has been
attained by any of the P;, then it is useful to determine an upper limit to the signal
power. The (1 —6) conﬁdem e upper limit Pyy, to the signal power is defined as the
power level for which with (1 — ¢) confidence Pjggna < Puyr irrespective of where
(at which j) in the frequency range of interest this signal power may have occured.
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Fig. 4.1. Relations between the detection level Pyegece, the "usually ezceeded” level

Pexceea, the mazimum observed power Py,,y, the upper limit Pyy, and the sensitivity
level Pyensitive (Sce text).

To determine Pyp, we define a power level Pegceed that has the large probability
(1 —9) to be exceeded by a given individual Pj yjse:

1-0= Q(:\[IV exceed

2MW). (4.3)

So, a fraction of approximately (1 — §) of all powers considered will exceed Peoxceed
in the absence of a source signal. We now find the largest actually observed power
P .x in the frequency range of interest, and write

PUL = Pmax ™ Lexceed- (44)

If for some j there would have been a signal power in the power spectrum with
Pj signal > Py, then for that j with (1 — §) confidence P; would have exceeded
Prax = PuL + Pexceea (Eq. 3.1). As we know that for all j it is true that P; < Phax,
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we can say with (1 — é) confidence that indeed for all j Pjsignal < Pur. Note that
the number of trials Ny, does not enter into the calculation of Py, as one reasons
in terms of one hypothetical undetected signal power Pjggnal at given j.

4.2.3. Sensitivity to Signal Power. It is sometimes useful to predict the ca-
pabilities of a planned experiment in terms of its sensitivity to signal power. The
sensitivity level Psepsitive can be calculated on the basis of the (expected) probability
distribution of the noise power as

Psensitive - Pdetect - Pexceeda (4'5)

where Pyetect and Pexceed are defined in Eqs. 3.7 and 4.3, respectively. If there
occurs a Pjsignat somewhere in the power spectrum that exceeds Piensitive then
with (1 — 6) confidence it will be detected (at the (1 — ¢) confidence level associated
with Pgetect). Note that Pseysitive 18 10t the same as Pyr; in fact, Peepsitive 18 in 2
sense the upper limit to Pyy, (see Fig. 4.1).

4.3. The rins Variation in the Source Signal

Assuming that the signal power spectrum has been properly separated out
from the total power spectrum using the methods described in Section 4.2, we can
convert the signal power into the rms variation r of the source signal in the z; using

the expression
/W’E_ P; ional
3 ,signa
=y 4.6
Nph ( )

(¢.f. Eq. 2.10), where P; is an MW times averaged power and where Npy is the
number of photons per transform.

We shall consider two effects that may cause a difference between the value of r
obtained in this way and the actual value R applicable to the signal z(¢) as emitted
by the source. As we have seen in Section 2.5, the binning of the data causes the
power spectrum to be suppressed preferably towards the higher frequencies. The
correction factor by which » should be multiplied is

It 7vT /N
(T> binning =f= sintvT/N’ (4.7)

(c.f. Eq. 2.19), where ¥ is some appropriate average over the signal feature in the
power spectrum.

The second effect is our old friend dead time (see also Section 3.4.1). Provided
that the variations in the signal of interest are slow with respect to the dead time
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process, the way in which dead time changes the signal is completely described
by the instrument-dependent relation between A and u, the incident and detected
count rates. Examples of such relations are given in Eqs. 3.8 and 3.10; any relation,
either theoretical or empirical, can be used.

Expressing the relation as the dead time attenuation factor f(A) = u/A, one
finds that a small change éA in the incident rate causes a change ép in the observed

rate given by
Syt Adf\ 8A
A i I ATCIN Iddn 4.8
It ( + fdx/) A (48)
From this expression we can derive the dead time correction factor

i _ ,_|6,\|/,\:(’ iﬁyl
(7' >c1ead time B [6e]/ e 1+ ) . (4.9)

See Paper 1 for a discussion of the case of dead-time interaction between several
instrumental channels.

One minor pitfall remains to be considered, being the practice of describing
the signal power spectrum Pjggnal i terms of a function Psigm;(u) defined such
that Pignai(#;) = Pjsignal. When integrating this function one should note that
f Pyignal(v)dv = 17{:/ > Pj signal- Defining the excess power in the power spectrum
due to the signal as Peccess = W Y Pjsignal = T [ Paignal(v) dv, we finally have for

the fractional rms variation in the signal corrected for binning and dead time

Pexcess Ndf|TY nmst [ Pogua(v) dv
= - — =11 —_—— o g .
R=aby= I tFan| smavetV T ) (4.10)

where I = N, /T is the count rate, ¥ the average frequency of the signal feature
in the power spectruny, 6t = T/N the duration of a time bin, and the sum and the
integral run over all frequencies where the signal causes a non-negligible power (a
power at the the Nyquist frequency should enter with a factor -12;, see Eq. 2.10).

5. OPTIMAL DETECTION - INDEPENDENT TRIALS
5.1. Introduction

When deriving the detection level from the noise power distribution in Sec-
tion 3.3, we implicitely assumed that the trials (i.e., the powers to be tested against
the detection level) would all have the same statistical properties, and that they
would be statistically independent. In particular, MW was assumed to be equal
for all trials and no overlaps were allowed between the averages of W bins. This
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approach is not necessarily optimal for all signal shapes, but it has the enormous
advantage that the statistical properties of any power excess that is found can easily
be evaluated analytically from the known distribution of the noise powers. In this
section, we develop the possibilities of this method to its limit by considering the
optimal value of the number of bins to average, given the expected signal. In Sec-
tion 5.4 the method as it has been developed in the previous sections is summarized
in a step-by-step style. In Sections 6 and 7, we shall abandon the constraints that
the trials should be equal and independent.

5.2. Detecting a Narrow Feature

The detection of a narrow feature in the power spectrum (defined as a feature
in which all power is concentrated in one frequency bin) is a fundamental problem
because the continuous Fourier transform of a strictly periodic signal consists of one
or more delta functions (see, however, Section 4.5 for the case of the discrete Fourier
transform). If the signal power of a narrow feature in a full frequency-resolution
power spectrum is Pyjgnal, then it will drop to Pegnal/(MW) after the frequency
resolution has been degraded by a factor MW by one of the methods described in
Section 3. For the method of averaging W adjacent bins this is immediately obvious;
for the method involving division of the data into 3 equal segments, this can be
seen by using Eq. 2.9 (and assuming that the signal remains the same through the
observation).

The detection level also drops when the frequency resolution is degraded, both
because the probability distribution of the noise powers in the average power spec-
trum becomes narrower and because the number of trials decreases by a factor
MW. In addition, the narrower noise distribution causes Peyceeq to increase. How-
ever, in the final analysis the sensitivity level Peensitive (Eq. 4.5) always drops more
slowly than 1/MW (Fig. 5.1), so that the conclusion is that for detecting a narrow
feature in the power spectrum the highest sensitivity is reached for the maximum
possible frequency resolution, i.e., by choosing MW = 1. Note that we have not
specified what the source signal should be in order for the signal power spectrum to
be narrow; as we shall see, the discrete Fourier transform of even a strictly periodic
sinusoidal signal does not approximate a delta function very well.

5.3. Detecting a Broad Feature

Similar reasoning as in Section 5.2 shows that also for a feature of finite width
Av the signal power summed over all frequency bins in the feature will drop
proportionally to 1/MW when the frequency resolution of the power spectrum is
degraded. However, as long as the width of the feature exceeds the frequency resolu-
tion: Av > MW/T,s, where Tops = MT is the total length of the observation, the
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Fig. 5.1. The sensitivity level as a function of the number of powers averaged
(MW ) for various numbers of trials. The sensitivity level always decreases more

slowly than 1/MW.

signal power in one frequency bin within the feature will remain constant (strictly
speaking, for a feature with a rectangular profile, and ignoring edge effects), because
the number of bins in the feature Av /(MW /Tys) is also inversely proportional to
MW. Because Picpsitive drops as a function of AW, this implies that the sensitivity
to the feature increases with MW, When (MW/Tops) > Av, we recover the case
of Section 5.2, and the sensitivity begins to drop. So, the optimal value of MW is
that which just concentrates all power in one bin: TypsAv.

The above argument ignores the alignment between the feature and the fre-
quency bins; for MW = TopsAr one is lucky when all power is in one bin; more
likely is a situation where the power is distributed over 2 bins. It is possible to devise
tests which take into account various possible alignments and which are optimized
for specific shapes of the broad feature; some examples of this will be considered in
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Sections 6 and 7.

5.4. Summary: Power Spectral Searches Made Easy

In this section we collect all previous results into a "how to” recipe of testing

the power spectrum for a wealk signal using equal statistically independent trials.

o

10.

Determine the M and W (Section 3.2). The optimal choice for MW is that
which approximately matches the expected width of the power spectral feature
one desires to detect, Tops Av (Sections 5.2 and 5.3), but gaps in the data or
the desire to see the time evolution of the power spectrum may dictate M.

. Calculate the M power spectra normalized according to Egs. 2.8 and 2.44. Note

that g is the number of photons in bin k and N, the number of photons in
one power spectrum, ., T.

Average the M power spectra.

Think about the noise power distribution (Sections 3.2 and 3.4). Does the
noise power spectrum seem to be flat? Is its mean level 2.0? If so, the noise is
probably dominated by Poissonian counting statistics - go to step 5. If not, find
out why not. Try to determine whether the y? property applies (Section 3.4). If
you are satisfied that it does, you can divide the power spectrum by some mean
noise power spectral shape and go on step 5. Otherwise, find out what is the
distribution of the noise powers and determine the detection level accordingly.
Determine the detection level (Eq. 3.7, Fig. 3.1).

Check the average spectrum for powers exceeding the detection level.
Quantify the signal power in terms of a detection (Section 4.2.1) or an upper
limit (Section 4.2.2).

If necessary, multiply back in the noise power shape you may have divided out
in step 4.

Convert the signal power into the relative rms variation of the source signal,
correcting for the effects of binning and dead time (Section 4.3).

To say more about the signal, you need to model its power spectrum. For a
sinusoidal signal, see Section G.

6. DETECTING A SINUSOIDAL SOURCE SIGNAL

6.1. Introduction

When searching for an X-ray pulsar, the first assumption that is made is often

that the pulse shape is sinusoidal — and for many X-ray pulsars, of course, this is not
a bad assumption. In this section, we first derive the shape of the discrete power
spectrum of a sinusoidal signal of arbitrary frequency and phase, and then consider



