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1. Motivation

In astronomy textbooks it is usually stated that the Bondi-Hoyle solution has a specific
value for the accretion rate (given the boundary conditions of ambient density and temper-
ature of the gas). Only with this specific accretion rate will there be a seamless transition
from sub-sonic inflow to super-sonic inflow.

The Bondi-Hoyle or the Parker problem is quite analogous to the rocket problem, in
that both involve a smooth transition from sub-sonic to super-sonic flow. What bothered
me is the statement in astronomy books that the solution demands a specific accretion (or
excretion) mass rate. In contrast, the thrust on a rocket can be varied (as can be gathered
if you watch NASA TV). Given the similarity between the astronomical problem and the
rocket problem I thought an investigation of the latter may be illuminating and hence this
note.

2. The de Laval Nozzle

Consider a rocket which is burning fuel. Let Ṁ be the burn rate of the fuel and ue be
the speed of the exhaust. Then in steady state the vertical “thrust” or force is Ṁue. The
resulting vertical thrust lifts the rocket. Clearly, it is of greatest advantage to make the
exhaust speed as large as possible and to minimize the outflow in directions other than
vertical.

A rocket engine consists of a chamber in which fuel is burnt connected to a nozzle. A
properly designed1 nozzle can convert the hot burnt fuel into supersonic flow (see Figure 1).

The integration of the momentum equation (under assumptions of inviscid flow) yields
the much celebrated Beronulli’s theorem. Specifically, the following sum

(1) B =
1
2
|u|2 + φ +

∫
dP

ρ

is constant along a stream line (with B being the streamline constant). Here φ is a scalar
potential associated with the body force (and for terrestrial and astronomical cases it is
the gravitational field).

1R. Goddard was the first to apply the de Laval nozzle to rocketry.
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Let A(x) be the cross-sectional area of the nozzle. Assuming steady state, the equation
of continuity and Bernoulli’s equation are

ρ(x)u(x)A(x) = constant(2)
1
2
u2 +

∫
dP

ρ
= constant;(3)

where we have ignored the gravitational potential because (for rockets) the pressure gra-
dients are much stronger than acceleration due to gravity. Henceforth we will drop the
explicit dependence of ρ, u and A with x.

Figure 1. A typical nozzle and associated terminology.

Differentiating Equation 3 we find

udu +
1
ρ

dP

dρ
dρ = 0

dρ

ρ
= −M2 du

u
(4)

where c2
s = dP/dρ is the square of the sound speed andM = u/cs is the Mach number. We

immediately see that for highly sub-sonic flow (M� 1), the fluid is almost incompressible.
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Next, we take the log derivative (i.e. take the log and then differentiate) of Equation 3
and find

(5)
dρ

ρ
+

du

u
+

dA

A
= 0.

Combining Equations 4 and 5 we obtain

(6) (1−M2)
du

u
= −dA

A
.

From Equation 6 we see that for sub-sonic flows (M≤ 1) du/u has the opposite sign of
dA/A. Thus the flow speeds up when the nozzle starts constricting and slows down when
the nozzle expands. In contrast, for supersonic flows (M ≥ 1) we find du/u and dA/A
enjoy the same sign. Thus the fluid speeds up as the cross-section of the nozzle increases!

The “throat” of a nozzle is the narrowest cross-section (x = xt). Thus dA/dx = 0 at
x = xt and accordingly

(7) (1−M2)
du

u

∣∣∣
x=xt

= 0

There are two possibilities: either du/u(xt) = 0 or M(xt) = 1.
If the engine is on low power then the flow will be sub-sonic everywhere reaching a max-

imum value at xt. [This discussion also shows that a time independent entirely sub-sonice
flow is possible. As noted by F. Shu this solution is rarely of interest in the astronomical
context.]

We now turn up the burn rate and the flow speed increases at the throat. At a particular
burn rate, the flow becomes supersonic with M(xt) = 1. This burn rate is called as the
critical burn rate.

What happens if we still increase the burn-rate? In this case, the flow can be expected
to become trans-sonic for x′ < xt. However, since dA/A|xt 6= 0 we see from Equation 6
that

(8)
du

u

∣∣∣
x→x′

→ −∞.

A negative steep gradient in u means that the flow stagnates at x′. The burning of the
fuel continues and pressure builds up in the combustion chamber. This build-up moves
the stagnation point towards the throat. Once the stagnation point crosses the throat a
new steady flow is established. Thus contrary to the statements made in astronomy books
a rocket engine does not work for a fixed Ṁ . Rockets work for Ṁ > Ṁcrit [3]. See below
for a description of the Space Shuttle Main Engine.

The sort of adjustment described above takes place because the flow is sub-sonic in the
combustion chamber. In this chamber, the flow can rearrange to boundary conditions. In
particular, even if c0 is fixed (related to the temperature of the burning), ρ0 is determined
by the burn rate. In steady state, the burn rate must be matched by Ṁ .



4 S. R. KULKARNI

3. Polytropic Gas

Following [4] we work out a toy model for a polytropic fuel, P = Kργ . The primary
variables that we wish to deal with is the density, ρ0 = ρ(x = 0), and the speed of sound
in the combustion chamber (c0) and the steady state mass flux, Ṁ . To this end we note:

c2
s =

dP

dρ
= γργ−1

= c2
0

( ρ

ρ0

)γ−1
.(9)

Thus the speed of sound elsewhere can be expressed as

ρ

ρ0
=

(cs

c0

)2/(γ−1)
.(10)

We re-express the equation of continuity and Bernoulli’s theorem in our preferred new
parameters: (cs

c0

)2/(γ−1)
u =

1
ρ0

(Ṁ

A

)
(11)

1
2
u2 +

c2
s

γ − 1
=

c2
0

γ − 1
.(12)

We have ignored pressure from the ambient medium (which does make a difference in real
life).

Let us assume that the flow has become transonic at the throat, x = xt. Here, At =
A(xt), the are of the throat aperture. Then setting u(xt), the flow speed, to the local speed
of sound, ct = cs(xt) in Equation 12 we find

(13)
ct

c0
=

( 2
γ + 1

)1/2
.

Substituting this value into Equation 11 we obtain

Ṁcrit =
( 2

γ + 1

)(γ+1)/(2(γ−1))
c0ρ0At(14)

= βc0ρ0At.(15)

where β is the numerical factor which can be deduced from Equation 14. Thus the critical
mass flux is essentially the same as that obtained by dimensional considerations.

Let us assume that the mass flux, Ṁ , and the speed of the ejecta, ue are measured.
Then, the density of the exhaust is given by

ρe =
Ṁ

Aeue
(16)

where Ae is the area of the exhaust aperture.
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We now wish to determine the Mach number at the exit aperture. In Equation 12 we
set u = ue, ce = cs(xe) and Me = ue/ce. Dividing this equation by ce we find

(17)
1
2
u2

e +
1

γ − 1
c2
e =

1
γ − 1

c2
0

which can be re-expressed as

(18) c2
0 =

γ − 1
2

u2
e + c2

e.

Our plan is to eliminate c0. Starting with Equation 9 and substituting the densities
(Equations 15 and 22)

c2
0 = c2

e

(
ρ0

ρe

)(γ−1)

= c2
e

(
Ṁ/(βc0At)
Ṁ/(ueAe)

)(γ−1)

= c2
e

(
ueAe

βc0At

)(γ−1)

.(19)

Thus

c2
0 = c4/(γ+1)

e

(
ueAe

βAt

)2(γ−1)/(γ+1)

.(20)

Eliminating c0 from Equations 18 and 20 we find

(21)
γ − 1

2
u2

e + c2
e = c4/(γ+1)

e

(
ueAe

βAt

)2(γ−1)/(γ+1)

.

From this equation, ce can be estimated through numerical means. The Mach number at
the exit aperture is then Me = ue/ce.

4. Application to SSEM

We apply this result to the Space Shuttle Main Engine (SSEM; see §A). The Shuttle has
three SSEMs. For each, running at 100% throttle the mass flux is Ṁ ≈ 438 kg s−1 and the
exhaust velocity is ve = 5.18 km s−1. The diameter of the throat is Dt = 10.3 inches and
that at the exit is De = 90.7 inches. The fuel is liquid oxygen and liquid hydrogen. The
two liquids are pumped with a mass ratio of 6:1 and pumped into the burning chamber.

First I compute the density of the exhaust:

ρe =
Ṁ

Aeue

= 2.03× 10−5 g cm−3;(22)

here, Ae = (π/4)D2
e is the area of the exit aperture. For γ = 5/3, I plot the LHS and RHS

of Equation 21 (Figure 2). I find, ce = 0.45 km s−1 and c0 = 2.8 km s−1. Thus the Mach
number at the output is about Me ≈ 11.
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I now explore to see if I can infer the temperature of the burning chamber (since we
know c0). The speed of sound in the burning chamber is

(23) c0 =

√
γkBT

µmH

where µmH is the mean molecular weight of the gas (mH is the mass of H atom) and T is
the temperature.

The fuel consists of the following mixture: 6 grams of O2 to every gram of H2. Following
burning, we have H2O and atomic hydrogen. By numbers we have 3/8 of single oxygen to
every atom of hydrogen. Following burning we have by number: 3/8 (H2O, µ = 18) and
1/4 (H, µ = 1) and thus

(24) µ =
18× 3/8 + 1/4

3/8 + 1/4
= 11.2.

If the hydrogen has recombined then µ = 14. For γ = 5/3, µ = 11.2 and given c0 =
2.8 km s−1 we obtain T = 6550K.

However, the use of γ = 5/3 is questionable. At the high temperatures in the burning
chamber as well as flow downstream the rotational-vibrations bands of molecular hydrogen

Figure 2. SSEM: The speed of sound at the exhaust, ce, versus the speed
of sound in the burning chamber, c0. The curves are for the parameters
relevant to the SSEM. The solid curve is the square root of the right side of
Equation 21 and the dotted line is the square root of the right side of the
same Equation.



NOZZLES 7

[1-0 S(1), 2.1µ, 2-1 S(1), 2.2 µm; see Black & Dalgarno] and water (see Barber et al. 2005,
MNRAS) will be excited.

A perusal of the relevant NASA web pages show the following measurements: an output
Mach speed of 5.5 and a temperature of 3300 K in the combustion chamber.

Adopting γ = 5/4 we find c0 = 1.94 km s−1 and ce = 0.94 km s−1 and thus Me = 5.1.
This compares favorably with the measured combustion temperature and measured Mach
speed.
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Appendix A. Rocket Nozzles

The simplest nozzle is a cone with a half-opening angle, α attached to a combustion
chamber (see Figure 3). Conical nozzles yield nearly uniform exit velocity. However, there
is flow divergence since the flow angle varies from 0 (on axis) to α (at the edge). Thus the
the thrust is reduced.

A typical nozzle has α = 15◦. Incidentally, the length of any nozzle type is commonly
referenced to the length of a 15◦ cone having the same nozzle area ratio. These nozzles are
not used in practice (finding their greatest value for homework problems.)

Figure 3. Types of Nozzles.

The “Rao” (after Gadicherla V. R. Rao of Rockwell Inc) nozzle uses an approximately
parabolic cross-section and is of shorter length relative to a simple conical nozzle (for a
given burn rate and thrust).

A cartoon view of a liquid rocket engine is shown in Figure 4. For big rockets such as
the Space Shuttle, the fuel is hydrogen and the oxidizer is oxygen. These two liquids are
pumped into the combustion chamber in the ratio of 1:6.2

The Space Shuttle Main Engine (SSME; see Figure 5) is described in [1]: “The SSME
nozzle is 10.3 inches in diameter at the throat, increasing to 90.7 inches at the nozzle

2The primary reaction is H2+O2=H2O+O. The density of liquid hydrogen is small, ρH2 = 0.07 g cm−3;
in contrast, the density of liquid oxygen is 1.14 gm cm−3. However, the number density of H2 is NAρH2/µ =
2.1×1022 cm−3 where NA is Avogadro’s number and µ = 2 is the number of Daltons for molecular hydrogen.
Likewise for O (single atom) the number density is 4.3× 1022 cm−3. From this I deduce that the capacity
of the hydrogen need only be twice that for the oxygen tank. The fuel ratio is conventionally quoted as the
ratio of the oxidizer to the fuel and the units are pounds or kilograms. The ratio is expected to be 8:1 but
in practice the ratio is set to 6.03:1. All the oxygen will be consumed. The unburnt hydrogen reduces the
molecular weight of the exhaust which apparently reduces the turbulence that is created along the nozzle
surface.



NOZZLES 9

Figure 4. Cartoon view of a liquid engine rocket.

exit over a length of 121 inches. At 100 percent power level, propellants flow through
the nozzle at a rate of 1,035 pounds per second. The nozzle accelerates the combustion
products to 17,000 feet per second at the nozzle exit, generating 470,000 pounds of thrust
at vacuum. Because the last one percent of SSME thrust at a fixed mass flow rate translates
to about 5,000 pounds of shuttle payload, high priority was placed on nozzle design and
performance.”

Note one but three such engines are needed to provide the necessary lift-off thrust for the
Space Shuttle. Each SSME can be throttled over a range of 65% to 109% (!) in increments
of 1%.

Despite the US being a powerhouse in technology there are pockets who continue to live
in the previous century.3 To start with one pound is about 453 g. Thus a burn rate of 1035
pounds per second is Ṁ ≈ 468 kg s−1. Next, one inch is exactly 2.54 cm and one foot is 12
inches. Thus one foot per second is 30.48 cm s−1. The exit speed is thus 5.18 km s−1 (cf.
the speed of sound on a balmy day is about 0.343 km s−1).4

Finally, the SI unit for force is Newton (kg m s−2) and the CGS unit is dyne. In US
aerospace industry force or thrust is quoted in “lbf”. One pound force is the force due to
Earth’s gravity at sea level on one pound of matter. Thus 1 lbf = 0.453 kg × 9.8 m s−2 =
4.439× 105 dyne or 4.439 Newton. Thus the thrust generated by SSME is 2.1× 106 N.

3with attendant disaster – the ill-fated Mars Climate Orbiter.
4Another reference quotes the exit speed (with respect to the nozzle) as 4.4 km s−1.
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Figure 5. SSME Nozzle at sea-level pressure. The shape of the plume
varies with the ambient pressure. Next time you see the Shuttle being
launched look for the change in shape (cylindrical with Mach disk at launch;
gradually the diameter of the cylinder should increase and the Mach disk
should disappear; finally the plume should look a cupola.)
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